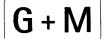
-		Elel	ktrische	Eigenso	chafter	₁ 1) 15)			Therr			haften ¹⁾		Sonstige ¹
Widerstand zw. Stöpseln nach 24 Std. Lagerung	1-Minuten-Prüfspannung senkrec den Sch in Richtung der Schichten, für 25 mm lichten ten Elek Elektrodenabstand abstand bei (90±2)° C nach Vorbehandlung		senkrecht zu den Schichten für 3 mm lich- ten Elektroden-	Dielektrischer Verlustfaktor tan δ im Normalklima 23/50 DIN 50 014		Dielektrizitäts- zahl	Kriechstrom- festigkeit	Elektro- lytische Korrosions- wirkung	Verhalten während und nach Kontakt mit einem	Wärme- leitfähigkeit W m·K	Längen-	Temperatur- Zeit-Verhalten Grenz-	Grenzwert für die Bestimmung der Grenztern- peratur auf-	Schneidbarkeit nach dem Lochversuch nach DIN 53 4885)
III (1035c.			 andlung	bei 50 Hz nach 96 Std. Lagerung bei	Lagerung	€r		Kennwert	Glühstab	m· K	10 ⁶ Werte je K	temperatur	grund der Bie- gefestigkeit orbB ¹⁹)	Kennwert
Ω min.	a+c kV min.	d + c kV min.	a + c kV min.	105° C max.	in Wasser max.	=	IEC 112	max.	Stufe	-		°C	N/mm ²	
-	15	_	15	_		5	100	_	2b	0,2	20 bis 40	120	75	PF (P
_	40	_	40	0,05	-	5	100		2b	0,2		120	65	-
10 ¹⁰	25	_	30	0,08		5	100	_	2a	0,2		120	40	14)
10 ¹⁰	20	_	25	_	0,05	5	100	AN 1,4	2b	0,2		120 ¹⁷⁾	40	14)
-	8	-	5	_		5	100	_	2b	0,2		110	65	_
10 ⁷	20	-	5	-	_	5	100	_	2b	0,2		110	60	_
-	8	-	5	-	_	5	100	_	2b	0,2		110	75	_
10 ⁷	25	-	5	_	_	5	100	_	2b	0,2		110	65	-
10 ⁷	20	-	25	_	_	7	600	A/B 2	2a	0,3		130	135	-
10 ⁷	20	_	10	-	_	6	560	A/B 1,8	2a	0,2		95	45	14)
5 · 10 ¹⁰	40	-	40	0,05	0,04	5	200	AN 1,4	2a	0,3		130 ¹³⁾	175	14)
5 · 10 ¹⁰	40	_	40	0,05	0,04	5	200	AN 1,4	2a	0,3		120 ¹³⁾	175	_
5 · 10 ¹⁰	40	_	40	0,05	0,04	5	180	AN 1,4	2a	0,3		155	175	_
10 ⁸	25	_	20	0,05	0,07	5	440	AN 1,4	2a	0,3	10 bis 20	180 ¹³⁾¹⁸⁾	65	14)
10 ⁸	30	-	25	- ,		5	600	A/B 1,4	2c	0,3	15 bis 30	130	165	-
10 ⁸	30	_	25	_	_	5	600	A/B 1,4	2b	0,3		130	100	-
10 ⁹	25	-	30	0,08	_	5	600	_	2a	0,2	20 bis 40	120	65	_

¹³⁾ Erweichung bei Temperaturen um 100 °C.

¹³⁾ Erweichung dei lemperaturen um 100 - 14) Der Kennwert für die Schneidbarkeit nach dem Lochversuch nach DIN 53 488 von Tafeln und Streifen bis 2mm Dicke und die Anwärmbedingungen sind zwischen Lieferer und Abnehmer festzulegen. Für Hp 2063 und Hwg 2372 für Herstellung von kupferkaschierten Schiehtpreßstoffplatten nach DIN 40 802 gelten hierzu

die Angaben in DIN 40 802. 15) 1 kp = 9,80665 N = 10 N (Newton)

 $^{1\}frac{kp}{cm^2} = 0.1\frac{N}{mm^2}$; $1\frac{kp\ cm}{mm^2} = 1\frac{mJ}{cm^2} = 1\frac{kJ}{m^2}$; (J=joule)


¹⁶⁾ $1 \frac{kcal}{m \cdot h \cdot K} = 1.16 \frac{W}{m \cdot K} = 4.20 \frac{kj}{m \cdot h \cdot K}$; (k = Kelvin anstelle von bisher grd.)

