

Handbuch

econ sens 3

3-Phasen Multifunktionsmessgerät

mit

Loggingfunktion

Version 1.8

1	Allg	gemeine Hinweise1		
	1.1	Zu diesem Handbuch	1	
	1.2	Erforderliche Grundkenntnisse	1	
	1.3	Warnhinweise	2	
	1.4	Sicherheitsrelevante Symbole auf dem Gerät	3	
	1.5	Symbolerklärung	3	
	1.6	Bestimmungsgemäßer Gebrauch des Produktes	4	
	1.7	Hinweise zur Entsorgung	4	
	1.8	Garantiebestimmungen	4	
	1.9	Haftungsausschluss	5	
2	Bes	schreibung des Gerätes	6	
	2.1	Besondere Merkmale	7	
3	Lief	erumfang und Eingangskontrolle	8	
4	Мо	ntage	10	
	4.1	Werkzeuge	10	
	4.2	Einbauort	10	
	4.3	Einbaulage	10	
	4.4	Einbauraum und Belüftung	11	
	4.5	Demontage	12	
5	Ans	schließen des Gerätes	13	
	5.1	Sicherheitshinweise	13	
	5.2	Anschlussübersicht	14	
	5.3	Anschluss Spannungsmessung	15	
	5.4 Alter	Anschluss Versorgungspannung native Stromversorgung mit 1224 VDC	17 .18	
	5.5 Insta	Anschluss Strommessung	19 .19	
	5.6 Mod Leitu	Anschluss Ethernet bus TCP Ingsempfehlung	21 21 21	
	5.7 Leitu	Anschluss Modbus RTU	22 23	
	5.8 Leitu	Anschluss Multi-IO Ingsempfehlung für Multi IO-Anschlüsse	24 24	

	Open-Kollektor-Ausgang Digitaler Ausgang (Impuls) Digitaler Eingang (Impulseingang) Eingang für potenzialfreien Kontakt				
	Anal	loger Ausgang 0, 20mA	27 28		
	Anal	loger Eingang 020mA			
	Anal	loger Eingang 010V/30 V			
	- 0				
	5.9 Erdu	Abschirmung der Anschlusskabel			
	Hinv	veise zur Leitungsverlegung	29 30		
	5.10	Anschlussbeispiele			
3-Phasen/3-Leiter System beliebiger Belastung 1-Phasen System					
	1-Pn Funl	iasen System diopserdung am GND-Anschluss der Klemmstelle ModBus			
	i un				
6	Anz	zeige- und Bedienelemente			
7	Inh	otriohnahma	9 E		
1	IIID(ะแรงแล่ไม่มีชิ			
8	Bec	dienung und Parametrierung			
	8.1	Aufruf der Weboberfläche			
	82	Menii Home	37		
	Men	ü Messung			
	Insta	allations-Überprüfungsroutine "Installation check"			
			10		
	8.3	Menu Analyse			
	8.4	Menü Eingang / Ausgang (Logversion)			
	8.5	Menü Ereignisse			
	<u> </u>	Max & Frances	40		
	8.6	Menu Expoπ			
	8.7	Menü Kontakt			
	8.8	Menu Hilfe			
	8.9	Menü Settings			
	Gen	erelle Information zum Speichern von Einstellungen			
	Unte	ermenü Datum			
	Unte	ermenü Netzwerk	50		
	Unte	ermenü Elektrisch			
	Unte	ermenu Eingang / Ausgang (Logversion)	54		
	Unte	ermenü Modbus	60		
	Unte	ermenü Sprache / Messdetails			
	Unte	ermenü Alarme	71		
	Unte	ermenü Passwort	71		
	Unte	ermenü Settings Datei			
	Untermenü System				
	Unte	ermenü Update			
9	Inst	tandhaltung und Wartung	76		
	9.1	Justierung / Kalibrierung			
	9.2	Reinigung			
		-			

Inhalt

9.3	Firmware-Update	76
9.4	Reset	76
9.5	Reparatur	77
10 T	echnische Daten	78
10.1	econ sens3 Grundgerät	78
10.2	econ sens 3 Mess Spulen	83
10.3	Speicherkapazität des Messdatenspeichers	83
10.4	Werkseinstellungen	83
11 A	nhang	84
11.1	Messparameter und deren Bedeutung	84

1 Allgemeine Hinweise

1.1 Zu diesem Handbuch

Dieses Handbuch beschreibt das Multifunktionsmessgerät econ sens 3. Es ist Teil des Produktes und richtet sich an:

- Planer
- Betreiber
- Inbetriebnehmer
- Service- und Wartungspersonal

Vor dem Gebrauch des Produktes ist dieses Handbuch zu lesen. Ferner sollte es während der gesamten Lebensdauer des Produkts aufbewahrt und zum Nachschlagen bereitgehalten werden.

Für Fragen und / oder technischen Support zum Produkt wenden Sie sich bitte an:

econ solutions GmbH Heinrich-Hertz Straße 25 75334 Straubenhardt Fon +49 (0)7082 7919-200 Fax +49 (0)7082 7919-230 info@econ-solutions.de www.econ-solutions.de

1.2 Erforderliche Grundkenntnisse

Das zu dieser Dokumentation zugehörige Produkt / System darf nur von, für die jeweilige Aufgabenstellung, **qualifiziertem Personal** gehandhabt werden, unter Beachtung der für die jeweilige Aufgabenstellung zugehörigen Dokumentation, insbesondere der darin enthaltenen Sicherheits- und Warnhinweise.

Qualifiziertes Personal ist auf Grund seiner Ausbildung und Erfahrung befähigt, im Umgang mit diesen Produkten / Systemen Risiken zu erkennen und mögliche Gefahren zu vermeiden und verfügt für Montage und Anschluss über Kenntnis der einschlägigen Sicherheitsbestimmungen und Normen.

1.3 Warnhinweise

Dieses Handbuch enthält Hinweise, die zur Vermeidung von Sachschäden und zur persönlichen Sicherheit des Anwenders beachtet werden müssen. Hinweise zur persönlichen Sicherheit sind durch ein Warndreieck (allgemeines Warnzeichen) hervorgehoben. Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt:

🔔 Gefahr !

bedeutet, dass eine schwere Körperverletzung oder gar der Tod eintreten wird wenn die entsprechenden Vorsichtmaßnahmen nicht getroffen werden.

🕂 Warnung !

bedeutet, dass eine schwere Körperverletzung oder gar der Tod eintreten **kann** wenn die entsprechenden Vorsichtmaßnahmen nicht getroffen werden.

🕂 Vorsicht !

mit Warndreieck bedeutet, dass eine leichte Körperverletzung eintreten **kann** wenn die entsprechenden Vorsichtmaßnahmen nicht getroffen werden.

Vorsicht !

ohne Warndreieck bedeutet, dass ein Sachschaden eintreten **kann** wenn die entsprechenden Vorsichtmaßnahmen nicht getroffen werden.

Achtung !

ohne Warndreieck bedeutet, dass ein unerwünschtes Ereignis eintreten **kann** wenn der entsprechende Hinweis nicht beachtet wird.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

1.4 Sicherheitsrelevante Symbole auf dem Gerät

Bei Auftreten des allgemeinen Warnsymbols, sowie dem Warnsymbol für die Gefahr eines elektrischen Schlages ist in jedem Fall die Dokumentation zu konsultieren.

Abbildung 1: Sicherheitsrelevante Symbole auf dem Gerät

1.5 Symbolerklärung

Tabelle 1 stellt die auf dem Gerät verwendeten sicherheitsrelevanten Symbole dar.

Symbole				
Nr.	Symbol	Bedeutung		
1		allgemeines Warnzeichen		
2		Warnung, Möglichkeit eines elektrischen Schlages		
3	3~	3-Phasen-Wechselstrom		
4	~	Wechselstrom		
5	Ţ	Anschluss für Erde (Funktionserde)		

Tabelle 1: Symbolerklärung

1.6 Bestimmungsgemäßer Gebrauch des Produktes

🕂 Warnung !

Das econ sens 3 3-Phasen-Multifunktionsmessgerät ist ausschließlich zur Erfassung elektrischer Größen wie Spannung, Strom, Leistung, Energie, etc. in der Gebäudeinstallation, in Verteilern und Schienenverteilern vorgesehen. Die gemessenen und aufgezeichneten Daten können über die geräteeigenen Schnittstellen an übergeordnete Systeme (z.B. Monitoring Systeme) weitergegeben werden.

Es ist für den Einbau in ortsfesten und wettergeschützten Innenräumen vorgesehen.

Die in dieser Dokumentation genannten zulässigen Betriebsbedingungen müssen eingehalten und die Hinweise beachtet werden. Der Betrieb des Gerätes außerhalb seiner Spezifikation oder seines bestimmungsgemäßen Gebrauchs kann den vom Gerät unterstützten Schutz beeinträchtigen.

Die Spannungsmesseingänge sind für die Messung in Niederspannungsnetzen, in welchen Nennspannungen bis 300V Leiter gegen Erde und Stoßspannungen der Überspannungskategorie III vorkommen können, ausgelegt.

Die Strommesseingänge dürfen ausschließlich mit den von der econ solutions GmbH mitgelieferten Stromsensoren (Rogowski-Spulen, hier "econ-Coils" genannt) betrieben werden.

1.7 Hinweise zur Entsorgung

Das econ sens3 Energieverbrauchsmessgerät enthält eine fest eingebaute, kleine Lithium-Batterie. Verbrauchte Batterien bitte nie im Hausmüll entsorgen. Sie sind bei einer Sammelstelle für Altbatterien abzugeben.

Die Entsorgung muss unter Einhaltung der nationalen und örtlichen Vorschriften im normalen Wertstoffprozess erfolgen.

1.8 Garantiebestimmungen

Die econ solutions GmbH übernimmt keinerlei Haftung oder Garantie für Folgen, die aus unsachgemäßer Anwendung, insbesondere bei Nichtbeachtung der Gebrauchs- und Installationshinweise resultieren. Der Anwender hat dafür Sorge zu tragen, dass das Gerät nicht außerhalb der spezifizierten technischen Parameter betrieben wird.

Jegliche unerlaubte Änderung oder Modifikation des Gerätes, sowie eigenmächtig durchgeführte Reparaturen begründet "Missbrauch" und/oder "Fahrlässigkeit" im Sinne der Gewährleistung für das Produkt und schließt somit die Gewährleistung für die Deckung möglicher daraus folgender Schäden aus. Weiterhin erlischt der Garantieanspruch.

1.9 Haftungsausschluss

Der Inhalt dieses Dokumentes wurde sorgfältig zusammengestellt und auf die Übereinstimmung mit dem Produkt in Hard- und Software geprüft. Dennoch können Abweichungen nicht ganz ausgeschlossen werden. Aus diesem Grund sind die im vorliegenden Handbuch enthaltenen Informationen mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autoren, Firmen und Verlag übernehmen infolgedessen keine juristische Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Art aus der Benutzung dieser Informationen oder Teilen davon entsteht, auch nicht für die Verletzung von Patentrechten und anderer Rechten Dritter, die daraus resultieren könnten.

2 Beschreibung des Gerätes

econ sens3 ist ein kompaktes, vielseitiges Energieverbrauchsmessgerät mit Webinterface und Speicherfunktion.

Es misst Spannung, Strom, Wirk- und Scheinleistung der einzelnen Phasen sowie die Spannung zwischen PE und dem Neutralleiter.

Bei der Leistungsberechnung ist econ sens3 in der Lage, zwischen erzeugter und konsumierter Leistung zu unterscheiden. Die aus den Leistungsdaten errechneten Energieverbrauchswerte werden dem Benutzer über das Webinterface angezeigt.

Zur Weitergabe der Messdaten an evtl. angeschlossene Energie-Monitoring Systeme o.ä. stehen folgende alternative Schnittstellen zur Verfügung:

- 4 Multi-IO Ports, die wahlweise konfiguriert werden können als:
 - Open-Kollektor-Ausgang Digitaler Impulsausgang 0..20mA-Ausgang 0..20mA-Eingang 0..10V Eingang Eingang für potentialfreien Kontakt
- Modbus TCP
 Modbus RTU (RS-485)

Econ sens 3 erlaubt die Erfassung von Wirk-, Blind-, und Scheinleistung, Strom und Spannung, jeweils pro Phase und weiteren Messwerten über die Modbusschnittstelle (s. Kapitel Modbus)

Von jedem Eingangssignal (Spannungen und Ströme) werden 1024 diskrete Messungen über die Dauer von 5 Perioden aufgezeichnet und anschließend ausgewertet.

Zur gleichen Zeit werden die Eingangsspannungen mit 160 kHz abgetastet. Diese Abtastung dient zur Aufzeichnung der Wellenform. Diese Wellenformen werden für verschiedene Ereignisaufzeichnungen gespeichert.

Der econ sens + hat einen 4GB großen Speicher zur Speicherung von Messwerten und Ereignissen. Die Leistungssekundenmesswerte werden für die letzten 7 Tage gespeichert. Alle anderen Minutenmesswerte werden für die letzten 39 Tage, pro Intervall (10 oder 15 Minuten) für die letzten 13 Monate und die Tageswerte für die letzten 10 Jahre gespeichert. Für eine korrekte Protokollierung ist das Datum und die Uhrzeit einzustellen. Der Mittelwert, die Min- und Max-Werte werden nach jedem Intervall gespeichert. Das Intervall wird in Sekunden angegeben und kann entweder 600s (10min), 900s (15min) oder 1200s (20min) betragen.

2.1 Besondere Merkmale

- Für 1, 3, und 4 Leitersysteme beliebiger Belastung
- Modbus TCP
- 4 voneinander unabhängige Multi-IO Ports oder alternativ Modbus RTU (RS-485)
- Momentanwerterfassung von U,I,P,Q und Power Faktor pro Phase, sowie Durchschnitts- und Summenwerte
- Ereignis- und Kurvenaufzeichnung (Proversion)
- Strom-Messbereich bis 3200 A / Phase
- Keine zusätzlichen Stromwandler notwendig
- Integriertes Web-Interface zur einfachen und schnellen Datenerfassung sowie zur Konfiguration
- Schnelle Installation, auch im laufenden Betrieb*

🕂 *Warnung !

Zur Erfassung der Stromstärke ist ein Abschalten des zu messenden Verbrauchers zwar nicht unbedingt erforderlich, da die Rogowski Spulen geöffnet und um einen isolierten Leiter herumgelegt werden können.

Vor dem Anschluss des Spannungspfades ist sicherzustellen, dass die Anlage spannungsfrei geschaltet wurde. Die einschlägigen Sicherheitsbestimmungen für die Arbeiten an elektrischen Anlagen sind unbedingt zu beachten.

3 Lieferumfang und Eingangskontrolle

Lieferumfang Grundgerät:

Lieferumfang Grundgerät				
Menge Art-Nr. Bezeichnung				
1	235040	econ sens3 Multifunktionsmessgerät (Hutschienenmodul)		
1	235017 235018	econ Coil (Rogowski Spule zur Strommessung) (verfügbar in zwei Varianten,siehe Zubehör unten)		
1 238281 econ sens3 Steckersatz (bestehend aus 4 steckbaren Schraubklemmen)				

Lieferbares Zubehör				
	Art-Nr.	Bezeichnung		
	235017	econ Coil (Rogowski Spule zur Strommessung), Länge 200mm, Messbereich 1400A		
	235018	econ Coil (Rogowski Spule zur Strommessung), Länge 400mm, Messbereich 13200A		
	238281	econ sens3 Steckersatz (bestehend aus 4 steckbaren Schraubklemmen)		
	236341	econ Standard-Netzgerät 24V DC zur alternativen Versorgung des Gerätes über Schutzkleinspannung		

Tabelle 2: Lieferumfang und Zubehör

Eingangskontrolle:

Der einwandfreie und sichere Betrieb dieses Gerätes setzt sachgemäßen Transport, fachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und ggf. Instandhaltung voraus. Wenn anzunehmen ist, dass ein gefahrloser Betrieb des Gerätes nicht mehr möglich ist, so ist das Gerät unverzüglich außer Betrieb zu nehmen und gegen unbeabsichtigte Inbetriebnahme zu sichern. Das Aus- und Einpacken ist mit der üblichen Sorgfalt ohne Gewaltanwendung und nur unter Verwendung von geeignetem Werkzeug vorzunehmen. Das Gerät ist vor dem Einbau durch Sichtkontrolle auf folgende Dinge zu überprüfen:

- Beschädigung der Verpackung
- Vollständigkeit des Packungsinhaltes
- Sichtbare äußere Beschädigungen am Gerät

Bei Eintreten eines oder mehrerer der o.g. Fälle wenden Sie sich bitte an Ihren econ Vertriebspartner

🕂 Warnung !

