

Intelligentes PC/CAN-Interface

BENUTZERHANDBUCH

DEUTSCH

HMS Technology Center Ravensburg GmbH

Helmut-Vetter-Straße 2 D-88213 Ravensburg Germany

Tel.: +49 751 56146-0 Fax: +49 751 56146-29 Internet: www.hms-networks.com E-Mail: info-ravensburg@hms-networks.com

Support

Sollten Sie zu diesem, oder einem anderen HMS Produkt Support benötigen, füllen Sie bitte das Supportformular auf www.ixxat.com/support aus.

Unsere internationalen Supportkontakte finden Sie im Internet unter www.ixxat.com

Copyright

Die Vervielfältigung (Kopie, Druck, Mikrofilm oder in anderer Form) sowie die elektronische Verbreitung dieses Dokuments ist nur mit ausdrücklicher, schriftlicher Genehmigung von HMS Technology Center Ravensburg GmbH erlaubt. HMS Technology Center Ravensburg GmbH behält sich das Recht zur Änderung technischer Daten ohne vorherige Ankündigung vor. Es gelten die allgemeinen Geschäftsbedingungen sowie die Bestimmungen des Lizenzvertrags. Alle Rechte vorbehalten.

Geschützte Warenzeichen

Alle in diesem Dokument genannten und ggf. durch Dritte geschützten Marken- und Warenzeichen unterliegen uneingeschränkt den Bestimmungen des jeweils gültigen Kennzeichenrechts und den Besitzrechten der jeweiligen eingetragenen Eigentümer. Eine fehlende Kennzeichnung von Markenund Waren-zeichen bedeutet nicht automatisch, dass diese nicht markenrechtlich geschützt sind.

Handbuchnummer: 4.01.0086.10000 Version: 2.0

1	Ein	führung5		
	1.1	Übersicht 5		
	1.2	Merkmale5		
	1.3	Support 6		
	1.4	Rücksendung von Hardware 6		
2	Inst	tallation7		
	2.1	Softwareinstallation7		
	2.2	Hardwareinstallation7		
3	Ans	schlüsse und Anzeigen8		
	3.1	Anschlussbelegung 8		
		3.1.1 Power-Stecker		
		3.1.2 Ethernet-Buchse9		
		3.1.3 CAN-Bus-Anschluss10		
	3.2	Anzeigen 10		
		3.2.1 Power-LED (PWR)11		
		3.2.2 Status-LED (CPU)11		
		3.2.3 Ethernet-LED (ETH)		
		3.2.4 Collision-LED (COL)		
		3.2.5 Link/Data Activity-LED (ACT)		
		3.2.6 CAN LED (CAN)		
	3.3	CAN-Busabschluss14		
4	Kor	nfiguration14		
	4.1	Konfigurationstool		
		4.1.1 Übersicht		
		4.1.2 Bedienung		
	4.2	Zurücksetzen auf die Werkseinstellung 15		
5	Anł	nang17		
	5.1	Technische Daten 17		
	5.2	Werkeinstellung der Netzwerkparameter 18		
	5.3	Windows Firewall Settings 19		
		1.1.1 CAN@net II/VCI		
		1.1.2 CAN@net II/Generic		
	5.4	Zubehör		
		5.4.1 CAN-Busabschlusswiderstand		
	5.5	Hinweise zur EMV 21		

5.6	Konformitätserklärung	21
5.7	FCC Compliance	22

1 Einführung 1.1 Übersicht

Mit dem PC-CAN-Interface CAN@net II haben Sie eine hochwertige elektronische Komponente erworben, die nach neuesten technologischen Gesichtspunkten entwickelt und hergestellt worden ist.

Dieses Handbuch soll Ihnen helfen, Ihr CAN@net II Interface näher kennen zu Iernen. Bitte Iesen Sie dieses Handbuch, bevor Sie mit der Installation beginnen. HMS bietet das CAN@net II in zwei Varianten an:

Das **CAN@net II/VCI** ist ein über TCP/IP betriebenes PC-CAN-Interface. Es bietet über die Ixxat Standard-Windows-Treiberschnittstelle VCI eine komfortable und funktionell umfangreiche Schnittstelle für Windows Applikationen an. Über diese Standard-Treiberschnittstelle werden auch Ixxat Tools betrieben.

