QUINT-PS/1AC/24DC/20

Stromversorgung

Datenblatt 103129 de 07

© PHOENIX CONTACT 2015-08-21

1 Beschreibung

QUINT POWER-Stromversorgungen – Höchste Anlagenverfügbarkeit durch SFB Technology

Kompakte Stromversorgungen der neuen QUINT POWER-Generation maximieren die Verfügbarkeit Ihrer Anlage. Mit der SFB Technology (Selective Fuse Breaking Technology), dem 6-fachen Nennstrom für 12 ms, lassen sich erstmalig auch Standard-Leitungsschutzschalter zuverlässig und schnell auslösen. Fehlerhafte Strompfade werden selektiv abgeschaltet, der Fehler wird eingegrenzt und wichtige Anlagenteile bleiben in Betrieb. Eine umfassende Diagnose erfolgt durch ständige Überwachung von Ausgangsspannung und -strom. Diese präventive Funktionsüberwachung visualisiert kritische Betriebszustände und meldet sie der Steuerung, bevor Fehler auftreten.

Merkmale

Höchste Anlagenverfügbarkeit

- durch SFB Technology (6-facher Nennstrom für 12 ms) werden Leitungsschutzschalter schnell ausgelöst und wichtige Anlagenteile bleiben in Betrieb
- durch präventive Überwachung von Ausgangsspannung und -strom und Weiterleitung kritischer Betriebszustände an Steuerung
- durch zuverlässiges Starten schwieriger Lasten mit Leistungsreserve POWER BOOST
- lange Netzausfallüberbrückung > 32 ms
- hohe MTBF > 520000 h (40 °C)

Weltweit einsetzbar

- Eingangsspannung von 85 V AC ... 264 V AC
- Eingangsspannung von 90 V DC ... 350 V DC

Flexibel einsetzbar

- einstellbare Ausgangsspannung
- Einsetzbar in Class I, Division 2, Groups A, B, C, D
 (Hazardous Location) ANSI-ISA 12.12

Stellen Sie sicher, dass Sie immer mit der aktuellen Dokumentation arbeiten. Diese steht unter der Adresse phoenixcontact.net/products am Artikel zum Download bereit.

2 1	Inhaltsverzeichnis Beschreibung	1
2	Inhaltsverzeichnis	
3	Bestelldaten	3
4	Technische Daten	4
5	Sicherheitsbestimmungen und Errichtungshinweise	8
6	Aufbau	9
	6.1 Blockschaltbild	9
	6.2 Funktionselemente	9
	6.3 Konvektion	10
	6.4 Einbaulage	11
7	Montage/Demontage	12
	7.1 Normaleinbaulage	
	7.2 Um 90° gedrehte Einbaulage	
	7.3 Montage auf Tragschiene	
	7.4 Demontage von der Tragschiene	12
8	Geräteanschluss	13
	8.1 Netzformen	
	8.2 Eingang AC	
	8.3 Ausgang DC	14
9	SFB Technology	14
	9.1 Auslöseverhalten LS-Schalter	
	9.2 Installationshinweise	
	9.3 SFB-Projektierung	15
10	Signalisierung	17
	10.1 Potenzialfreier Schaltkontakt	
	10.2 Aktive Signalausgänge	
	10.3 Signalschleife	18
11	Derating	18
	11.1 Temperaturabhängiges Derating	18
12	Betriebsarten	18
	12.1 Serieller Betrieb	
	12.2 Parallelbetrieb	
	12.3 Redundanzbetrieb	19
	12.4 Leistungserhöhung	19

3 Bestelldaten

Beschreibung	Тур	ArtNr.	VPE
Primär getaktete Stromversorgung QUINT POWER zur Tragschienenmontage mit SFB (Selective Fuse Breaking) Technology, Eingang: 1-phasig, Ausgang: 24 V DC / 20 A	QUINT-PS/1AC/24DC/20	2866776	1
Zubehör	Тур	ArtNr.	VPE
Tragschienen-Diodenmodul 12 - 24 V DC/2 x 20 A oder 1 x 40 A. Durchgängige Redundanz bis zum Verbraucher.	QUINT-DIODE/12-24DC/2X20/1X40	2320157	1
Aktives QUINT Redundanzmodul zur Tragschienenmontage mit ACB-Technology (Active Current Balancing) und Überwachungsfunktionen, Eingang: 24 V DC, Ausgang: 24 V DC / 2 x 20 A oder 1 x 40 A, inkl. montiertem Universaltragschienenadapter UTA 107/30	QUINT-ORING/24DC/2X20/1X40	2320186	1
Filter zur Einhaltung der EMV-Kategorie EMC1 im Schiffbau für die Stromversorgung QUINT-PS/1AC/24DC/20	ME-MAX-NEF/QUINT20A	2319919	1
Thermomagnetischer Geräteschutzschalter, 1-polig, Auslösekennline SFB, 1 Wechslerkontakt, Stecker für Basiselement.	CB TM1 1A SFB P	2800836	1
Thermomagnetischer Geräteschutzschalter, 1-polig, Auslösekennline SFB, 1 Wechslerkontakt, Stecker für Basiselement.	CB TM1 2A SFB P	2800837	1
Thermomagnetischer Geräteschutzschalter, 1-polig, Auslösekennline SFB, 1 Wechslerkontakt, Stecker für Basiselement.	CB TM1 3A SFB P	2800838	1
Thermomagnetischer Geräteschutzschalter, 1-polig, Auslösekennline SFB, 1 Wechslerkontakt, Stecker für Basiselement.	CB TM1 4A SFB P	2800839	1
Thermomagnetischer Geräteschutzschalter, 1-polig, Auslösekennline SFB, 1 Wechslerkontakt, Stecker für Basiselement.	CB TM1 5A SFB P	2800840	1
Thermomagnetischer Geräteschutzschalter, 1-polig, Auslösekennline SFB, 1 Wechslerkontakt, Stecker für Basiselement.	CB TM1 6A SFB P	2800841	1
Thermomagnetischer Geräteschutzschalter, 1-polig, Auslösekennline SFB, 1 Wechslerkontakt, Stecker für Basiselement.	CB TM1 8A SFB P	2800842	1
Thermomagnetischer Geräteschutzschalter, 1-polig, Auslösekennline SFB, 1 Wechslerkontakt, Stecker für Basiselement.	CB TM1 10A SFB P	2800843	1
Universal-Wandadapter	UWA 182/52	2938235	1
Universal-Tragschienenadapter	UTA 107	2853983	5
Lüfter für QUINT-PS/1AC und/3AC, ist werkzeuglos und ohne weiteres Zubehör zu montieren. Mit dem Einsatz des Lüfters wird bei hohen Umgebungstemperaturen oder gedrehter Einbaulage eine optimale Kühlung gewährleistet.	QUINT-PS/FAN/4	2320076	1