Beschädigte Geräte dürfen weder eingebaut noch in Betrieb genommen werden. Sie können zu Tod, schwerer Körperverletzung oder Sachschaden führen.

Es ist anzunehmen, dass ein gefahrloser Betrieb nicht mehr möglich ist, wenn das Gerät ferner z.B.

- trotz intakter Netzversorgung nicht mehr arbeitet
- längere Zeit ungünstigen Verhältnissen (z.B. Lagerung außerhalb der zulässigen Klimagrenzen ohne Anpassung an das Raumklima, Betauung o.Ä..) oder Transportbeanspruchungen (z.B. Fall aus großer Höhe auch ohne sichtbare äußere Beschädigung o.Ä..) ausgesetzt war.

Achtung !

Betauung vermeiden.

Plötzliche Temperaturschwankungen können eine Betauung verursachen. Betauung kann die Funktion des Geräts beeinträchtigen. Lagern Sie das Gerät mindestens 2 Stunden am Installationsort vor, bevor Sie mit seiner Montage beginnen.

4 Montage

4.1 Werkzeuge

Schlitzschraubendreher

4.2 Einbauort

Das econ sens 3 Multifunktionsmessgerät ist für den ortsfesten Einbau in der Gebäudeinstallation, in Verteilern und Schienenverteilern innerhalb geschlossener Räume vorgesehen.

🕂 Warnung !

Betrieb des Gerätes nur an einem sicheren Ort. Nichtbeachtung kann Tod, Körperverletzung oder Sachschaden zur Folge haben.

Der Installateur des Gerätes hat dafür Sorge zu tragen, dass der Installationsort so gewählt wird, dass nur qualifiziertes Personal Zugang hat.

4.3 Einbaulage

Das econ sens3 Energieverbrauchsmessgerät wurde für die Montage auf einer Hutschiene (TS35) konzipiert. Hierzu wird das Gerät, mit der oberen Haltenase auf die Hutschiene aufgesetzt, der Metallfußriegel mit dem Schlitzschraubendreher gegen die Federkraft nach unten bewegt und das Gerät in die Horizontale gebracht (siehe Abb.2). Durch Loslassen des Metallfußriegels rastet das Gerät auf der Hutschiene ein.

Das Gerät muss senkrecht eingebaut werden, sodass die Anzeigeelemente und ihre Beschriftung richtig orientiert deutlich lesbar sind.

Abbildung 2: Montage des econ sens3

4.4 Einbauraum und Belüftung

Zur Einhaltung der zulässigen Betriebstemperatur sind ausreichende Abstände zu benachbarten Bauteilen einzuhalten. Maßangaben finden Sie im Kapitel "Technische Daten / Maßbilder".

Planen Sie zusätzlichen Platz für:

- Belüftung:

Das econ sens3 Multifunktionsmessgerät entspricht mit seinen 22,5 mm Einbaubreite 1,3 Teileinheiten. Halten Sie zu benachbarten Geräten auf beiden Seiten des Gerätes einen Abstand von 6mm ein. Dadurch belegt das Gerät genau 2 Teileinheiten a 17,5 mm.

- Verdrahtung
- Steckverbindungen incl. Kabelzuführung (z.B. Rj45 Ethernet) auf der Oberseite des Gerätes
- Steckverbindungen incl. Kabelzuführung (z.B. Rj12 Coil-Anschluss) auf der Unterseite des Gerätes

Achtung !

Schäden durch Feuchtigkeit

Feuchtigkeit oder Nässe können die Funktionsfähigkeit der Komponenten beeinträchtigen. Betreiben Sie die Komponenten nicht in einer Umgebung mit hoher Luftfeuchtigkeit oder Nässe. Beachten Sie die Umgebungsbedingungen des Gerätes. Diese finden Sie im Kapitel "Technische Daten"

Vorsicht!

Belüftung sicherstellen

Ohne ausreichende Belüftung können die Komponenten beschädigt werden. Achten Sie darauf, dass ein Mindestabstand zu Nachbargeräten eingehalten wird. Beachten Sie die Umgebungsbedingungen des Gerätes. Diese finden Sie im Kapitel "Technische Daten"

4.5 Demontage

Außerbetriebnahme

Stellen Sie sicher, dass das Gerät außer Betrieb genommen wurde, bevor Sie die Demontage beginnen.

Werkzeuge

Schlitzschraubendreher

Demontageschritte

Die Demontage des Gerätes erfolgt nach Abb.3. Der Metallfußriegel wird mit dem Schlitzschraubendreher gegen die Federkraft nach unten bewegt und das Gerät aus der Horizontalen nach oben geschwenkt. Dann kann das Gerät von der Hutschiene heruntergenommen werden.

Abbildung 3: Demontage des econ sens3

Achtung !

Stellen Sie sicher, dass kein Werkzeug oder andere sicherheitsgefährdende Gegenstände bei der Montage oder Demontage am Montageort zurückgelassen werden

5 Anschließen des Gerätes

5.1 Sicherheitshinweise

🔔 Gefahr !

Gefährliche Spannungen

Nichtbeachtung wird Tod, Körperverletzung oder Sachschaden zur Folge haben. Die Anlage ist vor Beginn der Arbeiten spannungsfrei zu schalten

Achtung !

Falsche Netzspannung kann das Gerät zerstören

Vor dem Anschließen des Gerätes ist zu prüfen, ob die Netzspannung mit der auf dem Typenschild angegebenen Spannung übereinstimmt.

Hinweis

Qualifiziertes Personal

Qualifiziertes Personal im Sinne der sicherheitstechnischen Hinweise in den Anwenderdokumenten sind Personen, die mit Aufstellung, Montage, Inbetriebsetzung und Betrieb des Produktes vertraut sind und über die ihrer Tätigkeit entsprechenden Qualifikationen verfügen, wie z. B.:

• Ausbildung oder Unterweisung bzw. Berechtigung Geräte / Systeme gemäß den Standards der Sicherheitstechnik für elektrische Stromkreise und Geräte zu betreiben und zu warten.

• Ausbildung oder Unterweisung gemäß den Standards der Sicherheitstechnik in Pflege und Gebrauch angemessener Sicherheitsausrüstung.

• Schulung in Erster Hilfe.

5.2 Anschlussübersicht

Sämtliche Anschlüsse des econ sens3, ausgenommen der Anschluss für die Strommessung (3) und die Ethernet-Schnittstelle (4) sind als steckbare Schraubklemm-Anschlüsse ausgeführt.

Abbildung 4 zeigt die Anordnung der Anschlüsse des econ sens3.

Abbildung 4: Anschlüsse des econ sens3

Weitere Details zur Belegung der einzelnen Anschlüsse sind den nachfolgenden Kapiteln zu entnehmen.

5.3 Anschluss Spannungsmessung

1 Anschluss Spannungsmessung					
Pin Nr.	Name	Funktion			
1	L1	Anschluss für Phase L1	L1 L3		
2	L2	Anschluss für Phase L2			
3	L3	Anschluss für Phase L3			

Das econ sens3 Multifunktionsmessgerät kann für die Spannungsmessung in TN-, TT-, und IT-Systemen eingesetzt werden. Die Spannungsmessung ist für die Überspannungskategorie 300V CATIII (Bemessungs-Stoßspannung 4kV) ausgelegt.

Das econ sens3 ist für Spannungsmessungen im Frequenzbereich von 45 bis 65Hz geeignet. Abb. 5 zeigt den Anschluss des Spannungsmess-Einganges an das Netz.

Abbildung 5: Anschluss Messspannung

Beim Anschluss der Spannungsmessung sind folgende Dinge unbedingt zu beachten:

1.) Trennvorrichtung:

Dem Eingang Spannungsmessung des econ sens3 ist eine geeignete Trennvorrichtung vorzuschalten, um das Gerät strom- und spannungslos schalten zu können. Diese Trennvorrichtung muss

- in der Nähe des Gerätes angebracht und für den Benutzer leicht erreichbar sein.
- als Trennvorrichtung für das Gerät gekennzeichnet sein.

2.) Absicherung der Spannungs-Messeingänge

Vorsicht !

Nicht abgesicherte Spannungs-Messeingänge können zu Schäden am Gerät und an der Anlage führen. Das Gerät ist immer mit einer IEC zugelassenen Sicherung 10 A, einem IEC zugelassenen Leitungsschutzschalter 10 A oder einer zusätzlichen Schutzeinrichtung abzusichern.

3.) Messspannungen und Messströme müssen aus demselben Netz stammen.

4.) Phasensynchroner Anschluss

Die Phasen sind phasensynchron anzuschließen. Die vorgeschriebene Belegung der Klemmen ist durch Software-Parametrierung nicht änderbar.

5.4 Anschluss Versorgungspannung

2 Anschluss Versorgung / Auxiliary				
Pin Nr.	Name	Funktion		
1		Anschluss für Funktionserde (PE)		
2	Ν	Anschluss für Neutralleiter		
3	PRN	Anschluss für Neutralleiter zur Stromversorgung		
4	PRL	Anschluss einer Phase zur Stromversorgung		

Für den Betrieb des econ sens3 ist eine Versorgungsspannung von 100..240 VAC erforderlich. Abb. 6 zeigt den Anschluss des Versorgungs-Einganges an das Netz.

Beim Anschluss der Versorgungsspannung sind folgende Dinge unbedingt zu beachten:

1.) Trennvorrichtung:

Dem Anschluss "Versorgung" des econ sens3 ist eine geeignete Trennvorrichtung vorzuschalten, um das Gerät strom- und spannungslos schalten zu können.

- Diese Trennvorrichtung muss
- in der Nähe des Gerätes angebracht und für den Benutzer leicht erreichbar sein.
- als Trennvorrichtung für das Gerät gekennzeichnet sein.

2.) Absicherung der Spannungs-Messeingänge

✓Vorsicht !

Nicht abgesicherte Versorgungsspannung kann zu Schäden am Gerät oder an der Anlage führen.

Das Gerät ist immer mit einer IEC zugelassenen Sicherung 1 A, einem IEC zugelassenen Leitungsschutzschalter 1 A oder einer zusätzlichen Schutzeinrichtung abzusichern.

Der Anschluss ist ein Anschluss für eine "Funktionserde". Diese leitet Störungen ab, die auf den digitalen Ein- und Ausgang und den RJ45-Stecker einwirken. Schließen Sie die Funktionserde an die Potenzialausgleichsschiene im Schaltschrank an.

Alternative Stromversorgung mit 12..24 VDC

Alternativ zu der AC Spannungsversorgung kann das Gerät auch mit 12...24 VDC versorgt werden. Dies geschieht jedoch nicht über den AC Versorgungsspannungsanschluss, sondern über den Anschlussstecker des Modbus RTU- Interfaces. Abb. 7 zeigt die Versorgung des Gerätes mit 24 VDC.

Abbildung 7: Alternative Versorgung des Gerätes mit 24 VDC

Beim Anschluss ist auf die richtige Polarität der DC Spannung zu achten.

Vorsicht !

Nicht abgesicherte oder verpolte Versorgungsspannung kann zu Schäden am Gerät oder an der Anlage führen. Das Gerät ist immer mit einer IEC zugelassenen Sicherung 2 A, oder einer zusätzlichen Schutzeinrichtung abzusichern.

5.5 Anschluss Strommessung

Die Strommessung des econ sens3 erfolgt nicht über Stromwandler sondern über die mitgelieferten econ sens Coils (Rogowski-Spulen).

Installation der Stromsensoren

Um die Stromsensoren (Rogowskispulen) zu installieren, legen Sie diese wie in Abb. 8 gezeigt um den zu messenden Leiter. Dies kann ein Kabel oder auch eine **isolierte** Stromschiene sein.

🥂 Gefahr !

Spannungsführende Teile Nichtbeachtung wird Tod, Körperverletzung oder Sachschaden zur Folge haben. Legen Sie die econ Coil niemals um eine blanke oder unisolierte Stromschiene

Stecken Sie das freie Kabelende in das Endstück der Spule, bis es einrastet. Die Spule muss dabei einen geschlossenen Kreis um den Leiter bilden.

Abbildung 8: Installation der Stromsensoren

Stromrichtung

Das auf der Spule angebrachte Etikett muss so orientiert sein, dass es zum Verbraucher hinzeigt. Damit ist gewährleistet, dass die Durchflussrichtung des Stromes durch die Spule stimmt.

Achten Sie ferner darauf, dass der jeweilige Sensor auch zu der entsprechenden Phase des Spannungspfades passt (Spule L1 zu Phase L1, usw.).

Ausrichtung der Spule zum Stromfluss

Fixieren Sie wenn möglich die Spule mit einem Kabelbinder um den Leiter (Kabel, ioslierte Stromschiene, o.ä.). Achten Sie darauf, dass die Spule einen nicht zu großen Fehlwinkel einnimmt (siehe Abb. 9).

Bei Fehlwinkeln von > +/-5° vergrößert sich auch die rel. Messabweichung und somit die rel. Abweichung des gemessenen Stroms und der daraus berechneten Größen (z.B. Leistung).

Abbildung 9: Fehlwinkel der Stromsensoren

Aufgrund ihrer Konstruktion ist sichergestellt, dass bei den econ Coils, im Vergleich zu herkömmlichen Stromwandlern, keine Gefahr durch offene Sekundäranschlüsse besteht.

5.6 Anschluss Ethernet

Das econ sens3 Energieverbrauchsmessgerät verfügt über einen 100Base-T-Netzwerkanschluss, über den die Weboberfläche aufgerufen werden kann. Dieser Anschluss kann entweder direkt an einen PC angebunden werden, oder über einen Knotenpunkt wie Hubs oder Switches. Verbinden Sie dazu econ sens3 mit einem Patchkabel (1:1) mit Ihrem Hub/Switch oder direkt mit Ihrem PC (per Crossover-Kabel).

Abbildung 10: Anschluss Ethernet

Nähere Informationen zu IP-Adresseinstellungen usw. erhalten Sie im Kapitel "Inbetriebnahme"

Modbus TCP

Über den Netzwerkanschluss des econ sens 3 können Messwerte und Ereignisse (Provariante) über das Modbusprotokoll abgerufen werden. Die Parametereinstellungen werden im Untermenü Modbus /Pulses /s durchgeführt. Die zugehörigen Registeradressen finden sich im Handbuch ab Seite 60.

Leitungsempfehlung

Zur Datenübertragung wird eine paarweise verdrille, geschirmte Datenleitung ab Cat.5 empfohlen. Weitere Empfehlungen zur Installation und Abschirmung der Anschlusskabel aller Datenschnittstellen finden Sie in Kapitel 5.8 dieses Handbuches

Achtung !

Störung anderer Netzwerkteilnehmer durch falsche Netzwerkeinstellungen

Falsche Netzwerkeinstellungen können die Funktionen anderer Netzwerkteilnehmer beeinträchtigen oder stören. Es ist bei der Inbetriebnahme darauf zu achten, dass keine doppelten IP-Adressen im selben Netz vorkommen.

5.7 Anschluss Modbus RTU

5 Anschluss MODBUS RTU					
Pin Nr.	Name	Funktion			
1	Alarm				
2	24V	Eingang zur Versorgung über 24 VDC	GNE RSB RSA 24V AL		
3	RS_B	Datenleitung B (+) MODBUS RTU			
4	RS_A	Datenleitung A (-) MODBUS RTU			
5	GND	Gemeinsamer GND-Anschluss für RS_A und RS-B			

Über das RS485 Protokoll Modbus RTU können die Werte laut Abschnitt "Untermenü Modbus / Pulses /s" S.17 ff. abgerufen werden.

Abbildung 11: Belegung des Modbus RTU Interfaces (hier mit econ sens3 als Gateway)

Um Modbus RTU nutzen zu können ist ein Modbus-Master erforderlich. In einem Segment können bis zu 32 Teilnehmer zusammengeschaltet werden. Bei mehr als 32 Teilnehmern müssen Repeater (Leitungsverstärker) eingesetzt werden, um die einzelnen Segmente zu verbinden. Die Verkabelung der Geräte untereinander erfolgt in einer Linienstruktur, wie in Abb. 11 gezeigt. Andere Bustopologien, wie z.B. Sternform sind nicht möglich.

