Janitza electronics GmbH Vor dem Polstück 1 D-35633 Lahnau Support Tel. (0 64 41) 9642-22 Fax (0 64 41) 9642-30 E-mail: info@janitza.de Internet: http://www.janitza.de

Power Analyser

Differenzstrom-Überwachung (RCM)

Betriebsanleitung und technische Daten

Inhaltsverzeichnis

Allgemeines	4
Eingangskontrolle	6
Lieferumfang UMG 96RM-E (RCM)	7
Lieferbares Zubehör	7
Produktbeschreibung	8
Bestimmungsmäßiger Gebrauch	8
Leistungsmerkmale UMG 96RM-E	10
Messverfahren	11
Bedienungskonzept	11
Netzanalysesoftware GridVis	11
Anschlussvarianten	12
Montage	13
Installation	15
Versorgungsspannung	15
Spannungsmessung	16
Strommessung über I1 bis I4	22
Differenzstrommessung (RCM) über 15, 16	31
Temperaturmesseingang	33
RS485-Schnittstelle	34
Ethernet-Schnittstelle	37
Digitale Ein-/Ausgänge	38
LED-Statusleiste	42
Bedienung	44
Anzeige-Modus	44
Programmier-Modus	44
Parameter und Messwerte	46

Konfiguration	48
Versorgungsspannung anlegen	48
Strom- und Spannungswandler	48
Stromwandler für I1-I3 programmieren	50
Spannungswandler programmieren	51
Parameter programmieren	52
TCP/IP Konfiguration	53
RS485-Geräteadresse (Adr. 000)	56
RS485-Baudrate (Adr. 001)	56
Modbus-Gateway (Adr. 002)	57
Benutzer-Passwort (Adr. 050)	57
Parameter	58
Mittelwert	58
Mittelungsverfahren	58
Min- und Maxwerte	59
Energiezähler	59
Netzfrequenz (Adr. 034)	60
Oberschwingungen	61
Messwert-Weiterschaltung	62
Messwertanzeigen	62
Energiezähler löschen (Adr. 507)	64
Drehfeldrichtung	64
LCD Kontrast (Adr. 035)	65
Hintergrundbeleuchtung (Adr. 036)	65
Zeiterfassung	65
Betriebsstundenzähler	66

Seriennummer (Adr. 754)	66
Aufzeichnungen	67
Inbetriebnahme	68
Versorgungsspannung anlegen	68
Messspannung anlegen	68
Messstrom anlegen	68
Differenzstrom anlegen	69
Drehfeldrichtung	69
Phasenzuordnung prüfen	69
Kontrolle der Leistungsmessung	69
Messung überprüfen	70
Überprüfen der Einzelleistungen	70
Überprüfen der Summenleistungen	70
RS485-Schnittstelle	7.
Digitalausgänge	7:
Impulsausgang	75
Service und Wartung	80
Service	80
Gerätejustierung	80
Kalibrierintervalle	80
Firmwareupdate	8
Batterie	8
Batteriekontroll-Funktion	82
Austausch der Batterie	83
Fehler-/Warnmeldungen	84

Technische Daten	90
Kenngrößen von Funktionen	98
Tabelle 1 - Parameterliste	100
Tabelle 2 - Modbus-Adressenliste	104
Maßbilder	108
Übersicht Messwertanzeigen	110
Konformitätserklärung	116
Anschlussbeispiel 1	117
Anschlussbeispiel 2	118
Kurzanleitung Grundfunktionen	119
Kurzanleitung TCP/IP-Adressierung	120

Allgemeines

Copyright

Dieses Handbuch unterliegt den gesetzlichen Bestimmungen des Urheberrechtsschutzes und darf weder als Ganzes noch in Teilen auf mechanische oder elektronische Weise fotokopiert, nachgedruckt, reproduziert oder auf sonstigem Wege ohne die rechtsverbindliche. schriftliche Zustimmung von

Janitza electronics GmbH. Vor dem Polstück 1. D 35633 Lahnau. Deutschland.

vervielfältigt oder weiterveröffentlicht werden.

Markenzeichen

Alle Markenzeichen und ihre daraus resultierenden Rechte gehören den jeweiligen Inhabern dieser Rechte.

Haftungsausschluss

Janitza electronics GmbH übernimmt keinerlei Verantwortung für Fehler oder Mängel innerhalb dieses Handbuches und übernimmt keine Verpflichtung, den Inhalt dieses Handbuchs auf dem neuesten Stand zu halten.

Kommentare zum Handbuch

Ihre Kommentare sind uns willkommen. Falls irgend etwas in diesem Handbuch unklar erscheint, lassen Sie es uns hitte wissen und schicken Sie uns eine FMAIL an: info@ianitza.de

Bedeutung der Symbole

Im vorliegenden Handbuch werden folgende Piktogramme verwendet:

Gefährliche Spannung!

Lebensgefahr oder schwere Verletzungsgefahr. Vor Beginn der Arbeiten Anlage und Gerät spannungsfrei schalten.

Achtuna!

Bitte beachten Sie die Dokumentation Dieses Symbol soll Sie vor möglichen Gefahren warnen, die bei der Montage, der Inbetriebnahme und beim Gebrauch auftreten können

Hinweis!

Anwendungshinweise

Bitte lesen Sie die vorliegende Bedienungsanleitung sowie alle weiteren Publikationen, die zum Arbeiten mit diesem Produkt (insbesondere für die Installation, den Betrieb oder die Wartung) hinzugezogen werden müssen.

Beachten Sie hierbei alle Sicherheitsvorschriften sowie Warnhinweise. Sollten Sie den Hinweisen nicht folgen, kann dies Personenschäden oder/und Schäden am Produkt hervorrufen.

Jegliche unerlaubte Änderung oder Verwendung dieses Geräts, welche über die angegebenen mechanischen, elektrischen oder anderweitigen Betriebsgrenzen hinausgeht, kann Personenschäden oder/und Schäden am Produkt hervorrufen.

Jegliche solche unerlaubte Änderung begründet "Missbrauch" und/oder "Fahrlässigkeit" im Sinne der Gewährleistung für das Produkt und schließt somit die Gewährleistung für die Deckung möglicher daraus folgender Schäden aus.

Dieses Gerät ist ausschließlich durch Fachkräfte zu betreiben und instandzuhalten. Fachkräfte sind Personen, die aufgrund ihrer einschlägigen Ausbildung und ihrer Erfahrung befähigt sind, Risiken zu erkennen und mögliche Gefährdungen zu vermeiden, die der Betrieb oder die Instandhaltung des Gerätes verursachen kann.

Bei Gebrauch des Gerätes sind zusätzlich die für den jeweiligen Anwendungsfall erforderlichen Rechts- und Sicherheitsvorschriften zu beachten.

Wird das Gerät nicht gemäß der Betriebsanleitung betrieben, so ist der Schutz nicht mehr sichergestellt und es kann Gefahr von dem Gerät ausgehen.

Leiter aus Einzeldrähten müssen mit Aderendhülsen versehen werden.

Nur Schraubsteckklemmen mit der gleichen Polzahl und der gleichen Bauart dürfen zusammengesteckt werden.

Zu dieser Betriebsanleitung

Diese Betriebsanleitung ist Teil des Produktes.

- Betriebsanleitung vor dem Gebrauch des Gerätes lesen.
- Betriebsanleitung während der gesamten Lebensdauer des Produkts aufbewahren und zum Nachschlagen bereit halten.
- Betriebsanleitung an jeden nachfolgenden Besitzer oder Benutzer des Produktes weitergeben.

Alle zum Lieferumfang gehörenden Schraubklemmen sind am Gerät aufgesteckt.

Eingangskontrolle

Der einwandfreie und sichere Betrieb dieses Gerätes setzt sachgemäßen Transport, fachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Instandhaltung voraus. Wenn anzunehmen ist, dass ein gefahrloser Betrieb nicht mehr möglich ist, so ist das Gerät unverzüglich außer Betrieb zu setzen und gegen unbeabsichtigte Inbetriebnahme zu sichern.

Das Aus- und Einpacken ist mit der üblichen Sorgfalt ohne Gewaltanwendung und nur unter Verwendung von geeignetem Werkzeug vorzunehmen. Die Geräte sind durch Sichtkontrolle auf einwandfreien mechanischen Zustand zu überprüfen.

Es ist anzunehmen, dass ein gefahrloser Betrieb nicht mehr möglich ist, wenn das Gerät z.B.

- sichtbare Beschädigung aufweist,
- trotz intakter Netzversorgung nicht mehr arbeitet,
- längere Zeit ungünstigen Verhältnissen (z.B. Lagerung außerhalb der zulässigen Klimagrenzen ohne Anpassung an das Raumklima, Betauung o.Ä..) oder Transportbeanspruchungen (z.B. Fall aus großer Höhe auch ohne sichtbare äußere Beschädigung o.Ä..) ausgesetzt war.
- Prüfen Sie bitte den Lieferumfang auf Vollständigkeit bevor Sie mit der Installation des Gerätes beginnen.

Lieferumfang UMG 96RM-E (RCM)

Anzahl	Art. Nr.	Bezeichnung
1	52.22.004	UMG 96RM-E
2	52.22.251	Befestigungsklammern.
1	33.03.145	Betriebsanleitung.
1	51.00.116	CD mit folgendem Inhalt. - Programmiersoftware GridVis - Funktionsbeschreibung GridVis
1	10.01.818	Schraubklemme, steckbar, 2-polig (Hilfsenergie)
1	10.01.828	Schraubklemme, steckbar, 4-polig (Spannungsmessung)
1	10.01.820	Schraubklemme, steckbar, 6-polig (Strommessung I1-I3)
1	10.01.835	Schraubklemme, steckbar, 2-polig (Strommessung I4)
1	10.01.833	Schraubklemme, steckbar, 10-polig (digitale/analoge Ein-/Ausgänge)
1	10.01.807	Schraubklemme, steckbar, 2-polig (RS 485)
1	10.01.808	Schraubklemme, steckbar, 3-polig (Digital-/Impulsausgang)
1	08.01.505	Patch-Kabel 2m, gedreht, grau (Verbindung UMG 96RM-PC/Switch)

Lieferbares Zubehör

Art. Nr.	Bezeichnung
21.01.058	Batterie Typ Lithium CR2032, 3V (Zulassung nach UL 1642)
29.01.907	Dichtung, 96 x 96
18.08.094	RS485, Abschlusswiderstand extern, 120 Ohm
15.06.015	Schnittstellen-Konverter RS485 <-> RS232
15.06.025	Schnittstellen-Konverter RS485 <-> USB

Produktbeschreibung

Bestimmungsmäßiger Gebrauch

Das UMG 96RM-E ist für die Messung und Berechnung von elektrischen Größen wie Spannung, Strom, Leistung, Energie, Oberschwingungen usw. in der Gebäudeinstallation, an Verteilern, Leistungsschaltern und Schienenverteilern vorgesehen.

Das UMG 96RM-E ist für den Einbau in ortsfesten und wettergeschützten Schalttafeln geeignet. Leitende Schalttafeln müssen geerdet sein. Die Einbaulage ist beliebig.

Messspannungen und Messströme müssen aus dem gleichen Netz stammen.

Die Messergebnisse können angezeigt und über die RS485 Schnittstelle ausgelesen und weiterverarbeitet werden.

Die Spannungsmesseingänge sind für die Messung in Niederspannungsnetzen, in welchen Nennspannungen bis 300V Leiter gegen Erde und Stoßspannungen der Überspannungskategorie III vorkommen können, ausgelegt.

Die Strommesseingänge I1-I4 des UMG 96RM-E werden über externe ../1A oder ../5A Stromwandler angeschlossen.

Mittels einer kontinuierlichen Überwachung von Differenzströmen (Residual Current Monitor, RCM) einer elektrischen Anlage über die Eingänge I5 und I6 sind Warnimpulse bei Überschreitung des Ansprechwertes auslösbar. Hierüber kann der Anlagenbetreiber alarmiert werden bevor eine Schutzeinrichtung anspricht. Das UMG 96RM-E ist keine Schutzeinrichtung gegen einen elektrischen Schlag!

Eine Differenzstrommessung erfolgt über die Strommesseingänge I5 und I6 über externen Differenzstromwandler mit einem Nennstrom von 30mA.

Die Messung in Mittel- und Hochspannungsnetzen findet grundsätzlich über Strom- und Spannungswandlern statt.

Die Differenzstrommessung überwacht Differenzströme über externe Stromwandler und kann bei Überschreitung eines Ansprechwertes einen Warnimpuls auslösen. Somit ist das Gerät **keine** eigenständige Schutzeinrichtung! Das UMG 96RM-E kann in Wohnbereichen und Industriebereichen eingesetzt werden.

Geräte-Kenngrößen

- Versorgungsspannung: 230V (95V-240V AC)
- Frequenzbereich: 45-65Hz

Geräte-Funktionen

- 3 Spannungsmessungen, 300V
- 4 Strommessungen (über Stromwandler ../5A oder ../1A)
- 2 Differenzstrommessungen (über Differenzstromwandler ../30mA) oder wahlweise 2 Temperatur-Messungen
- RS485 Schnittstelle, Ethernet
- 2 digitale Ausgänge und zusätzlich 3 digitale Ein-/Ausgänge
- Uhr- und Speicher-Funktion

Leistungsmerkmale UMG 96RM-E

Allgemeines

- Fronttafeleinbaugerät mit den Abmessungen 96x96 mm.
- Anschluss über Schraubsteck-Klemmen
- LC Display mit Hintergrundbeleuchtung
- Bedienung über 2 Tasten
- 3 Spannungs- und 4 Strommesseingänge
- Wahlweise 2 Differenzstrom- oder Temperaturmesseingänge
- 2 digitale Ausgänge und 3 digitale Ein-/Ausgänge
- RS485 Schnittstelle (Modbus RTU, Slave, bis 115 kbps)
- Ethernet (Web-Server)
- 256 MB Flash-Memory (200 MB für Aufzeichnungen verfügbar)
- Uhr und Batterie (mit Batteriekontroll-Funktion)
- Arbeitstemperaturbereich -10°C .. +55°C

Messunsicherheit

- Wirkenergie, Messunsicherheit Klasse 0,5 für ../5A Wandler
- Wirkenergie, Messunsicherheit Klasse 1 für ../1A Wandler
- Blindenergie, Klasse 2

Messung

- Messung in IT- und TN-Netzen
- Messung in Netzen mit Nennspannungen bis L-L 480V und L-N 277V
- Messbereich Strom 0 ..5Aeff
- Echte Effektivwertmessung (TRMS)
- Kontinuierliche Abtastung der Spannungsund Strommesseingänge
- Kontinuierliche Überwachung von Differenzströmen
- Temperaturmessung
- Frequenzbereich der Grundschwingung 45Hz .. 65Hz
- Messung der Oberschwingungen 1. bis 40. für ULN und I
- Uln, I, P (Bezug/Lief.), Q (ind./kap.)
- Erfassung von deutlich mehr als 1000 Messwerten
- Fourieranalyse 1. bis 40. Oberschwingung für U und I
- 7 Energiezähler für Wirkenergie (Bezug), Wirkenergie (Lieferung), Wirkenergie (ohne Rücklaufsperre), Blindenergie (ind), Blindenergie (kap), Blindenergie (ohne Rücklaufsperre), Scheinenergie, jeweils für L1, L2, L3 und Summe

Messverfahren

Das UMG 96RM-E misst lückenlos und berechnet alle Effektivwerte über ein 9-Perioden-Intervall. Das Gerät misst den echten Effektivwert (TRMS) der an denn Messeingängen angelegten Spannungen und Ströme.

Bedienungskonzept

Sie können das UMG 96RM-E über mehrere Wege programmieren und Messwerte abrufen.

- Direkt am Gerät über 2 Tasten.
- Über die Programmiersoftware GridVis.
- Über die Geräte-Homepage.

 Über das Modbus-Protokoll.
Sie können Daten mit Hilfe der Modbus-Adressenliste ändern und abrufen. Diese Liste ist über die Geräte-Homepage abrufbar bzw. liegt auf der beiliegenden CD ab.

In dieser Betriebsanleitung wird nur die Bedienung des UMG 96RM-E über die 2 Tasten beschrieben. Die Programmiersoftware GridVis besitzt eine eigene "Online-Hilfe".

Netzanalysesoftware GridVis

Das UMG 96RM-E kann mit der zum Lieferumfang gehörenden Netzanalysesoftware GridVis programmiert und ausgelesen werden. Hierfür muss ein PC über eine serielle Schnittstelle (RS485) oder über Ethernet an das UMG 96RM-E angeschlossen werden.

Leistungsmerkmale GridVis

- Programmieren des UMG 96RM-E
- Grafische Darstellung von Messwerten

Anschlussvarianten

Anschluss eines UMG 96RM-E an einen PC über einen Schnittstellenwandler:

Direktanschluss eines UMG 96RM-E an einen PC über Ethernet.

Anschluss eines UMG 96RM über ein UMG 96RM-E als Gateway.

Anschluss eines UMG 96RM-E an einen PC über Ethernet.