 $oxed{i}$

Da das Zubehörprogramm kontinuierlich erweitert wird, finden Sie den aktuellen Zubehörstand immer am Artikel im Download-Bereich.

4 Technische Daten

Eingangsdaten	
Nenneingangsspannung	100 V AC 240 V AC
Eingangsspannungsbereich	85 V AC 264 V AC
Eingangsspannung kurzzeitig	300 V AC
Eingangsspannungsbereich	90 V DC 350 V DC
Frequenzbereich AC	45 Hz 65 Hz
Frequenzbereich DC	0 Hz
Stromaufnahme	5,1 A (120 V AC) 2,3 A (230 V AC) 4,9 A (110 V DC) 2,4 A (220 V DC)
Einschaltstrombegrenzung	< 20 A (typisch)
I ² t	$< 3.2 \text{ A}^2 \text{s}$
Netzausfallüberbrückung	> 32 ms (120 V AC) > 32 ms (230 V AC)
Einschaltzeit typisch	< 0,6 s
Schutzbeschaltung	Transientenüberspannungsschutz Varistor
Eingangssicherung, eingebaut	12 A (träge, intern)
Auswahl geeigneter Sicherungen	10 A 16 A (AC: Charakteristik B, C, D, K)
Ableitstrom gegen PE	< 3,5 mA
Ausgangsdaten	
Nennausgangsspannung	24 V DC ±1 %
Einstellbereich der Ausgangsspannung	18 V DC 29,5 V DC (> 24 V DC, leistungskonstant begrenzt)
Ausgangsstrom	20 A (-25 °C 60 °C, U_{OUT} = 24 V DC) 26 A (mit POWER BOOST, -25 °C 40 °C dauerhaft, U_{OUT} = 24 V DC) 120 A (SFB Technology, 12 ms) 26 A ($U_{In} \ge 100$ V AC)
Magnetische Sicherungsauslösung	B2 / B4 / B6 / B10 / B16 / C2 / C4 / C6
Regelabweichung	< 1 % (Laständerung statisch 10 % 90 %) < 2 % (Laständerung dynamisch 10 % 90 %) < 0,1 % (Eingangsspannungsänderung ±10 %)
Wirkungsgrad	> 93 % (bei 230 V AC und Nennwerten)
Anstiegszeit	< 0,1 s (U _{OUT} (10 % 90 %))
Restwelligkeit	< 30 mV _{SS} (bei Nennwerten)
Parallelschaltbarkeit	ja, zur Redundanz und Leistungserhöhung
Serienschaltbarkeit	ja
Schutz gegen Überspannung am Ausgang	< 35 V DC
Rückeinspeisungsfestigkeit	max. 35 V DC
Leistungsbilanz	
Verlustleistung Leerlauf maximal	8 W
Verlustleistung Nennlast maximal	40 W
DC-OK, aktiv	
Beschreibung des Ausgangs	U _{OUT} > 0,9 x U _N : High-Signal
Spannung/Strom	18 V DC 24 V DC / ≤ 20 mA (kurzschlussfest)
Statusanzeige	$U_{OUT} > 0.9 \times U_N$: LED "DC OK" grün / $U_{OUT} < 0.9 \times U_N$: LED "DC OK" blinkt