¹⁷⁾ Kalt stanzbare oder mäßig warm stanzbare Erzeugnisse können eine um etwa 10 °C niedrigere Grenztemperatur

¹⁸⁾ In dünnen Dicken bei elektrischer Beanspruchung nur 150 °C. 19) Nach DIN 7735 Teil 1/VDE 0318 Teil 1, Ausgabe 9.75, Ab-

²⁰⁾ Nach Vereinbarung, da gestalt- u. aufbauabhängig.
21) Diese Typen gelten nicht für Rohre, die zur Fortleitung von Flüssigkeiten Gasen usw. verwendet werden.
22) Bei ≤ 8 mm Wanddicke; bei > 8 mm Wanddicke nur 25 kV.
23) Nur Richthinweise, da Werte maßabhängig.
24) Die Widerstandswerte nach Vorbehandlung a + b liegen um 2 bis 3 Zehnerpotenzen höher.

^{*} Die Reihe DIN EN 60893 wurde in den Jahren 1993 und 1994 angenommen und hat die DIN 7735 abgelöst. Für Erzeugnisse, die vor dem 1. 3. 1995 der DIN 7735 bzw. DIN 40 606 entsprochen haben, dürfen diese vorhergehenden Normen übergangsweise noch bis zum 1. 3. 2003 angewendet werden.

TECHNISCHE DATEN · DUROPLASTE

(Auszug aus EN 60893 (VDE 0318) DIN 7735 Teil 2 / VDE 0318 Teil 2 des Deutschen Normenausschusses)

		1	Mechanische Eigenschaften ^{1) 15)}									
Тур	Einsatzmöglichkeiten,	INUIT-	Biegefestigkeit ²⁾		Schlag- zähigkeit ²⁾	Kerbschlagzähigkeit ²⁾		Zug- festigkeit	Druck- festigkeit	Spaltkraft	Elastizitäts- modul	
	besondere Eigenschaften, Kurzbeschreibung		(bis 10 mm	abgearbeitet (über 10 mm		α _k 15 ³⁾	α _k 10	σ_{B}	σ _{dB} parallel zu den Schichten		1	
nach EN 1* nach DIN 2*		g/cm³	Dicke) N/mm ² min.	Dicke) N/mm ² min.	mJ/mm ² = kJ/m ² min.	mJ/mm min.	m ² =kJ/m ² min.	N/mm ² min.	N/mm ² min.	N min.	N/mm ²	
11 61 201	Mechanisch hochwertig – als Konstruktionselemente im Maschi- nenbau, Textil- und Autoindustrie usw. einzusetzen – Elektrische ' Ware ausreichend als Isolationsmaterial für Niederspannung.	1,3 bis 1,4	150	130	20	15	5	120	150	2000	7 · 10 ³	
II CI 202	Gute elektrische und mechanische Eigenschaften – als Bau- element und Isoliermaterial in der Hochspannungstechnik einzusetzen.	1	130	100	20	15	. 4	100	150	2000	7 · 10 ³	
PF CP 206 Hp 2062.8 ⁷⁾	Geringe Wasseraufnahme – sehr gute Isolationswerte – Einsatz in der Hochfrequenz und Nachrichtentechnik – durch geringe Wasseraufnahme ist Einsatz in den Tropen möglicn – Bestqualität.	! 	80	70	8	5	2,5	70	120	2000	7 · 10 ³	
PF CP 204 Hp 2063 ⁸⁾	Weiterentwickl. von Typ 2062.8 – verbesserte Wasseraufnahme, dielektr. Werte u. höh. Widerstände gegenüber 2062.8 – hoch- frequenzeinsatzf. – korrosionsfest – kaltstanzbarer als 2062.8.	[80	70	7	-	2,5	70	_	-	7 · 10 ³	
PF CC 201 Hgw 2082	Konstruktionsqualität – hohe mechanische Eigenschaften – schwierige mechanische Bearbeitung möglich (Zahnräder)		130	100	30	15	10	80	170	2500	7 · 10 ³	
PF CC 202 Hgw 2082.5	Wie Typ 2082 – außerdem auch gute elektrische Eigenschaften – es ist der Einsatz im Elektroaschinenbau möglich.		115	100	20	15	10	60	150	2500	7 · 10 ³	
PF CC 203 Hgw 2083	Mechanisch hochwertigste Konstruktionsqualität auf Baumwoli- gewebe-Grundlage, vorwiegend für kleine, feinstbearbeitete Konstruktionsteile verwendbar.		150	100	35	15	12	100	170	2500	7 · 10 ²	
PF CC 204 Hgw 2083.5	Wie Typ 2083 – außerdem auch gute elektrische Eigenschaften – es ist der Einsatz im Elektromaschinenbau möglich.		130	100	30	15	11	80	150	2500	7 · 10 ⁵	
MF GC 201 Hgw 2272	Sehr hohe mechanische, elektrische und dielektrische Eigen- schaften – der Einsatz ist auch an Stellen möglich, an denen Kriechströme auftreten.	1,8 bis 2,0	270		50		30	120	180	1800	14 · 10 ²	
MF CC 201 Hgw 2282.5	Wie Typ 2282, nur dielektrisch höher beanspruchbar.		90	_	6	4	3	60	200	2500	5 · 10 ⁽	
EP GC 201 Hgw 2372	Sehr hohe mechanische, elektrische und dielektrische Eigen- schaften – Einsatz bei Höchstfrequenztechnik möglich – Wärmeklasse B (nach VDE).	1,7 bis 1,9	9 350	_	100	_	50	220	200	3000	18 · 10	
EP GC 202 Hgw 2372.1 ⁶⁾	Schr hohe mechanische, elektrische und dielektrische Eigen- schaften – Einsatz bei Höchstfrequenztechnik möglich – Wärmeklasse B (nach VDE) – nicht brennbar.		350	-	100		50	220	200	3000	18 · 10	
EP GC 203 Hgw 2372.4	Sehr hohe mechanische, elektrische und dielektrische Eigen- schaften – Einsatz bei Höchstfrequenztechnik möglich – Wärmeklasse F (nach VDE).		350 ¹⁰	1) _	100	_	50	220	150	3000	18 · 10	
SI GC 202 Hgw 2572	Hohe Dauertemperaturbeständigkeit. Sehr gute dielektrische Eigenschaften – Einsatz in thermisch hochbeanspruchten Geräten sowie Isolierteilen in der Hochfrequenztechnik.	1,6 bis 1,7	7 125	_	40	-	25	90	50	1000	13 · 10	
UP GM 201-03 Hm 2471	Sehr gute mechan., elektrische u. dielektr. Eigenschaften – Wärme- klasse B oder F. Außerdem bes. kriechstromf. Typen (Nema GPO-3). Speziell für den Einsatz im Hochspannungsschalterbau.		125		80	_	40	60	140	2200	7 · 10	
UP GM 201+03 Hm 2472	Wie Typ Hm 2471, aber mit höherem Glasgehalt, dadurch ver- besserte mechanische Eigenschaften. Nicht brennbar, gute Stanz- barkeit. Einsatz im Hochspannungsschalterbau.	z- 1,85	200	_	100	-	60	100	150	2200) 10 · 10	
FP CP 201 Hp Melaminbesch.	Pultabdeckg. f. Steuer- u. Regeleinrichtg., Schalttafel-Frontverkt. Abdeckg. in Energieverteilschr. u. f. Sicherungselemente, Zählberetter. Grundpi. b. Schaltteinrichtg., Schott-, Trennwände bei Schaltungen, Labortische usw.	1,4	130	100	100	15	20	5	130	2000	7 · 10	