Montage

Einbauort

Das UMG 96RM-E ist für den Einbau in ortsfesten und wettergeschützten Schalttafeln geeignet. Leitende Schalttafeln müssen geerdet sein.

Einbaulage

Um eine ausreichende Belüftung zu erreichen muss das UMG 96RM-E senkrecht eingebaut werden. Der Abstand oben und unten muss mindestens 50mm und seitlich 20mm betragen.

Fronttafelausschnitt

Ausbruchmaß: 92^{+0,8} x 92^{+0,8} mm.

Abb. Einbaulage UMG 96RM-E (Ansicht von hinten)

Nichteinhaltung der Mindestabstände kann das UMG 96RM-E bei hohen Umgebungstemperaturen zerstören!

Befestigung

Das UMG 96RM-E wird über die seitlich liegenden Befestigungsklammern in der Schalttafel fixiert. Vor dem Einsetzen des Gerätes sind diese z. B. mit Hilfe eines Schraubendrehers über eine horizontale Hebelwirkung zu entfernen.

Die Befestigung erfolgt anschließend über das Einschleben und Einrasten der Klammern mit anschließendem Eindrehen der Schrauben.

- Drehen Sie die Spannschrauben ein, bis diese die Montageplatte leicht berühren.
- Ziehen Sie mit jeweils zwei weiteren Umdrehungen die Spannschrauben an (werden die Schrauben zu fest angezogen, kann die Befestigungsklammer zerstört werden).

Installation

Versorgungsspannung

Für den Betrieb des UMG 96RM-E ist eine Versorgungsspannung erforderlich. Der Anschluss Versorgungsspannung erfolgt auf der Rückseite des Gerätes über Steckklemmen.

Stellen Sie vor dem Anlegen der Versorgungsspannung sicher, dass Spannung und Frequenz mit den Angaben auf dem Typenschild übereinstimmen!

Die Versorgungsspannung muß über eine UL/IEC zugelassene Sicherung (1A Typ C) angeschlossen werden.

- In der Gebäudeinstallation muss ein Trennschalter oder Leistungsschalter für die Versorgungsspannung vorgesehen sein.
- Der Trennschalter muss in der Nähe des Gerätes angebracht und durch den Benutzer leicht zu erreichen sein.
- Der Schalter muss als Trennvorrichtung für dieses Gerät gekennzeichnet sein.
- Spannungen, die über dem zulässigen Spannungsbereich liegen, können das Gerät zerstören.

Abb. Anschlussbeispiel der Versorgungsspannung an ein UMG 96RM

Achtung!

Die Eingänge für die Versorgungsspannung sind berührungsgefährlich!

Spannungsmessung

Sie können das UMG 96RM-E für die Spannungsmessung in TN-, TT-, und IT-Systemen einsetzen. Die Spannungsmessung im UMG 96RM-E ist für die Überspannungskategorie 300V CATIII (Bemessungs-Stoßspannung 4kV) ausgelegt.

Abb. Prinzipschaltbild - Messung in Dreiphasen-4-Leitersystemen. In Systemen ohne N beziehen sich Messwerte die einen N benötigen auf einen berechneten N.

Abb. Prinzipschaltbild - Messung in Dreiphasen-3-Leitersystemen.

Netz-Nennspannung

Listen der Netze und deren Netz-Nennspannungen in denen das UMG 96RM-E eingesetzt werden kann.

Dreiphasen-4-Leitersysteme mit geerdetem Neutralleiter.

U_{L-N} / U_{L-L}	
66V / 115V 120V / 208V 127V / 220V 220V / 380V 230V / 400V 240V / 415V	
260V / 440V 277V / 480V	Maximale Nennspannung des Netzes

Abb. Tabelle der für die Spannungsmesseingänge geeigneten Netz-Nennspannungen nach EN60664-1:2003.

Dreiphasen-3-Leitersysteme ungeerdet.

U _{L-L}	
66V	
120V	
127V	
220V	
230V	
240V	
260V	
277V	
347V	
380V	
400V	
415V	Maximala Nonnanannung
440V	dea Netzoa
480V	des neizes

Abb. Tabelle der für die Spannungsmesseingänge geeigneten Netz-Nennspannungen nach EN60664-1:2003.

Spannungsmesseingänge

Das UMG 96RM-E hat 3 Spannungsmesseingänge (V1, V2, V3).

Überspannung

Die Spannungsmesseingänge sind für die Messung in Netzen, in denen Überspannungen der Überspannungskategorie 300V CATIII (Bemessungs-Stoßspannung 4kV) vorkommen können, geeignet.

Frequenz

Für die Messung und die Berechnung von Messwerten benötigt das UMG 96RM-E die Netzfrequenz.

Das UMG 96RM-E ist für die Messung im Frequenzbereich von 45 bis 65Hz geeignet.

Abb. Anschlussbeispiel für die Spannungsmessung

Beim Anschluss der Spannungsmessung muss folgendes beachtet werden:

- Um das UMG 96RM-E stromlos und spannungslos zu schalten, ist eine geeignete Trennvorrichtung vorzusehen.
- Die Trennvorrichtung muss in der Nähe des UMG 96RM-E platziert, für den Benutzer gekennzeichnet und leicht erreichbar sein.
- Verwenden Sie als Überstrom-Schutzeinrichtung und Trennschalter einen UL/IEC zugelassenen Leitungsschutzschalter 10A (Typ C).
- Die Überstrom-Schutzeinrichtung muss einen Nennwert haben, der für den Kurzschlussstrom am Anschlusspunkt bemessen ist.
- Messspannungen und Messströme müssen aus dem gleichen Netz stammen

Achtung!

Spannungen, die die erlaubten Netz-Nennspannungen überschreiten, müssen über Spannungswandler angeschlossen werden.

Achtung!

Das UMG 96RM-E ist nicht für die Messung von Gleichspannungen geeignet.

Achtung!

Die Spannungsmesseingänge am UMG 96RM-E sind berührungsgefährlich!

Achtung!

Die Spannungsmesseingänge dürfen nicht zur Spannungsmessung in SELV-Kreisen (Schutzkleinspannung) verwendet werden.

Anschlussschemas, Spannungsmessung

• 3p 4w (Adr. 509= 0), werksseitige Voreinstellung

Abb. System mit drei Außenleitern und Neutralleiter.

• 3p 4u (Adr. 509 = 2)

Abb. System mit drei Außenleitern ohne Neutralleiter. Messwerte die einen N benötigen beziehen sich auf einen berechneten N.

• 3p 4wu (Adr. 509 = 1)

Abb. System mit drei Außenleitern und Neutralleiter. Messung über Spannungswandler.

• 3p 2u (Adr. 509 = 5)

Abb. System mit drei Außenleitern ohne Neutralleiter. Messung über Spannungswandler. Messwerte die einen N benötigen beziehen sich auf einen berechneten N. • 1p 2w1 (Adr. 509 = 4)

Abb. Aus dem Spannungsmesseingängen V2 und V3 abgeleitet Messwerte werden mit Null angenommen und nicht berechnet.

• 1p 2w (Adr. 509 = 6)

Abb. TN-C-System mit Einphasen-Dreileiteranschluss. Aus dem Spannungsmesseingang V3 abgeleitet Messwerte werden mit Null angenommen und nicht berechnet. • 2p 4w (Adr. 509 = 3)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für den Spannungsmesseingang V2 werden berechnet.

• 3p 1w (Adr. 509 = 7)

Abb. 3 Systeme mit gleichmäßiger Belastung der Phasen. Die nicht angelegten Messwerte L2/L3 bzw. L1/L3 bzw. L1/L2 der jeweiligen Systeme werden berechnet.

Strommessung über I1 bis I4

Das UMG 96RM-E ist über die Klemmen I1-I4 für den Anschluss von Stromwandlern mit Sekundärströmen von ../1A und ../5A ausgelegt. Das werkseitig eingestellte Stromwandlerverhältnis liegt bei 5/5A und muss gegebenenfalls an die verwendeten Stromwandler angepasst werden.

Eine Direktmessung ohne Stromwandler ist mit dem UMG 96RM-E nicht möglich.

Es können nur Wechselströme und keine Gleichströme gemessen werden.

Über den **Strommesseingang I4** erfolgt aufgrund des fehlenden Multiplikators mit einer Spannung nur eine Scheinstrommessung. Leistungsmessungen mit Hilfe des Eingangs I4 sind daher nicht möglich.

Abb. Strommessung (I1-I3) über Stromwandler (Anschlussbeispiel)

Achtung!

Die Strommesseingänge sind berührungsgefährlich.

Die aufgesetzte Schraubklemme ist mit den zwei Schrauben am Gerät ausreichend zu fixieren!

Erdung von Stromwandlern!

Ist für die Erdung der Sekundärwicklung ein Anschluss vorgesehen, so muss dieser mit Erde verbunden werden.

Achtung!

Das UMG 96RM-E ist nicht für die Messung von Gleichspannungen geeignet.

Für den Messeingang I4 muss kein Anschlussschema konfiguriert werden.

Abb. Strommessung (I4) über Stromwandler (Anschlussbeispiel)

Stromrichtung

Die Stromrichtung kann am Gerät oder über die vorhande serielle Schnittstellen für jede Phase einzeln korrigiert werden.

Bei Falschanschluss ist ein nachträgliches Umklemmen der Stromwandler nicht erforderlich.

Bei der Differenzstrommessung (RCM) erfolgt keine richtungsabhängige Unterscheidung der Differenzströme auf der Netz- bzw. Lastseite (nicht richtungsselektiv).

Achtung!

Eine Differenzstrommessung erfolgt über die Klemmen I5 und I6 (vgl. Seite 30). Es erfolgt **keine** richtungsabhängige Unterscheidung der Differenzströme der Netzbzw. Lastseite (nicht richtungsselektiv).

Erdung von Stromwandlern!

lst für die Erdung der Sekundärwicklung ein Anschluss vorgesehen, so muss dieser mit Erde verbunden werden.

Stromwandleranschlüsse!

Die Sekundäranschlüsse der Stromwandler müssen an diesen kurzgeschlossen sein, bevor die Stromzuleitungen zum UMG 96RM-E unterbrochen werden! Ist ein Prüfschalter vorhanden, welcher die Stromwandlersekundärleitungen automatisch kurzschließt, reicht es aus, diesen in die Stellung "Prüfen" zu bringen, sofern die Kurzschließer vorher überprüft worden sind.

Offene Stromwandler!

An Stromwandlern die sekundärseitig offen betrieben werden, können hohe berührungsgefährliche Spannungsspitzen auftreten!

Bei "offensicheren Stromwandlern" ist die Wicklungsisolation so bemessen, dass die Stromwandler offen betrieben werden können. Aber auch diese Stromwandler sind berührungsgefährlich, wenn sie offen betrieben werden.

Anschlussschemas, Strommessung (I1-I3)

• 3p 4w (Adr. 510 = 0), werksseitige Voreinstellung

Abb. Messung in einem Dreiphasennetz mit ungleichmäßiger Belastung.

• 3p 2i0 (Adr. 510 = 2)

Abb. Die Messwerte für den Strommesseingang 12 werden berechnet.

• 3p 2i (Adr. 510 = 1)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für den Strommesseingang I2 werden gemessen.

• 3p 3w3 (Adr. 510 = 3)

Abb. Messung in einem Dreiphasennetz mit ungleichmäßiger Belastung. • 3p 3w (Adr. 510 = 4)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für die Strommesseingänge I2 und I3 werden berechnet.

• 1p 2i (Adr. 510 = 6)

Abb. Aus dem Strommesseingang I3 abgeleitete Messwerte werden mit Null angenommen und nicht berechnet.

• 2p 4w (Adr. 510 = 5)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für den Strommesseingang I2 werden berechnet.

• 1p 2w (Adr. 510 = 7)

Abb. Aus den Strommesseingängen I2 und I3 abgeleitete Messwerte werden mit Null angenommen und nicht berechnet. Anschlussschemas, Strommessung (I1-I3)

• 3p 1w (Adr. 510 = 8)

Abb. 3 Systeme mit gleichmäßiger Belastung der Phasen. Die nicht angelegten Messwerte 12/ I3 bzw. 11/13 bzw. 11/12 der jeweiligen Systeme werden berechnet.

Amperemeter

Wollen Sie den Strom nicht nur mit dem UMG 96RM, sondern auch zusätzlich mit einem Amperemeter messen, so muss das Amperemeter in Reihe zum UMG 96RM-E geschaltet werden.

Abb. Strommessung mit einem zusätzlichen Amperemeter (Beispiel).

Summenstrommessung

Erfolgt die Strommessung über zwei Stromwandler, so muss das Gesamtübersetzungsverhältnis der Stromwandler im UMG 96RM-E programmiert werden.

Abb. Strommessung über einen Summenstromwandler (Beispiel).

Beispiel: Die Strommessung erfolgt über zwei Stromwandler. Beide Stromwandler haben ein Übersetzungsverhältnis von 1000/5A. Die Summenmessung wird mit einem Summenstromwandler 5+5/5A durchgeführt.

Das UMG 96RM-E muss dann wie folgt eingestellt werden:

Primärstrom: 1000A + 1000A = 2000A Sekundärstrom: 5A

Analogeingänge

Das UMG 96RM-E besitzt 2 Analogeingänge die jeweils für eine Differenzstrommessung oder eine Temperaturmessung verwendet werden können. Eine Messung erfolgt hierbei über die Klemmen 32-34 (Eingang 1) bzw. 35-37 (Eingang 2).

Die Analogeingänge sind wahlweise für die Differenzstrom- oder für die Temperaturmessung laut folgender Tabelle einsetzbar:

Messung	Klemmen
Temperatur	32/34 (Eingang 1) und 35/37 (Eingang 2)
Differenzstrom	33/34 (Eingang 1) und 36/37 (Eingang 2)

Differenzstrommessung (RCM) über I5, I6

Das UMG 96RM-E ist für den Einsatz als Differenzstrom-Überwachungsgerät (RCM) zur Überwachung von Wechselströmen, pulsierenden Gleichströmen und Gleichströmen geeignet.

Das UMG96RM-E kann Differenzströme nach IEC/TR 60755 (2008-01)

vom Typ A und

vom Typ B messen.

Der Anschluss von geeigneten externen Differenzstromwandlern mit einem Nennstrom von 30mA erfolgt an den Differenzstromwandlereingängen 15 (Klemmen 33/34) und 16 (Klemmen 36/37).

Differenzstromwandler-Verhältnis

In der im Lieferumfang enthaltene Software GridVis können die Übersetzungsverhältnisse für die Differenzstromwandlereingänge einzeln programmiert werden.

Abb. Anschlussbeispiel Differenzstrommessung über Stromwandler

Für die Messeingänge I5 und I6 muss kein Anschlussschema konfiguriert werden!

Temperaturmesseingang

Das UMG 96RM-E verfügt über zwei Temperaturmesseingänge. Die Temperaturmessung erfolgt hierbei über die Klemmen 32/34 (Eingang 1) und 35/37 (Eingang 2).

Die Gesamtbürde (Fühler + Leitung) von 4kOhm darf nicht überschritten werden.

Verwenden Sie für den Anschluß des Temperaturfühlers eine abgeschirmte Leitung.

Abb. Anschlussbeispiel Temperaturmessung über einen PT100

RS485-Schnittstelle

Die RS485-Schnittstelle ist beim UMG 96RM-E als 2poliger Steckkontakt ausgeführt und kommuniziert über das Modbus-RTU-Protokoll (siehe auch Parameter programmieren).

RS485-Schnittstelle, 2-poliger Steckkontakt

Abschlusswiderstände

Am Anfang und am Ende eines Segments wird das Kabel mit Widerständen (1200hm 1/4W) terminiert.

Das UMG 96RM-E enthält keine Abschlusswiderstände.

Abschirmung

Für Verbindungen über die RS485 Schnittstelle ist ein verdrilltes und abgeschirmtes Kabel vorzusehen.

- Erden Sie die Schirme aller Kabel, die in den Schrank führen, am Schrankeintritt.
- Verbinden Sie den Schirm großflächig und gut leitend mit einer Fremdspannungsarmen Erde.
- Fangen Sie die Kabel oberhalb der Erdungsschelle mechanisch ab, um Beschädingungen durch Bewegungen des Kabels zu vermeiden.
- Verwenden Sie zur Einführung des Kabels in den Schaltschrank passende Kabeleinführungen zum Beispiel PG-Verschraubungen.

Kabeltyp

Die verwendeten Kabel müssen für eine Umgebungstemperatur von mindestens 80°C geeignet sein.

Empfohlene Kabeltypen: Unitronic Li2YCY(TP) 2x2x0,22 (Lapp Kabel) Unitronic BUS L2/FIP 1x2x0,64 (Lapp Kabel)

Maximale Kabellänge

1200m bei einer Baudrate von 38,4k.

Abb. Abschirmungsauslegung bei Schrankeintritt.