Beschreibung des Ausgangs	Relaiskontakt, $U_{OUT} > 0.9 \times U_{N}$: Kontakt geschlossen
Spannung/Strom	30 V AC/DC / 0,5 A , 24 V DC / 1 A
Statusanzeige	U _{OUT} > 0,9 x U _N : LED "DC OK" grün / U _{OUT} < 0,9 x U _N : LED "DC OK" blin
·	2001 - 1,0 - 1,0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
POWER BOOST, aktiv	
Beschreibung des Ausgangs	I _{OUT} < I _N : High-Signal
Spannung/Strom	18 V DC 24 V DC / ≤ 20 mA (kurzschlussfest)
Statusanzeige	I _{OUT} > I _N : LED "BOOST" gelb
Allgemeine Daten	
Isolationsspannung Eingang/Ausgang	4 kV AC (Typprüfung) 2 kV AC (Stückprüfung)
Isolationsspannung Eingang/PE	3,5 kV AC (Typprüfung) 2 kV AC (Stückprüfung)
solationsspannung Ausgang/PE	500 V DC (Stückprüfung)
Schutzart	IP20
Schutzklasse	<u> </u>
MTBF (IEC 61709, SN 29500)	> 520000 h (40 °C) / > 900000 h (25 °C)
Ausführung der Seitenteile	Aluminium
Ausführung der Haube	Stahlblech verzinkt, Chrom(VI)-frei
Abmessungen B / H / T (Lieferzustand)	90 mm / 130 mm / 125 mm
Abmessungen B / H / T (90° gedreht)	122 mm / 130 mm / 93 mm
Gewicht	1,7 kg
Umgebungsbedingungen	
Umgebungstemperatur (Betrieb)	-25 °C 70 °C (> 60 °C Derating: 2,5 %/K)
Umgebungstemperatur (Startup type tested)	-40 °C
Umgebungstemperatur (Lagerung/Transport)	-40 °C 85 °C
Max. zul. Luftfeuchtigkeit (Betrieb)	≤ 95 % (bei 25 °C, keine Betauung)
Einsatzhöhe	6000 m
Vibration (Betrieb)	< 15 Hz, Amplitude ±2,5 mm (nach IEC 60068-2-6) 15 Hz 150 Hz, 2,3g, 90 min.
Schock	30g, je Raumrichtung (nach IEC 60068-2-27)
Verschmutzungsgrad nach EN 60950-1	2
Klimaklasse	3K3 (nach EN 60721)
Normen	
Elektrische Ausrüstung von Maschinen	EN 60204-1
Elektrische Sicherheit (von Einrichtungen der Informationstechnik)	IEC 60950-1/VDE 0805 (SELV)
Ausrüstung von Starkstromanlagen mit elektronischen Betriebsmitteln	EN 50178/VDE 0160 (PELV) / Überspannungskategorie III
Schutzkleinspannung	IEC 60950-1 (SELV) und EN 60204-1 (PELV)
	DIN VDE 0100-410
Sichere Trennung	
Sichere Trennung Begrenzung Netz-Oberschwingungsströme	EN 61000-3-2
•	EN 61000-3-2 SEMI F47-0706 Compliance Certificate

Zulassungen	
UL	UL Listed UL 508 UL/C-UL Recognized UL 60950-1 UL ANSI/ISA-12.12.01 Class I, Division 2, Groups A, B, C, D (Hazardous Location)
CSA	CAN/CSA-C22.2 No. 60950-1-07 CSA-C22.2 No. 107.1-01
SIQ	CB-Scheme
Schiffbau	Germanischer Lloyd (EMC 1, nur mit vorgeschaltetem Filter), ABS, LR, RINA, NK, DNV, BV
	® .₹N. EHE © FABS BSH • E (lassNK 🕸 🔤 CB. POX

Die aktuellen Approbationen / Zulassungen finden Sie am Artikel im Download-Bereich unter phoenixcontact.net/products.