Am Anfang und am Ende eines Segments muss das Kabel mit Widerständen (Busabschluß) terminiert werden. Dazu ist zwischen den Leitungen A und B ist ein 120 Ω Terminierungswiderstand zu setzen. Dies geschieht beim econ sens3 indem der Schiebeschalter "Term" an der Gerätefront auf "ON" geschaltet wird. Die Buslänge darf 1200 Meter nicht überschreiten.

Leitungsempfehlung

Prinzipiell eignet sich als Übertragungskabel für Modbus eine zweiadrige, verdrillte und geschirmte Leitung mit einem Wellenwiderstand von 100-130 Ohm. Bei kürzeren Übertragungswegen (bis 200 m einfacher Strecke) kann z.B. auch eine EIB-Busleitung (z.B Belden YE00820) zum Einsatz kommen. Netzwerkleitungen ab Cat. 5 oder Busleitungen wie z.B. Unitronic Li2YCY(TP) 2x2x0,22 (Lapp Kabel) eignen sich ebenfalls für die Modbus-Datenübertragung

6 Anschluss Multi I/O					
Pin Nr.	Name	Funktion			
1	I/O 1	Multifunktionaler I/O Port 1			
2	I/O 2	Multifunktionaler I/O Port 2	SNE 01 02 04		
3	I/O 3	Multifunktionaler I/O Port 3			
4	I/O 4	Multifunktionaler I/O Port 4			
5	IO_GND	GND-Anschluss für die I/O Ports	$\square \blacksquare \blacksquare \blacksquare$		

5.8 Anschluss Multi-IO

Das econ sens3 Multifunktionsmessgerät verfügt über vier, voneinander unabhängige sog. Multi-IO-Ports, die zur Weitergabe der gemessenen Daten an z.B. ein übergeordnetes Energie-Monitioring-System, verwendet werden können. Die Multi IO-Ports sind galvanisch vom Rest des Gerätes getrennt und können sowohl als Ein- und Ausgänge definiert werden und unterschiedliche Anschlussszenarien abbilden. Die verschiedenen Ein- und Ausgangskonfigurationen werden sind in den nachfolgenden Unterkapiteln abgebildet. Die softwareseitige Konfiguration ist dem Kapitel 8 zu entnehmen.

Achtung !

Unzulässige Spannungen.

Die max. zulässigen Ströme und Spannungen, die an die Multi-IO Ports angeschlossen werden dürfen, sind den nachfolgenden Kapiteln und den technischen Daten zu entnehmen.

Leitungsempfehlung für Multi IO-Anschlüsse

Prinzipiell eignet sich als Übertragungskabel für die Multi IO's eine zwei- oder mehradrige, und geschirmte Leitung. Netzwerkleitungen ab Cat. 5 oder z.B. eine EIB Leitung wie z.B. Belden YE00820 eignen sich ebenfalls.

Achtung !

Angeschlossene Leitungen mit einer Länge >30m **müssen** abgeschirmt und der Schirm wie in Kap. 5.9 beschrieben aufgelegt sein. Generell wird die Verwendung von geschirmten Leitungen empfohlen.

Open-Kollektor-Ausgang

Die Multi-IO-Ports des econ sens3 können als Open Kollektor-Ausgänge konfiguriert werden. Abb. 13 zeigt das Anschlussbild dieser Ausgangskonfiguration.

Für den Open-Kollektor-Betrieb ist eine externe Hilfsspannung von max. 30 VDC erforderlich. Der max. Strom durch den Transistor ist hardwareseitig auf 20 mA begrenzt. Der externe Widerstand ist so zu wählen, das er diesen Strom durch den Transistor nicht überschreitet !

Abbildung 12: Open Kollektor Ausgang

Anwendungsbeispiel für Open Kollektor Ausgang

Über die Impulsausgänge IO1..IO4 (Open-collector NPN-Ausgänge) werden die vom econ sens3 gemessenen Verbrauchswerte als Impulsfolge ausgegeben. Jeder ausgegebene Impuls hat eine Länge von 50 ms und entspricht einer bestimmten Energiemenge in Wh. Diese ist über das Webinterface konfigurierbar. (Details siehe Kapitel 8 "Bedienung und Parametrierung"). Der Standardwert für diese Impulsgewichtung liegt bei 10 Wh/impuls, was einer Ausgabe von 100 imp/kWh entspricht.

Die Impulsausgänge dienen zur automatisierten Erfassung der Energieverbrauchswerte mittels Datenlogger, z.B. der econ unit. Abb. 13 zeigt die Belegung der Impulsschnittstelle, sowie ein mögliches Anschlussschema.

SO-Datenlogger, z.B econ Unit

Abbildung 13: Multi-IO-Ausgänge als Open Kollektor und möglicher Anschluss an externen Datenlogger

Digitaler Ausgang (Impuls)

*konfigurierbar per Software

Abbildung 14: Digitaler Impulsausgang

In der Konfiguration als digitaler Ausgang speist das Gerät einen externen Widerstand mit einem softwareseitig konfigurierbaren Stromimpuls. Dieser kann 1,2,5,oder 10 mA maximal betragen. Der externe Widerstand ist so zu wählen, das die an ihm abfallende Spannung 30 VDC nicht überschreitet !

🕂 Vorsicht !

Als externe Widerstände werden Metallschichtwiderstände mit einer Verlustleistung von min 0,4 W empfohlen. Widerstände mit zu kleiner Leistung können im Betrieb heiß werden und bei Berührung Verbrennungen / Hautirritationen hervorrufen.

Achtung !

Die maximale Kabellänge in der Konfiguration "Open Kollektor" und "Digitaler Ausgang" beträgt 50 m.

Digitaler Eingang (Impulseingang)

Abbildung 15: Impulseingang

In der Konfiguration "Impulseingang" können Spannungsimpulse von einem externen Gerät eingespeist werden. Der Eingang erkennt Impulse ab einer Spannung von 2 VDC und einer Mindest-Impulslänge von t = 20 ms. Die Spannung am Impulseingang darf 30 VDC nicht überschreiten.

Eingang für potenzialfreien Kontakt

Abbildung 16: Eingang für potentialfreien Kontakt

In der Konfiguration "Impulseingang" können Spannungsimpulse von einem externen Gerät eingespeist werden. Der Eingang erkennt Impulse ab einer Mindest-Impulslänge von t = 20 ms. Die Spannung am Impulseingang darf 24 VDC nicht überschreiten.

Analoger Ausgang 0..20mA

Abbildung 17: Analoger Ausgang 0..20mA

Analoger Eingang 0..20mA

Abbildung 18: Analoger Eingang 0..20 mA

Analoger Eingang 0..10V/30 V

Input voltage ranges configurable 0..10 V 0..30V

Abbildung 19: Analoger Eingang 0..10V/30V

5.9 Abschirmung der Anschlusskabel

Erdung des Modbus RTU-, Multi-IO-Port- und Ethernet-Kabels

Die hier beschriebene Abschirmung der Anschlusskabel gilt für alle Datenschnittstellen des econ sens3. Dies sind:

- Modbus RTU-Interface
- Multi-IO-Ports
- Ethernet-Kabel

Ethernet-Kabel:

Der freigelegte Schirm des Ethernet-Kabels ist an beiden Kabelenden großflächig und niederohmig auf einen geeigneten Erdungspunkt des aufzulegen. Hierzu kann im Schaltschrank z.B. eine BTR-Netzwerkdose (siehe Abb. 20) für Hutschienenmontage verwendet werden. Bei deren Verwendung erfolgt die Anbindung an den Erdungspunkt über das integrierte Potentialausgleichsblech direkt auf die geerdete Hutschiene.

Abbildung 20: BTR Netzwerkdose für Hutschienenmontage

Modbus RTU und Multi-IO-Port-Kabel:

Der Leitungsschirm des Modbus RTU-Kabels und des Multi-IO-Port-Kabels sind ebenfalls ist an beiden Kabelenden großflächig und niederohmig auf einen geeigneten Erdungspunkt des Schaltschrankes aufzulegen. Hierzu können z.B. Schirmklammern zur Hutschienenmontage, wie in Abb. 21 gezeigt, verwendet werden.

Abbildung 21: Schirmklammer für Hutschienenmontage

Hinweise zur Leitungsverlegung

Um Störeinflüsse auf das Gerät / vom Gerät auf andere Geräte zu minimieren, ist es erforderlich, alle Abschirmungen/Erdungen auf einen gemeinsamen Erdungspunkt zu führen und die Leitungen so kurz wie möglich zu halten. Störungen können evtl. durch Erd- oder Masseschleifen, durch unsachgemäße Leitungsführung verursacht werden. Abbildung 22 zeigt je ein Beispiel für eine gute und schlechte Leitungsverlegung.

Abbildung 22: Beispiel für gute und schlechte Leitungsverlegung

Achtung!

Überschreitung der Grenzwerte bei nicht ausgeführter Erdung / Abschirmung

Die Einhaltung der technischen Grenzwerte bezüglich Störabstrahlung und Störfestigkeit ist nur bei fachgerecht ausgeführter Erdung gewährleistet. Der Betreiber der Anlage ist für die Einhaltung der gesetzlich vorgeschriebenen Grenzwerte verantwortlich (CE-Zeichen). Führen Sie die beidseitige Schirmauflage so aus, wie in Abb. 20 beschrieben.

Schirmen Sie ebenfalls den Ethernet Anschluss, wie in Abb. 22 beschrieben.

5.10 Anschlussbeispiele

3-Phasen/4-Leiter System beliebiger Belastung

Abbildung 23: 3-Phasen/4-Leiter System beliebiger Belastung

3-Phasen/3-Leiter System beliebiger Belastung
1-Phasen System

Abbildung 25: 1-Phasen System

Funktionserdung am GND-Anschluss der Klemmstelle ModBus

Bei der Verwendung der Netzanalysefunktion des Gerätes und zur Erhöhung der Messgenauigkeit ist es erforderlich, den sekundärseitigen GND-Anschluss an der Klemmstelle "MODBUS" mit dem Schutzleiter zu verbinden. Siehe hierzu Abb. 26

Abbildung 26: Funktionserdung am GND-Anschluss der Klemmstelle ModBus

Achtung: Nicht den Anschluss GND der Klemmstelle Multi-IO erden. Dieser ist vom GND des MODBUS galvanisch getrennt!!!

6 Anzeige- und Bedienelemente

Abbildung 21 zeigt die Anordnung der Anzeige und Bedienelemente des econ sens3.

"TERM On/Off":	Aktiviert/Deaktiviert die Terminierung des Modbus-Interface. Mehr
	Informationen zur Bus-Terminierung sind in Kapitel 5.7 zu finden.
LED "Link":	Leuchtet, wenn eine aktive Verbindung zum Netzwerk besteht. Sobald Datentransfer vom/zum Gerät stattfindet, beginnt die LED zu blinken.
LED "IO1IO4" :	Die LED's IO1 bis IO4 zeigen den Status des jeweiligen IO-Ports.
<u>Reset</u> :	Reset-Knopf zum Ausführen des "Factory-Reset" Beim Reset handelt es sich um einen 4 stufigen Reset. Mehr Informationen zum Reset sind in Kapitel 9.4 zu finden.
LED "LOG":	Blinkt, sobald das Gerät betriebsbereit ist um Daten aufzuzeichnen

7 Inbetriebnahme

Voraussetzungen

- Das Gerät wurde ordnungsgemäß, wie in Kapitel 5 beschrieben montiert
- Das Gerät wurde entsprechend der möglichen Anschlussarten und unter Berücksichtigung der Vorsichtsmaßnahmen und technischen Parameter nach Kapitel 6 und 11 angeschlossen.
- Das Ethernet-Kabel wurde angeschlossen

Schritte zur Inbetriebnahme

1.) Überprüfen der Anschlüsse

Vor dem Einschalten des Gerätes ist zu überprüfen, ob alle Kabelverbindungen zum econ sens3, wie in Kapitel 6 beschrieben, hergestellt wurden.

2.) Anlegen der Versorgungsspannung

- 3.) Anlegen der Messspannung
- 4.) Anlegen der Strommessung
- 5.) Parametrierung des Gerätes
- 6.) Überprüfung der Messwerte auf Plausibilität

Rufen Sie die Weboberfläche des Gerätes auf und überprüfen Sie zunächst die Zeiteinstellungen, sowie die Anzeige im Menü *Meter.*

Ohne angeschlossene Last sollten Sie dort zumindest die Spannungswerte sehen. Ist eine Last angeschlossen, so verifizieren Sie wenn möglich das Messergebnis.

Sollten Sie trotz angeschlossener Last keine Messwerte sehen, so fahren Sie im Kapitel 7 *Troubleshooting* fort.

8 Bedienung und Parametrierung

Webinterface des econ sens3

8.1 Aufruf der Weboberfläche

Der Aufruf der Weboberfläche erfolgt durch Eingabe der IP-Adresse des econ sens3 in der Adresszeile des Webbrowsers (Firefox, IExplorer, GoogleChrome, etc.) Die Netzwerk-Standardeinstellungen des econ sens3 lauten wie folgt:

IP-Adresse:	169.254.1.1
Subnetzmaske:	255.255.0.0

Um die Weboberfläche aufrufen zu können muss sichergestellt sein, dass sich der Anwender-PC im gleichen Netz wie der econ sens3 befindet. Dazu sind folgende Einstellungen vorzunehmen (z.B. unter Win7):

- **1.**Wählen Sie unter *"Start / Systemsteuerung / Netzwerk- und Freigabecenter"* die LAN-Verbindung der mit dem Netz verbundenen Netzwerkkarte aus.
- 2. Klicken Sie auf die Schaltfläche "Eigenschaften".
- 3. Wählen Sie in der Liste "Internetprotokoll (TCP/IP)" und klicken Sie auf "Eigenschaften".

Allgemein	
IP-Einstellungen können automatis Netzwerk diese Funktion unterstüt den Netzwerkadministrator, um die beziehen.	ich zugewiesen werden, wenn das .zt. Wenden Sie sich andernfalls an geeigneten IP-Einstellungen zu
IP-Adresse automatisch bezie	zhen
O Folgende IP- <u>A</u> dresse verwen	den:
IP-Adresse:	169.254.1.10
S <u>u</u> bnetzmaske:	255.255.255.0
<u>S</u> tandardgateway:	
DNS-Serveradresse automati	isch beziehen
Folgende DNS-Serveradresse	en <u>v</u> erwenden:
Bevorzugter DNS-Server:	1 A A
Alternativer DNS-Server:	
Eins <u>t</u> ellungen beim Beenden	überprüfen
	Erweitert
	OK Abbreche

4. Aktivieren Sie die Optionen "Folgende IP-Adresse verwenden" und "Folgende DNS-Serveradresse verwenden".

Tragen Sie die in Abb. 15 gezeigten
 Parameter ein und bestätigen Sie Ihre
 Auswahl mit "OK".

Durch Eingabe der o.g. IP-Adresse im Webbrowser sollte sich nun der econ sens3 Home-Bildschirm zeigen.

Aufruf der Weboberfläche in einem Netz mit DHCP-Server

Befindet sich der econ sens3 in einem Netzwerk, in dem auch ein DHCP-Server für die automatische Adressvergabe zur Verfügung steht, so nimmt er automatisch eine ihm zugewiesene Adresse von diesem Server an. Welche Adresse der econ sens3 bekommen hat, finden Sie am DHCP Server heraus.