Bus-Struktur

- Alle Geräte werden in einer Busstruktur (Linie) angeschlossen und jedes Gerät besitzt eine eigene Adresse innerhalb des Buses (siehe auch Parameter programmieren).
- In einem Segment können bis zu 32 Teilnehmer zusammengeschaltet werden.
- Am Anfang und am Ende eines Segments wird das Kabel mit Widerständen (Busabschluß, 1200hm, 1/4W) terminiert.
- Bei mehr als 32 Teilnehmern müssen Repeater (Leitungsverstärker) eingesetzt werden, um die einzelnen Segmente zu verbinden.

- Geräte mit eingeschaltetem Busabschluß müssen unter Speisung stehen.
- Es wird empfohlen den Master an das Ende eines Segmentes zu setzen.
- Wird der Master mit eingeschaltetem Busabschluß ausgetauscht, ist der Bus außer Betrieb.
- Wird ein Slave mit eingeschaltetem Busabschluß ausgetauscht oder ist spannungslos kann der Bus instabil werden.
- Geräte die nicht am Busabschluß beteiligt sind, können ausgetauscht werden, ohne dass der Bus instabil wird.

Ethernet-Schnittstelle

Die Netzwerkeinstellungen für das Ethernet sind vom Netzwerkadministrator festzulegen und entsprechend am UMG 96RM-E einzustellen.

Sind die Netzwerkeinstellungen nicht bekannt, darf das UMG 96RM-E nicht über das Patchkabel in das Netzwerk integriert werden.

Achtung!

Ein Anschluss des UMG96RM-E an das Ethernet darf nur nach Rücksprache mit dem Netzwerk-Administrator durchgeführt werden!

Achtung!

Werkseitig ist das UMG 96RM-E auf die feste IP-Adresse **192.168.0.123** eingestellt. Die Vergabe einer dynamischen IP-Adresse ist deaktiviert.

Ein Ändern der Einstellungen erfolgt wie unter "TCP/IP-Konfiguration" beschrieben oder z. B. über eine geeignete Ethernet-Verbindung mittels der Software GridVis.

Digitale Ein-/Ausgänge

Das UMG 96RM-E besitzt 2 digitale Ausgänge und wahlweise 3 digitale Ein- oder Ausgänge, die in zwei Gruppen unterteilt sind (siehe Abbildung). Hierbei gilt, dass nur die **gesamte** Gruppe 2 (Anschluss 28 bis 31) entweder als Ein- oder Ausgang arbeiten; eine unterschiedliche Zuweisung innerhalb der Gruppe ist nicht möglich! Der Status der Ein- bzw. Ausgänge der Gruppe 2 wird über die zugehörige LED signalisiert (vgl. Kapitel LED-Statusleiste).

Digitale Ausgänge

Die Ausgänge sind über Optokoppler galvanisch von der Auswerteelektronik getrennt. Die digitalen Ausgänge besitzen einen gemeinsamen Bezug.

- Die digitalen Ausgänge können Gleich- und Wechselstromlasten schalten.
- Die digitalen Ausgänge sind nicht kurzschlussfest.
- Angeschlossene Leitungen die länger als 30m sind, müssen abgeschirmt verlegt werden.
- Eine externe Hilfsspannung ist erforderlich.
- Die digitalen Ausgänge können als Impulsausgänge verwendet werden.

- Die digitalen Ausgänge können über Modbus gesteuert werden.
- Die digitalen Ausgänge können Ergebnisse von Vergleichern ausgeben.

DC-Anschlussbeispiel

Abb. Anschlussbeispiel von zwei Relais an die digitalen Ausgänge

Achtung!

Digitale Ausgänge sind nicht kurzschlussfest!

 \bigcirc

In der im Lieferumfang enthaltenen Software GridVis können Funktionen für die Digital-Ausgänge übersichtlich eingestellt werden. Für die Verwendung der Software GridVis ist eine Verbindung zwischen UMG 96RM-E und PC über eine Schnittstelle erforderlich.

Bei der Verwendung der digitalen Ausgänge als Impulsausgang darf die Hilfsspannung (DC) nur eine max. Restwelligkeit von 5% besitzen.

Digitale Eingänge

Bei Zuweisung der Gruppe 2 als Eingänge besitzt das UMG96 RM-E drei digitale Eingänge, an welche Sie je ein Signalgeber anschließen können. Liegt ein Signal an, leuchtet die zugehörige LED grün auf.

An einem digitalen Eingang wird ein Eingangssignal erkannt, wenn eine Spannung von mindestens 10V und maximal 28V angelegt wird und dabei ein Strom von mindestens 1mA und maximal 6mA fließt. Leitungen größer 30m müssen abgeschirmt verlegt werden.

Die Polung der Versorgungsspannung muss beachtet werden!

Abb. Beispiel für den Anschluss der externen Schaltkontakte S1 und S2 an die digitalen Eingänge 1 und 2.

S0 Impulseingang

Sie können an jeden digitalen Eingang einen S0 Impulsgeber nach DIN EN62053-31 anschließen.

Sie benötigen eine externe Hilfsspannung mit einer Ausgangsspannung im Bereich 20 .. 28V DC und einen Widerstand mit 1,5kOhm.

Abb. Beispiel für den Anschluss eines S0 Impulsgebers an den digitalen Eingang 1.

LED-Statusleiste

Über die LED-Statusleiste auf der Rückseite des Gerätes werden die unterschiedlichen Zustände der Ein- bzw. Ausgänge aufgezeigt.

Digitale Eingänge

Die jeweils dem Eingang zugeordnete LED leuchtet **grün** auf, wenn an dieser Schnittstelle ein Signal von mind. 1mA fließt.

Digitale Ausgänge

Die jeweils dem Ausgang zugeordnete LED leuchtet **rot** auf, wenn der Ausgang als aktiv gesetzt ist - unabhängig von einem weiterführenden Anschluss an diese Schnittstelle. Digital Ein-/Ausgang 1 Digital Ein-/Ausgang 2 Digital Ein-/Ausgang 3 LED-Statusleiste

Abb. LED-Statusleiste der Ein- bzw. Ausgänge

Bedienung

Die Bedienung des UMG 96RM-E erfolgt über die Tasten 1 und 2 mit folgenden Unterscheidungen:

- kurzes Drücken der Taste 1 bzw. 2: nächster Schritt (+1)
- langes Drücken der Taste 1 bzw. 2: vorheriger Schritt (-1)

Messwerte und Programmierdaten werden auf einer Flüssigkristall-Anzeige dargestellt.

Es wird zwischen dem *Anzeige-Modus* und dem *Programmier-Modus* unterschieden. Durch die Eingabe eines Passwortes hat man die Möglichkeit, ein versehentliches Ändern der Programmierdaten zu verhindern.

Anzeige-Modus

Im Anzeige-Modus kann man mit den Tasten 1 und 2 zwischen den programmierten Messwertanzeigen blättern. Werkseitig sind alle im Profil 1 aufgeführten Messwertanzeigen abrufbar. Pro Messwertanzeige werden bis zu drei Messwerte angezeigt. Die Messwert-Weiterschaltung erlaubt es, ausgewählte Messwertanzeigen abwechselnd nach einer einstellbaren Wechselzeit darzustellen.

Programmier-Modus

Im Programmier-Modus können die für den Betrieb des UMG 96RM-E notwendigen Einstellungen angezeigt und geändert werden. Betätigt man die Tasten 1 und 2 gleichzeitig für etwa 1 Sekunde, gelangt man über die Passwort-Abfrage in den Programmier-Mode. Wurde kein Benutzer-Passwort programmiert gelangt man direkt in das erste Programmiermenü. Der Programmier-Modus wird in der Anzeige durch den Text "PRG" gekennzeichnet.

Mit der Taste 2 kann jetzt zwischen den folgenden Programmier-Menüs umgeschaltet werden:

- Stromwandler,
- Spannungswandler,
- Parameterliste,
- TCP/IP-Geräteadresse,
- Subnetmaske,
- Gateway-Adresse,
- Dynamische TCP/IP-Adressierung (ein/aus).

Befindet man sich im Programmier-Modus und hat für ca. 60 Sekunden keine Taste betätigt, oder betätigt die Tasten 1 und 2 für etwa 1 Sekunde gleichzeitig, so kehrt das UMG 96RM-E in den Anzeige-Modus zurück.

Parameter und Messwerte

Alle für den Betrieb des UMG 96RM-E notwendigen Parameter, wie z.B. die Stromwandlerdaten, und eine Auswahl von häufig benötigten Messwerten sind in der Tabelle abgelegt.

Auf den Inhalt der meisten Adressen kann über die serielle Schnittstelle und über die Tasten am UMG 96RM-E zugegriffen werden.

Am Gerät können Sie nur die ersten 3 signifikanten Stellen eines Wertes eingeben. Werte mit mehr Stellen können Sie über die GridVis eingeben.

Am Gerät werden immer nur die ersten 3 signifikanten Stellen der Werte angezeigt.

Ausgewählte Messwerte sind in Messwertanzeige-Profilen zusammengefasst und können im Anzeige-Modus über die Tasten 1 und 2 zur Anzeige gebracht werden.

Das aktuelle Messwertanzeigenprofil, das aktuelle Anzeigen-Wechsel-Profil und Datum und Uhrzeit können nur über die RS485 Schnittstelle gelesen und verändert werden.

Beispiel Paramteranzeige

Im Display des UMG 96RM-E wird als Inhalt der Adresse "000" der Wert "001" angezeigt. Dieser Parameter gibt laut Liste die Geräteadresse (hier "001") des UMG 96 RM-E innerhalb eines Buses wieder.

Beispiel Messwertanzeige

In diesem Beispiel werden im Display des UMG 96RM-E die Spannungen L gegen N mit je 230V angezeigt. Die Transistorausgänge K1 und K2 sind leitend und es kann ein Strom fließen.

Tastenfunktionen

Konfiguration

Versorgungsspannung anlegen

Für die Konfiguration des UMG 96RM-E muss die Versorgungsspannung angeschlossen sein.

Die Höhe der Versorgungsspannung für das UMG 96RM-E können Sie dem Typenschild entnehmen.

Erscheint keine Anzeige, so muss überprüft werden, ob sich die Betriebsspannung im Nennspannungsbereich befindet.

Strom- und Spannungswandler

Werkseitig ist ein Stromwandler von 5/5A eingestellt. Nur wenn Spannungswandler angeschlossen sind, muss das vorprogrammierte Spannungswandlerverhältnis geändert werden.

Beim Anschluss von Spannungswandlern ist die auf dem Typenschild des UMG 96RM-E angegebene Messspannung zu beachten!

Achtung!

Versorgungsspannungen, die nicht der Typenschildangabe entsprechen, können zu Fehlfunktionen und zur Zerstörung des Gerätes führen.

Der einstellbare Wert 0 für die primären Stromwandler ergibt keine sinnvollen Arbeitswerte und darf nicht verwendet werden.

Geräte, die auf automatischer Frequenzerkennung stehen, benötigen etwa 5 Sekunden bis die Netzfrequenz ermittelt wurde. In dieser Zeit halten die Messwerte die zugesicherte Messunsicherheit nicht ein. \bigcirc

Strom- und Spannungswandler

In der im Lieferumfang enthaltene Software GridVis können die Übersetzungsverhältnisse für jeden Strom- bzw. Spannungsmesseingang einzeln programmiert werden.

Am Gerät ist nur das Übersetzungsverhältnis der jeweiligen Gruppe der Strommesseingänge I1-I3 bzw. der Spannungsmesseingänge V1-V3 einstellbar.

Das Übersetzungsverhältnis des Stromwandlereingangs 14 und der Differenzstromwandlereingänge 15, 16 sind in der Software GridVis einzustellen.

Stromwandlereingang I4

Aufgrund des fehlenden Multiplikators mit einer Spannung erfolgt beim Stromwandlereingang I4 nur eine Scheinstrommessung. Leistungsmessungen über diesen Eingang sind daher nicht möglich. Das Übersetzungsverhältnis kann in der Software GridVis eingestellt werden.

Abb. Anzeige zur Konfiguration der Strom- und Spannungswandler in der Software GridVis.

Stromwandler für I1-I3 programmieren

In den Programmier-Modus wechseln

- Ein Wechsel in den Programmier-Modus erfolgt über das gleichzeitige Drücken der Tasten 1 und 2. Wurde ein Benutzer-Passwort programmiert, so erscheint die Passwortabfrage mit "000". Die erste Ziffer des Benutzer-Passwortes blinkt und kann mit der Taste 2 geändert werden. Betätigt man die Taste 2 wird die nächste Ziffer ausgewählt und blinkt. Wurde die richtige Zahlenkombination eingegeben oder war kein Benutzer-Passwort programmiert, gelangt man in den Programmier-Modus.
- Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Mit Taste 1 wird die Auswahl bestätigt.
- Die erste Ziffer des Eingabebereiches f
 ür den Prim
 ärstrom blinkt.

Eingabe Stromwandler-Primärstrom

- Mit Taste 2 die blinkende Ziffer ändern.
- Mit Taste 1 die nächste zu ändernde Ziffer wählen. Die für eine Änderung ausgewählte Ziffer blinkt. Blinkt die gesamte Zahl, so kann das Komma mit Taste 2 verschoben werden.

Eingabe Stromwandler-Sekundärstrom

- Als Sekundärstrom kann nur 1A oder 5A eingestellt werden.
- Mit Taste 1 den Sekundärstrom wählen.
- Mit Taste 2 die blinkende Ziffer ändern.

Programm-Modus verlassen

• Über das gleichzeitige Drücken der Tasten 1 und 2 wird der Programm-Modus verlassen.

Spannungswandler programmieren

- Wechseln Sie wie beschrieben in den Programmier-Modus. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Über die Taste 2 erfolgt das Umschalten auf die Spannungswandler-Einstellung.
- Mit Taste 1 wird die Auswahl bestätigt.
- Die erste Ziffer des Eingabebereiches für die Primärspannung blinkt. Analog der Zuordnung des Stromwandlerverhältnisses von Primär- zu Sekundärstrom kann das Verhältnis von Primär- zu Sekundärspannung des Spannungswandlers eingestellt werden.

Parameter programmieren

In den Programmier-Modus wechseln

- Wechseln Sie wie beschrieben in den Programmier-Modus. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Über die Taste 2 erfolgt das Umschalten auf die Spannungswandler-Einstellung. Bei wiederholtem Drücken der Taste 2 wird der erste Parameter der Parameterliste angezeigt.

Parameter ändern

- Die Auswahl mit Taste 1 bestätigen.
- Die zuletzt gewählte Adresse mit dem dazugehörigen Wert wird angezeigt.
- Die erste Ziffer der Adresse blinkt und kann mit Taste 2 verändert werden. Über Taste 1 findet eine Auswahl der Ziffer statt, die wiederum mit Taste 1 verändert werden kann.

Wert ändern

• Ist die gewünschte Adresse eingestellt, wird mit Taste 1 eine Ziffer des Wertes angewählt und mit Taste 2 geändert.

Programm-Modus verlassen

• Über das gleichzeitige Drücken der Tasten 1 und 2 wird der Programm-Modus verlassen.

Abb. Passwortabfrage Wurde ein Passwort gesetzt, kann über die Tasten 1 und 2 dieses eingegeben werden.

Abb. Programmier-Modus Stromwandler Über die Tasten 1 und 2 können Primär- und Sekundärstrom geändert werden (vgl. Seite 50).

Abb. Programmier-Modus Spannungswandler Über die Tasten 1 und 2 können Primär- und Sekundärspannung geändert werden (vgl. Seite 51).

Abb. Programmier-Modus Parameteranzeige Über die Tasten 1 und 2 können die einzelnen Parameter geändert werden (vgl. Seite 46).

TCP/IP Konfiguration

Innerhalb eines Ethernets besitzt jedes Gerät eine eindeutige TCP/IP-Adresse, die manuell oder von einem DHCP-Server vergeben werden kann. Die 4 Byte lange Geräteadresse (Byte 0 bis 3) wird innerhalb der TCP/IP-Konfiguration mit den Angaben zur Subnetzmaske und Gateway ergänzt.

Manuelle Einstellung der TCP/IP-Geräteadresse (Adr)

- Wechseln Sie wie beschrieben in den Programmier-Modus. Die Symbole f
 ür den Programmier-Modus PRG und f
 ür den Stromwandler CT erscheinen.
- Durch ein dreimaliges Drücken der Taste 2 gelangen Sie in die TCP/IP-Einstellungen für die Geräte-Adressierung.
- Wählen Sie mit Taste 1 die gewünschte Ziffer aus. Die Auswahl wird durch ein Blinken der Ziffer dargestellt.
- Über Taste 2 ist die ausgewählte Ziffer einstellbar.
- Wählen Sie mit Taste 1 die nächste Ziffer aus und setzen Sie diese erneut mit Taste 2.
- Ist Byte 0 der TCP/IP-Adresse eingestellt, erfolgt über Taste 1 das Setzen von Byte 1 bis 3 der Adresse. Danach springt die Anzeige wieder auf Byte 0 (keine Ziffer blinkt).