Störfestigkeit nach EN 61000-6-2		
	Anforderung EN 61000-6-2	geprüft
Entladung statischer Elektrizität EN 61000-4-2		
Gehäuse-Kontaktentladung	4 kV (Prüfschärfegrad 2)	8 kV (Prüfschärfegrad 4)
Gehäuse-Luftentladung	8 kV (Prüfschärfegrad 3)	15 kV (Prüfschärfegrad 4)
Bemerkung	Kriterium B	Kriterium A
Elektromagnetisches HF-Feld EN 61000-4-3		
Frequenzbereich	80 MHz 1 GHz	80 MHz 1 GHz
Prüffeldstärke	10 V/m (Prüfschärfegrad 3)	20 V/m (Prüfschärfegrad 3)
Frequenzbereich	1,4 GHz 2 GHz	1 GHz 2 GHz
Prüffeldstärke	3 V/m (Prüfschärfegrad 2)	10 V/m (Prüfschärfegrad 3)
Frequenzbereich	2 GHz 2,7 GHz	2 GHz 3 GHz
Prüffeldstärke	1 V/m (Prüfschärfegrad 1)	10 V/m (Prüfschärfegrad 3)
Bemerkung	Kriterium A	Kriterium A
Schnelle Transienten (Burst) EN 61000-4-4		
Eingang	2 kV (Prüfschärfegrad 3 - unsymmetrisch)	4 kV (Prüfschärfegrad 4 - unsymmetrisch)
Ausgang	2 kV (Prüfschärfegrad 3 - unsymmetrisch)	2 kV (Prüfschärfegrad 3 - unsymmetrisch)
Signal	1 kV (Prüfschärfegrad 3 - unsymmetrisch)	2 kV (Prüfschärfegrad 4 - unsymmetrisch)
Bemerkung	Kriterium B	Kriterium A
Stoßstrombelastungen (Surge) EN 61000-4-5		
Eingang	1 kV (Prüfschärfegrad 2 - symmetrisch) 2 kV (Prüfschärfegrad 3 - unsymmet- risch)	2 kV (Prüfschärfegrad 3 - symmetrisc 4 kV (Prüfschärfegrad 4 - unsymmet- risch)
Ausgang	0,5 kV (Prüfschärfegrad 1 - symmetrisch) 0,5 kV (Prüfschärfegrad 1 - unsymmetrisch)	1 kV (Prüfschärfegrad 2 - symmetrisc 2 kV (Prüfschärfegrad 3 - unsymmet- risch)
Signal	1 kV (Prüfschärfegrad 2 - unsymmetrisch)	1 kV (Prüfschärfegrad 2 - unsymmetrisch)
Bemerkung	Kriterium B	Kriterium A
Leitungsgeführte Beeinflussung EN 61000-4-6		
Eingang/Ausgang/Signal	unsymmetrisch	unsymmetrisch
Frequenzbereich	0,15 MHz 80 MHz	0,15 MHz 80 MHz
Spannung	10 V (Prüfschärfegrad 3)	10 V (Prüfschärfegrad 3)
Bemerkung	Kriterium A	Kriterium A
Legende		
Kriterium A	Normales Betriebsverhalten innerhalb d	ler festgelegten Grenzen.
Kriterium B	Vorübergehende Beeinträchtigung des wieder korrigiert.	Betriebsverhaltens, die das Gerät selbs
Störaussendung nach EN 61000-6-3		
Funkstörspannung nach EN 55011	EN 55011 (EN 55022) Klasse B Einsatz	gebiet Industrie und Wohnbereich
Funkstörstrahlung nach EN 55011	EN 55011 (EN 55022) Klasse B Einsatz	-

5 Sicherheitsbestimmungen und Errichtungshinweise

EXPLOSIONSGEFAHR

Betriebsmittel nur entfernen, wenn es sich im spannungslosen Zustand und im nicht explosionsgefährdeten Bereich befindet!

GEFAHR

Im Gerät befinden sich Bauelemente mit lebensgefährlicher Spannung und hoher gespeicherter Energie!

Niemals bei anliegender Spannung arbeiten! Je nach Umgebungstemperatur und Belastung kann das Gehäuse sehr heiß werden!

VORSICHT:

Beachten Sie vor der Inbetriebnahme:

Der Anschluss muss fachgerecht ausgeführt und der Schutz gegen elektrischen Schlag sichergestellt sein!

Das Gerät muss nach den Bestimmungen der EN 60950 spannungslos schaltbar sein.

Alle Zuleitungen müssen ausreichend abgesichert und dimensioniert sein!

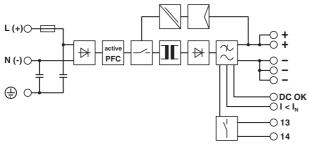
Alle Ausgangsleitungen müssen dem max. Ausgangstrom des Gerätes entsprechend dimensioniert oder gesondert abgesichert sein!

Ausreichend Konvektion muss sichergestellt sein!

Mechanische und thermische Grenzen einhalten.

VORSICHT: Verletzungsgefahr

Nach der Installation den Klemmenbereich abdecken, um unzulässiges Berühren spannungsführender Teile zu vermeiden (z. B. Einbau im Schaltschrank).



ACHTUNG: Gefahr bei unsachgemäßem Gebrauch

Die Stromversorgungen sind Einbaugeräte. Die Installation und Inbetriebnahme darf nur von entsprechend qualifiziertem Fachpersonal durchgeführt werden. Dabei sind die jeweiligen landesspezifischen Vorschriften einzuhalten.

6 Aufbau

6.1 Blockschaltbild

Element	Bedeutung
\forall	Gleichrichtung
active PFC	Leistungsfaktor-Korrekturfilter
1	Schalter
	Galvanisch getrennte Signalübertragung
	Regler
1	Übertrager
72	Ausgangsfilter
	Potenzialfreier Schaltausgang

6.2 Funktionselemente

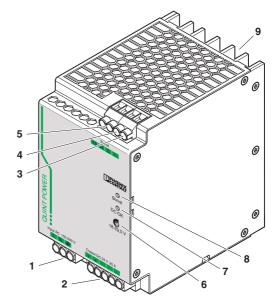


Bild 1 Lage der Funktionselemente

Nr.	Anschlussklemmen und Funktionselemente			
1	AC-Eingang			
2	DC-Ausgang			
3	Aktiver Signalausgang I < I _N (POWER BOOST)			
4	Aktiver Signalausgang DC OK			
5	Potenzialfreier Schaltausgang DC OK			
6	Potenziometer zum Einstellen der Ausgangsspan-			
	nung			
7	Signal-LED DC OK, grün			
8	Signal-LED Boost, gelb			
9	Universal-Tragschienenadapter			

6.3 Konvektion

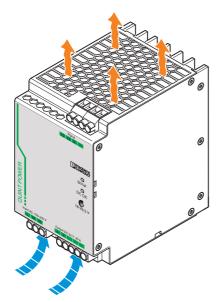


Bild 2 Konvektion

ACHTUNG: Konvektion ermöglichen

Je nach Umgebungstemperatur und Belastung des Moduls kann das Gehäuse sehr heiß werden!