8.2 Menü Home

e con-solutions.de - 28/05/20	NS 3 15 11:23:50 - Sensor: 1511018		MESSUNG ANALYSE Eingänge	Zeit EREIGNISSE EXPORT	KONTAKT HILFE KONFIG.
	econ sens3 Geräteinformation	$\mathbf{\overline{\mathbf{V}}}$			
	Hardwara 5300				
	IO Vollständiges VO				-
	Application 5.0.1.3				
	Boot version 2.2.3.0				
	System 2.2.3.0				
	Network name A82CEFFF7				
	Serial number A82CEFFF7				
	IP-address 172.20.5.134				
	Sensor type set with 3 25 cm coils				
	Sprache				
	English Nederlands Deu	Français	3)		
	Am Netzwerk angeschlossene Module 27/05/2015 10:24:02				
	Cerštename MAC Adress	Standard ID Adroses	Softwareversion	Zait	
	AS2CEFEE7 00E082 CEFEE7	72 20 5 134	5013	27/05/2015 10:24:02	
		4	0.0.1.0	21703/2013 10:24:02	
	Modul Liste aktualisieren				

Home-Bildschirm des econ sens3

Auf dem Home-Bildschirm des econ sens3 finden Sie folgende Bereiche und Informationen:

- 1. Menüleiste zur Navigation durch die einzelnen Menüs des econ sens+
- 2. Infotabelle
- 3. Sprachauswahl
- 4. Infoleiste

Home - Startseite, siehe oben

Messung – Messwerte des Geräts, auch als automatisch updatende Onlineanzeige möglich Analyse - Graphische und Tabellarische Darstellung der verschiedenen gemessenen Größen Export - Export der gemessenen Werte per Csv-Datei Kontakt - Kontaktinformationen Hilfe – Verweise auf das FAQ und das Handbuch des sens3

Konfig. – Konfigurationseinstellungen

Optional

Ereignisse - Benachrichtigungen über auffällige Ereignisse (PRO Version) **IO** – Graphische und Tabellarische Darstellung der Ein- und Ausgänge (LOG Version) **Timer** – Zeiteinstellungen für die Zeitschalter der IO's (LOG Version)

Menü Messung

Der econ sens3 zeigt die von ihm gemessenen Werte im Menü *Messung* in Tabellenform an. Abb. 17 zeigt diese Tabelle.

	UND/rme1	IIIII/rme1	l[Arme]	DLFMU	Ollovari	DET 1	CoePhil 1	Dhaeanwink	alf®	Laet []
14	230	8 4	00 4 1	7.8 4.06	-0.461	0.99	0.99	THUSCHWIN	64	Kapaziti
	231.	9 4	03.3 1	5.2 3.47	-0.414	0.98	0.99		6.7	Kapaziti
	231.	7 3	99.0 1	3.0 2.91	-0.745	0.96	0.97		14.3	Kapazit
	231.	5 4	00.9 1	5.3 3.48	-0.540	0.98	0.98			583 MA 1 1100 MAA
			4	6.0 10.4	-1.619					
FIH ₇ 1	50.000									
UnfVrms1	5.0 *									
TIPCI	45									
						_				
	Ep+[kWh]	Ep-[kWh]	Eq+[kvarh]	Eq-[kvarh]	THD U[%]	THD [[%]	Unsymme	etrie U[%]	Unsymm	etrie I[%]
LI	705.337	-0.205	11.344	-81.128	1.8	8	.7	-0.3		15
L2	532.512	-10.520	17.839	-54.512	2.3	14	.3	0.2		-0
La	580 339	-0.200	13 320	-120.100	2.1	12	0	0.1		-15
Summo	1741	10.007	20.060	261.200						
ioden Wellen	form - 26/06/	2015 17:53:2	8			Aus				
rioden Wellen	iform - 26/86/	2015 17:53:2	8	\leq		Δυ1 Δ11				
ioden Wellen ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	160rm - 26/06/	2015 17:53:2	8	\leq	1	AU1 AT1				

Angezeigt werden die Spannungen der Phasen L1, L2, L3, die dazugehörigen Ströme, sowie die Wirkund Blindleistung pro Phase und der "Power Factor". (dieser ist für rein sinusförmige Wechselströme mit dem allg. bekannten cos phi gleichzusetzen). Die erzeugte und rückgespeiste Wirk- und Blindarbeit sowie die Messwerte für die gesamten harmonische Verzerrung (Spannung/Strom) und die Asymmetrie (Spannung/Strom) finden sich in der zweiten Tabelle.

Sie können die Anzeige mit Betätigen der *F5-Taste* auf Ihrer Tastatur immer wieder auffrischen oder Sie betätigen den Pfeil-Button neben *"kontinuierlich".* Dann wird die Anzeige im Sekundentakt aktualisiert.

Die Grafik *"Phasor"* unterhalb der Tabelle dient zur Veranschaulichung der Phasenverschiebungen zwischen den Spannungen L1, L2, L3 und den dazugehörigen Strömen.

^{*}Die Angabe "Un" unterhalb der Tabelle zeigt die sog. Neutralleiterspannung (Spannungsdifferenz zwischen dem Neutralleiter und der Schutzerde) an. Diese wird für das Menü Events benötigt, welches sich mit Netzanalyse auseinandersetzt. Dieses Menü kann optional aktiviert werden.

Den Spannungs- und Stromverlauf auf den drei Phasen können Sie sich auch als Kurve darstellen lassen, indem Sie am linken unteren Bildrand auf *Kurvenform* gehen. (siehe Abb.18)

Der econ sens3 ist in der Lage, sowohl erzeugte, wie auch konsumierte Wirkleistung zu messen und anzuzeigen. Abb.22 soll dies verdeutlichen.

Konsumierte Wirkleistung wird in der Tabelle in blau dargestellt, während erzeugte Wirkleistung mit negativem Vorzeichen in rot dargestellt wird. Im o.g. Beispiel bedeutet dies, dass auf Phase L1 nur Leistung konsumiert und auf Phase L2 nur Leistung erzeugt wurde.

Für den Fall, dass auf einer Phase gleichzeitig Leistung konsumiert und erzeugt wird, so zeigt der econ sens3 die **Summe** dieser beiden Leistungen an.

Ein Beispiel:

Sie erzeugen auf den drei Phasen L1, L2, L3 mit Ihrer Photovoltaikanlage mit nachgeschaltetem Wechselrichter je 1kW und konsumieren dabei noch auf der Phase L2 500 Watt für div. Haushaltsgeräte. Dann sähe Ihre Messwert-Tabelle wie in Abb. 19 aus.

	UN[Vrms]	UU[Vrms]	I[Arms]	P[kW]	Q[kVAr]
L1	227.8	386.0	4.4	-1000	36
L2	228.3	386.2	2.2	-500	7
L3	228.9	382.8	4.3	-1000	5
Mittelwert	228.3	385.0	3.6	-833	21
Summe			10.9	-2500	43

Installations-Überprüfungsroutine "Installation check"

Der econ sens3 verfügt über eine kleine Installations-Überprüfungsroutine, genannt "Installation check".

Im Regelfall wird davon ausgegangen, dass alle Messspulen richtig installiert wurden, und die gemessene Last einen Power Factor von > 0.71 (Phasenverschiebung zwischen U und I < 45°) hat. Dann wird die Messwertetabelle dem Anwender, wie in Abb. 20 gezeigt, dargestellt. In diesem Beispiel wurde an L1 eine Last mit ca. 6 kW gemessen, L2 und L3 sind unbelastet.

Wird durch einen Installationsfehler, z.B. die Spule L2 um den Leiter L1 des Spannungspfades gelegt, so sinkt der Power Factor unter 0,71 und es erscheint unter der Messwertetabelle folgende Fehlermeldung:

In der Messwert-Tabelle ist zu sehen, dass der Power Factor der Phase 2 unter 0,71 gefallen ist und die Phasen-verschiebung zwischen U2 und I2 in der Grafik "Phasor" 120 ° aufweist. Dies ist ein typisches Fehlerbild für den o.g. Installationsfehler.

Hinweis:

Aufgrund der Einfachheit der Installations-Überprüfungsroutine gibt es auch Fälle, in denen kein Installationsfehler vorliegt, die Routine jedoch trotzdem eine Fehlermeldung ausgibt, z.B.:

- a.) Im gemessenen Netz kommt ausschließlich erzeugte und wenig bis keine konsumierte Leistung vor
- b.) Der Power Factor der angeschlossenen Last ist tatsächlich < 0,71

Achten Sie daher immer auf korrekte Installation der Messspulen und deren Zuordnung zum Spannungspfad, um Missverständnisse zu vermeiden.

8.3 Menü Analyse

Im Menü Graph werden die Messergebnisse für den Anwender grafisch aufbereitet und als Messkurve angezeigt. Abb. 22 zeigt beispielhaft eine solche Messkurve.

						-	-						60		
			-												
2 3 4 5 1 Stunde/div - 4	6 20Wh/d	7 8 iv	9	10	11 1	2 13	14	15 1(5 17 18	19 1 E U	20 21 2 N UU I	2 23 P Q P±	24 1/0		
Jahr Jan	Feb	Mä	r I	Арг	Ma	i i	Jun	Jul	Aug	Sep	Okt	No	V.	Dez	tot[kWh]
Jahr Jan sicht: Mai 2015	Feb	Mä	r.	Арг	Ma	i	Jun	Jul	Aug	Sep	Okt	Nov	V	Dez	tot[kWh]
Jahr Jan rsicht: Mai 2015 Woche	Feb	Mä Mo		Apr Di	Ma	ii Mi	Jun	Jul	Aug	Sep Fr	Okt	Nov	v So	Dez	tot[kWh] tot[kWh]
Jahr Jan rsicht: Mai 2015 Woche 27/04/2015	Feb	Ma No	0.000	Apr Di	Ma	ii Mi <u>00</u>	Jun	Jul Do	Aug	Sep Fr	Okt Sa 0.000	Nov	v So 000	Dez	tot[kWh] tot[kWh] 0.000
Jahr Jan rsicht: Mai 2015 Woche 27/04/2015 04/05/2015	Feb	Mä No	0.000	Apr Di	Ma 0.0	ii Mi <u>Mi</u> 00	Jun	Jul Do 0.000	Aug	Sep Fr	Okt 5a 0.000 0.000	Nov	v So 000 000	Dez	tot[kWh] tot[kWh] 0.000 0.000
Jahr Jan rsicht: Mai 2015 Woche 27/04/2015 04/05/2015 11/05/2015	Feb	Mä Mo	0.000 0.000 1.506	Apr Di 2	Ma 0.0 0.0 0.8	ii Mi 00 00 12	Jun I I I I I I I	Jul Do 0.000 0.000	Aug 0.000 0.000 0.035	Sep Fr	Okt 0.000 0.000 0.298	0.1 -0.1	v So 000 000 .307	Dez	tot[kWh] tot[kWh] 0.000 0.000 2.729
Jahr Jan rsicht: Mai 2015 Woche 27/04/2015 04/05/2015 11/05/2015 18/05/2015	Feb	Mä Mo	0.000 0.000 1.506 -0.17	Apr Di 2 2 2 2 6	Ma 0.0 0.0 0.8 -0.1	ii Mi Mi 00 12 548	Jun	Jul Do 0.000 0.028 0.565	Aug 0.000 0.035 -0.528	Sep Fr	Okt 0.000 0.000 0.000 -0.298 -0.790	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	x So 0000 0000 3007 820	Dez	tot[kWh] 0.000 0.000 2.729 -3.491

Angezeigt wird jeweils die Summe der Leistung/Energie aus den drei Phasen über einem bestimmten Zeitraum. Über die Buttons 🗁 🗠 neben der X-Achsenbeschriftung können Sie die Messkurven Schritt für Schritt durchblättern (z.B. jeden Tag eines Monats)

Dabei können Sie zwischen folgenden Ansichten wählen:

Monatsansicht:	Konsumierte und erzeugte Energie (kWh) in 15 min-Schritten
Tagesansicht:	Konsumierte und erzeugte Leistung (W) in 15 min-Schritten
Stundenansicht:	Konsumierte und erzeugte Leistung (W) in 1 min-Schritten
15 min-Ansicht:	Konsumierte und erzeugte Leistung (W) in 1 min-Schritten

Durch die Auswahl eines entsprechenden Wertes in den Tabellen unterhalb des Diagramms, wird die passende Ansicht im Diagramm mit den Werten geladen. Die zu den Kurven gehörenden Messwerte können über die Funktion *Export Messwerte* heruntergeladen werden. Über den Button 🗅 am unteren Rand des Diagramms gelangen Sie zum Exportmenü in dem Sie verschiedene Einstellungen zum Export Ihrer Daten vornehmen können. Mehr dazu im Abschnitt Menü Export.

Durch die weiteren Buttons **E UN UU I P Q P**[±] unterhalb des Diagramms können Sie in der aktuellen Ansicht zwischen unterschiedlichen Messwerten umschalten:

- E -> Energieumsatz
- UN -> Durchschnittliche Phasen-Spannung

- I -> Durchschnittlicher Strom
- P -> Durchschnittliche Leistung
- Q -> Durchschnittliche Blindleistung
- P<u>+</u> -> Durchschnittliche Leistung (positiv & negative Leistung)

Optional: Ist die Option I/O im sens 3 aktiviert, erscheint zusätzlich der Button I/O im Diagramm. Wird dieser betätigt, erscheint unterhalb des Diagramms ein weiteres Diagramm auf dem die I/O's verfolgt werden können. Das Diagramm der I/O's ist vom zeitlichen Rahmen dem anderen angepasst.

Eine Auflistung aller gemessenen Parameter und deren Bedeutung finden Sie im Anhang dieses Handbuchs.

8.4 Menü Eingang / Ausgang (Logversion)

	Name			Wert	
:mp2		5.638 V			
aital Einc	ang/Ausgang				
gitale	e Wellenformen ·	- 11/06/2015 15:10	:50		
0"	55''	0	5''	10" 15"	20"
whr					

Das Menü Eingang / Ausgang erscheint bei konfigurierten Ein- und Ausgängen in der Logversion des sens 3. **Diese ist per Options-Key freizuschalten**. Im Menü Fenster werden die anliegenden Werte / Impulse der digitalen oder analogen Ein- und Ausgänge angezeigt.

8.5 Menü Ereignisse

	Ere	iqni	sse		06/	2015	-	Lege	end	e: G	lerä:	t ei	nges	sch	alte	tÜ	bers	schu	ving	ung	en ()ual	itä	t Va	aria	tio	nen		
																_													
hnelle Spannungsänderungen																													
cker Schärfegrad														_															
annungseinbruch																													
annungsunterbrechung																													
itweilige netzfrequente erspannungen	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
ansiente Überspannungen	7	тау	J/ U1																										
annungsunsymetrie		abr		lan		Fab		Mä		A.											Son		Okt		No		Do		tot
erschwingungsspannung	2	aiii 045		Jan		rep		10 Mai	•	25	рг	62	al	J	un		ui		lug		sep		UKL		NOV	^	De	<i>32</i>	156
romlevel	2	.015			-		1	<u></u>		20		<u> <u>v</u>z</u>		-		-		-		-							-		150
equenzverschiebung	Keine	Ereigr	nisse	gefur	nden																								
ktorsprung																													
utralleiter-PE-Spannungsabfal																													
utralleiter-PE-Spannungsabfal rsorgungsspannung ein-/aus																													
utralleiter-PE-Spannungsabfal rsorgungsspannung ein-/aus erschwingungsstrom																													
utralleiter-PE-Spannungsabfal rsorgungsspannung ein-/aus erschwingungsstrom Iderung der internen Uhrzeit																													
utralieiter-PE-Spannungsabfal rsorgungsspannung ein-/aus ierschwingungsstrom iderung der internen Uhrzeit apshot																													
utralleiter-PE-Spannungsabfal rsorgungsspannung ein-/aus ierschwingungsstrom derung der internen Uhrzeit apshot e aktivieren																													
utralleiter-PE-Spannungsabfal rsorgungsspannung ein-/aus ierschwingungsstrom iderung der internen Uhrzeit apshot e aktivieren e deaktivieren																													
utralleiter-PE-Spannungsabfal rsorgungsspannung ein-/aus ierschwingungsstrom iderung der internen Uhrzeit apshot e aktivieren e deaktivieren																													
utraleiter-PE-Spannungsabfal rsorgungsspannung ein-/aus erschwingungsstrom iderung der internen Uhrzeit apshot e aktivieren e deaktivieren																													
utraleiter-PE-Spannungsabfal rsorgungsspannung ein-/aus erschwingungsstrom iderung der internen Uhrzeit apshot e aktivieren e deaktivieren																													
utralleiter-PE-Spannungsabfal rsorgungsspannung ein-/aus erschwingungsstrom iderung der internen Uhrzeit apshot e aktivieren e deaktivieren																													
utraleiter-PE-Spannungsabfal rsorgungsspannung ein-/aus erschwingungsstrom iderung der internen Uhrzeit apshot e aktivieren e deaktivieren bildung 24: Startt	seit	e de	es	Me	'nü	s Se	ətti	ings	6																				

Das Menü Ereignisse dient zur Konfiguration der Aufzeichnung von Netzereignissen. Diese werden im Rahmen einer Netzanalyse nach EN 50160 benötigt. Diese Funktion ist optional (Proversion) zu aktivieren.

8.6 Menü Export

Im Exportmenü können verschiedene Konfigurationen vorgenommen werden, die sowohl Einfluss auf das Format als auch den Umfang der Daten in der Exportdatei haben.