Manuelle Einstellung der Subnetzmaske (SUb)

- Im Programmiermodus gelangen Sie über Taste 2 in die Einstellungen zur Subnetzmaske (Anzeige SUb).
- Wählen Sie mit Taste 1 die gewünschte Ziffer und setzen Sie diese über Taste 2. Wiederholen Sie diesen Schritt für jede Ziffer in Byte 0 bis 3 analog dem Setzen der TCP/IP-Geräteadresse.
- Nach wiederholter Anzeige von Byte 0 (keine Ziffer blinkt) kann die Einstellung zum Gateway erfolgen.

Manuelle Einstellung der Gateway-Adresse (GAt)

- Im Programmiermodus gelangen Sie über Taste 2 in die Einstellungen zur Gateway-Adresse (Anzeige GAt).
- Setzen Sie über die Tasten 1 und 2 die gewünschte Gateway-Adresse in Byte 0 bis 3 analog den vorherigen Beschreibungen.

Damit die manuellen Einstellungen der TCP/IP-Geräteadresse, Subnetzmaske und Gateway-Adresse nicht von einem DHCP-Server überschrieben werden, muss eine Deaktivierung der dynamischen IP-Vergabe (dYN IP, oFF) erfolgen!

> Änderungen werden erst nach dem Verlassen des Programmiermodus aktiv.

Dynamische IP-Vergabe (dyn)

Durch die dynamische Vergabe der TCP/IP-Einstellungen (Geräte-/Gateway-Adresse und Subnetzmaske) ist eine vollautomatische Einbindung des Gerätes in ein bestehendes Netzwerk mit DHCP-Server möglich. Beim Start des Gerätes werden die TCP/IP-Einstellungen vom DHCP-Server automatisch vergeben; somit entfällt eine manuelle Konfiguration.

Ein Auslesen der Adressen erfolgt über den Programmiermodus analog der manuellen Einstellungen.

- Starten Sie wie beschrieben den Programmier-Modus. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Wechseln Sie duch mehrmaliges Drücken der Taste 2 zur Anzeige der dynamischen IP-Vergabe (dYn IP).
- Aktivieren Sie mit Taste 1 den Parameter "on" bzw. "oFF" (Parameter blinkt).
- Wechseln Sie mit Taste 2 den Parameter und bestätigen Sie mit Taste 1. Verlassen Sie den Programmiermodus oder warten Sie ca. 60 Sekunden.
 - Wird das Schlüssel-Symbol angezeigt, ist die dynamische IP-Vergabe aktiv. Geräte-/Gateway-Adresse und Subnetzmaske werden vom DHCP-Server bereitgestellt und automatisch übernommen!

Abb. Subnetzmaske (Sub), Byte 0, Wert 255

Achtung!

Ein Anschluss des UMG96RM-E an das Ethernet darf nur nach Rücksprache mit dem Netzwerk-Administrator durchgeführt werden!

Abb. Gateway (GAt), Byte 0, Wert 192

Abb. Aktivierte dynamische Vergabe (dYn IP) der TCP/IP-Adresse

Abb. Deaktivierte dynamische Vergabe (dYn IP) der TCP/IP-Adresse

Werkseitig ist das UMG96RM-E auf die feste IP-Adresse **192.168.0.123** eingestellt!

RS485-Geräteadresse (Adr. 000)

Sind mehere Geräte über die RS485-Schnittstelle miteinander verbunden, so kann ein Mastergerät diese Geräte nur aufgrund ihrer Geräteadresse unterscheiden. Innerhalb eines Netzes muss daher jedes Gerät eine andere Geräteadresse besitzen. Es können Adressen im Bereich 1 bis 247 eingestellt werden.

 \bigcirc

Der einstellbare Bereich der Geräteadresse liegt zwischen 0 und 255. Die Werte 0 und 248 bis 255 sind reserviert und dürfen nicht verwendet werden.

RS485-Baudrate (Adr. 001)

Für die RS485-Schnittstellen ist eine gemeinsame Baudrate einstellbar. Die Baudrate ist im Netz einheitlich zu wählen. Über die Adresse 003 kann die Anzahl der Stopbits (0=1Bit, 1=2Bits) gesetzt werden. Datenbits (8) und Parität (keine) sind fest voreingestellt.

Einstellung	Baudrate
0	9.6kbps
1	19.2kbps
2	38.4kbps
3	57.6kbps
4	115.2kbps (Werkseinstellung)

Modbus-Gateway (Adr. 002)

Für einen Einsatz des UMG 96RM-E mit der Funktion als Modbus-Gateway ist die Adresse 002 nach folgender Tabelle zu setzen:

Einstellung	Baudrate
0	Modbus-Gateway deaktiviert (OFF) (Werkseinstellung)
1	Modbus-Gateway aktiviert (ON)

Benutzer-Passwort (Adr. 050)

Um ein versehentliches Ändern der Programmierdaten zu erschweren, kann ein Benutzer-Passwort programmiert werden. Erst nach Eingabe des korrekten Benutzer-Passwortes, ist ein Wechsel in die nachfolgenden Programmier-Menüs möglich.

Werkseitig ist kein Benutzer-Passwort vorgegeben. In diesem Fall wird das Passwort-Menü übersprungen und man gelangt sofort in das Stromwandler-Menü.

Wurde ein Benutzer-Passwort programmiert, so erscheint das Passwort-Menü mit der Anzeige "000". Die erste Ziffer des Benutzer-Passwortes blinkt und kann mit der Taste 2 geändert werden. Betätigt man Taste 1 wird die nächste Ziffer angewählt und blinkt. Erst wenn die richtige Zahlenkombination eingegeben

wurde, gelangt man in das Programmier-Menü für den Stromwandler.

Passwort vergessen

Ist Ihnen das Passwort nicht mehr bekannt, so können Sie das Passwort nur noch über die PC-Software Grid-Vis löschen.

Verbinden Sie hierzu das UMG96RM-E über eine geeignete Schnittstelle mit dem PC. Weitere Informationen finden Sie in der Hilfe der GridVis.

Parameter

Mittelwert

Für die Strom-, Spannungs- und Leistungsmesswerte werden Mittelwerte über einen einstellbaren Zeitraum gebildet. Die Mittelwerte sind mit einem Querstrich über dem Messwert gekennzeichnet.

Die Mittelungszeit kann aus einer Liste mit 9 festen Mittelungszeiten ausgewählt werden.

Mittelungszeit Strom (Adr. 040) Mittelungszeit Leistung (Adr. 041) Mittelungszeit Spannung (Adr. 042)

Mittelungsverfahren

Das verwendete exponentielle Mittelungsverfahren erreicht nach der eingestellten Mittelungszeit mindestens 95% des Messwertes.

- Mittel = Mittel 1 + (Mess Mittel 1) / N
- Mittel = angezeigter Mittelwert
- Mess = Messwert

n

Ν

- = fortlaufende Messwertnummer
- Anzahl der Messwerte über die gemittelt werden soll.

Einstellung	Mittelungszeit/Sek.
0	5
1	10
2	15
3	30
4	60
5	300
6	480 (Werkseinstellung)
7	600
8	900

Min- und Maxwerte

Alle 9 Perioden werden alle Messwerte gemessen und berechnet. Zu den meisten Messwerten werden Minund Maxwerte ermittelt.

Der Minwert ist der kleinste Messwert, der seit der letzten Löschung ermittelt wurde. Der Maxwert ist der größte Messwert, der seit der letzten Löschung ermittelt wurde. Alle Min- und Maxwerte werden mit den dazugehörigen Messwerten verglichen und bei Unter- bzw. Überschreitung überschrieben.

Die Min- und Maxwerte werden alle 5 Minuten in einem EEPROM ohne Datum und Uhrzeit gespeichert. Dadurch können durch einen Betriebsspannungsausfall nur die Min- und Maxwerte der letzten 5 Minuten verloren gehen.

Min- und Maxwerte löschen (Adr.506)

Wird auf die Adresse 506 eine "001" geschrieben, werden alle Min- und Maxwerte gleichzeitig gelöscht. Eine Ausnahme bildet der Maxwert des Strommittelwertes. Der Maxwert des Strommittelwertes kann auch direkt im Anzeigenmenü durch langes Drücken der Taste 2 gelöscht werden.

Energiezähler

Das UMG 96RM-E hat Energiezähler für Wirkenergie, Blindenergie und Scheinenergie.

Ablesen der Wirkenergie

Summe Wirkenergie

Die in diesem Beispiel angezeigte Wirkenergie beträgt: 12 345 678 kWh

Die in diesem Beispiel angezeigte Wirkenergie beträgt: 134 178 kWh

kWh

Netzfrequenz (Adr. 034)

Für die automatische Ermittlung der Netzfrequenz muss an mindestens einem der Spannungsmesseingänge eine Spannung L-N von größer 10Veff anliegen.

Aus der Netzfrequenz wird dann die Abtastfrequenz für die Strom- und Spannungseingänge berechnet.

Fehlt die Messspannung, so kann keine Netzfrequenz ermittelt und damit keine Abtastfrequenz berechnet werden. Es kommt die quittierbare Fehlermeldung "500". Spannung, Strom und alle anderen sich daraus ergebenden Werte werden auf Basis der letzten Frequenzmessung bzw. aufgrund von möglichen Leitungskopplungen berechnet und weiterhin angezeigt. Diese ermittelten Messwerte unterliegen jedoch nicht mehr der angegebenen Genauigkeit.

lst eine erneute Messung der Frequenz möglich, wird die Fehlermeldung nach ca. 5 Sekunden nach Wiederkehr der Spannung automatisch ausgeblendet.

Der Fehler wird nicht angezeigt, wenn eine Festfrequenz eingestellt ist.

Einstellbereich: 0, 45..65

0 = Automatische Frequenzbestimmung.

Die Netzfrequenz wird aus der Messpannung ermittelt.

45..65 = Festfrequenz

Die Netzfrequenz wird fest vorgewählt.

Oberschwingungen

Oberschwingungen sind das ganzzahlige Vielfache einer Grundschwingung.

Beim UMG 96RM-E muss die Grundschwingung der Spannung im Bereich 45 bis 65Hz liegen. Auf diese Grundschwingung beziehen sich die berechneten Oberschwingungen der Spannungen und der Ströme.

Oberschwingungen bis zum 40fachen der Grundschwingung werden erfasst.

Die Oberschwingungen für die Ströme werden in Ampere und die Oberschwingungen der Spannungen in Volt angegeben.

Abb. Anzeige der 15. Oberschwingung des Stromes in der Phase L3 (Beispiel).

 $\widehat{\mathcal{T}}$

Oberschwingungen werden nicht in der werksseitigen Voreinstellung angezeigt.

Oberschwingungsgehalt THD

THD ist das Verhältnis des Effektivwertes der Oberschwingungen zum Effektivwert der Grundschwingung.

Oberschwingungsgehalt des Stromes THDI:

$$THD_{I} = \frac{1}{\left|I_{fund}\right|} \sqrt{\sum_{n=2}^{M} \left|I_{n.Harm}\right|^{2}}$$

Oberschwingungsgehalt der Spannung THDU:

$$THD_{U} = \frac{1}{\left|U_{fund}\right|} \sqrt{\sum_{n=2}^{M} \left|U_{n.Harm}\right|^{2}}$$

Abb. Anzeige des Oberschwingungsgehalt THD der Spannung aus der Phase L3 (Beispiel).

Messwert-Weiterschaltung

Alle 9 Perioden werden alle Messwerte berechnet und sind einmal in der Sekunde in den Messwertanzeigen abrufbar. Für den Abruf der Messwertanzeigen stehen zwei Methoden zur Verfügung:

- Die automatisch wechselnde Darstellung von ausgewählten Messwertanzeigen, hier als Messwert-Weiterschaltung bezeichnet.
- Die Auswahl einer Messwertanzeige über die Tasten 1 und 2 aus einem vorgewählten Anzeigen-Profil.

Beide Methoden stehen gleichzeitig zur Verfügung. Die Messwert-Weiterschaltung ist dann aktiv, wenn mindestens eine Messwertanzeige und mit einer Wechselzeit größer 0 Sekunden programmiert ist.

Wird eine Taste betätigt, so kann in den Messwertanzeigen des gewählten Anzeigen-Profiles geblättert werden. Wird für etwa 60 Sekunden keine Taste betätigt, so erfolgt die Umschaltung in die Messwert-Weiterschaltung und es werden nacheinander die Messwerte aus dem gewählten Anzeigen-Wechsel-Profil programmierten Messwertanzeigen zur Anzeige gebracht.

Wechselzeit (Adr. 039)

Einstellbereich: 0...60 Sekunden

Sind 0 Sekunden eingestellt, so erfolgt kein Wechsel zwischen den für die Messwert-Weiterschaltung ausgewählten Messwertanzeigen.

Die Wechselzeit gilt für alle Anzeigen-Wechsel-Profile.

Anzeigen-Wechsel-Profil (Adr. 038)

Einstellbereich: 0..3

- 0 Anzeigen-Wechsel-Profil 1, vorbelegt.
- 1 Anzeigen-Wechsel-Profil 2, vorbelegt.
- 2 Anzeigen-Wechsel-Profil 3, vorbelegt.
- 3 Anzeigen-Wechsel-Profil kundenspezifisch.

Messwertanzeigen

Nach einer Netzwiederkehr zeigt das UMG 96RM-E die erste Messwerttafel aus dem aktuellen Anzeigen-Profil an. Um die Auswahl der anzuzeigenden Messwerte übersichtlich zu halten, ist werkseitig nur eine Teil der zur Verfügung stehenden Messwerte für den Abruf in der Messwertanzeige vorprogrammiert. Werden andere Messwerte in der Anzeige des UMG 96RM-E gewünscht, so kann ein anderes Anzeigen-Profil gewählt werden.

Anzeigen-Profil (Adr. 037)

Einstellbereich: 0..3

- 0 Anzeigen-Profil 1, fest vorbelegt.
- 1 Anzeigen-Profil 2, fest vorbelegt.
- 2 Anzeigen-Profil 3, fest vorbelegt.
- 3 Anzeigen-Profil kundenspezifisch.

Die kundenspezifischen Profile (Anzeigen-Wechsel-Profil und Anzeigen-Profil) können nur über die Software GridVis programmiert werden.

Profil-Einstellung

In der im Lieferumfang enthaltenen Software GridVis sind die Profile (Anzeigen-Wechsel-Profil und Anzeigen-Wechsel-Profil) anschaulich dargestellt. Innerhalb der Software sind über die Geräte-Konfiguration die Profile einstellbar; kundenspezifische Anzeigen-Profile sind zusätzlich programmierbar.

Für die Verwendung der Software GridVis ist eine Verbindung zwischen UMG 96RM-E und PC erforderlich

Abb. Anzeige der Profil-Einstellung in der Software GridVis.

Energiezähler löschen (Adr. 507)

Die Wirk-, Schein- und Blindenergiezähler können nur gemeinsam gelöscht werden.

Um den Inhalt der Energiezähler zu löschen, muss die Adresse 507 mit "001" beschrieben werden.

Durch das Löschen der Energiezähler gehen diese Daten im Gerät verloren. Um einen möglichen Datenverlust zu vermeiden, sollten Sie diese Messwerte vor dem Löschen mit der GridVis Software auslesen und abspeichern.

Drehfeldrichtung

Die Drehfeldrichtung der Spannungen und die Frequenz der Phase L1 werden in einer Anzeige dargestellt.

Die Drehfeldrichtung gibt die Phasenfolge in Drehstromnetzen an. Üblicherweise liegt ein "rechtes Drehfeld" vor. Im UMG 96RM-E wird die Phasenfolge an den Spannungsmesseingängen geprüft und angezeigt. Eine Bewegung der Zeichenkette im Uhrzeigersinn bedeutet ein "rechtes Drehfeld" und eine Bewegung entgegen dem Uhrzeigersinn bedeutet ein "linkes Drehfeld".

Die Drehfeldrichtung wird nur dann bestimmt, wenn die Mess- und Betriebsspannungseingänge vollständig angeschlossen sind. Fehlt eine Phase oder werden zwei gleiche Phasen angeschlossen, so wird die Drehfeldrichtung nicht ermittelt und die Zeichenkette steht in der Anzeige.

Abb. Anzeige der Netzfrequenz (50.0) und der Drehfeldrichtung

Abb. Keine Drehfeldrichtung feststellbar.

LCD Kontrast (Adr. 035)

Die bevorzugte Betrachtungsrichtung für die LCD Anzeige ist von "unten". Der LCD Kontrast der LCD Anzeige kann durch den Anwender angepasst werden. Die Kontrasteinstellung ist im Bereich von 0 bis 9 in 1er Schritten möglich.

> 0 = Zeichen sehr hell 9 = Zeichen sehr dunkel

Werksseitige Voreinstellung: 5

Hintergrundbeleuchtung (Adr. 036)

Die Hintergrundbeleuchtung ermöglicht bei schlechten Sichtverhältnissen eine gute Lesbarkeit der LCD Anzeige. Die Helligkeit der Hintergrundbeleuchtung kann durch den Anwender in einem Bereich von 0 bis 9 in 1er Schritten gesteuert werden.