Um eine ausreichende Konvektion zu ermöglichen, empfehlen wir einen Mindestabstand zu anderen Modulen von 50 mm in vertikaler Richtung. Für die bestimmungsgemäße Modulfunktion ist die Einhaltung eines seitlichen Abstands von 5 mm, bei aktiven Bauteilen 15 mm, erforderlich.

Das Gerät ist auf alle Tragschienen nach EN 60715 aufrastbar und sollte in Normaleinbaulage montiert werden (Anschlussklemmen oben und unten).

6.4 Einbaulage

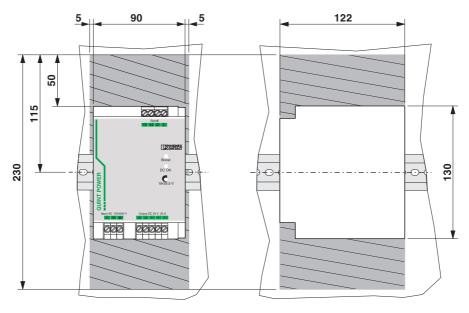


Bild 3 Sperrflächen

Mögliche Einbaulagen:

Normaleinbaulage, Einbautiefe 125 mm (+ Tragschiene) (Auslieferungszustand)

Um 90° gedrehte Einbaulage, Einbautiefe 93 mm (+ Tragschiene)

7 Montage/Demontage

7.1 Normaleinbaulage

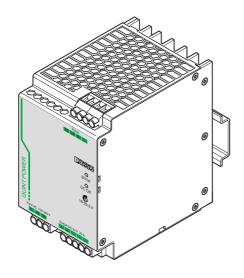


Bild 4 Normaleinbaulage

7.2 Um 90° gedrehte Einbaulage

Eine um 90° gedrehte Einbaulage zur Tragschiene, erreichen Sie durch Montage des Tragschienenadapters (UTA 107) wie im Bild beschrieben. Hierzu ist kein weiteres Montagematerial erforderlich. Befestigungsschrauben: Torx® T10 (Anzugsmoment 0,8 Nm ... 0,9 Nm).

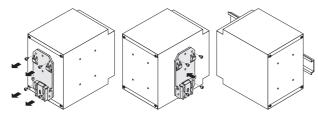
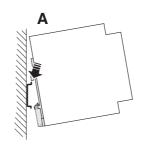



Bild 5 Um 90° gedrehte Einbaulage

7.3 Montage auf Tragschiene

Setzen Sie das Modul mit der Tragschienenführung an die Oberkante der Tragschiene an und rasten Sie es nach unten ein.

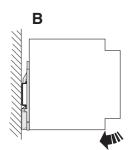
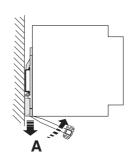



Bild 6 Montage

7.4 Demontage von der Tragschiene

Ziehen Sie den Schnappriegel mit Hilfe eines Schraubendrehers auf und hängen Sie das Modul an der Unterkante der Tragschiene aus.

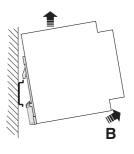
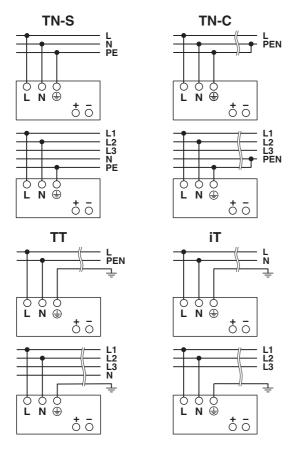


Bild 7 Demontage


8 Geräteanschluss

8.1 Netzformen

Das Gerät kann an einphasigen Wechselstromsystemen oder an zwei Außenleitern von Drehstromsystemen (TN, TT- oder iT-System nach VDE 0100-300/IEC 60364-3) mit Nennspannungen 100 V AC ... 240 V AC angeschlossen werden.

Für den Betrieb an zwei Außenleitern eines Drehstromsystems muss eine allpolige Trennvorrichtung vorgesehen werden.

8.2 Eingang AC

Der Anschluss der Versorgungsspannung erfolgt über die Anschlussklemmen "Input AC 100 - 240 V".

8.2.1 Absicherung der Primärseite

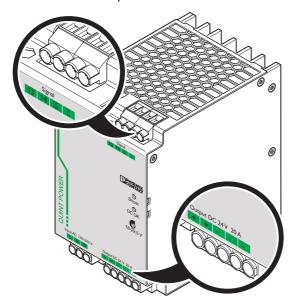
Die Installation des Gerätes muss entsprechend den Bestimmungen der EN 60950 erfolgen. Das Gerät muss über eine geeignete Trennvorrichtung außerhalb der Stromversorgung spannungslos schaltbar sein. Hierzu eignet sich z. B. der primärseitige Leitungsschutz.

Zum Geräteschutz ist eine interne Sicherung vorhanden. Ein zusätzlicher Geräteschutz ist nicht erforderlich.

8.2.2 Zulässige Vorsicherung zum Leitungsschutz

Leitungsschutzschalter 10 A oder 16 A, Charakteristik B (oder funktionsgleich).