Das **CAN@net II/Generic** kann durch seine generische ASCII-Schnittstelle über TCP/IP mit nicht Windows-Systemen (z. B. Linux) verbunden werden. Durch die Verwendung von zwei CAN@net II/Generic Geräten kann darüber hinaus eine CAN-Ethernet-CAN bridge realisiert werden.

Die CAN@net II/Generic Geräte empfangen CAN-Nachrichten in ihrem CAN-Netzwerk und leiten diese Nachrichten über TCP/IP an das Partnergerät weiter. Dieses sendet die Nachrichten in das lokale CAN-Netzwerk. Bei der Konfiguration der Geräte können Filter gesetzt werden, so dass nur Botschaften ausgetauscht werden, die im jeweiligen Netzwerk von Interesse sind.

Für die jeweiligen CAN@net II Varianten sind spezifische Handbücher für die Softwareinstallation sowie die Programmierung und Integration der Geräte in eigene Applikationen verfügbar.

1.2 Merkmale

- Eingangsspannungsbereich +9 V bis +32 V DC
- Freescale 32 Bit Mikrocontroller mit 150 MHz Takt
- 8 MByte DRAM
- 4 MByte Flash
- 1 CAN-Controller PHILIPS SJA1000 mit 16 MHz Takt
- CAN-Busankopplung nach ISO 11898-2, galvanisch entkoppelt
- Ethernet PHY mit Auto Crossover
- 10BASE-T/100BASE-TX Ethernet

Bild 1-1: Blockbild des CAN@net II

1.3 Support

Weitergehende Informationen zu unseren Produkten, sowie FAQ-Listen und Tipps zur Installation finden Sie im Supportbereich auf unserer Homepage (<u>www.ixxat.de</u>). Ebenso können Sie sich dort über aktuelle Produktversionen sowie verfügbare Updates informieren.

Sollten Sie nach dem Studium der Informationen auf unserer Homepage sowie der Handbücher weitere Fragen haben, wenden Sie sich bitte an unseren Support. Hierzu finden Sie im Supportbereich auf unserer Homepage entsprechende Formulare für die Supportanfrage. Um uns die Supportarbeit zu erleichtern und eine rasche Antwort zu ermöglichen, bitten wir Sie darauf zu achten exakte Angaben zu den jeweiligen Punkten zu machen und Ihre Frage bzw. Ihr Problem ausführlich zu beschreiben.

Wenn Sie unseren Support lieber per Telefon kontaktieren, dann bitten wir Sie ebenfalls vorab bereits eine entsprechende Supportanfrage über unsere Homepage zuzusenden, damit unserem Support die entsprechenden Informationen vorliegen.

1.4 Rücksendung von Hardware

Falls es erforderlich ist, dass Sie Hardware an uns zurücksenden, so bitten wir Sie das entsprechende RMA-Formular von unserer Homepage zu laden und entsprechend den Anweisungen auf diesem Formular zu verfahren.

Bei Reparaturen bitten wir Sie ebenfalls das Problem bzw. den Fehler ausführlich auf dem RMA-Formular zu beschreiben. Sie ermöglichen uns damit eine zügige Bearbeitung Ihrer Reparatur.

2 Installation

2.1 Softwareinstallation

Bei der Gerätevariante CAN@net II/VCI ist die Installation eines Treibers erforderlich. Dieser Treiber ist Bestandteil des VCI (Virtual CAN Interface), das Sie kostenlos im Internet unter <u>www.ixxat.de</u> herunterladen können.

Für die Installation des CAN-Treibers VCI unter Windows beachten Sie bitte das VCI-Installationshandbuch.

Für den Betrieb des CAN@net II/Generic als CAN-Ethernet-CAN Bridge müssen die CAN@net II/Generic Geräte konfiguriert werden. Für die Konfiguration der Geräte beachten Sie bitte das Handbuch CAN@net II/Generic.

2.2 Hardwareinstallation

Für den Betrieb des CAN@net II ist keine besondere Hardwareinstallation erforderlich. Lediglich eine Verbindung zu einer Spannungsquelle, zu Ethernet und zu CAN muss hergestellt werden.

Das CAN@net II/VCI kann während des Betriebs an das Ethernet-Netzwerk angeschlossen oder von diesem getrennt werden.