> 0 = Helligkeit Hintergrundbeleuchtung minimal 9 = Helligkeit Hintergrundbeleuchtung maximal

Werksseitige Voreinstellung: 6

Zeiterfassung

Das UMG 96RM-E erfasst die Betriebsstunden und die Gesamtlaufzeit jedes Vergleichers, wobei die Zeit

- der Betriebsstunden mit einer Auflösung von 0,1h gemessen und in Stunden angezeigt wird bzw.
- der Gesamtlaufzeit der Vergleicher in Sekunden dargestellt wird (beim Erreichen von 999999s erfolgt die Anzeige in Stunden).

Für die Abfrage über die Messwertanzeigen sind die Zeiten mit den Ziffern 1 bis 6 gekennzeichnet:

keine = Betriebsstundenzähler 1 = Gesamtlaufzeit, Vergleicher 1A 2 = Gesamtlaufzeit, Vergleicher 2A 3 = Gesamtlaufzeit, Vergleicher 1B 4 = Gesamtlaufzeit, Vergleicher 2B 5 = Gesamtlaufzeit, Vergleicher 1C 6 = Gesamtlaufzeit, Vergleicher 2C

In der Messwertanzeige können maximal 99999.9 h (=11,4 Jahre) dargestellt werden.

Betriebsstundenzähler

Der Betriebsstundenzähler misst die Zeit in der das UMG 96RM-E Messwerte erfasst und anzeigt.

Die Zeit der Betriebsstunden wird mit einer Auflösung von 0,1h gemessen und in Stunden angezeigt. Der Betriebsstundenzähler kann nicht zurückgesetzt werden.

Gesamtlaufzeit Vergleicher

Die Gesamtlaufzeit eines Vergleichers ist die Summe aller Zeiten für die eine Grenzwertverletzung im Vergleicherergebnis stand.

Die Gesamtlaufzeiten der Vergleicher kann nur über die Software GridVis zurückgesetzt werden. Die Rücksetzung erfolgt für alle Gesamtlaufzeiten.

Abb. Messwertanzeige

Betriebsstundenzähler

Das UMG 96RM-E zeigt im Betriebsstundenzähler die Zahl 140,8h an. Das entspricht 140 Stunden und 80 Industrieminuten. 100 Industrieminuten entsprechen 60 Minuten. In diesem Beispiel entsprechen danach die 80 Industrieminuten 48 Minuten.

Seriennummer (Adr. 754)

Die vom UMG 96RM-E angezeigte Seriennummer ist 6 stellig und ist ein Teil der auf dem Typenschild angezeigten Seriennummer.

Die Seriennummer kann nicht geändert werden.

Anzeige Seriennummer Angabe Seriennummer auf dem Typenschild: xx00-0000

Software Release (Adr. 750)

Die Software für das UMG 96RM-E wird kontinuierlich verbessert und erweitert. Der Softwarestand im Gerät wird mit einer 3-stelligen Nummer, der Software Release, gekennzeichnet. Die Software Release kann vom Benutzer nicht geändert werden.

Aufzeichnungen

In der werkseitigen Voreinstellung des UMG 96RM-E sind 2 Aufzeichnungen vorkonfiguriert. Die Anpassung und die Erweiterung von Aufzeichnungen erfolgt über die Software GridVis.

- Die kleinste Zeitbasis für Aufzeichnungen liegt bei 1 Minute.
- Maximal sind 4 Aufzeichnungen mit jeweils 100
 Messwerten möglich.

Aufzeichnung 1:

Es werden mit der Zeitbasis von 15 Minuten folgende Messwerte aufgezeichnet:

- Spannung effektiv L1
- Spannung effektiv L2
- Spannung effektiv L3
- Strom effektiv L1
- Strom effektiv L2
- Strom effektiv L3
- Strom effektiv Summe L1..L3
- Wirkleistung L1
- Wirkleistung L2
- Wirkleistung L3
- Wirkleistung Summe L1..L3
- Scheinleistung L1
- Scheinleistung L2

- Scheinleistung L3
- Scheinleistung Summe L1..L3
- · cos phi(math.) L1
- cos phi(math.) L2
- cos phi(math.) L3
- cos phi(math.) Summe L1..L3
- Blindleistung Grundschwingung L1
- Blindleistung Grundschwingung L2
- Blindleistung Grundschwingung L3
- Blindleistung Grundschwingung Summe L1..L3

Für jeden Messwert werden zusätzlich der Mittelwert, der Minimalwert und der Maximalwert aufgezeichnet.

Aufzeichnung 2:

Es werden mit der Zeitbasis von 1 Stunde folgende Messwerte aufgezeichnet:

- Wirkarbeit Summe L1..L3
- Induktive Blindarbeit Summe L1..L3

Inbetriebnahme

Versorgungsspannung anlegen

- Die Höhe der Versorgungsspannung für das UMG 96RM-E ist dem Typenschild zu entnehmen.
- Nach dem Anlegen der Versorgungsspannung schaltet das UMG 96RM auf die erste Messwertanzeige um.
- Erscheint keine Anzeige, so muss überprüft werden, ob die Versorgungsspannung im Nennspannungsbereich liegt.

Messspannung anlegen

- Spannungsmessungen in Netzen mit Nennspannungen über 300VAC gegen Erde müssen über Spannungswandler angeschlossen werden.
- Nach dem Anschluss der Messspannungen müssen die vom UMG 96RM-E angezeigten Messwerte für die Spannungen L-N und L-L mit denen am Spannungsmesseingang übereinstimmen.

Achtung!

Spannungen und Ströme die außerhalb des zulässigen Messbereiches liegen können zu Personenschäden führen und das Gerät zerstören.

Messstrom anlegen

Das UMG 96RM-E ist für den Anschluss von ../1A und ../5A Stromwandlern ausgelegt.

Über die Strommesseingänge können nur Wechselströme und keine Gleichströme gemessen werden.

Schließen Sie alle Stromwandlerausgänge außer einem kurz. Vergleichen Sie die vom UMG 96RM angezeigten Ströme mit dem angelegten Strom.

Der vom UMG 96RM-E angezeigte Strom muss unter Berücksichtigung des Stromwandlerübersetzungsverhältnisses mit dem Eingangsstrom übereinstimmen.

In den kurzgeschlossenen Strommesseingängen muss das UMG 96RM-E ca. null Ampere anzeigen.

Das Stromwandlerverhältnis ist werkseitig auf 5/5A eingestellt und muss gegebenenfalls an die verwendeten Stromwandler angepasst werden.

Achtung!

Versorgungsspannungen, die nicht der Typenschildangabe entsprechen, können zu Fehlfunktionen und zur Zerstörung des Gerätes führen.

Achtung!

Das UMG 96RM ist nicht für die Messung von Gleichspannungen geeignet.

Differenzstrom anlegen

Schließen Sie nur Differenzstromwandler an die Eingänge I5 und I6 mit einem Nennstrom von 30mA an! Beide Differenzstromeingänge können Wechselströme, pulsierende Gleichströme und Gleichströme messen.

Der vom UMG96RM-E angezeigte Differenzstrom muss unter Berücksichtigung des Stromwandler-Übersetzungsverhältnisses mit dem Eingangsstrom übereinstimmen.

Das Stromwandlerverhältnis ist werkseitig auf 5/5A eingestellt und muss gegebenenfalls an die verwendeten Differenzstromwandler angepasst werden.

 $\widehat{}$

Für die Messung der Differenzströme benötigt das UMG 96RM-E die Netzfrequenz. Hierfür ist die Messspannung anzulegen oder eine Festfrequenz einzustellen.

Für die Differenzstromeingäng I5 und I6 muss kein Anschlussschema konfiguriert werden.

Drehfeldrichtung

Überprüfen Sie in der Messwertanzeige des UMG 96RM-E die Richtung des Spannungs-Drehfeldes. Üblicherweise liegt ein "rechtes" Drehfeld vor.

Phasenzuordnung prüfen

Die Zuordnung Außenleiter zu Stromwandler ist dann richtig, wenn man einen Stromwandler sekundärseitig kurzschließt und der vom UMG 96RM-E angezeigte Strom in der dazugehörigen Phase auf 0A sinkt.

Kontrolle der Leistungsmessung

Schließen Sie alle Stromwandlerausgänge, außer einem kurz und überprüfen Sie die angezeigten Leistungen. Das UMG 96RM-E darf nur eine Leistung in der Phase mit dem nicht kurzgeschlossenen Stromwandlereingang anzeigen. Trifft dies nicht zu, überprüfen Sie den Anschluss der Messspannung und des Messstromes.

Stimmt der Betrag der Wirkleistung aber das Vorzeichen der Wirkleistung ist negativ, so kann das zwei Ursachen haben:

- Die Anschlüsse S1(k) und S2(l) am Stromwandler sind vertauscht.
- Es wird Wirkenergie ins Netz zurückgeliefert.

Messung überprüfen

Sind alle Spannungs- und Strommesseingänge richtig angeschlossen, so werden auch die Einzel- und Summenleistungen richtig berechnet und angezeigt.

Überprüfen der Einzelleistungen

lst ein Stromwandler dem falschen Außenleiter zugeordnet, so wird auch die dazugehörige Leistung falsch gemessen und angezeigt.

Die Zuordnung Außenleiter zu Stromwandler am UMG 96RM-E ist dann richtig, wenn keine Spannung zwischen dem Aussenleiter und dem dazugehörigen Stromwandler (primär) anliegt.

Um sicherzustellen, dass ein Außenleiter am Spannungsmesseingang dem richtigen Stromwandler zugeordnet ist, kann man den jeweiligen Stromwandler sekundärseitig kurzschließen. Die vom UMG 96RM-E angezeigte Scheinleistung muss dann in dieser Phase Null sein.

Wird die Scheinleistung richtig angezeigt aber die Wirkleistung mit einem "-" Vorzeichen, dann sind die Stromwandlerklemmen vertauscht oder es wird Leistung an das Energieversorgungsunternehmen geliefert.

Überprüfen der Summenleistungen

Werden alle Spannungen, Ströme und Leistungen für die jeweiligen Außenleiter richtig angezeigt, so müssen auch die vom UMG 96RM gemessenen Summenleistungen stimmen. Zur Bestätigung sollten die vom UMG 96RM gemessenen Summenleistungen mit den Arbeiten der in der Einspeisung sitzenden Wirk- und Blindleistungszähler verglichen werden.

RS485-Schnittstelle

Über das MODBUS RTU Protokoll mit CRC-Check an der RS485 Schnittstelle kann auf die Daten aus der Parameter- und der Messwertliste zugegriffen werden. Adressbereich: 1 .. 247 Werksseitige Voreinstellung : 1

Werkseitig ist die Geräteadresse 1 und die Baudrate auf 115,2 kbps eingestellt.

Modbus-Funktionen (Slave)

04 Read Input Registers 06 Preset Single Register 16 (10Hex) Preset Multiple Registers 23 (17Hex) Read/Write 4X Registers

Die Reihenfolge der Bytes ist High- vor Lowbyte (Motorola Format).

Übertragungsparameter: Datenbits: 8 Parität: keine Stopbits (UMG 96RM): 2 Stopbits extern: 1 oder 2

Zahlenformate: short 16 bit (-2¹⁵.. 2¹⁵ -1) float 32 bit (IEEE 754) Broadcast (Adresse 0) wird vom Gerät nicht unterstützt.

Die Telegrammlänge darf 256 Byte nicht überschreiten.

Beispiel: Auslesen der Spannung L1-N

Die Spannung L1-N ist in der Messwertliste unter der Adresse 19000 abgelegt. Die Spannung L1-N liegt im INT Format vor.

Die Geräteadresse des UMG 96RM-E wird hier mit Adresse = 01 angenommen.

Die "Query Message" sieht dann wie folgt aus:

Bezeichnung	Hex	Bemerkung
Geräteadresse	01	UMG 96RM, Adresse = 1
Funktion	03	"Read Holding Reg."
Startadr. Hi	4A	19000 dez = 4A38 hex
Startadr. Lo	38	
Anz. Werte Hi	00	2dez = 0002hex
Anz. Werte Lo	02	
Error Check	-	

Die "Response" des UMG96 RM-E kann dann wie folgt aussehen:

Bezeichnung	Hex	Bemerkung
Geräteadresse	01	UMG 96RM, Adresse = 1
Funktion	03	
Byte Zähler	06	
Data	00	00hex = 00dez
Data	E6	E6hex = 230dez
Error Check (CRC)	-	

Die von der Adresse 19000 zurückgelesene Spannung L1-N beträgt 230V.
Digitalausgänge

Das UMG 96RM-E besitzt in der Gruppe 1 zwei digitale Ausgänge. Weitere drei digitale Ausgänge können in der Gruppe 2 gesetzt werden.

Den Digitalausgängen können wahlweise unterschiedliche Funktionen zugeordnet werden.

Die Einstellungen der Funktionen ist über die Software GridVis innerhalb des Konfigurationsmenüs zu treffen.

Digital-Eingänge/Ausgänge

Abb.: Digitale Eingänge der Gruppe 1 und digitale Ein-/Ausgänge der Gruppe 2

Market GridVis-3.0.3-SNAPSHOT(2012-07-06_07-41-22) [Project]									
Date	Datei Bearbeiten Ansicht Extras Fenster Hilfe								
	12 7 7 9 9 A <i>4</i>								
Ð	Konfiguration(UMG96RM-E	4 » v n							
ster	6		9						
fen	Übertragen Übertrag	en an Erneut laden Werkseinstellungen Speichere in Datei	Lade von Datei						
oaur	Identität	S0-Ausgänge	*						
rtet	Wandler	- 11 - 1 - T							
ž	Phasenzuordnung	Pulsbreite 50 Mills	ekunden 🌑						
0	Anschlussvarianten								
	Nominalwerte	Ein-/Ausgänge 1	-						
6	Ereignisse	Ein-/Aussianse 1							
ject	RCM-Einstellungen								
Pre	Mittelungszeiten	Ein-/Aus-Modus Ausgang Vergleichergruppe 1	- 0						
÷.	Aufzeichnungskonfiguration	Einstellung für Digitalausgang	E						
-9e	Zeit								
6	Ein-/Ausgang-Konfiguration	Ausgangspolarität Stromfluss wenn aktiv (Schließer)	- 0						
	Vergleicher								
	TD Kenformation								
	Anzeigekonfiguration								
	Bacnet								
	SNMP								
	Benennung der Eingänge		-						
		03.09.2012 12:33:21 MES7 (GMT+02:	00)						
	03.03.2012 12.33.21 ML32 (001 402.00)								

Abb.: Software GridVis, Konfigurationsmenü

Digitalausgänge - Zustandsanzeigen

Der Zustand der Schaltausgänge von Gruppe 1 wird in der Anzeige des UMG 96RM-E durch Kreissymbole dargestellt.

Zustände am Digitalausgang

- O Es kann ein Strom von <1mA fließen.
 Digitalausgang 1: Adr. 608 = 0
 Digitalausgang 2: Adr. 609 = 0
- Es kann ein Strom von bis zu 50mA fließen.
 Digitalausgang 1: Adr. 608 = 1
 Digitalausgang 2: Adr. 609 = 1

Da die Anzeige nur einmal pro Sekunde aktualisiert wird, können schnellere Zustandsänderungen der Ausgänge nicht angezeigt werden.

Impulsausgang

Die Digitalausgänge können auch für die Ausgabe von Impulsen zur Zählung des Energieverbrauchs genutzt werden. Dazu wird nach dem Erreichen einer bestimmten, einstellbaren Energiemenge ein Impuls von definierter Länge am Ausgang angelegt.

Um einen Digitalausgang als Impulsausgang zu verwenden, müssen Sie verschiedene Einstellungen über die Software GridVis innerhalb des Konfigurationsmenüs vornehmen.

- Digitalausgang,
- Auswahl der Quelle,
- Messwert-Auswahl,
- Impulslänge,
- Impulswertigkeit.

54 C	iridVis-3.0.3-SNAPSHOT(20	12-07-06_07-41-22) [P	roject]			×				
Datei Bearbeiten Ansicht Extras Fenster Hilfe										
	9960	S 🔊 🤌								
ъſ	Konfiguration (UMG96RM-E	-RCM-1700-9209) 🛚			4 >					
ster	S 1	0		1	9					
fen	Übertragen Übertrag	en an Erneut lad	en Werkseinstellungen	Speichere in Datei	Lade von	Datei				
au	Identität	S0-Ausgänge								
fet	Wandler									
ş	Phasenzuordnung	Pulsbreite 50	Pulsbreite 50 Milise							
0	Anschlussvarianten			_						
	Nominalwerte	Ein-/Ausoänge 1		-						
P	Ereignisse	En Aunsings 1		-						
ect	RCM-Einstellungen	cin-/Ausgalige 1								
Proj	Mittelungszeiten	Ein-/Aus-Modus S0-	Ein-/Aus-Modus S0-Ausgang							
ė	Aufzeichnungskonfiguration	Settings for S0 output		Ξ						
ě.	Zeit	occurgo for oo outpe								
Par	Ein-/Ausgang-Konfiguration	Ausgangspolarität	Stromfluss wenn aktiv (So	thließer)						
6	Vergleicher	Merculert	Bezogene Wirkarbeit I.1		- 0					
	Serielle Schnittstelle		berogene virkarberer	1.						
	IP-Konfiguration	Pulswertigkeit	10,000000	w	h/Imp 🎱					
	Anzeigekonfiguration									
	Bacnet									
	SNMP									
	Benennung der Eingänge					-				
			03.09.2012 12:5	8:31 MESZ (GMT+02:	00)					

Abb.: Software GridVis, Konfigurationsmenü

Impulslänge

Die Impulslänge ist für beide Impulsausgänge gültig und wird über die Software GridVis eingestellt.