Schalten Sie bei DC-Anwendungen eine geeignete Sicherung vor!

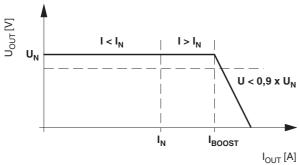


VORSICHT:

Löst eine interne Sicherung aus, liegt ein Gerätedefekt vor. In dem Fall ist eine Überprüfung des Geräts im Werk erforderlich!

8.3 Ausgang DC

Der Anschluss der Ausgangsspannung erfolgt über die Anschlussklemmen "Output DC".



8.3.1 Absicherung der Sekundärseite

Das Gerät ist elektronisch kurzschluss- und leerlauffest. Die Ausgangsspannung wird im Fehlerfall auf maximal 35 V DC begrenzt.

8.3.2 Ausgangskennlinie

Das Modul arbeitet nach der U/l-Kennlinie mit der statischen Leistungsreserve POWER BOOST. Bei gleich bleibender Ausgangsspannung U_N steht I_{BOOST} zur Verfügung. Hohe Einschaltströme werden damit ohne Spannungseinbrüche abgefangen.

 U_N = 24 V I_N = 20 A I_{BOOST} = 26 A SFB Technology = 120 A (12 ms)


 $P_N = 480 \text{ W}$ $P_{BOOST} = 624 \text{ W}$

9 SFB Technology

Die SFB Technology (Selective Fuse Breaking) schaltet im Kurzschlussfall fehlerhafte Strompfade zuverlässig ab. In diesem Fall liefert sie den bis zu 6-fachen Nennstrom für 12 ms. Damit löst die SFB Technology sogar Standard-Leitungsschutzschalter sicher aus. Fehler werden zuverlässig eingegrenzt und wichtige Anlagenteile bleiben in Betrieb.

9.1 Auslöseverhalten LS-Schalter

Innerhalb von 3 ... 5 ms löst ein LS-Schalter typischerweise aus. Schnell genug, um Spannungseinbrüche parallel angeschlossener Lasten zu vermeiden.

Auslösezeit des Leitungsschutzschalters = typ. 3-5 ms

9.2 Installationshinweise

Um die SFB Technology der QUINT Stromversorgung zu nutzen, müssen Sie folgende Voraussetzungen beachten:

 Bei der Auslegung der Sekundärseite berücksichtigen Sie die Projektierungsmatrix, die in Abhängigkeit von der Leistungsklasse der Geräte, dem Leitungsquerschnitt und dem Leitungsschutzschalter die maximalen Leitungslängen beschreibt.

Die aktuelle Projektierungsmatrix finden Sie am Artikel im Download-Bereich.

 Achten Sie am Eingang der Stromversorgung auf eine möglichst geringe Leitungsimpedanz, indem Sie kurze Leitungslängen und hohe Leitungsquerschnitte verwenden.

Maximale Distanz zwischen Stromversorgung und Last beachten.

(siehe auch SFB-Projektierung)

9.3 SFB-Projektierung

9.3.1 Standard-Leitungsschutzschalter

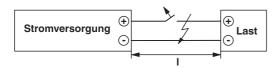


Bild 8 Leitungslängen

Maximale Entfernung zwischen der Stromversorgung und der Last (I)

Querschnitt [mm²]	0,75	1,0	1,5	2,5	4,0	6,0
Entfernung I mit LS-Schalter C2 [m]	14	19	29	49	79	< 100
Entfernung I mit LS-Schalter C4 [m]	8	11	17	29	47	70
Entfernung I mit LS-Schalter C6 [m]	4	5	8	14	22	33
Entfernung I mit LS-Schalter B6 [m]	12	17	25	42	68	< 100
Entfernung I mit LS-Schalter B10 [m]		9	13	23	37	55
Entfernung I mit LS-Schalter B16 [m]			5	9	15	22

Folgende Parameter liegen den Berechnungen zugrunde:

- Leitungsschutzschalter Firma Siemens, Charakteristik
 B und C (z. B. B6: 5SY6106-6)
- B-Charakteristik: elektromagnetisches Auslösen des Leitungsschutzschalters spätestens bei (5-facher Bemessungsstrom) x (Korrekturfaktor 1,2 bei 0 Hz) = 6-facher Bemessungsstrom
- C-Charakteristik: elektromagnetisches Auslösen des Leitungsschutzschalters spätestens bei (10-facher Bemessungsstrom) x (Korrekturfaktor 1,2 bei 0 Hz) = 12facher Bemessungsstrom
- Umgebungstemperatur: +20 °C
- Die Innenwiderstände der Leitungsschutzschalter sind berücksichtigt.
- Zusätzlich zum Kurzschluss-Strom liefert das jeweilge Netzteil den halben Nennstrom für parallel angeschlossene Pfade.