	Wert
Startzeitpunkt	01/06/2015 00:00:00
ndzeitpunkt	02/06/2015 00:00:00
Schritt	 100ms (Zeitreihen-Auswahl wird automatisch auf Wirkleistung gesetzt) Sekunde Minute Intervall Tag
Datenauswahl	alle Daten Gesamter Energieverbrauch Phasenspannung (U-N) Netzspannung (U-N) Ströme Wirkleistung Blindleistung Gesamt Wirkleistung Eingang/Ausgang
eerzeilen einbeziehen	
ür nicht selektierte Spalten Leerzeichen einfügen	
Anzeige Sommerzeit / Winterzeit einschalten	
Komma	●. ◎,
rennzeichen	● TAB ◎ ;
√ Übernehmen	

Mit den beiden Zeitpunkten Start- und Endzeitpunkt wird der zeitliche Umfang der exportierten Daten festgelegt.

Über die unterschiedlichen Schritte (Sekunde, Minute, Intervall etc.) wird die Granularität der Werte innerhalb der Exportdatei bestimmt.

Unter dem Punkt Datenauswahl können Sie bestimmen welche Daten in die Datei exportiert werden. Gibt es Leerzeilen im Datenbestand könne diese über den nächsten Punkt ausgeblendet werden.

Wählen Sie bei der Datenauswahl nicht alle Daten aus haben Sie die Möglichkeit für die nicht selektierten Spalten Leerzeichen einzufügen. Dies bestätigen Sie durch das anhaken des Menüpunktes "Für nicht selektierte Spalten Leerzeichen einfügen".

Durch den Menüpunkt "Sommerzeit/Winterzeit einschalten" wird in der Exportdatei eine Spalte hinzugefügt die die entsprechenden Zeitstempel mit Sommer- oder Winterzeit kennzeichnet.

Fließkommazahlen können nach dem amerikanischen metrischen System mit Punkt oder nach dem europäischen per Komme getrennt werden.

Der Export erfolgt entweder in Form einer Text- oder CSV-Datei. Unter dem Punkt "Trennzeichen" wird konfiguriert ob die Trennung der Werte in der Datei per Semikolon oder Tab erfolgen soll.

8.7 Menü Kontakt

Durch Anklicken des Menüpunktes *Contact* werden Sie automatisch zur offiziellen Internetpräsenz der econ solutions GmbH, http://www.econ-solutions.de weitergeleitet, wo Sie Informationen zu weiteren Produkten von econ-solutions und natürlich auch zum econ sens3 erhalten.

8.8 Menü Hilfe

Durch Anklicken des Menüpunktes Manual wird der Anwender automatisch auf die Webseite <u>http://www.econ-sens.com</u> weitergeleitet, wo dieses Handbuch online zur Verfügung steht.

8.9 Menü Settings

Das Menü Settings dient zur Parametrierung des econ sens3. In den dazugehörigen Untermenüs können alle notwendigen Einstellungen für den Betrieb des Gerätes vorgenommen werden. In der Startseite des Menüs werden dem Anwender ein paar Statusinformationen angezeigt.

	Login						
Phase/Netzspannung	: 230/400V						
Тур	: Stern; Dreiphasen-Vierleiter-Netz (mit N)						
Frequenz	: 50Hz						
Aufzeichnungsintervall	: 15 min						
Ereignis Flags	: 11111111111111111						
Frequenzschwankungen Integrationsintervall	: 100 s						
Frequenzschwankungen Untergrenze	: 99 %						
Frequenzschwankungen Obergrenze	: 101 %						
Langsame Spannungsänderungen Integrationsintervall	: 600 s						
Langsame Spannungsänderungen Untergrenze	: 90 %						
Langsame Spannungsänderungen Obergrenze	: 110 %						
Schnelle Spannungsänderungen Grenze	: 0.5 %						
Schärfegrad Beobachtugnsinterval	: 600 s						
Schärfegrad-Obergrenze	: 1.0						
Grenze für Spannungseinbrüche (> 1min)	: 90 %						
Grenze für Spannungunterbrechungen	: 10 %						
Zeitweilige netzfrequente Überspannungen	: 110 %						
Transiente Überspannungen	: 150 %						
Spannungsunsymetrie	: 2 %						
Oberschwingungsspannung	: 8 %						
Uberschreitung des Strom-Messbereichs	: 3000 Arms						
Grenze Frequenzverschiebung	: 1.000 Hz						
Vektorsprung	: 30 °						
Neutralleiter -> PE-Spannung Obergrenze	: 10 %						
Harmonic Strom grenze	: 10 %						
Event-Halbwertszeit	: 30 Tagen						
Modbus Schnittstelle	: Modbus TCP (Ethernet)						
Modbus TCP Adresse	: 1						
Modbus RTU Adresse	: 1						
Modbus Baudrate	9600						
Modbus Parität	: Keine						
Modbus stop bits	: 1						
Modbus Port Nummer	: 502						
Modbus TCP delay (ms)	: 1000						
	: 1000						
Modbus RTU timeout (ms)							

Zugang zu den Untermenüs erhalten Sie über Eingabe des Benutzernamens und des Passwortes. Werksseitig eingestellt sind hier:

Benutzername: user

Passwort: pass

Über Login werden Sie in die Untermenüs weitergeleitet und landen automatisch im Untermenü *Time/Date*

Generelle Information zum Speichern von Einstellungen

Der gesamte Konfigurationsvorgang des econ sens3 ist auf mehrere Menüs und unterschiedliche Eingabefenstern aufgeteilt.

Auf jeder Menüseite ist ein Button *Übernehmen* zu finden. Dieser dient zum Speichern Ihrer Eingaben auf der jeweiligen Menüseite, d.h. wenn Sie die Menüseiten wechseln und vergessen auf *Übernehmen* zu drücken, werden Ihre Eingaben wieder auf die Standardwerte zurückgesetzt.

Um am Ende des gesamten Konfigurationsvorgangs Ihre Einstellungen dauerhaft zu speichern, wählen Sie im Menü Save Änderungen im permanenten Speicher ablegen und bestätigen mit Übernehmen.

Sie werden auf jeder Menüseite mit der Meldung "*Vergessen Sie nicht, Ihre Änderungen dauerhaft zu speichern*" an das dauerhafte Speichern Ihrer Einstellungen erinnert.

Untermenü Datum

Das Untermenü Time/Date dient zur Konfiguration der Zeit und Datumseinstellungen des econ sens3.

Name	Wert
Datum & Uhrzeit	 Datum und Uhrzeit nicht verändern Datum und Uhrzeit = Zeit manuell setzen Zeit und Datum vom Zeitserver übernehmen
Zeit manuell setzen DD/MM/CCYY hh:mm:ss Sommerzeit	29/05/2015 11:11:01
Zeitserver 1	130.88.202.49
/eitserver 2	129.6.15.28
/eitserver 3	212.68.213.6
Zeitserver 4	212.100.178.143
Automatische tägliche Synchronisation mit dem Zeitserver um 03:30	

Hierfür stehen folgende Möglichkeiten zur Verfügung:

1. Zeiteinstellung per NTP-Zeitserver

Befindet sich econ sens3 in einem Netzwerk, indem ein Zeitserver mit NTP-Protokoll zur Verfügung steht, so kann das Gerät die Uhrzeit und Datum von diesem Server übernehmen. Aktivieren Sie dazu das Auswahlfeld *Zeit und Datum vom Zeitserver übernehmen*.

Sie können bis zu vier ntp-Zeitserver definieren. Geben Sie hierzu in die Felder ntp-Zeitserver 1..4 die IP-Adresse oder den Namen des jeweiligen Servers ein, z.B. *ptbtime1.ptb.de* oder *192.53.103.108*.

Mit Klick auf übernehmen überprüft econ sens3 zunächst die Verbindung zum angegeben Server. Bei mehreren Servern wählt das Gerät selbstständig denjenigen mit der kürzesten Antwortzeit.

2. Zeiteinstellungen manuell setzen:

Steht kein ntp-Zeitserver zur Verfügung können die Zeiteinstellungen des Geräts auch manuell gesetzt werden.

Aktivieren Sie die Auswahl *Datum und Uhrzeit = Zeit manuell setzen*. Mit Klick auf *Übernehmen* werden Systemzeit und Datum des econ sens3 mit den Werten aus dem Feld *Zeit manuell setzen* abgeglichen. Kopieren Sie in dieses Feld z.B. die unten eingeblendete Zeiteinstellung Ihres PC's.

Ein Klick auf Reset setzt Ihre Eingaben wieder auf die voreingestellten Werte zurück.

Untermenü Netzwerk

Im Menü *Netzwerk* können Sie die grundlegenden Netzwerkeinstellungen des econ sens3 vornehmen.

Name	Wert				
Welche IP-Adresse soll verwendet werden?	Wenn möglich, IP-Adresse per DHCP beziehen, ansonsten Standardwerte verwenden Standardeinstellungen verwenden				
Standard IP-Adresse	169.254.1.1				
Standard Subnetzmaske	255.255.0.0				
Default Gateway	0.0.0				
DNS Server	0.0.0				
Netzwerk Gerätename	A82CE111B				
FTP server					
✓ Übernehmen X Abbruch					
Abbildung 28: Startbildschirm	des Menüs Network				

Sie haben die Wahl zwischen manueller Vergabe der IP-Adresse oder der Vergabe der Adresse per DHCP Server. Werksseitig ist die Funktion *Wenn möglich IP-Adresse per DHCP beziehen,* eingestellt. Findet das Gerät keinen DHCP Server, so werden automatisch die Werte aus den Feldern IP-Adresse, Subnetzmaske, default Gateway, DNS-Server und Netzwerk-Gerätename herangezogen. Die in Abb. 25 gezeigten Werte stellen die Werkseinstellungen des Gerätes dar.

Untermenü Elektrisch

Das Untermenü Elektrisch dient zur Konfiguration des Anschlussnetzes des econ sens3.

Name	Wert		
Vorauswahl Dreieck; Dreiphasen-Dreileiter-Netz (ohne N) Stern; Dreiphasen-Vierleiter-Netz (mit N)	 Durch den Benutzer festgelegte Einstellungen 130/230V 50Hz Dreieck., Aufzeichnungsinterval= 15min 130/230V 50Hz Stern., Aufzeichnungsinterval= 15min 230/400V 50Hz Dreieck., Aufzeichnungsinterval= 15min 230/400V 50Hz Stern., Aufzeichnungsinterval= 15min 400/690V 50Hz Stern., Aufzeichnungsinterval= 15min 		
Vert fur Vorauswahl 0			
Name	Wert		
Frequenz	© 50Hz		
Phase/Netzspannung	 ○ 130/230V ③ 230/400V ○ 400/690V 		
Тур	 Stern; Dreiphasen-Vierleiter-Netz (mit N) Dreieck; Dreiphasen-Dreileiter-Netz (ohne N) 1-phasig 		
Aufzeichnungsintervall	 10 min 15 min 20 min 		
Namo	Wort		
CT Verhältnis			
Impulsverhältnis			
Æbernehmen X Abbruch	Manüa Electrical		

Der econ sens3 kann in verschiedenen Netzen eingesetzt werden, so z.B. in 2-, 3- und 4-Leiter-Netzen beliebiger Belastung. Das Gerät kann sowohl in Netzen mit Nennspannungen ab 120V betrieben werden (z.B. USA), als auch in Netzen mit 230/400 V und 400/690V. Die Netzfrequenz beträgt dabei 50 Hz.

Für die Konfiguration des Netzes, in dem der econ sens3 eingesetzt wird sind nur wenige Einstellungen vorzunehmen.

Sie können entweder eine Einstellung aus der Vorauswahl benutzen oder über die benutzerdefinierten Einstellungen alle Parameter selbst zusammenstellen.

Erläuterung zu den benutzerdefinierten Einstellungen:

Im Europäischen Raum sind hauptsächlich die 230/400 V Netze vertreten. Die Einstellung 130/230 V ist für Netze in den USA zu verwenden, 400/690V Netze kommen bei großen Industrieanlagen oder Windkraftanlagen vor.

Die Netzfrequenz beträgt in Europa 50 Hz. Bevor sie an diesen Parametern etwas ändern, sollten Sie sich zunächst kundig machen, welche Einstellung zu wählen ist.

In aller Regel werden Sie econ sens3 in einem Netz einsetzen, bzw. die Leistungsaufnahme eines Verbrauchers messen, der mit drei Phasen uns einem Neutralleiter versorgt wird. Die Ausnahme bilden symmetrische Verbraucher z.B. große Elektromotoren; sie werden lediglich über drei Phasen angebunden.

Daher können Sie noch zwischen der Option Dreieck (Dreiphasen-Dreileiter-Netz ohne Neutralleiter) und der Option Stern ((Dreiphasen-Vierleiter-Netz mit Neutralleiter) oder einem Einphasen-Netz wählen.

Name	Wert	
Frequenz	© 50Hz	
Phase/Netzspannung	 ○ 130/230∨ ● 230/400∨ ○ 400/690∨ 	
Тур	 Stern; Dreiphasen-Vierleiter-Netz (mit N) Dreieck; Dreiphasen-Dreileiter-Netz (ohne N) 1-phasig 	
Aufzeichnungsintervall	 10 min 15 min 20 min 	

Die Einstellung *Aufzeichnungsintervall* legt fest, ob Sie bei Export der Energieverbrauchsdaten wie in Kap. *Menü Graph* 10min-Mittelwerte oder 15min-Mittelwerte erhalten. Standardmäßig erhalten Sie 15min-Mittelwerte.

Jeder über die beiden Impulsausgänge ausgegebene Impuls entspricht einer Energiemenge in Wh. Dieses "Impulsgewicht" kann im Untermenü Elektrisch unter dem Punkt Impulsverhältnis eingestellt werden.

Name		Wert	
CT Verhältnis	0		
Impulsverhältnis	0		
bbildung 30: Impulsgewichtung S0-Inter	face		

Dies ist notwendig, da der Impulsausgang eine **maximale Impulsfrequenz von 10 Hz** liefern kann; dies entspricht 36000 Impulsen/h.

Mit der folgenden Gleichung kann der max. zulässige Impulsgewichtungsfaktor errechnet werden.

P = angeschlossene maximale Last in Watt

X = Impulsgewichtungsfaktor in Wh/Impuls

52

Handbuch econ sens3

Beispiel: Der zu messende Verbraucher sei eine Maschine mit $P_{ges} = 100 \text{ KW}$

$$X = \frac{100.000W * 1h}{36000} \approx 2.8 \frac{Wh}{imp}$$

In der Praxis findet sich bei Stromzählern häufig eine Impulskonstante (hier K genannt) in imp /kWh. Die Umrechnung von X in diese Konstante K erfolgt durch:

$$K = \frac{1}{X} * 1000$$

Für unser Beispiel bedeutet dies: $K = \frac{1}{2,8} * 1000 = 357 \frac{imp}{kWh}$

In der Praxis hat sich gezeigt, dass eine Impulsrate von **100 imp/kWh (= 10 Wh/imp)** vollkommen ausreichend ist. Diese Berechnung ist die gleiche wie bei der Einstellung des Verhältnisses bei der Eingangs / Ausgangs Einstellung.

Untermenü Eingang / Ausgang (Logversion)

Im Untermenü können die zusätzlichen Schnittstellen des sens 3 als Eingänge / Ausgänge aktiviert oder deaktiviert werden. Nachdem man eine Schnittstelle ausgewählt und diesen aktiviert hat, müssen noch verschiedene Einstellungen dazu vorgenommen werden. (s. Abb. 23)

IO 1				
Deaktivieren				
Digital Ausgang	Digital Eingang	Analog Ausgang	Analog Eingang	
Spannung (Aktiv)	Quelle (Passiv)			
Name				
Digital Eingang Spannung				
¢ ()				
✓ Übernehmen				
Vergessen Sie nich	nt, Ihre Änderungen	dauerhaft zu speich	ern!	
Abbildung 31: Uni	termenü Eingang /	Ausgang		

Die verschiedenen Einstellungen sind im Folgenden näher erläutert:

Digital Ausgang

Funktion	Beschreibung
Einstellung über Modbus	Der Wert am Ausgang wird im Modbus Register (siehe Kap.
	Modbus Register) gesetzt oder gelöscht. Der Wert am
	Ausgang wird alle 5 ms aktualisiert.
Verbrauchte Energie	Der sens 3 sendet den Betrag der verbrauchten Energie als Anzahl von Impulsen über den Ausgang. Dabei muss der Anwender den Faktor der Anzahl von Wh pro Impuls festlegen. Dabei ist jeder Impuls 50ms lang und hat minimale Unterbrechung zwischen zwei Impulsen von 50ms. Somit können maximal 10 Impulse pro Sekunde verschickt werden. Ein Beispiel zur Bestimmung des Faktors unterhalb der Tabelle
Erzeugte Energie	Dasselbe wie bei der verbrauchten Energie nur das die Pulse den Betrag an erzeugter Energie übertragen.
Timer	Der Ausgang kann mit einem Timer zu bestimmten Zeiten
	aktiviert/ deaktiviert werden. Die Auflösung des Timers liegt
	bei 1s.