Die typische Impulslänge für S0-Impulse beträt 30ms.

Impulspause

Die Impulspause ist mindestens so groß wie die gewählte Impulslänge.

Die Impulspause ist abhängig von der z. B. gemessenen Energie und kann Stunden oder Tage betragen.

Aufgrund der Mindest-Impulslänge und der Mindest-Impulspause, ergeben sich für die maximale Anzahl an Impulsen pro Stunde die Werte in der Tabelle.

Impulslänge	Impulspause	Max. Impulse/h
10 ms	10 ms	180 000 Impulse/h
30 ms	30 ms	60 000 Impulse/h
50 ms	50 ms	36 000 Impulse/h
100 ms	100 ms	18 000 Impulse/h
500 ms	500 ms	3600 Impulse/h
1 s	1 s	1800 Impulse/h
10 s 10 s		180 Impulse/h

Beispiele für die maximal mögliche Impulsanzahl pro Stunde.

Impulsabstand

Der Impulsabstand ist innerhalb der gewählten Einstellungen proportional zur Leistung.

Messwert-Auswahl

Bei der Programmierung mit der GridVis bekommen Sie eine Auswahl von Arbeitswerten die aber aus den Leistungswerten abgeleitet sind.

Impulswertigkeit

Mit der Impulswertigkeit geben Sie an, wieviel Energie (Wh oder varh) einem Impuls entsprechen soll. Die Impulswertigkeit wird durch die maximale Anschlußleistung und die maximale Impulsanzahl pro Stunde bestimmt.

Wenn Sie die Impulswertigkeit mit einem positiven Vorzeichen angeben, werden nur dann Impulse ausgegeben wenn auch der Messwert ein positives Vorzeichen hat.

Wenn Sie die Impulswertigkeit mit einem negativen Vorzeichen angeben, werden nur dann Impulse ausgegeben wenn auch der Messwert ein negatives Vorzeichen hat.

Impulswertigkeit = <u>max. Anschlußleistung</u> [Impulse/Wh]

Da der Wirkenergiezähler mit Rücklaufsperre arbeitet, werden nur bei Bezug von elektrischer Energie Impulse ausgegeben.

Da der Blindenergiezähler mit Rücklaufsperre arbeitet, werden nur bei induktiver Last Impulse ausgegeben.

Impulswertigkeit ermitteln

Festlegen der Impulslänge

Legen Sie die Impulslänge enstprechend den Anforderungen des angeschlossenen Impulsempfängers fest. Bei einer Impulslänge von z.B. 30 ms, kann das UMG 96RM eine maximale Anzahl von 60000 Impulsen (siehe Tabelle "maximale Impulsanzahl" pro Stunde abgeben.

Ermittlung der maximalen Anschlussleistung Beispiel:

Stromwandler	= 150/5A
Spannung L-N	= max. 300 V
Leistung pro Phase	= 150 A x 300 V
	= 45 kW
Leistung bei 3 Phasen	= 45kW x 3
Maximale Anschlußleistu	ng= 135kW

Berechnen der Impulswertigkeit

Impulswertigkeit = <u>max. Anschlußleistung</u> max. Impulsanzahl/h [Impulse/Wh] Impulswertigkeit = 135kW / 60000 Imp/h

Impulswertigkeit = 0,00225 Impulse/kWh Impulswertigkeit = 2,25 Impulse/Wh

Abb.: Anschlussbeispiel für die Beschaltung als Impulsausgang.

> Bei der Verwendung der digitalen Ausgänge als Impulsausgang darf die Hilfsspannung (DC) nur eine max. Restwelligkeit von 5% besitzen.

78

Vergleicher und Grenzwertüberwachung

Zur Überwachung von Grenzwerten stehen fünf Vergleichergruppen (1 - 5) mit je 10 Vergleichern (A - J) zur Verfügung. Die Ergebnisse der Vergleicher A bis J können UND oder ODER verknüpft werden.

Das Verknüpfungsergebnis der Vergleichergruppe kann dem entsprechendem Digitalausgang zugewiesen werden.

1	M GridVis-3.0.3-SNAPSHOT(2012-07-06_07-41-22) [Project]								
Date	Datei Bearbeiten Ansicht Extras Fenster Hilfe								
	11 1 7 C 6 1 A								
Ð	Konfiguration(UMG96RM-E	-RCM-1700-9209) 🛚							
ster									
fen	Übertragen Übertragen an Erneut laden Werkseinstellungen Speichere in Datei Lade von Datei								
pau	Identität	Vergleicher auswählen Ver	gleichergruppe 2	- I -					
rte R	Wandler	-							
ž	Phasenzuordnung	Vergleicher A							
0	Anschlussvarianten	Modus	oberhalb Schwellwert						
	Nominalwerte	Zugeordneter Messwert	Spannung effektiv L1	Wert auswählen					
P '	Ereignisse		Aktuallar Marcwart						
ject	RCM-Einstellungen		Inductor President						
ă	Mittelungszeiten	Schwelle	280						
ę.	Aufzeichnungskonfiguration	Vergleicher B							
ojel	Zeit	Modus	unterhalb Schwellwert 🗸						
é	Vergleicher	Zugeordneter Messwert	Spannung effektiv L1	Wert auswählen					
	Seriele Schnittstelle		Aktueller Messwert	- 0					
	IP-Konfiguration	Calemalia	510						
	Anzeigekonfiguration	Surweite	210						
	Bacnet	Vergleicher C							
	SNMP	Modus	nicht benutzt	- @					
	Benennung der Eingänge Zugeordneter M		Nicht gesetzt	Wert auswählen					
				- 0					
		Schwelle	0,0	•					
	03.09.2012 13:10:01 MESZ (GMT+02:00)								

Abb.: Software GridVis, Konfigurationsmenü

Service und Wartung

Das Gerät wird vor der Auslieferung verschiedenen Sicherheitsprüfungen unterzogen und mit einem Siegel gekennzeichnet. Wird ein Gerät geöffnet, so müssen die Sicherheitsprüfungen wiederholt werden. Eine Gewährleistung wird nur für ungeöffnete Geräte übernommen.

Instandsetzung und Kalibration

Instandsetzungsarbeiten und Kalibration können nur vom Hersteller durchgeführt werden.

Frontfolie

Die Reinigung der Frontfolie kann mit einem weichen Tuch und haushaltsüblichen Reinigungsmitteln erfolgen. Säuren und säurehaltige Mittel dürfen zum Reinigen nicht verwendet werden.

Entsorgung

Das UMG 96RM kann als Elektronikschrott gemäß den gesetzlichen Bestimmungen der Wiederverwertung zugeführt werden. Die Lithiumbatterie muss getrennt entsorgt werden.

Service

Sollten Fragen auftreten, die nicht in diesem Handbuch beschrieben sind, wenden Sie sich bitte direkt an den Hersteller.

Für die Bearbeitung von Fragen benötigen wir von Ihnen unbedingt folgende Angaben:

- Gerätebezeichnung (siehe Typenschild),
- Seriennummer (siehe Typenschild),
- Software Release (siehe Messwertanzeige),
- Messspannung und Versorgungsspannung,
- genaue Fehlerbeschreibung.

Gerätejustierung

Die Geräte werden vor Auslieferung vom Hersteller justiert - eine Nachjustierung ist bei Einhaltung der Umgebungsbedingungen nicht notwendig.

Kalibrierintervalle

Nach jeweils ca. 5 Jahren wird eine Neukalibrierung vom Hersteller oder von einem akkreditiertem Labor empfohlen.

Firmwareupdate

Ist das Gerät über Ethernet mit einem Computer verbunden, so kann über die Software GridVis die Gerätefirmware aktualisiert werden.

Über die Auswahl einer geeigneten Updatedatei (Menü *Extras/Gerät aktualisieren*) und des Gerätes erfolgt die Übertragung der neuen Firmware.

Abb. Firmwareupdate-Assistent der Software GridVis

Ein Firmwareupdate ist NICHT über die RS485-Schnittstelle möglich!

Batterie

Die interne Uhr wird aus der Versorgungsspannung gespeist. Fällt die Versorgungsspannung aus, so wird die Uhr über die Batterie versorgt. Die Uhr liefert Datum und Zeitinformationen für z.B. Aufzeichnungen, Min- und Maxwerte und Ereignisse.

Die Lebenserwartung der Batterie beträgt bei einer Lagertemperatur von +45°C mindestens 5 Jahre. Die typische Lebenserwartung der Batterie beträgt 8 bis 10 Jahre.

Ein Austausch der Batterie erfolgt über den an der Rückseite vorgesehenen Batterieeinschub. Achten Sie hierbei auf den korrekten Batterietyp und beim Wechsel dieser auf die richtige Polarisierung (Pluspol zeigt zur Geräterückseite; Minuspol zeigt zur Gerätefront)!

Weitere Informationen finden Sie im Kapitel "Austausch der Batterie".

Batteriekontroll-Funktion

Das Gerät zeigt über das Symbol "EEE" gefolgt von "bAt" und der Statusnummer den Zustand der Batterie an. Abhängig von der Statusnummer ist eine Bestätigung der Angaben vom Benutzer erforderlich. Ein Austausch der Batterie wird empfohlen.

Status	Statusbeschreibung
EEE bAt 321	 Batterie-Kapazität liegt bei <85% Benutzerbestätigung erforderlich Meldung erscheint nach Bestätigung wöchentlich Batterie ist zu tauschen
EEE bAt 322	 Batterie-Kapazität liegt bei <75% Batterie-Kapazität zu gering Ist nur nach einer Netzwiederkehr fest- stellbar Batterie ist zu tauschen
EEE bAt 330	 Batterie-Kapazität ok Meldung kann quittiert werden Uhr steht und muss gestellt werden
EEE bAt 331	 Batterie-Kapazität liegt bei <85% Uhr steht und muss gestellt werden Benutzerbestätigung erforderlich Meldung erscheint nach Bestätigung wöchentlich Batterie ist zu tauschen
EEE bAt 332	 Batterie-Kapazität liegt bei <75% Uhr steht und muss gestellt werden Benutzerbestätigung erforderlich Meldung erscheint nach Bestätigung täglich Batterie ist zu tauschen

Austausch der Batterie

Wird die Batterie-Kapazität mit <75% angezeigt, empfehlen wir den Austausch der Batterie.

Vorgehensweise

- 1. Vor Beginn der Arbeiten muss die Anlage und das Gerät spannungsfrei geschaltet sein.
- Ziehen Sie z. B. mit einer Spitzzange die Batterie aus dem Batteriefach. Hierzu ist kein Öffnen des Gerätes notwendig, da das Batteriefach von außen zugänglich ist (siehe Abbildung rechts).
- 4. Beachten Sie die Polung, die an der Einschuböffnung des Batteriefachs dargestellt ist und schieben Sie die Ersatzbatterie in das Batteriefach ein. Verwenden Sie hierzu eine Batterie wie Sie unter technische Daten beschrieben ist. Die Batterie muss den Sicherheitsanforderungen nach UL1642 erfüllen. Andernfalls besteht die Gefahr der Entzündung oder Explosion.
- 5. Entsorgen Sie die Altbatterie entsprechend den gesetzlichen Vorschriften.
- Setzen Sie die Anlage und das Gerät wieder in Betrieb und pr
 üfen Sie die Funktionsf
 ähigkeit des UMG 96-RM. Stellen Sie Datum und Uhrzeit ein.

Abb. Batterieeinschub auf der Rückseite

Fett oder Schmutz auf den Kontaktflächen bildet einen Übergangswiderstand, der die Lebensdauer der Batterie verkürzt. Fassen Sie die Batterie nur an den Rändern an.

Gefährliche Spannung!

Lebensgefahr oder schwere Verletzungsgefahr. Vor Beginn der Arbeiten sind Anlage und Gerät spannungsfrei zu schalten.

Achten Sie auf den korrekten Batterietyp und beim Wechsel dieser auf die richtige Polarisierung!

Fehler-/Warnmeldungen

Das UMG 96RM-E kann im Display vier verschiedene Fehlermeldungen anzeigen:

- Warnungen,
- Uhren-/Batteriefehler,
- schwerwiegende Fehler und
- Messbereichsüberschreitungen.

Bei Warnungen und schwerwiegenden Fehlern wird die Fehlermeldung durch das Symbol "EEE" gefolgt mit einer Fehlernummer dargestellt.

Die dreistellige Fehlernummer setzt sich aus der Fehlerbeschreibung und - falls vom UMG 96RM feststellbar einer oder mehreren Fehlerursachen zusammen.

Abb. Fehlermeldung

 Fehler
 Fehlerbeschreibung

 EEE
 Die Netzfrequenz konnte nicht ermittelt

 500
 werden.

 Mögliche Ursachen:
 Die Spannung an L1 ist zu klein.

 Die Netzfrequenz liegt nicht im Bereich
 45 bis 65Hz.

 Lösung:
 Netzfrequenz überprüfen.

 Festfrequenz am Gerät wählen.

Warnungen

Warnungen sind weniger schwerwiegende Fehler und müssen mit der Taste 1 oder Taste 2 quittiert werden. Die Erfassung und Anzeige von Messwerten läuft weiter. Dieser Fehler wird nach jeder Spannungswiederkehr neu angezeigt.

Abb. Warnmeldung mit Nummer 500 (Netzfrequenz)

Uhren-/Batteriefehler

Uhren- bzw. Batteriefehler werden über das Display mit dem Symbol "EEE" gefolgt von "bAt" und einer Statusnummer angezeigt. Eine erweiterte Beschreibung finden Sie im Kapitel "Batteriekontrollfunktion" und im Kapitel "Austausch der Batterie".

Abb. Uhren-/Batteriefehler mit Nummer 330 (Uhr steht und muss gestellt werden.

Schwerwiegende Fehler

Beim Auftreten eines schwerwiegenden Fehlers muss das Gerät zur Überprüfung an den Hersteller geschickt werden.

Fehler	Fehlerbeschreibung
EEE	Fehler beim Lesen der Kalibrierung.
910	

Interne Fehlerursachen:

Das UMG 96RM-E kann in einigen Fällen die Ursache für einen internen schwerwiegenden Fehler feststellen und mit folgendem Fehlercode melden.

Fehler	Fehlerbeschreibung
0x01	EEPROM antwortet nicht.
0x02	Adressbereichsüberschreitung.
0x04	Checksummenfehler.
0x08	Fehler im internen I2C-Bus.

Beispiel Fehlermeldung 911:

Die Fehlernummer setzt sich aus dem schwerwiegenden Fehler 910 und der internen Fehlerursache 0x01 zusammen.

In diesem Beispiel ist ein Fehler beim Lesen der Kalibrierung aus dem EE-PROM aufgetreten. Das Gerät muss zur Überprüfung an den Hersteller geschickt werden.

Messbereichsüberschreitung

Messbereichsüberschreitungen werden so lange sie vorliegen angezeigt und können nicht quittiert werden. Eine Messbereichsüberschreitung liegt dann vor, wenn mindestens einer der Spannungs- oder Strommesseingänge ausserhalb seines spezifizierten Messbereiches liegt. Mit den Pfeilen "nach oben" wird die Phase (L1-L3) markiert in welcher die Messbereichsüberschreitung aufgetreten ist. Die entsprechende Fehlermeldung für den Strompfad I4 erfolgt laut nebenstehender Abbildung. Die Symbole "V" und "A" zeigen, ob die Messbereichsüberschreitung im Strom- oder Spannungspfad aufgetreten ist.