9.3.2 Geräteschutzschalter CB TM1 SFB

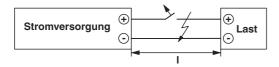


Bild 9 Leitungslängen

Maximale Entfernung zwischen der Stromversorgung und der Last (I)

Querschnitt [mm²]	0,75	1,0	1,5	2,5	4,0
Entfernung mit CB TM1 1A SFB P [m]	27	36	54	91	146
Entfernung mit CB TM1 2A SFB P [m]	18	25	37	63	101
Entfernung mit CB TM1 3A SFB P [m]	13	18	27	46	74
Entfernung mit CB TM1 4A SFB P [m]	10	14	21	35	57
Entfernung mit CB TM1 5A SFB P [m]	8	11	17	29	47
Entfernung mit CB TM1 6A SFB P [m]	6	8	12	20	32
Entfernung mit CB TM1 8A SFB P [m]	3	5	7	12	20
Entfernung mit CB TM1 10A SFB P [m]		3	4	8	13

Folgende Parameter liegen den Berechnungen zugrunde:

- Geräteschutzschalter CB TM1 xA SFB P
- elektromagnetisches Auslösen des Leitungsschutzschalters spätestens bei (10-facher Bemessungsstrom)
- Umgebungstemperatur: +20 °C
- Die Innenwiderstände der Geräteschutzschalter sind berücksichtigt
- Zusätzlich zum Kurzschluss-Strom liefert das jeweilge Netzteil den halben Nennstrom für parallel angeschlossene Pfade.

10 Signalisierung

Zur Funktionsüberwachung stehen zur Verfügung:

- der aktive Signalausgang DC OK
- der potenzialfreie Ausgang DC OK
- der aktive Signalausgang POWER BOOST

Zusätzlich ermöglichen die LEDs "DC OK" und "BOOST" eine Funktionsauswertung der Stromversorgung direkt am Einsatzort (siehe Ausgangskennlinie).

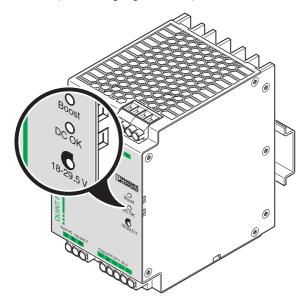
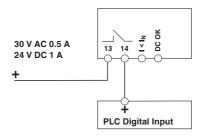


Bild 10 Signalausgänge

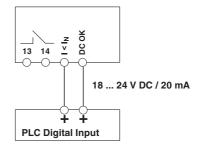


Fällt die Ausgangsspannung durch Überlast unter 90% der am Potenziometer eingestellten Ausgangsspannung, wechselt der Signalzustand "DC OK" von "Active High" auf "Low". Der Grenzwert von 90% bezieht sich immer auf den eingestellten Ausgangsspannungsbereich von 18 V DC bis 29,5 V DC.

	Normalbetrieb I < I _N	POWER BOOST I > I _N	Überlastbe- trieb U _{OUT} < 0,9 x U _N
LED "DC OK", grün	leuchtet	leuchtet	blinkt
LED "BOOST", gelb	aus	leuchtet	leuchtet
Signal "DC OK"	ein	ein	aus
Relais "DC OK"	geschlossen	geschlossen	geöffnet
Signal "I < I _N "	ein	aus	aus
Bedeutung	Normalbetrieb der Stromversor- gung (U _{OUT} > 21,5 V)	POWER BOOST-Betrieb, z. B. zum Starten von Lasten	Überlastbetrieb, z. B. Verbrau- cher-Kurz- schluss oder Überlastung

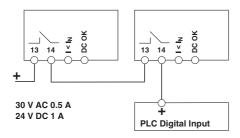
10.1 Potenzialfreier Schaltkontakt

Der potenzialfreie Schaltkontakt meldet durch Öffnen eine Unterschreitung der eingestellten Ausgangsspannung um mehr als 10 % (U_{OUT} < 0,9 x U_{N}). Es können Signale und ohmsche Lasten geschaltet werden. Bei stark induktiven Lasten wie z. B. einem Relais ist eine geeignete Schutzbeschaltung (z. B. Freilaufdiode) erforderlich.


10.2 Aktive Signalausgänge

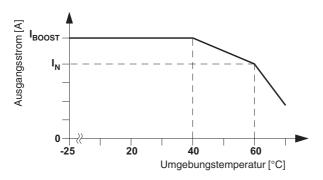
Zur Weiterleitung von Signalen an eine übergeordnete Steuerung stehen die aktiven Signalausgänge "DC OK" und "Boost" zur Verfügung.

Das 18 ... 24 V DC-Signal liegt zwischen den Anschlussklemmen "DC OK" und "-" (aktiver DC OK-Signalausgang) oder zwischen "I < I $_{\rm N}$ " und "-" (aktiver POWER BOOST-Signalausgang) an und kann mit maximal 20 mA belastet werden.


Der DC OK-Signalausgang meldet durch Wechsel von "aktiv high" auf "low" eine Unterschreitung der eingestellten Ausgangsspannung von mehr als 10 % (U_{OUT} < 0,9 x U_{N}). Das DC OK-Signal ist vom Power-Ausgang entkoppelt. Somit ist eine Fremdeinspeisung durch parallel geschaltete Geräte ausgeschlossen.

Der Boost-Signalausgang "I < I_N " meldet eine Überschreitung des Nennstroms. Die Stromversorgung befindet sich dann im POWER BOOST-Betrieb. Mit dieser präventiven Funktionsüberwachung kann frühzeitig auf kritische Betriebszustände reagiert werden, bevor es zum Spannungseinbruch kommt.