Ein Beispiel zur Einstellung des Faktors bei verbrauchter Energie:

Angenommen es wird per sens 3 eine Maschine mit 100 kWh Verbrauch gemessen. Der sens 3 überträgt max. 10 Impulse pro Sekunde also bei 3600 Sekunden / Stunde insgesamt 36.000 Impulse. Dies bedeutet bei einem Faktor von 1 werden 36.000 Wh übertragen. Daher ist bei einer Messung von 100.000 Wh (= 100 kWh) der Faktor zu erhöhen. Dies wäre bei 100.000 Wh / max. 36.000 Impulse pro Stunde = 2,778 ein Faktor von mindestens 3.

Senke

Zur Verwendung des Ausgangs als Senke benötigt man eine externe Quelle und einen externen Verbraucher, wie das Schaltbild unten zeigt.

Wird der Ausgang des sens 3 aktiv zieht ein NPN Transistor den Ausgang auf low. Der Emitter des Transistors ist mit IOGND verbunden.

Wichtig: Mit dem Strom des Ausgangs können keine induktiven Lasten oder Relais getrieben werden. Nur das Treiben eines Optokopplers ist möglich.

Der Strom ist auf 21 mA begrenzt und wird überwacht. Steigt der Strom über 21 mA wird er für 5 Sekunden deaktiviert.

Quelle (Impulsausgang)

Die Einstellung des Ausgangs als Quelle legt am Ausgang einen Strom an. Der daran angeschlossene Verbraucher muss mit IOGND verbunden werden. Der Strom kann auf 1 mA, 2 mA, 5 mA, 10 mA oder 20 mA eingestellt werden. Ist der Ausgang aktiviert bezieht der Verbraucher den Strom.

Digital Eingang

Ist die Schnittstelle des sens 3 als Eingang geschaltet, zählt das Gerät die Impulse die an am Eingang anliegen. Die Impulse können sowohl spannungsgesteuert (aktiv) als auch stromgesteuert (passiv) sein.

Aktiver Impuls (spannungsgesteuert)

Der Eingang wird angesteuert von einer Spannungsquelle. Der Eingang zählt bei einem active high.

Passiver Impuls (stromgesteuert)

Der sens 3 legt am Eingang eine Stromversorgung an. Diese kann auf 1 mA, 2 mA, 5 mA, 10 mA oder 20 mA eingestellt werden. Der Eingang zählt bei einem aktive low. Dazu kann ein externer Schalter angeschlossen werden. Im geöffneten Zustand fließt kein Strom und der Eingang zählt um 1 rauf.

Eingangs Signal

Für eine digitale Eingabe wird die Spannung am Eingangskontakt gemessen. Ein "high level" liegt an wenn die Spannung über 2.5 V liegt. Ein "low level" wird am Eingang erkannt wenn die Spannung unterhalb der 1.5 V fällt. Für eine Spannung zwischen 1.5 V und 2.5 V ändert sich der Status des Eingangs nicht.

Der Eingang wird in 5 ms Schritten abgetastet. Die erfassten Abtastungen werden entprellt und erst wenn 3 aufeinanderfolgende Abtastungen stabil sind, wird der erkannte Level verändert. Das folgende Bild zeigt den Vorgang des Entprellens. Spitzen für die Zeit von einer oder zwei Abtastungen werden herausgefiltert.

Analoger Ausgang

Durch die Einstellung der Schnittstelle als Analogen Ausgang versorgt der sens 3 den Ausgang mit einem Strom zwischen 0 und 20 mA.

Dieser Strom kann keine induktiven Lasten oder Relais treiben.

Dazu gibt es verschiedene Funktionen:

Funktion	Beschreibung
Einstellung über Modbus	Der Strom am Ausgang wird durch den Wert im Modbus Register gesetzt. Die Ausgabe wird alle 5 ms aktualisiert.

Verbrauchte Energie	Der Strom am Ausgang ist proportional zur verbrauchten
	Energie. Der Benutzer muss festlegen wieviel Watt (W) die
	Obergrenze bilden und gleich 20 mA sind.
Erzeugte Energie	Das gleiche wie bei der verbrauchten Energie nur das die
	Obergrenze für die verbrauchte Energie eingegeben werden.

Analoger Eingang

Strom

Der Analoge Eingang misst Ströme von 0 bis 20 mA am Eingangskontakt.

Wichtig: Der Strom am Eingangskontakt ist auf 21 mA begrenzt. Eine elektronische Sicherung schützt den Eingang indem der Eingang alle 5 Sekunden geprüft wird. Wird der Strom von 21 mA überschritten wird die Sicherung geöffnet. Ist der Strom bei der nächsten Prüfung wieder unter 21 mA wird die Sicherung wieder geschlossen.

Spannung

Die Spannung am Eingangskontakt wird in V. Es gibt zwei wählbare Betriebsbereiche einmal 0 bis 10 V und 0 bis 30 V.

Name	Ereignisse aufzeichnen	Einstellungen	Wert
		Frequenzschwankungen Integrationsintervall	100
Frequenzschwankungen		Frequenzschwankungen Untergrenze	99
		Frequenzschwankungen Obergrenze	101
		Langsame Spannungsänderungen Integrationsintervall	600
Langsame Spannungsänderungen		Langsame Spannungsänderungen Untergrenze	90
		Langsame Spannungsänderungen Obergrenze	110
Schnelle Spannungsänderungen		Schnelle Spannungsänderungen Grenze	5
Flieker Schörfegrad		Schärfegrad Beobachtugnsinterval	600
nieker Soliai regrau		Schärfegrad-Obergrenze	10
Spannungseinbruch		Grenze für Spannungseinbrüche (< 1min)	90
Spannungsunterbrechung		Grenze für Spannungunterbrechungen	10
Zeitweilige netzfrequente Überspannungen		Zeitweilige netzfrequente Überspannungen	110
Transiente Überspannungen		Transiente Überspannungen	150
Spannungsunsymetrie		Spannungsunsymetrie	2
Oberschwingungsspannung		Oberschwingungsspannung	8
Stromlevel		Überschreitung des Strom-Messbereichs	3000
Frequenzverschiebung		Grenze Frequenzverschiebung	1000
Vektorsprung		Vektorsprung	30
Neutralleiter-PE-Spannungsabfal		Neutralleiter -> PE-Spannung Obergrenze	10
Versorgungsspannung ein-/aus		-	
Oberschwingungsstrom		Harmonic Strom grenze	10
Änderung der internen Uhrzeit			
Snapshot		-	-0
R	-	Event-Halbwertszeit (Tagen)	30
Einstellungen nach EN50160 anwenden			

Über einen optionalen Freischaltschlüssels kann der econ sens3 auf die Proversion erweitert werden. Die Grenzwerte für die Ereignisaufzeichnung werden in dieser Tabelle (Abbildung 29) durchgeführt Durch die Auswahl "Einstellungen nach EN501060 anwenden" werden die Grenzen auf Defaultwerte nach der genannten Norm gesetzt. Das Ereignislog und die Kurvenformen werden über den Menüpunkt: *Events* aufgerufen.

Im Folgenden sind die Bedingungen zur Ereigniserfassung beschrieben:

Frequenzschwankungen

Die durchschnittliche Netzfrequenz wird alle 10 Sekunden geprüft. Abweichungen von mehr als +/-1% von der Nennfrequenz werden erkannt. Defaultwerte: Untergrenze 99% /Obergrenze 101%

Handbuch econ sens3

Langsame Spannungsänderungen

Die durchschnittliche Versorgungsspannung wird alle 10 Minuten überprüft. Abweichungen von mehr als +/-10% von der nominalen Versorgungsspannung werden erkannt. Defaultwerte: Untergrenze 90% /Obergrenze 110%

Schnelle Spannungsänderungen

Die 3 Phasen der Messspannung werden geprüft. Plötzliche Spannungsänderungen von mehr als 5% der nominalen Messspannung werden erkannt. Defaultwert: 5%

Flicker Schärfegrad

Die 3 Phasen der Messspannung werden geprüft. Die Methode zur Berechnung des Flicker ist eine Annäherung an die Standard-Methode. Defaultwert: Grenzwert x10

Spannungseinbruch

Die 3 Phasen der Messspannung werden geprüft. Spannung unter 90% der Nennspannung und unter 1 Minute Dauer werden detektiert. Eine Kurvenform wird für dieses Ereignis gespeichert. Defaultwert: 90%

Spannungsunterbrechung

Die 3 Phasen der Messspannung werden geprüft. Spannung unter 10% der Nennspannung und unter 3 Minuten Dauer werden erfasst. Eine Kurvenform wird für dieses Ereignis gespeichert. Defaultwert: 10%

Kurzzeitige Überspannungen

Die 3 Phasen der Messspannung werden geprüft. Überspannung über 110% der Nennspannung und unter 3 Minuten Dauer werden erfasst. Eine Kurvenform wird für dieses Ereignis gespeichert. Defaultwert: 110%

Transiente Überspannungen

Die 3 Phasen der Messspannung werden geprüft. Überspannung über 150% der Nennspannung und unter 1 Minute Dauer werden detektiert. Eine Kurvenform wird für dieses Ereignis gespeichert. Defaultwert: 150%

Spannungsasymmetrie

Die 3 Phasen der Messspannung werden geprüft. Asymmetrie über 2% werden festgestellt. Eine Kurvenform wird für dieses Ereignis gespeichert. Defaultwert: 2%

Oberschwingungsspannung

Die 3 Phasen der Messspannung werden geprüft. Gesamte harmonische Verzerrungen einer Spannung über 8% werden festgestellt. Oberschwingungen werden bis zur 15. Harmonischen erkannt. Eine Kurvenform wird für dieses Ereignis gespeichert. Defaultwert: 8%

Stromgrenze

Die 3 Phasen der Ströme werden geprüft. Ströme über dem maximalen Strombereich werden erkannt. Eine Kurvenform wird für dieses Ereignis gespeichert. Defaultwert: 3000Arms

Frequenzverschiebung

Die Netzfrequenz wird überprüft. Plötzliche Veränderungen der Frequenz von mehr als 1 Hz der

nominellen Messspannung werden erkannt. Eine Kurvenform wird für dieses Ereignis gespeichert. Defaultwert: 1000mHz

Vektorsprung

Die 3 Phasen der Messspannung werden geprüft. Springt der Spannungswinkel über 30 ° wir dieser detektiert. Eine Kurvenform wird für dieses Ereignis gespeichert. Defaultwert: 30°

Neutralleiterspannung

Die Neutralleiterspannung wird überprüft. Eine Spannung über 10% der nominalen Messspannung wird

erkannt. Defaultwert: 10%

Ein -und Ausschaltzeit Die letzte Ein -und Ausschaltzeit wird protokolliert.

Oberschwingungsstrom

Die 3 Phasen der Messspannung werden geprüft. THDI's über 2% werden festgestellt. Defaultwert: 100%

Uhrzeitänderung

Änderungen an der internen Uhrzeit werden protokolliert.

Im Untermenü Events werden für jedes Ereignis bis zu 6 Parameter aufgezeichnet. Die Beschreibung findet sich in folgender Tabelle (unbenutzte Parameter=0):

Ereignis	Parameter 1	Parameter 2	Parameter 3	Parameter 4	Parameter 5	Parameter 6
	gemessene Frequenz [mHz]	Verhältnis zur gemessenen Nennfrequenz	0	0	0	0
Frequenzschwankungen	[[[[]]]	frequency [%]				
Langsame Spannungsänderungen	gemessene Spannung L 1 [dVrms]	gemessene Spannung L 2 [dVrms]	gemessene Spannung L 3 [dVrms]	Verhältnis der maximal gemessenen Spannung zur Nennspan- nung [%]	0	0
Schnelle Spannungsänderungen	Spannungs- änderung L 1 [dVrms]	Spannung- sänderung L 2 [dVrms]	Spannungs- änderung L 3 [dVrms]	0	0	0
Flicker Schärfegrad	Kurzzeit- Flicker L 1 [-/10]	Kurzzeit- Flicker L2 [-/10]	Kurzzeit- Flicker L 3 [-/10]	0	0	0
Spannungseinhruch	niedrigstes Verhältnis zur gemessenen Nennspan- nung für L1 [%]	niedrigstes Verhältnis zur gemessenen Nennspan- nung für L 2 %1	niedrigstes Verhältnis zur gemessenen Nennspan- nung für L 3 %	Dauer [ms]	0	0
Spannungsunterbrechung	niedrigste Spannung L1 [dVrms]	niedrigste Spannung L2 [dVrms	niedrigste Spannung L3 [dVrms]	Dauer [ms]	0	0
Zeitweilige transiente Überspannung	höchste Verhältnis zur gemessenen Nennspan- nung L1 [%]	höchste Verhältnis zur gemessenen Nennspan- nung L2 [%]	höchste Verhältnis zur gemessenen Nennspan- nung L3 [%]	Dauer [ms]	0	0
Transiente Überspannungen	Überspannung L1 [dVrms*s]	Überspannung L2 [dVrms*s]	Überspannung L3 [dVrms*s]	Dauer [ms]	0	0
Spannungsasymmetrie	Maximum Asymmetrie L1 [%]	Maximum Asymmetrie L2 [%]	Maximum Asymmetrie L3 [%]	Dauer [ms]	0	0
Oberschwingungsspannung	Maximum Klirrfaktor L1 [%]	Maximum Klirrfaktor L2 [%]	Maximum Klirrfaktor L3 [%]	Dauer [ms]	0	0
Stromgrenze	Überstrom L1 [dArms*s]	Überstrom L2 [dArms*s]	Überstrom L3 [dArms*s]	Dauer [ms]	0	0
Frequenzverschiebung	Frequenz vor Änderung	Frequenz vor Änderung	0		0	0

	[mHz]	[mHz]				
	Vektorsprung	Vektorsprung	Vektorsprung		0	0
Vektorsprung	L1 [°]	L2 [°]	L3 [°]			
	höchste	Dauer [ms]	0	0	0	0
	Neutrallleiter-					
	Spannung					
Neutralleiterspannung	[dVrms]					
Versorgungsspannung	1=An, 0=Aus	0	0	0	0	0
Ein-/Aus						
	Maximum	Maximum	Maximum	Dauer [ms]	0	0
	Klirrfaktor L1	Klirrfaktor L2	Klirrfaktor L3			
Oberschwingungsstrom	[%]	[%]	[%]			
Änderung der internen	Zeitdifferenz	0	0	0	0	0
Uhrzeit	[s]					

Untermenü Modbus

Die Einstellungen für die Kommunikationsmöglichkeit Modbus erfolgt in diesem Abschnitt.

Modbus Schnittstelle	 Keine Modbus TCP (Ethernet) Modbus RTU (RS485) Modbus Gateway Modbus TCP & RTU
Modbus TCP Adresse	1
Modbus RTU Adresse	1
Modbus Baudrate	 9600 19200 38400 57600 115200
Modbus Parität	 Keine ungerade gerade
Modbus stop bits	
Modbus Port Nummer	502
Modbus TCP delay (ms)	1000
Modbus RTU timeout (ms)	1000
Modbus Ereignis Flags min. Aktivitätszeit (ms)	1000
✓ Übernehmen X Abbruch	

Modbus Einstellungen

Das Setup muss über die HTML-Seite durchgeführt werden.