Grenzwerte für Messbereichsüberschreitung:

1	= 7 Aeff	
UL-N	= 520 VL-N	1
Ul-l	$= 900 V_{L-L}$	

Beispiele

Abb.: Anzeige Messbereichsüberschreitung im Strompfad I4

Parameter Messbereichsüberschreitung

Eine weiterführende Fehlerbeschreibung wird kodiert im Parameter Messsbereichsüberschreitung (Adr. 600) nach folgendem Format abgelegt:

0	x	F	F	F	F	F	F	F	F	
Phase 1:		1		1		1				
Phase 2:		2		2		2				
Phase 3:		4		4		4				
Phase 4 (I4)):	8		-		-				
		Strom:		U L-N		U L-L				

Beispiel: Fehler in Phase 2 im Strompfad:

0xF2FFFFF

Beispiel: Fehler in Phase 3 im Spannungspfad UL-N:

0xFFF4FFFF

Vorgehen im Fehlerfall

Fehlermöglichkeit	Ursache	Abhilfe	
Keine Anzeige	Externe Sicherung für die Versorgungsspannung hat ausgelöst.	Sicherung ersetzen.	
Keine Stromanzeige	Messspannung nicht angeschlossen.	Messspannung anschließen.	
	Messstrom nicht angeschlossen.	Messstrom anschließen.	
Angezeigter Strom ist zu groß oder	Strommessung in der falschen Phase.	Anschluss überprüfen und ggf. korrigieren.	
zu kiein.	Stromwandlerfaktor falsch programmiert.	Stromwandler-Übersetzungsverhältnis am Stromwandler ablesen und programmieren.	
	Der Stromscheitelwert am Messeingang wurde durch Stromoberschwingungen überschritten.	Stromwandler mit einem größeren Stromwandler- Übersetzungsverhältnis einbauen.	
	Der Strom am Messeingang wurde unterschrit- ten.	Stromwandler mit einem kleineren Stromwandler- Übersetzungsverhältnis einbauen.	
Angezeigte Spannung ist zu klein	Messung in der falschen Phase.	Anschluss überprüfen und ggf. korrigieren.	
oder zu groß.	Spannungswandler falsch programmiert.	Spannungswandler-Übersetzungsverhältnis am Spannungswandler ablesen und programmieren.	
Angezeigte Spannung ist zu klein.	Messbereichsüberschreitung.	Spannungswandler verwenden.	
	Der Spannungsscheitelwert am Messeingang wurde durch Oberschwingungen überschritten.	Achtung! Es muss sichergestellt sein, dass die Messeingänge nicht überlastet werden.	
Phasenverschiebung ind/kap.	Strompfad ist dem falschen Spannungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.	
Wirkleistung Bezug / Lieferung ist vertauscht.	Mindestens ein Stromwandleranschluss ist vertauscht.	Anschluss überprüfen und ggf. korrigieren.	
	Ein Strompfad ist dem falschen Spannungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.	

Fehlermöglichkeit	Ursache	Abhilfe	
Wirkleistung zu klein oder zu groß.	Das programmierte Stromwandler-Übersetzungs- verhältnis ist falsch.	Stromwandler-Übersetzungsverhältnis am Stromwandler ablesen und programmieren	
	Der Strompfad ist dem falschen Spannungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.	
	Das programmierte Spannungswandler-Überset- zungsverhältnis ist falsch.	Spannungswandler-Übersetzungsverhältnis am Spannungswandler ablesen und programmieren.	
Ein Ausgang reagiert nicht.	Der Ausgang wurde falsch programmiert.	Programmierung überprüfen und ggf. korrigieren.	
	Der Ausgang wurde falsch angeschlossen.	Anschluss überprüfen und ggf. korrigieren.	
"EEE" im Display	Siehe Fehlermeldungen.		
"EEE bAt" im Display	Batterie-Kapazität zu gering	Siehe "Batterie-Kontrollfunktion" und "Austausch der Batterie"	
Keine Verbindung zum Gerät.	RS485 - Falsche Geräteadresse. - Unterschiedliche Bus-Geschwindigkeiten (Baudrate). - Falsches Protokoll. - Terminierung fehlt. Ethernet - Falsche IP-Geräteadresse.	 Geräteadresse korrigieren. Geschwindigkeit (Baudrate) korrigieren. Protokoll korrigieren. Bus mit Abschlusswiderstand abschließen. IP-Geräteadresse korrigieren. 	
	- Falscher Adressierungsmodus	- Modus zur Vergabe der IP-Adresse korrigieren	
Trotz obiger Maßnahmen funktioniert das Gerät nicht.	Gerät defekt.	Gerät zur Überprüfung an den Hersteller mit einer genauen Fehlerbeschreibung einschicken.	

Technische Daten

Allgemein	
Nettogewicht (mit aufgesetzten Steckverbindern)	ca. 370g
Verpackungsgewicht (inkl. Zubehör)	ca. 950g
Geräteabmessungen	ca. b = 96mm, h = 96mm, t = 78mm
Batterie	Typ Lithium CR2032, 3V (Zulassung nach UL 1642)
Lebensdauer der Hintergrundbeleuchtung	40000h (Hintergrundbeleuchtung reduziert sich über diese Dauer auf ca. 50%)

Transport und Lagerung

Die folgenden Angaben gelten für Geräte, die in der Originalverpackung transportiert bzw. gelagert werden.

Freier Fall	1m
Temperatur	K55 (-25°C bis +70°C)
Relative Luftfeuchte	0 bis 90 % RH

Umgebungsbedingungen im Betrieb		
Das UMG 96RM ist für den wettergeschützten, ortsfesten Einsatz vorgesehen. Schutzklasse II nach IEC 60536 (VDE 0106, Teil 1).		
Bemessungstemperaturbereich	K55 (-10°C +55°C)	
Relative Luftfeuchte	0 bis 75 % RH	
Betriebshöhe	0 2000m über NN	
Verschmutzungsgrad	2	
Einbaulage	beliebig	
Lüftung	eine Fremdbelüftung ist nicht erforderlich.	
Fremdkörper- und Wasserschutz - Front - Rückseite	IP40 nach EN60529 IP20 nach EN60529	

Versorgungsspannung		
Installations Überspannungskategorie	300V CAT II	
Absicherung der Versorgungsspannung (Sicherung)	1A, Typ C (zugelassen nach UL/IEC)	
Nennbereich	95V - 240V (4565Hz) oder DC 100V - 300V	
Arbeitsbereich	+-10% vom Nennbereich	
Leistungsaufnahme	max. 8,5VA / 3,5W	

Digitale Ausgänge 2 und wahlweise zusätzlich 3 digitale Ausgänge, Halbleiterrelais, nicht kurzschlussfest.	
Schaltspannung	max. 33V AC, 60V DC
Schaltstrom	max. 50mAeff AC/DC
Reaktionszeit	9 Perioden + 10ms *
Impulsausgang (Energie-Impulse)	max. 50Hz

* Reaktionszeit z. B. bei 50 Hz: 180ms + 10ms = 190 ms

Digitale Eingänge Wahlweise 3 digitale Ausgänge, Halbleiterrelais, nicht kurzschlussfest.	
Maximale Zählerfrequenz	20Hz
Eingangssignal liegt an	18V 28V DC (typisch 4mA)
Eingangssignal liegt nicht an	0 5V DC, Strom kleiner 0,5A

Temperaturmesseingang Wahlweise 2 Eingänge.	
Updatezeit	1 Sekunde
Anschließbare Fühler	PT100, PT1000, KTY83, KTY84
Gesamtbürde (Fühler u. Leitung)	max. 4 kOhm

Fühlertyp	Temperaturbereich	Widerstandbereich	Messunsicherheit
KTY83	-55°C +175°C	500Ohm 2,6kOhm	± 1,5% rng
KTY84	-40°C +300°C	350Ohm 2,6kOhm	± 1,5% rng
PT100	-99°C +500°C	60Ohm 180Ohm	± 1,5% rng
PT1000	-99°C +500°C	600Ohm 1,8kOhm	± 1,5% rng

Leitungslänge (digitale Ein-/Ausgänge, Temperaturmesseingang)		
bis 30m	nicht abgeschirmt	
größer 30m	abgeschirmt	

Serielle Schnittstelle	
RS485 - Modbus RTU/Slave	9.6kbps, 19.2kbps, 38.4kbps, 57.6 kbps, 115.2kbps
Abisolierlänge	7mm

Spannungsmessung	
Dreiphasen 4-Leitersysteme mit Nennspannungen bis	277V/480V (+-10%)
Dreiphasen 3-Leitersysteme, ungeerdet, mit Nennspannungen bis	IT 480V (+-10%)
Überspannungskategorie	300V CAT III
Bemessungsstoßspannung	4kV
Messbereich L-N	0 ¹⁾ 300Vrms (max. Überspannung 520Vrms)
Messbereich L-L	0 ¹⁾ 520Vrms (max. Überspannung 900Vrms)
Auflösung	0,01V
Crest-Faktor	2,45 (bezogen auf den Messbereich)
Impedanz	4MOhm/Phase
Leistungsaufnahme	ca. 0,1VA
Abtastfrequenz	21,33kHz (50Hz), 25,6 kHz (60Hz) je Messkanal
Frequenz der Grundschwingung - Auflösung	45Hz 65Hz 0,01Hz

¹⁾ Das UMG 96RM-E kann nur dann Messwerte ermitteln, wenn an mindestens einem Spannungsmesseingang eine Spannung L-N von größer 10Veff oder eine Spannung L-L von größer 18Veff anliegt.

Strommessung I1 - I4	
Messbereich	0 5Arms (max. Überlast 7 Arms)
Crest-Faktor	1,98
Auflösung	0,1mA (Display 0,01A)
Überspannungskategorie	300V CAT II
Bemessungsstoßspannung	2kV
Leistungsaufnahme	ca. 0,2 VA (Ri=5mOhm)
Überlast für 1 Sek.	120A (sinusförmig)
Abtastfrequenz	20kHz

Differenzstrommessung I5 / 16				
Nennstrom	30mArms			
Bemessungsstrom	40mArms			
Ansprechstrom	50μΑ			
Auflösung	1μΑ			
Crest-Faktor	1,414 (bezogen auf 40mA)			
Bürde	4 Ohm			
Überlast für 1 Sek.	5A			
Dauerhafte Überlast	1A			
Überlast 20 ms	50A			
Messung der Differenzströme	nach IEC/TR 60755 (2008-01), Typ A			
	Тур В			

Anschlussvermögen der Klemmstellen: Versorgungsspannung, Spannungs- und Strommessung Anschließbare Leiter. Pro Klemmstelle darf nur ein Leiter angeschlossen werden!					
Eindrähtige, mehrdrähtige, feindrähtige 0,2 - 2,5mm ² , AWG 24-12					
Stiftkabelschuhe, Aderendhülsen	0,25 - 2,5mm²				
Anzugsdrehmoment	0,5 - 0,6Nm				
Abisolierlänge 7mm					

Anschlussvermögen der Klemmstellen: Differenzstrom- bzw. Temperaturmesseingänge und digitale Ein-/Ausgänge						
Starr/flexibel	0,14 - 1,5mm², AWG 28-16					
Flexibel mit Aderendhülsen ohne Kunststoffhülse	0,25 - 1,5mm ²					
Flexibel mit Aderendhülsen mit Kunststoffhülse	0,25 - 0,5mm²					
Anzugsdrehmoment	0,22 - 0,25Nm					
Abisolierlänge	7mm					

Anschlussvermögen der Klemmstellen: serielle Schnittstelle					
Eindrähtige, mehrdrähtige, feindrähtige	0,08 - 2,5mm ²				
Stiftkabelschuhe, Aderendhülsen	1,5mm ²				
Anzugsdrehmoment	0,5 - 0,6Nm				
Abisolierlänge	7mm				

Ethernet-Anschluss				
Anschluss	RJ45			
Funktionen	Modbus Gateway, Embedded Webserver (HTTP)			
Protokolle	TCP/IP, DHCP-Client (BootP), Modbus/TCP (Port 502), ICMP (Ping), NTP, Modbus RTU over Ethernet (Port 8000), FTP, SNMP			

Kenngrößen von Funktionen

Funktion	Symbol	Gena	uigkeitsklasse	Messbereich	Anzeigebereich
Gesamt-Wirkleistung	Р	0,55)	(IEC61557-12)	0 5,4 kW	0 W 9999 GW *
Gesamt-Blindleisung	QA, Qv	1	(IEC61557-12)	0 5,4 kvar	0 varh 9999 Gvar *
Gesamt-Scheinleistung	SA, Sv	0,55)	(IEC61557-12)	0 5,4 kVA	0 VA 9999 GVA *
Gesamt-Wirkenergie	Ea	0,55)	(IEC61557-12)	0 5,4 kWh	0 Wh 9999 GWh *
Gesamt-Blindenergie	ErA, ErV	1	(IEC61557-12)	0 5,4 kvarh	0 varh 9999 Gvarh *
Gesamt-Scheinenergie	EapA, EapV	0,55)	(IEC61557-12)	0 5,4 kVAh	0 VAh 9999 GVAh *
Frequenz	f	0,05	(IEC61557-12)	45 65 Hz	45,00 Hz 65,00 Hz
Phasenstrom I1 - I3	I	0,5	(IEC61557-12)	0 6 Arms	0 A 9999 kA
Neutralleiterstrom I4 gemessen	IN	1	(IEC61557-12)	0 6 Arms	0 A 9999 kA
Differenzströme I5, I6	lDiff	1	(IEC61557-12)	0 30 mArms	0 A 9999 kA
Neutralleiterstrom berechnet	INc	1,0	(IEC61557-12)	0,03 25 A	0,03 A 9999 kA
Spannung	U L-N	0,2	(IEC61557-12)	10 300 Vrms	0 V 9999 kV
Spannung	U L-L	0,2	(IEC61557-12)	18 520 Vrms	0 V 9999 kV
Leistungsfaktor	PFA, PFV	0,5	(IEC61557-12)	0,00 1.00	0,00 1,00
Kurzzeit-Flicker, Langzeitflicker	Pst, Plt	-		-	-
Spannungseinbrüche (L-N)	Udip	-		-	-
Spannungsüberhöhungen (L-N)	Uswl	-		-	-
Transiente Überspannungen	Utr	-		-	-
Spannungsunterbrechnungen	Uint	-		-	-
Spannungsunsymmetrie (L-N) 1)	Unba	-		-	-
Spannungsunsymmetrie (L-N) ²⁾	Unb	-		-	-
Spannungsoberschwingungen	Uh	Kl. 1	(IEC61000-4-7)	bis 2,5 kHz	0 V 9999 kV
THD der Spannung 3)	THDu	1,0	(IEC61557-12)	bis 2,5 kHz	0 % 999 %
THD der Spannung ⁴⁾	THD-Ru	-		-	-

Funktion	Symbol	Genauigkeitsklasse	Messbereich	Anzeigebereich
Strom-Oberschwingungen	lh	Kl. 1 (IEC61000-4-7)	bis 2,5 kHz	0 A 9999 kA
THD des Stromes 3)	THDi	1,0 (IEC61557-12)	bis 2,5 kHz	0 % 999 %
THD des Stromes 4)	THD-Ri	-	-	-
Netzsignalspannung	MSV	-	-	-

1) Bezug auf die Amplitude.

2) Bezug auf Phase und auf Amplitude.

* Beim Erreichen der max. Gesamt-Arbeitswerte springt die Anzeige auf 0 W zurück.

3) Bezug auf die Grundschwingung.

5) Genauigkeitsklasse 0,5 mit ../5A Wandler. Genauigkeitsklasse 1 mit ../1A Wandler.

4) Bezug auf den Effektivwert.

Parameter- und Modbus-Adressenliste

In dem Auszug der folgenden Parameterliste stehen Einstellungen, die für den korrekten Betrieb des UMG 96RM-E notwendig sind, wie z.B. Stromwandler und Geräteadresse. Die Werte in der Parameterliste können beschrieben und gelesen werden.

In dem Auszug der Messwertliste sind die gemessenen und berechneten Messwerte, Zustandsdaten der Ausgänge und protokollierte Werte zum Auslesen abgelegt. Eine gesamte Übersicht der Parameter und Messwerte sowie Erklärungen zu ausgewählten Messwerten sind im Dokument "Modbus-Adressenliste" auf der CD oder im Internet abgelegt.

 $\widehat{\mathcal{T}}$

Die in dieser Dokumentation aufgeführten Adressen im Bereich 0 - 999 sind direkt am Gerät einstellbar. Der Adress-Bereich ab 1000 kann ausschließlich über Modbus bearbeitet werden!

Adresse	Format	RD/WR	Einheit Bemerkung		Einstellbereich	Voreinstellung
0	SHORT	RD/WR	-	Geräteadresse	0255 (*1)	1
1	SHORT	RD/WR	kbps	Baudrate (0=9.6kbps, 1=19.2kbps, 2=38.4kbps, 3= 57.6kbps 4=115.2kbps)	07 (57 nur für den internen Gebrauch)	4
2	SHORT	RD/WR	-	Modbus Master 0=Slave, 1=Master (nur bei Ethernet)	0, 1	0
3	SHORT	RD/WR	-	Stoppbits (0=1Bit, 1=2Bits)	0, 1	0
10	FLOAT	RD/WR	A	Stromwandler I1, primär	01000000 ^(*2)	5
12	FLOAT	RD/WR	A	Stromwandler I1, sek.	15	5
14	FLOAT	RD/WR	V	Spannungswandler V1, prim.	01000000 ^(*2)	400
16	FLOAT	RD/WR	V	Spannungswandler V1, sek.	100, 400	400
18	FLOAT	RD/WR	A	Stromwandler I2, primär	01000000 (*2)	5

Tabelle 1 - Parameterliste

^(*1) Die Werte 0 und 248 bis 255 sind reserviert und dürfen nicht verwendet werden.

⁽²⁾ Der einstellbare Wert 0 ergibt keine sinnvollen Arbeitswerte und darf nicht verwendet werden.