10.3 Signalschleife


Überwachung von zwei Geräten: Nutzen Sie den aktiven DC OK-Signalausgang von Gerät 1 und schleifen Sie den potenzialfreien Meldeausgang von Gerät 2 ein. Bei einer Funktionsstörung erhalten Sie eine Sammelstörmeldung. Es können beliebig viele Geräte eingeschleift werden. Diese Signalkombination spart Verdrahtungskosten und Logikeingänge.

11 Derating

11.1 Temperaturabhängiges Derating

Bei einer Umgebungstemperatur von -25 °C bis zu +40 °C stellt das Gerät den kontinuierlichen Ausgangsstrom I_{BOOST} zur Verfügung. Das Gerät kann den Nennausgangsstrom I_{N} bis zu einer Umgebungstemperatur von +60 °C liefern. Bei Umgebungstemperaturen über +60 °C muss die Ausgangsleistung um 2,5 % je Kelvin Temperaturerhöhung reduziert werden. Bei Umgebungstemperaturen über +70 °C bzw. thermischer Überlastung schaltet das Gerät nicht ab. Die Ausgangsleistung wird so weit reduziert, dass ein Geräteschutz gegeben ist. Nach Abkühlung wird die Ausgangsleistung wieder erhöht.

12 Betriebsarten

12.1 Serieller Betrieb

Zwei Stromversorgungen können zur Spannungsverdopplung in Reihe geschaltet werden. Für eine Reihenschaltung sollten nur gleiche Leistungsklassen verwendet werden. Die Reihenschaltung wird immer dann eingesetzt, wenn die Ausgangsspannung eines Moduls nicht ausreicht. Beispielsweise liefern Stromversorgungen mit jeweils 24 V DC Nennausgangsspannung in Reihe 48 V DC. Je nach Festlegung des PE-Anschluss können darüber hinaus Ausgangsspannungen von +48 V oder -48 V sowie ±24 V Gleichspannung zur Verfügung gestellt werden.

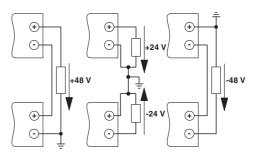
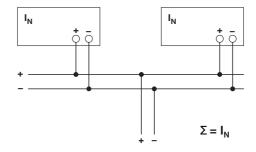


Bild 11 Serieller Betrieb

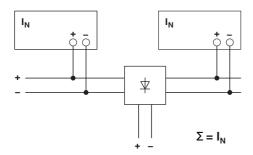

12.2 Parallelbetrieb

Typgleiche Geräte können sowohl zur Redundanz als auch zur Leistungserhöhung parallel geschaltet werden. Im Lieferzustand ist dazu kein weiterer Abgleich erforderlich.

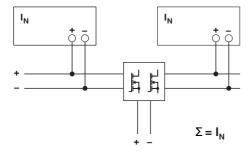
Wird die Ausgangsspannung einer Stromversorgung justiert, so müssen alle parallel betriebenen Stromversorgungen auf die gleiche Ausgangsspannung eingestellt werden, um eine gleichmäßige Stromaufteilung sicher zu stellen.

Für eine symmetrische Stromaufteilung empfehlen wir, alle Kabelverbindungen von der Stromversorgung zu einer Sammelschiene in gleicher Länge und gleichem Querschnitt auszuführen.

Systembedingt sollte bei der Parallelschaltung von mehr als zwei Stromversorgungen eine Schutzbeschaltung an jedem einzelnen Geräteausgang installiert werden (z.B. Entkoppeldiode, DC-Sicherung oder Leitungsschutzschalter). Somit werden bei einem sekundären Gerätedefekt hohe rückwärtsgespeiste Ströme vermieden.

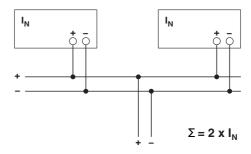


12.3 Redundanzbetrieb


Redundante Schaltungen eignen sich zur Versorgung von Anlagen, die besonders hohe Anforderungen an die Betriebssicherheit stellen. Kommt es im Primärkreis der ersten Stromversorgung zu einem Defekt, so übernimmt automatisch das zweite Gerät unterbrechungsfrei die vollständige Stromversorgung und umgekehrt. Zu diesem Zweck werden die parallel zu schaltenden Stromversorgungen so dimensioniert, dass der Gesamtstrombedarf aller Verbraucher von einer Stromversorgung vollständig abgedeckt werden kann. 100 % Redundanz erfordert externe Entkoppeldioden.

Eine Optimierung der Redundanz lässt sich durch Entkopplung und Überwachung erzielen. Phoenix Contact stellt diesbezüglich ein umfangreiches Produktprogramm zur Verfügung (z. B. QUINT-DIODE oder QUINT-ORING).

Beispiel: Diodenmodul



Beispiel: QUINT-ORING

12.4 Leistungserhöhung

Bei n parallel geschalteten Geräten kann der Ausgangsstrom auf n x I_N erhöht werden. Die Parallelschaltung zur Leistungserhöhung wird bei der Erweiterung bestehender Anlagen eingesetzt. Es wird eine Parallelschaltung empfohlen, wenn die Stromversorgung nicht den Strombedarf des leistungsstärksten Verbrauchers abdeckt. Ansonsten sollten die Verbraucher auf voneinander unabhängige Einzelgeräte aufgeteilt werden.