Parameter	Beschreibung		
Modbus Interface	Protokollauswahl:		
	- keine		
	- Modbus TCP		
	- Modbus RTU (RS485)		
	- Modbus-Gateway		
Modbus address	Geräteadresse, gilt für Modbus: 0 255.		
Modbus baudrate	Baudrate, RS485: 9600, 19200, 38400, 57600 und 115200.		
Modbus paritiy	Parität, RS485: keine, ungerade, gerade.		
Modbus stopbits	Stopbits: 1 oder 2.		
Modbus port number	Port-Nummer für Modbus über TCP / IP.		
	Standardwert: 502. Andere Werte sind möglich.		
Modbus TCP delay	Dieser Parameter wird nur verwendet, wenn der econ sens3 als		
	Modbus-Gateway eingesetzt wird. Werte: 0 3600000 ms.		
Modbus RS 485 timeout	Dieser Parameter wird nur verwendet, wenn der econ sens3 als		
	Modbus-Gateway eingesetzt wird. Werte: 0 3600000 ms.		
Modbus Ereignis Flag	Dieser Parameter wird verwendet, um eine minimale Aktivität Zeit		
min. Aktivitätszeit (ms)	der Ereignisflags zu setzen. Für dieser Zeit(in ms) wird das		
	Ereignisflag auf 1 gehalten Werte: 0 3600000 ms.		

6	2	C	-
C)	ç)

Modbus R	egisteradressen
----------	-----------------

Adressbereich	Beschreibung	Datentyp
2110	Messung - Momentanwert	32 bit, Float
120126	Messung - Momentanwert	32 bit, Float
200217	Ereignisflag	1 bit
300340	Ereigniseistellungen	32 bit, Integer
400406	System	16 bit, Integer
410416	System	32 bit, Integer
500510	Ereignis - Messwerte	32 bit, Float
600603	IO Messwerte	16 bit, Integer
10021110	Messung - Momentanwert	32 bit, Float, gedreht
11201126	Messung - Momentanwert	32 bit, Float, gedreht
13001340	Ereigniseistellungen	32 bit, Integer, gedreht
15001510	Ereignis - Messwerte	32 bit, Integer, gedreht

In der folgenden Tabelle finden sich aller Registeradressen, die über Modbus gelesen werden können. Alle Daten werden im Datentyp: float mit 2 Registern und insgesamt 4 Bytes angeboten. Die Daten finden sich in den Registern 2...110 und 1002...1110. Die Daten in den Modbus-Registern können im Format:

- Big-Endian (High-Byte vor Low-Byte) Register 2...110
- Little-Endian (Low-Byte vor High-Byte) Register 1002...1110

abgerufen werden.

Unterstützt werden die Modbusfunktionen "Read Holding Registers" (0x03) und "Read Input Registers" (0x04). Register 2...110 (1002...1110) werden als 1...109 (1001...1119) adressiert. Ein Beispiel: Soll das Register für den Zählerstand Wirkarbeit der Phase L3 ausgelesen werden, so gibt man für Byteordnung Big-Endian Register 7 an und für Little-Endian 1007.

Name	Register	Adresse	Beschreibung	Phase	Einheit
Ptot	2	1002	Wirkarbeit (Zählerstand)	L1,L2,L3	kWh
P L1	4	1004	Wirkarbeit (Zählerstand)	L1	kWh
P L2	6	1006	Wirkarbeit (Zählerstand)	L2	kWh
P L3	8	1008	Wirkarbeit (Zählerstand)	L3	kWh
Qtot	10	1010	Blindarbeit (Zählerstand)	L1,L2,L3	kvarh
Q L1	12	1012	Blindarbeit (Zählerstand)	L1	kvarh
Q L2	14	1014	Blindarbeit (Zählerstand)	L2	kvarh
Q L3	16	1016	Blindarbeit (Zählerstand)	L3	kvarh
u(L1)	18	1018	Spannung (Momentanwert)	L1-L2	V
u(L2)	20	1020	Spannung (Momentanwert)	L2-L3	V
u(L3)	22	1022	Spannung (Momentanwert)	L3-L1	V
un(L1)	24	1024	Spannung (Momentanwert)	L1-N	V
un(L2)	26	1026	Spannung (Momentanwert)	L2-N	V
un(L3)	28	1028	Spannung (Momentanwert)	L3-N	V

i(L1)	30	1030	Strom (Momentanwert)	L1	А
i(L2)	32	1032	Strom (Momentanwert)	L2	А
i(L3)	34	1034	Strom (Momentanwert)	L3	А
p(L1)	36	1036	Wirkleistung (Momentanwert)	L1	kW
p(L2)	38	1038	Wirkleistung (Momentanwert)	L2	kW
p(L3)	40	1040	Wirkleistung (Momentanwert)	L3	kW
q(L1)	42	1042	Blindleistung (Momentanwert)	L1	kvar
q(L2)	44	1044	Blindleistung (Momentanwert)	L2	kvar
q(L3)	46	1046	Blindleistung (Momentanwert)	L3	kvar
s(L1)	48	1048	Scheinleistung (Momentanwert)	L1	kVA
s(L2)	50	1050	Scheinleistung (Momentanwert)	L2	kVA
s(L3)	52	1052	Scheinleistung (Momentanwert)	L3	kVA
PF tot	54	1054	Leistungsfaktor (Momentanwert)	L1,L2,L3	
PF(L1)	56	1056	Leistungsfaktor (Momentanwert)	L1	
PF(L2)	58	1058	Leistungsfaktor (Momentanwert)	L2	
PF(L3)	60	1060	Leistungsfaktor (Momentanwert)	L3	
Hdu(L1)	62	1062	Spannungsverzerrung (Momentanwert)	L1-N; THD	%
Hdu(L2)	64	1064	Spannungsverzerrung (Momentanwert)	L2-N; THD	%
Hdu(L3)	66	1066	Spannungsverzerrung (Momentanwert)	L3-N; THD	%
Hdi(L1)	68	1068	Stromverzerrung (Momentanwert)	L1; THD	%
Hdi(L2)	70	1070	Stromverzerrung (Momentanwert)	L2; THD	%
Hdi(L3)	72	1072	Stromverzerrung (Momentanwert)	L3; THD	%
Temp	74	1074	Temperatur (Momentanwert)		°C
Freq	76	1076	Frequenz (Momentanwert)		Hz
P+tot	78	1078	Wirkarbeit, Bezug (Zählerstand)	L1,L2,L3	kWh
P+ L1	80	1080	Wirkarbeit, Bezug (Zählerstand)	L1	kWh
P+ L2	82	1082	Wirkarbeit, Bezug (Zählerstand)	L2	kWh
P+ L3	84	1084	Wirkarbeit, Bezug (Zählerstand)	L3	kWh
P-tot	86	1086	Wirkarbeit, Rückspeisung (Zählerstand)	L1,L2,L3	kWh
P- L1	88	1088	Wirkarbeit, Rückspeisung (Zählerstand)	L1	kWh
P- L2	90	1090	Wirkarbeit, Rückspeisung (Zählerstand)	L2	kWh
P- L3	92	1092	Wirkarbeit, Rückspeisung (Zählerstand)	L3	kWh
Q+tot	94	1094	Blindarbeit, Bezug (Zählerstand)	L1,L2,L3	kvarh
Q+ L1	96	1096	Blindarbeit, Bezug (Zählerstand)	L1	kvarh
Q+ L2	98	1098	Blindarbeit, Bezug (Zählerstand)	L2	kvarh
Q+ L3	100	1100	Blindarbeit, Bezug (Zählerstand)	L3	kvarh
Q-tot	102	1102	Blindarbeit, Rückspeisung (Zählerstand)	L1,L2,L3	kvarh
Q- L1	104	1104	Blindarbeit, Rückspeisung (Zählerstand)	L1	kvarh
Q- L2	106	1106	Blindarbeit, Rückspeisung (Zählerstand)	L2	kvarh
Q- L3	108	1108	Blindarbeit, Rückspeisung (Zählerstand)	L3	kvarh
U (N)	110	1110	Spannung (Momentanwert)	N	V

Modbus Register – Momentanwerte/Zählerstände Teil 1

Name	Register	Beschreibung	Phase	Einheit
i tot	120	Strom gesamt (Momentananwert)	L1,L2,L3	А
p tot	122	Wirkleistung gesamt (Momentanwert)	L1,L2,L3	kW
q tot	124	Blindleistung gesamt (Momentanwert)	L1,L2,L3	kvar
s tot	126	Scheinleistung gesamt (Momentanwert)	L1,L2,L3	kVA

Modbus Register – Momentanwerte/Zählerstände Teil 2

Modbus Ereignisse (Zustände)

Die folgende Liste enthält alle Zustände, die über Modbus gelesen werden können. Jedes Ereignis hat ein einziges Bit (Flag). Wenn das Ereignis beginnt, wird das Bit (Flag) durch den econ sens3 gesetzt. Das Ereignisflag bleibt mindestens die min. Aktivitätszeit gesetzt längstens bis zum Ereignisende. Es werden die Kommandos "Read Coils" (0x01), "Read Discrete Inputs" (0x02) Bitregister 200 ... 216 werden als 199 .. 215 parametriert.

Name	Register
Frequenzschwankungen	200
Langsame Spannungsänderungen	201
Schnelle Spannungsänderungen	202
Flicker Schärfegrad	203
Spannungseinbruch	204
Spannungsunterbrechung	205
Zeitweilige netzfrequente Überspannungen	206
Transiente Überspannungen	207
Spannungsunsymetrie	208
Oberschwingungsspannung	209
Stromlevel	210
Frequenzverschiebung	211
Vektorsprung	212
Neutralleiter-PE-Spannungsabfall	213
Versorgungsspannung ein-/aus	214
Oberschwingungsstrom	215
Änderung der internen Uhrzeit	216

Tabelle Modbus – Ereignisse

Modbus Ereigniseinstellungen

Die Ereigniseinstellungen sind über die Register 300..340 bzw. 1300..1340 auszulesen.

Name	Register
Frequenzschwankungen Intervall	300
Frequenzschwankungen Untergrenze	302
Frequenzschwankungen Obergrenze	304
Langsame Spannungsänderungen Intervall	306
Langsame Spannungsänderungen Untergrenze	308
Langsame Spannungsänderungen Obergrenze	310

Schnelle Spannungsänderungen Grenze	312
Flicker Schärfegrad Intervall	314
Flicker Schärfegrad Grenze	316
Spannungseinbruch Grenze	318
Spannungsunterbrechung Grenze	320
Zeitweilige netzfrequente Überspannungen Grenze	322
Transiente Überspannungen Grenze	324
Spannungsunsymetrie Grenze	326
Oberschwingungsspannung Grenze	328
Stromlevel	330
Frequenzverschiebung Grenze	332
Vektorsprung Grenze	334
Neutralleiter-PE-Spannungsabfall Grenze	336
Oberschwingungsstrom Grenze	338
Ereignis Halbwertzeit	340

Modbus System Register

Name	Register
Seriennummer	400
Jahr	401
Monat	402
Тад	403
Stunde	404
Minute	405
Sekunde	406

Tabelle Modbus System Register

Modbus I/O Register

Name	Register
I/O 1	600
I/O 2	601
I/O 3	602
I/O 4	603

Tabelle Modbus System Register

Ereignisse – Messwerteregister

Die Kurzzeit-Flickerstärke (Pst) wird über ein Zeitintervall von zehn Minuten (einstellbar) gemessen. Die Langzeit-Flickerstärke (Pt), wir aus einer Folge von 12 Pst-Werten über ein 2-Stunden-Intervall berechnet.
Name	Register
Kurzzeit-Flickerstärke Pst L1	500
Kurzzeit-Flickerstärke Pst L2	502
Kurzzeit-Flickerstärke Pst L3	504
Langzeit-Flickerstärke Plt L1	506
Langzeit-Flickerstärke Plt L2	508
Langzeit-Flickerstärke Plt L3	510

Tabelle Modbus Ereignisse - Messwerteregister

Modbus TCP

Wenn der econ sens3 als Modbus-Slave über TCP / IP verwendet wird, schlägt die Modbus TCP-Spezifikation die Port-Nummer 502 zur Verwendung vor. Andere Werte sind möglich.

Modbus RTU

Wenn der econ sens3 als Modbus-Slave über RS485 verwendet wird, sind die seriellen Schnittstellen-Parameter erforderlich.

Modbus-Gateway

Wenn der econ sens3 als Modbus-Gateway verwendet wird, werden alle Parameter erforderlich. Die Modbus-TCP-Spezifikation schlägt vor, Port-Nummer 502 zu verwenden. Andere Werte sind möglich. Wenn das Modbus-Gateway eine Anfrage über TCP / IP mit einer nicht eigenen Modbus-Adresse erhält, wird es als Modbus-Server fungieren. Auf diese Weise kann ein Gerät sowohl Gateway und Server zur gleichen Zeit sein. Alle Anfragen mit einer anderen Modbus-Adressen werden auf den RS485-Bus gesendet.

Die TCP-Verzögerung ist die Zeit in Millisekunden, nachdem das Gateway eine Anfrage an den RS485-Bus sendet. Während der TCP-Verzögerung, erfolgt keine erneute Anforderungen auf den TCP / IP-Eingang. Durch die Einstellung der TCP Verzögerung auf 0, ist diese Funktionalität deaktiviert.

Der RS485-Timeout ist die Zeit, die das Gateway auf eine Antwort über die RS485-Leitung wartet. Wenn keine Antwort innerhalb dieser Zeit empfangen wird, sendet er eine Ausnahme Code 0xB "Gateway Zielgerät reagiert nicht" an den Master. 0 deaktiviert diese Funktion

Untermenü Sprache / Messdetails

Verschiedene Grundeinstellungen zum sens 3 können über das Untermenü Sprache / Messdetails vorgenommen werden wie in folgender Tabelle erläutert:

Funktion	Beschreibung
Sprache	Hiermit kann die Sprache eingestellt werden die im sens 3 Webinterface angezeigt wird.
Phase Farbe	Über diese Einstellung kann die Farbe verändert werden in der die Phasen im Menü "Messung" angezeigt werden.
UU Spalte in "Messung" anzeigen	Die Spalte zur Anzeige der Spannung der Phasen gegeneinander wird angezeigt / nicht angezeigt.
Energie-Tabelle in "Messung" anzeigen	Die Anzeige der Energie-Tabelle im Menü "Messung" wird aktiv / deaktiviert
Phase-Check auf "Messung" durchführen	Wenn diese Option nicht aktiviert ist wird im Menü "Messung" keine Überprüfung der Phasenverschiebung vorgenommen.
Dezimaltrennzeichen	Bestimmt die Kennzeichnung von Fließkommazahlen durch Punkt oder Komma.

Wert
 English Nederlands Deutsch Français
 Rot/Grün/Blau Braun/Schwarz/Grau
●. ◎,

Abbildung 34: Startbildschirm den Untermenüs Pass

Untermenü Alarme

Ein Alarm für das Überschreiten von Spannung oder Strömen auf den einzelnen Phasen, kann über das Untermenü Alarme eingestellt werden.

Aktivieren			Bedingung	
	U1 < 0	Vrms		
	U2 < 0	Vrms	for 0	S
	U3 < 0	Vrms		
	11 < 0	Arms		
	12 < 0	Arms	for 0	S
	13 < 0	Arms		

Untermenü Passwort

Im Untermenü Pass können Sie das Passwort und den Benutzernamen ändern.

Name	Wert			
Benutzername	user			
Passwort				
Passwort Verifizierung				
√ Übernehmen X Abbruch				
Abbildung 35: Startbildschirm den Untermenüs Pass				

Der aktuell aktive Benutzername wird im Feld Benutzername bei Eintritt in dieses Menü angezeigt.

Zum Ändern des Passworts bzw. des Benutzernamens gehen Sie wie folgt vor:

Geben Sie in den Feldern Benutzername und Passwort den neuen Namen und das neue Passwort ein und wiederholen Sie dieses im Feld Passwort Verifizierung. Mit Klick auf *Übernehmen* erscheint folgende Maske:

Geben Sie innerhalb von 60 s den alten Benutzernamen und das alte Passwort ein. Achten Sie darauf, dass der Haken "*Gewünschte Änderungen Übernehmen*" gesetzt ist.

Mit Klick auf Übernehmen wird das neue Passwort und ggf. der Benutzername gespeichert.

Untermenü Settings Datei

Die Einstellungen des sens 3 Gerätes können über den Button "Einstellungen in Datei schreiben" in einer XML Datei gespeichert werden und wird dann zum download angeboten.

Die XML Konfigurationsdatei kann über "Durchsuchen" ausgewählt und über "Einstellungen aus Datei laden" wieder in das sens 3 Gerät geladen werden.