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
20	FLOAT	RD/WR	А	Stromwandler I2, sek.	15	5
22	FLOAT	RD/WR	V	Spannungswandler V2, prim.	01000000	400
24	FLOAT	RD/WR	V	Spannungswandler V2, sek.	100, 400	400
26	FLOAT	RD/WR	A	Stromwandler I3, primär	01000000	5
28	FLOAT	RD/WR	A	Stromwandler I3, sek.	15	5
30	FLOAT	RD/WR	V	Spannungswandler V3, prim.	01000000	400
32	FLOAT	RD/WR	V	Spannungswandler V3, sek.	100, 400	400
34	SHORT	RD/WR	Hz	Frequenzermittlung 0=Auto, 45 65=Hz	0, 45 65	0
35	SHORT	RD/WR	-	Kontrast der Anzeige	09	5
00	CUODT			U (niedrig), 9 (noch)	0 0	0
30	SHORI	RD/WR	-	A (dupka)) 9 (ball)	09	0
37	SHORT	RD/WR	-	Anzeigen-Profil	03	0
07		TID/ WIT		N=vorbeleates Anzeigen-Profil	00	
				1=vorbelegtes Anzeigen-Profil		
				2=vorbelegtes Anzeigen-Profil		
				3=frei wählbares Anzeigen-Profil		
38	SHORT	RD/WR	-	Anzeigen-Wechsel-Profil	03	0
				02=vorbelegte Anzeigen-		
				Wechsel-Profile		
				3=frei wählbares		
				Anzeigen-Wechsel-Profil		
39	SHORT	RD/WR	s	Wechselzeit	060	0
40	SHORT	RD/WR	-	Mittelungszeit, I	08*	6
41	SHORT	RD/WR	-	Mittelungszeit, P	0 8*	6
42	SHORT	RD/WR	-	Mittelungszeit, U 08* 6		6
45	INT	RD/WR	mA	Ansprechschwelle Strommessung	050	5
				l1 l3		

* 0 = 5Sek.; 1 = 10Sek.; 2 = 15Sek.; 3 = 30Sek.; 4 = 1Min.; 5 = 5Min.; 6 = 8Min.; 7 = 10Min.; 8 = 15Min.

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
50	SHORT	RD/WR	-	Passwort	0 999	0 (Kein Passwort)
100	SHORT	RD/WR	-	Adresse des Messwertes,		
101	SHORT	RD/WR	-	Digitalausg. 1 Adresse des Messwertes,	032000	0
102	FLOAT	RD/WR	Wh	Digitalausg. 2 Impulswertigkeit,	032000	0
104	FLOAT	RD/WR	Wh	Digitalausgang 1 Impulswertigkeit.	-1000000+1000000	0
106	SHORT	BD/WB	10ms	Digitalausgang 2 Mindestimpulslänge (1–10ms)	-1000000+1000000	0
100		112,000	Tomo	Digitalausg. 1/2	11000	5 (=50ms)
500	SHORT	RD/WR	-	Anschlussbelegung, I L1	-30+3	+1
501	SHORT	RD/WR	-	Anschlussbelegung, I L3	-30+3	+2 +3
503	SHORT	RD/WR	-	Anschlussbelegung, U L1	03	1
504	SHORT	RD/WR	-	Anschlussbelegung, U L2	03	2
505	SHORI	RD/WR	-	Anschlussbelegung, UL3	03	3
507	SHORT		-	Energiezähler löschen	0.1	0
508	SHORT	RD/WR	-	EEPROM beschreiben erzwingen.	01	0
Hinweis						
509	SHORT	RD/WR	-	Anschlußbild Spannung	07	0
510	SHORT	RD/WR	-	Anschlußbild Strom	08	0
511	SHURI	RD/WR	-	THD und FFT	0, 1	0
Im Disp	lay können c	lie Spannunger	n für THD und	d FFT als L-N oder als L-L Werte angeze	igt werden. 0=LN, 1=LL	

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
512 513 514 515 516 517	SHORT SHORT SHORT SHORT SHORT	RD/WR RD/WR RD/WR RD/WR RD/WR RD/WR		Jahr Monat Tag Stunde Minute Sekunde	099 012 031 024 059 059	
600	UINT	RD/WR	-	Messbereichsüberschreitung	00xFFFFFFFF	
750 754 756	SHORT SERNR SERNR	RD RD RD	-	Software Release Seriennummer Produktionsnummer		

Im Display werden nur die ersten 3 Stellen (###) eines Wertes dargestellt. Werte größer 1000 werden mit "k" gekennzeichnet. Beispiel: 003k = 3000

Tabelle 2 - Modbus-Adressenliste

(häufig benötigte Messwerte)

 \bigcirc

Die in dieser Dokumentation aufgeführten Adressen im Bereich 0 - 999 sind direkt am Gerät einstellbar. Der Adress-Bereich ab 1000 kann ausschließlich über Modbus bearbeitet werden! Eine gesamte Übersicht der Parameter und Messwerte sowie Erklärungen zu ausgewählten Messwerten sind im Dokument "Modbus-Adressenliste" auf der CD oder im Internet abgelegt.

Modbus Adresse	Adresse über Display	Format	RD/WR	Einheit	Bemerkung
19000	808	float	RD	V	Voltage L1-N
19002	810	float	RD	V	Voltage L2-N
19004	812	float	RD	V	Voltage L3-N
19006	814	float	RD	V	Voltage L1-L2
19008	816	float	RD	V	Voltage L2-L3
19010	818	float	RD	V	Voltage L3-L1
19012	860	float	RD	A	Current, L1
19014	862	float	RD	A	Current, L2
19016	864	float	RD	A	Current, L3
19018	866	float	RD	A	Vector sum; IN=I1+I2+I3
19020	868	float	RD	W	Real power L1
19022	870	float	RD	W	Real power L2
19024	872	float	RD	W	Real power L3
19026	874	float	RD	W	Sum; Psum3=P1+P2+P3
19028	884	float	RD	VA	Apparent power S L1
19030	886	float	RD	VA	Apparent power S L2
19032	888	float	RD	VA	Apparent power S L3
19034	890	float	RD	VA	Sum; Ssum3=S1+S2+S3

Modbus Adresse	Adresse über Display	Format	RD/WR	Einheit	Bemerkung		
19036	876	float	RD	var	Fund. reactive power (mains frequ.) Q L1		
19038	878	float	RD	var	Fund. reactive power (mains frequ.) Q L2		
19040	880	float	RD	var	Fund. reactive power (mains frequ.) Q L3		
19042	882	float	RD	var	Sum; Qsum3=Q1+Q2+Q3		
19044	820	float	RD	-	Fund.power factor, CosPhi; U L1-N IL1		
19046	822	float	RD	-	Fund.power factor, CosPhi; U L2-N IL2		
19048	824	float	RD	-	Fund.power factor, CosPhi; U L3-N IL3		
19050	800	float	RD	Hz	Measured frequency		
19052	-	float	RD	-	Rotation field; 1=right, 0=none, -1=left		
19054	-	float	RD	Wh	Real energy L1		
19056	-	float	RD	Wh	Real energy L2		
19058	-	float	RD	Wh	Real energy L3		
19060	-	float	RD	Wh	Real energy L1L3		
19062	-	float	RD	Wh	Real energy L1, consumed		
19064	-	float	RD	Wh	Real energy L2, consumed		
19066	-	float	RD	Wh	Real energy L3, consumed		
19068	-	float	RD	Wh	Real energy L1L3, consumed, rate 1		
19070	-	float	RD	Wh	Real energy L1, delivered		
19072	-	float	RD	Wh	Real energy L2, delivered		
19074	-	float	RD	Wh	Real energy L3, delivered		
19076	-	float	RD	Wh	Real energy L1L3, delivered		
19078	-	float	RD	VAh	Apparent energy L1		
19080	-	float	RD	VAh	Apparent energy L2		
19082	-	float	RD	VAh	Apparent energy L3		
19084	-	float	RD	VAh	Apparent energy L1L3		
19086	-	float	RD	varh	Reaktive energy L1		
19088	-	float	RD	varh	Reaktive energy L2		
19090	-	float	RD	varh	Reaktive energy L3		
19092	-	float	RD	varh	Reaktive energy L1L3		
19094	-	float	RD	varh	Reactive energy, inductive, L1		
19096	-	float	RD	varh	Reactive energy, inductive, L2		

Modbus Adresse	Adresse über Display	Format	RD/WR	Einheit	Bemerkung
19098	-	float	RD	varh	Reactive energy, inductive, L3
19100	-	float	RD	varh	Reactive energy L1L3, ind.
19102	-	float	RD	varh	Reactive energy, capacitive, L1
19104	-	float	RD	varh	Reactive energy, capacitive, L2
19106	-	float	RD	varh	Reactive energy, capacitive, L3
19108	-	float	RD	varh	Reactive energy L1L3, cap.
19110	836	float	RD	%	Harmonic, THD, U L1-N
19112	838	float	RD	%	Harmonic, THD, U L2-N
19114	840	float	RD	%	Harmonic, THD, U L3-N
19116	908	float	RD	%	Harmonic, THD, I L1
19118	910	float	RD	%	Harmonic, THD, I L2
19120	912	float	RD	%	Harmonic, THD, I L3

Modbus Adresse	Adresse über Display	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
20006	-	float	RD/WR	A	TDD I4, Voll-Laststrom	01000000	150
20008	-	float	RD/WR	A	Stromwandler I4, primär	01000000	5
20010	-	float	RD/WR	A	Stromwandler I4, sekundär	15	5
20012	-	float	RD/WR	A	Stromwandler I5, primär	01000000	5
20014	-	float	RD/WR	A	Stromwandler I5, sekundär	0,0015	5
20016	-	float	RD/WR	A	Stromwandler I6, primär	01000000	5
20018	-	float	RD/WR	A	Stromwandler I6, sekundär	0,0015	5

Maßbilder

Alle Angaben in mm.

Rückansicht

Ansicht von unten

Seitenansicht

Ausbruchmaß

Übersicht Messwertanzeigen

110

Markierten Menüs werden mit der werkseitigen Voreinstellung nicht angezeigt.

* nur die ersten 6 Vergleicher werden angezeigt.

112

Markierten Menüs werden mit der werkseitigen Voreinstellung nicht angezeigt.

Gerade und ungerade Oberschwingungen bis zur 40. Ordnung sind über die Software Grid-Vis abrufbar und können innerhalb der Software visualisiert werden.

Markierten Menüs werden mit der werkseitigen Voreinstellung nicht angezeigt.

Konformitätserklärung

Das UMG 96RM erfüllt folgende Schutzanforderungen:

Richtlinie 2004/108/EG in Verbindung mit Richtlinie 2006/95/EG in Verbindung mit DIN EN61326-1:2011 (IEC 61326-1:2010) sowie der DIN EN 61010-1:2011 (IEC 61010-1:2011) und DIN EN 61010-2-030:2011 (IEC 61010-2-030:2011)

Berücksichtigte Normen:

Störfestigkeit DIN EN 61326-1:2006 (IEC 61326-1:2005)

DIN EN 61000-4-2:2009 (IEC 61000-4-2:2008) DIN EN 61000-4-3:2008 (IEC 61000-4-3:2007) DIN EN 61000-4-4:2010 (IEC 61000-4-4:2010) DIN EN 61000-4-5:2007 (IEC 61000-4-5:2005) DIN EN 61000-4-6:2009 (IEC 61000-4-6:2008) DIN EN 61000-4-8:2010 (IEC 61000-4-8:2009) DIN EN 61000-4-11:2005 (IEC 61000-4-11:2004)

Störaussendung DIN EN 61326-1:2006 (IEC 61326-1:2005)

DIN EN 61326-1 / 7.2 (CISPR 11) DIN EN 61326-1 / 7.2 (CISPR 11)

Gerätesicherheit DIN EN 61010-1:2011 (IEC 61010-1:2011)

DIN EN 61010-2-030:2011 (IEC 61010-2-30:2011)

Elektr. Mess-, Steuer-, Regel- und Laborgeräte EMV-Anforderungen - Teil 1: Allgemeine Anforderungen Klasse A: Industriebereich Entladung statischer Elektrizität 4kV/8kV Elektromagnetisches HF-Feld 80-2700MHz Schnelle Transienten 1kV/2kV Stoßspannungen 1kV/2kV Leitungsgeführte HF-Störungen 0,15-80MHz / 3V Magnetfelder mit energietechnischen Frequenzen, 30A/m Spannungseinbrüche, Kurzzeitunterbrechungen und Spannungsschwankungen

Elektr. Betriebsmittel für Leittechnik und Laboreinsatz – EMV-Anforderungen: Klasse B: Wohnbereich, Geschäfts- und Gewerbebereich Funkstörfeldstärke 30MHz – 1GHz Funkstörspannung 0.15MHz – 30MHz

Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte - Teil 1 Allgemeine Anforderungen Teil 2-030: Besondere Bestimmungen für Prüf- und Messstromkreise

Anschlussbeispiel 1

(mit Differenzstrommessung IPE / IDIFF)

- ¹⁾ UL/IEC zugelassene Überstrom-Schutzeinrichtung (1A Typ C)
- ²⁾ UL/IEC zugelassene Überstrom-Schutzeinrichtung (10A Typ C)
- ³⁾ Kurzschlussbrücken (extern)

Anschlussbeispiel 2

(mit Temperatur- und Differenzstrommessung)

¹⁾ UL/IEC zugelassene Überstrom-Schutzeinrichtung (1A Typ C)

- ²⁾ UL/IEC zugelassene Überstrom-Schutzeinrichtung (10A Typ C)
- ³⁾ Kurzschlussbrücken (extern)

Kurzanleitung Grundfunktionen

Stromwandlereinstellung ändern

In den Programmier-Modus wechseln:

- Ein Wechsel in den Programmier-Modus erfolgt über das gleichzeitige Drücken der Tasten 1 und 2 für ca.
 1 Sekunde. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Mit Taste 1 wird die Auswahl bestätigt.
- Die erste Ziffer des Eingabebereiches f
 ür den Prim
 ärstrom blinkt.

Primärstrom ändern

- Mit Taste 2 die blinkende Ziffer ändern.
- Mit Taste 1 die nächste zu ändernde Ziffer wählen. Die für eine Änderung ausgewählte Ziffer blinkt. Blinkt die gesamte Zahl, so kann das Komma mit Taste 2 verschoben werden.

Sekundärstrom ändern

- Als Sekundärstrom kann nur 1A oder 5A eingestellt werden.
- Mit Taste 1 den Sekundärstrom wählen.
- Mit Taste 2 die blinkende Ziffer ändern. Programmier-Modus verlassen
- Der Wechsel in den Anzeige-Modus erfolgt durch ein erneutes gleichzeitiges Drücken der Tasten 1 und 2 für ca. 1 Sekunde.

Messwerte abrufen

In den Anzeige-Modus wechseln:

- Sollte der Programmier-Modus noch aktiv sein (Darstellung der Symbole PRG und CT im Display), wird über das gleichzeitige Drücken für ca. 1 Sekunde der Tasten 1 und 2 in den Anzeige-Modus gewechselt.
- Eine Messwertanzeige, z. B. für die Spannung, erscheint

Tastensteuerung

- Über Taste 2 erfolgt ein Wechsel der Messwertanzeigen für Strom, Spannung, Leistung usw.
- Über Taste 1 erfolgt ein Wechsel der zum Messwert gehörenden Mittelwerte, Maxwerte usw.

Kurzanleitung TCP/IP-Adressierung

Manuelle TCP/IP-Einstellungen

In den Programmier-Modus wechseln:

 Ein Wechsel in den Programmier-Modus erfolgt über das gleichzeitige Drücken der Tasten 1 und 2 für ca.
 1 Sekunde. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.

TCP/IP-Adresse einstellen (Adr)

- Mit Taste 2 bis zur Anzeige "Adr" wechseln
- Mit Taste 1 erste Ziffer der Adresse (Byte 0) aktivieren (Ziffer blinkt). Über Taste 2 Ziffer einstellen.
- Nächste Ziffer über Taste 1 wählen (Ziffer blinkt) und über Taste 2 gewünschte Ziffer einstellen.
- Ist Byte 0 der Adresse eingestellt, erfolgt über Taste 1 das Setzen von Byte 1 bis 3. Danach springt die Anzeige wieder auf Byte 0 (keine Ziffer blinkt).

Subnetzmaske (SUb)

 Über Taste 2 in den Bereich der Subnetzmaske wechseln und diese mit Taste 1 und 2 analog der Adressen-Einstellung setzen.

Gateway-Adresse einstellen (GAt)

 Mit Taste 2 und 1 das Gateway analog der Adressen-Einstellung setzen.

Programmiermodus verlassen

• Duch gleichzeitiges Drücken der Tasten 1 und 2 den Modus verlassen oder 60 Sekunden warten.

Dynamische IP-Vergabe (dyn) aktivieren

Geräte-/Gateway-Adresse und Subnetzmaske werden von einem DHCP-Server vergeben und ermöglichen eine automatische Einbindung des Gerätes in das bestehende Netz.

- Im Programmiermodus durch mehrmaliges Drücken der Taste 2 zur Anzeige mit der Bezeichnung "dYn IP" wechseln.
- Mit Taste 1 den Parameter "on" bzw. "oFF" aktivieren (Parameter blinkt). Mit Taste 2 den gewünschten Zustand einstellen und mit Taste 1 bestätigen.
- Programmiermodus verlassen.