¹⁾ Die angegeb. Werte sind Mindestanforderungen. Unterschreitungen b. d. Hächstwerten und Überschreitungen b. d. Mindestwerten, also im günstigsten Sinne, sind die regel u. in Anbetracht ausreichender Sicherheit auch erwünscht. Erfahrungsgemäß reichen die durch Fettdruck gekennzeichneten Werte und die in den Bildern 2-4 enthaltenen Werte für Wasseraufnahmer für die Abnahmeprüfung aus. 2) Bei Beanspruchung von Hp in Faserrichtung des Papiers sind Werte zu erwarten, die um etwa 10% über den in der Tabelle angegeb. Mindestwerten liegen.

³⁾ Werte gelten für die Prüfung am Normstab.
4) Werte für anderen Elektrodenabstand, siehe Bild 1.
5) Der Lochversuch dient dazu festzustellen, ob aus Kunsstoff (Tafeln, Platten, Streifen) beim Schneiden in Schnittwerkzeugen, nament-lich beim Lochen und ähnliche Operationen fehlerfreie Teile (ohne

Risse) gefertigt werden können. 6) Für diese Typen wird ein flammwidriges Bindemittel verwendet. 7) 2062.8 weicht hinsichtlich der Wasseraufnahme ab.

^{8) 2063} enthält keine Anforderung hinsichtl. d. elektrolyt. Korrosions-

 ⁹⁾ Infolge der groben Struktur des Gasfilamentrovinggewebes, Begriff siehe DIN 61 850, ist es möglich, daß die am Normstab ermittelten typwerte in Einzelfällen bis zu 10% unterschritten werden.
 10) Nach 1 Stunde Lagerung bei 150° C soll der Eigenschaftswert, bei 150° C gemessen, mindestens 50% des bei Raumtemperatur in der gleichen Richtung gemessenen Eigenschaftswertes sein.
 11) Bei ≤ 10 mm Erzeugnisdicke; bei > 10 mm Erzeugnisdicke: 75 kV.
 21) Nach Vereinbarung.

¹²⁾ Nach Vereinbarung.

^{1*} Typ nach Euro-Norm 60893 (VDE 0318)

^{2*} Typ nach Deutscher-Industrie-Norm 7735 Teil 2/VDE 0318 Teil 2