Untermenü System

Im Untermenü System stehen Ihnen folgende Funktionen zur Verfügung:

Keine Aktion			
🔘 Löschen aller Ereignisaufzeichnungen			
Cöschen aller Leistungs- und Ereignisaufzeichnur	igen		
Arbeitszähler zurücksetzen			
🔿 Gerät neu starten			
🖱 Auf Werkeinstellungen zurücksetzen; Messdaten	bleiben erhalten		
✓ Übernehmen			

Löschen aller Ereignisaufzeichnungen:

Löscht alle Daten vom Gerät, die aus Ereignisaufzeichnungen (bei der Netzanalyse) entstanden sind.

Die Netzanalyse-Funktion ist optional zu aktivieren.

Löschen aller Leistungs- und Ereignisaufzeichnungen:

Löscht alle gemessenen Leistungs- und Ereignisaufzeichnungen vom Gerät.

Arbeitszähler zurücksetzen

Dadurch wird der Gesamtzähler der Wirkleistung des sens3 zurückgesetzt und das Gerät kann an anderer Stelle verwendet werden.

Gerät neu starten

Startet den econ sens3 neu (kein Reset)

Auf Werkseinstellungen zurücksetzen; Messdaten bleiben erhalten.

Setzt den econ sens3 auf seine Werkseinstellungen zurück (incl. Benutzername und Passwort). Es

werden keine Messdaten aus dem Speicher gelöscht

Untermenü Optionen

Im Untermenü Optionen können durch Eingabe der Options-Keys die Erweiterungen Proversion oder Logversion freigeschaltet werden.

Die folgenden Optionen sind aktiviert: - Ereignisse - Ein-/Ausgang : aktiviert bis 12/2017	viert: 2017	folgenden Optionen sind a reignisse in-/Ausgang : aktiviert bis f
Bitte Options-Key eingeben:		e Options-Key eingeben:
✓ Übernehmen X Abbruch	X Abbruch	✓ Übernehmen
bbildung 35: Untermenü Optionen	ü Optionen	ildung 35: Unterm

Untermenü Update

Das Firmwareupdate des sens 3 ist über zwei Wege möglich. Einmal kann über "Durchsuchen" die Datei des Firmwareupdates ausgewählt und über "Upload" in das Gerät hochgeladen werden oder der Inhalt der Datei wird per copy & paste in das Textfeld "Programmupdate" eingefügt und über "Datei verschicken" an den sens 3 übermittelt.

Description	la Datai		
Programmupdate aus	Jer Datei		_
Durchsuchen Ke	ne Datei ausgewählt.		
Upload			
Programmupdate			_
Datei verschicken			
bildung 35: Unterr	nenu Update		

9 Instandhaltung und Wartung

9.1 Justierung / Kalibrierung

Das Gerät wurde vor der Auslieferung vom Hersteller justiert / kalibriert. Bei Einhaltung der Umgebungsbedingungen ist eine Nachjustierung nicht notwendig.

9.2 Reinigung

Falls erforderlich, kann das Gerät mit einem trockenen Tuch außen gereinigt werden

Vorsicht !

Schäden durch Reinigungsmittel

Reinigungsmittel können Schäden am Gerät verursachen. Verwenden Sie kein Reinigungsmittel

Achtung !

Schäden durch Feuchtigkeit

Feuchtigkeit oder Nässe können die Funktionsfähigkeit der Komponenten beeinträchtigen. Sorgen Sie dafür, dass keine Feuchtigkeit oder Nässe in das Gerät gelangt. Reinigen Sie die Komponenten nur mit einem trockenen, fuselfreien Tuch.

9.3 Firmware-Update

Das econ sens3 Multifunktionsmessgerät unterstützt die Aktualisierung der Firmware (Firmware-Update). Die Update Funktion kann, wie alle schreibenden Zugriffe durch ein Passwort geschützt werden.

9.4 Reset

Der sens 3 hat eine vierstufige Resetlogik. Wird der Resetknopf am Gerät gedrückt gehalten, fängt die LED des IO 1 an zu blinken und durchläuft nacheinander die anderen LED's. Dabei besitzt jede LED eine eigene Resetfunktionalität die in der folgenden Tabelle zu entnehmen ist.

LED	Resetfunktion
IO 1	Das Gerät wird neu gestartet.
IO 2	Die IP Adresse wird auf die von Werk aus
	eingestellte zurückgesetzt.

IO 3	Die IP Adresse und das Passwort des Gerätes
	werden auf die Werkseinstellung zurückgesetzt.
IO 4	Das Gerät bootet in ein Rescue System. (Für den
	Fall, wenn das Hauptsystem nicht mehr reagiert)

9.5 Reparatur

Achtung !

Verlust der Zertifizierung und der Gewährleistung

Wird das Gerät oder ein mitgeliefertes Zubehörteil geöffnet, verliert das Gerät oder das Zubehörteil die Zertifizierung und die Gewährleistung der Fa. econ solutions GmbH.

Nur der Hersteller darf Reparaturen am Gerät oder an Zubehörteilen durchführen. Senden Sie defekte oder beschädigte Geräte oder Zubehörteile zur Reparatur oder zum Austausch an econsolutions zurück.

Wenn das Gerät oder ein Zubehörteil defekt oder beschädigt ist, gehen Sie wie folgt vor:

- 1. Bauen Sie das Gerät oder das Zubehörteil aus.
- 2. Verpacken Sie das Gerät oder das Zubehörteil versandfähig, so dass es beim Tramsport nicht beschädigt werden kann.
- 3. Senden Sie das Gerät oder das Zubehörteil an econ-solutions zurück. Die Adresse finden Sie in Kapitel 1.1 dieses Handbuchs.

10 Technische Daten

10.1 econ sens3 Grundgerät

Bedingungen für Transport und Lagerung

Die folgenden Angaben gelten für Geräte, die in der Originalverpackung transportiert bzw. gelagert werden.

Temperatur	-25°C+70°C
relative Luftfeuchtigkeit	0 bis 90 % RH

Umgebungsbedingungen im Betrieb

Das econ sens3 Powermeter ist für den wettergeschützten, ortsfesten Einsatz innerhalb geschlossener Räume vorgesehen

-10°C+55°C
0 bis 75 % nicht
kondensierend
max. 2000m
2
horizontal auf
Tragschiene*
Abstand zu
benachbarten Geräten
beidseitig 6 mm*
IP20

*Details finden Sie im Kapitel 5 dieses Handbuchs

Versorgungsspannung AC	
Installations Überspannungskategorie	300V OC 3
Absicherung der Versorgungsspannung (Sicherung)	1A, Typ C (zugelassen nach UL/IEC)
Nennbereich	100V - 240V (4565Hz)
Arbeitsbereich	+-10% vom Nennbereich
Leistungsaufnahme	max. 6VA / 5W

Anschlussvermögen der Klemmstelle "Versorgungsspannung AC"		
Steckverbinder: steckbare Schraubklemme MSTB	Г 2,5HC/4	
starre, mehrdrähtige oder feindrähtige Leiter ohne Aderendhülse [mm ²]	0,2	2,5
feindrähtig mit Aderendhülsen mit/ohne Kunststoffkragen [mm²]	0,25	2,5
feindrähtig mit TWIN-Aderendhülsen mit Kunststoffkragen [mm ²]	0,5	1,5
Leiterquerschnitte AWG min/max	24	12
Abisolierlänge	7mm	
Anzugsdrehmoment min/max [Nm]	0,5	0,6

Spannungsmessung		
Dreiphasen 4-Leitersysteme mit Nennspannungen bis	277V/480V (+-10%)	
Dreiphasen 3-Leitersysteme, ungeerdet, mit Nennspannungen bis	IT 480V (+-10%)	
Überspannungskategorie	300V CAT III	
Bemessungsstoßspannung	4kV	
Messbereich L-N	0 300Vrms	
Messbereich L-L	0 520Vrms	
Auflösung	0,1V	
Crest-Faktor	2,45 (bezogen auf den Messbereich)	
Impedanz	3 MOhm/Phase	
Leistungsaufnahme	ca. 0,1VA	
Abtastfrequenz	160 Khz je Messkanal	
Frequenz der Grundschwingung	45Hz 65Hz	
Auflösung	0,01Hz	
rel. Messabweichung Spannung		

Anschlussvermögen der Klemmstelle "Spannungsmessung"		
Steckverbinder: steckbare Schraubklemme GMSTE	3T 2,5HV/3-ST-7,25	
starre, mehrdrähtige oder feindrähtige Leiter ohne Aderendhülse [mm ²]	0,2	2,5
feindrähtig mit Aderendhülsen mit/ohne Kunststoffkragen [mm²]	0,25	2,5
feindrähtig mit TWIN-Aderendhülsen mit Kunststoffkragen [mm ²]	0,5	1
Leiterquerschnitte AWG min/max	24	12
Abisolierlänge	8	Smm
Anzugsdrehmoment min/max [Nm]	0,5	0,6

Schnittstelle Strommessung		
Nur zum Anschluss an Wechselstromsysteme über mitgelieferte Rogowski-Spulen "econ Coils" !!!		
Steckverbinder: RJ12 (6P6C)		
Messbereich	abhängig von angeschlossener Coil	
Auflösung [A]	0,1	
rel. Messabweichung Strom	0,1% (vom angezeigten Wert)* +0,5% vom Messbereich	
Crest-Faktor	1,98	
Abtastfrequenz	10 Khz je Messkanal	

*Die rel. Messabweichung ist maßgeblich von der korrekten Installation der Coils abhängig Informationen hierzu finden Sie in Kap. 6.3

Schnittstelle Ethernet	
Steckverbinder: RJ45 (8P8C)	
Verwendbare Kabeltypen	100-Base-TX (Cat 5)
Unterstützte Protokolle	Modbus TCP
Übertragungsrate	10/100 Mbit fix

MODBUS	
Funktion	1 Master und max. 31 Slaves
Baudrate [Bd]	9600,19200,38400,57600,
	115200 (Modbus)
Unterstützte Protokolle	Modbus RTU
max Leitungslänge [m]	1200

Anschlussvermögen der Klemmstelle "MODBUS"		
Steckverbinder: steckbare Schraubklemme MC	1,5/5-ST	
starre, mehrdrähtige oder feindrähtige Leiter ohne Aderendhülse [mm ²]	0,14	1,5
feindrähtig mit Aderendhülsen ohne Kuststoffkragen [mm ²]	0,25	1,5
feindrähtig mit Aderendhülsen mit Kunststoffkragen [mm²]	0,25	0,5
feindrähtig mit TWIN-Aderendhülsen mit Kunststoffkragen [mm ²]	0,5	0,5
Leiterquerschnitte AWG min/max	28	16
Abisolierlänge	7mm	
Anzugsdrehmoment min/max [Nm]	0,22	0,25

Multi-IO		
Open-Kollektor-Ausgang		
Schaltspannung	max. 30 VDC	
Schaltstrom	max. 20 mA DC	
max Schaltfrequenz	10 Hz	
Digitaler Eingang		
min Spannung	2 VDC	
max. Spannung	30 VDC	
min Impulslänge	20 ms	
Eingang für potentiafreien Kontakt		
min Impulslänge	20 ms	
Analoger Spannungseingang		
Schaltspannung	max. 30 VDC	

Anschlussvermögen der Klemmstelle "Multi-I/O"		
Steckverbinder: steckbare Schraubklemme MC 1,5/5-ST		
starre, mehrdrähtige oder feindrähtige Leiter ohne Aderendhülse [mm²]	0,14	1,5
feindrähtig mit Aderendhülsen ohne Kuststoffkragen [mm²]	0,25	1,5
feindrähtig mit Aderendhülsen mit Kunststoffkragen [mm²]	0,25	0,5
feindrähtig mit TWIN-Aderendhülsen mit Kunststoffkragen [mm²]	0,5	0,5
Leiterquerschnitte AWG min/max	28	16
Abisolierlänge	71	mm
Anzugsdrehmoment min/max [Nm]	0,22	0,25

Versorgungsspannung DC		
Absicherung der Versorgungsspannung (Sicherung)	2A	
Nennbereich	1228V	
Arbeitsbereich	+-10% vom Nennbereich	
Leistungsaufnahme	max. 6W	

Abbildung 28: Abmessungen

Abbildung 29: Abstand zu benachbarten Geräten

10.2 econ sens 3 Mess Spulen

		Coil 200	Coil 400
mechanisch			
Spulen- Gesamtlänge	[mm]	200	400
messbarer Kabeldurchmesser	[mm]	40	65
max. Biegeradius	[mm]	35	
Länge des Anschlusskabels	[m]		2
elektrisch			
Messbereich	[A _{rms}]	0400	03200

10.3 Speicherkapazität des Messdatenspeichers

Der interne Datenspeicher des econ sens3 umfasst 4 GByte. Diese Speicherkapazität reicht aus, um Minutenwerte über einen Zeitraum von 40 Tagen aufzuzeichnen. Die 15-Minuten-Werte werden dynamisch aus den Minutenwerten berechnet.

10.4 Werkseinstellungen

Netzwerk

Econ sens3 hält standardmäßig nach einem DHCP-Server Ausschau; falls kein DCHP-Server im Netz vorhanden ist, gilt:

IP- Adresse:	169.254.1.1	
Subnetzmaske:	255.255.0.0	
Datum/Zeiteinstellungen		
<u>Zeit / Datum:</u>	Zeit und Datum vom Zeitserver übernehmen	
<u>Netzeinstellungen</u>		
Netztopologie:	Dreiphasen-4-Leiter-Netz (230/400V, 50 Hz)	
Impulsgewichtung		
Impulsgewichtung [WH/impuls]:	10 Wh/Impuls = 100 imp/kWh	
Benutzername:	user	
Passwort:	pass	

11 Anhang

11.1 Messparameter und deren Bedeutung

Messparameter	Beschreibung
Time	Zeitstempel
Samples	Anzahl der Werte für Durchschnittswertbildung
Frequency	Netzfrequenz
Temp	Temperatur im Sensorgehäuse
Code	Fehlercode Datensatz
L1 Urms avg	L1 Spannung Durchschnitt
L1 Urms min	L1 Spannung Minimum
L1 Urms max	L1 Spannung Maximum
L1 U THD avg	L1 Spannung Harmonische Verzerrung Durchschnitt
L1 Irms avg	L1 Stromstärke Durchschnitt
L1 Irms min	L1 Stromstärke Minimum
L1 Irms max	L1 Stromstärke Maximum
L1 I THD avg	L1 Stromstärke Harmonische Verzerrung Durchschnitt
L1 Pactive avg	L1 Wirkleistung Durchschnitt
L1 Qreactive avg	L1 Blindleistung Durchschnitt
L1 Pactive pos avg	L1 Wirkleistung Verbrauch Durchschnitt
L1 Pactive neg avg	L1 Wirkleistung Erzeugung Durchschnitt
L1 PF avg	L1 Power Factor
L2 Urms avg	L2 Spannung Durchschnitt
L2 Urms min	L2 Spannung Minimum
L2 Urms max	L2 Spannung Maximum
L2 U THD avg	L2 Spannung Harmonische Verzerrung Durchschnitt
L2 Irms avg	L2 Stromstärke Durchschnitt
L2 Irms min	L2 Stromstärke Minimum
L2 Irms max	L2 Stromstärke Maximum
L2 I THD avg	L2 Stromstärke Harmonische Verzerrung Durchschnitt
L2 Pactive avg	L2 Wirkleistung Durchschnitt
L2 Qreactive avg	L2 Blindleistung Durchschnitt
L2 Pactive pos avg	L2 Wirkleistung Verbrauch Durchschnitt
L2 Pactive neg avg	L2 Wirkleistung Erzeugung Durchschnitt
L2 PF avg	L2 Power Factor
L3 Urms avg	L3 Spannung Durchschnitt
L3 Urms min	L3 Spannung Minimum
L3 Urms max	L3 Spannung Maximum
L3 U THD avg	L3 Spannung Harmonische Verzerrung Durchschnitt
L3 Irms avg	L3 Stromstärke Durchschnitt
L3 Irms min	L3 Stromstärke Minimum
L3 Irms max	L3 Stromstärke Maximum
L3 I THD avg	L3 Stromstärke Harmonische Verzerrung Durchschnitt

L3 Pactive avg	L3 Wirkleistung Durchschnitt
L3 Qreactive avg	L3 Blindleistung Durchschnitt
L3 Pactive pos avg	L3 Wirkleistung Verbrauch Durchschnitt
Qreactive total avg	Blindleistung gesamt Durchschnitt (über L1, L2, L3)
N Urms avg	Neutralleiterspannung Durchschnittswert
N Urms min	Neutralleiterspannung Minimum
N Urms max	Neutralleiterspannung Maximum