Vor dem ersten Betrieb des CAN@net II/VCI ist die Installation des VCI-Treibers erforderlich (siehe Abschnitt 2.1). Der VCI-Treiber installiert auch die benötigten Geräte-Treiber.

Bild 3-1: Anschlüsse und Anzeigen des CAN@net II

3.1.1 Power-Stecker

Für den Anschluss des CAN@net II an eine Spannungsversorgung wird eine Schraubklemme eingesetzt. Bei der Verkabelung achten Sie bitte darauf, dass die Kabel einen ausreichenden Querschnitt (>0,14 mm²) aufweisen.

Bild 3-2: Power Stecker des CAN@net II

Pin Nr. Stecker	Signal
1	V+ (+9 V bis +32 V DC)
2	V-
3	Output 1 (optional)
4	Output 2(optional)

Tabelle 3-1: Pinbelegung des Power-Steckers

Das Schraubklemmen-Modul ist aufgesteckt und kann mit Hilfe eines Schraubendrehers oder ähnlichem vom Gehäuse getrennt werden.

3.1.2 Ethernet-Buchse

Für den Anschluss des CAN@net II an Ethernet steht eine RJ45-Buchse zur Verfügung. Auf Grund des Auto-Crossover-Features des verwendeten Ethernet PHYs kann sowohl ein Crossover-Kabel als auch ein 1-zu-1-Netzwerkkabel eingesetzt werden.

Pin Nr. RJ45	Signal	
1 TX +		
2	TX -	
3	RX +	
4	Mit Pin 5 verbunden	
5	Mit Pin 4 verbunden	
6	RX -	
7 Mit Pin 8 verbunden		
8 Mit Pin 7 verbunden		

Tabelle 3-2: Pinbelegung des Ethernet-Anschlusses

Der Schirm der Buchse ist über einen 1 nF Kondensator mit dem Massepotential der Platine gekoppelt.

3.1.3 CAN-Bus-Anschluss

Das CAN@net II verfügt über eine Busankopplung gemäß ISO 11898-2. Die Belegung des Sub-D9-Steckers ist in der Tabelle 3-3 ersichtlich.

Pin Nr. Sub D9	Signal
1	Nicht verbunden
2	CAN-Low
3	GND
4	Nicht verbunden
5	Nicht verbunden
6	Nicht verbunden
7	CAN-High
8	Nicht verbunden
9	Nicht verbunden

Tabelle 3-3: Pinbelegung des CAN-Bus-Anschlusses

Der Schirm der CAN-Buchse ist über einen 1 M Ω Widerstand und einen 1 nF Kondensator mit der Masse der CAN-Ankopplung verbunden.

Die höchste Störfestigkeit wird erreicht, wenn der Schirm des CAN-Kabels geerdet wird.

3.2 Anzeigen

Das CAN@net II verfügt über sechs LEDs. Diese LEDs dienen zur Anzeige des Kommunikationsstatus der zugehörigen Schnittstelle bzw. zur Anzeige des Gerätestatus.

Bild 3-3: LEDs des CAN@net II

3.2.1 Power-LED (PWR)

Mit Hilfe der Power-LED wird die Betriebsbereitschaft des Gerätes signalisiert. Liegt die Versorgungsspannung am Gerät an, so leuchtet die Power-LED. Ist die Power-LED aus, ist ein Fehler in der Spannungsversorgung aufgetreten.

Leuchtmuster	Beschreibung	Ursachen/Hinweise
Aus	Keine Spannung vor- handen	 Sicherung defekt Spannungsregelung defekt Gerät nicht an Spannung ange- schlossen
Grün	Spannung vorhanden	Gerät voll funktionsfähig

Tabelle 3-4: Zustände der Power-LED

3.2.2 Status-LED (CPU)

Mit Hilfe der zweifarbigen (grün und rot) Status-LED wird der Betriebszustand des Gerätes signalisiert.

Leuchtmuster	Beschreibung	Ursachen/Hinweise	
Aus	Gerät nicht funktions- bereit	 Firmware läuft nicht an 	
Grün blinkend (1 Hz)	Gerät funktionsbereit, Firmware gestartet	 Firmware signalisiert "normal" Be- trieb 	
Grün blinkend	Gerät befindet sich im	 Bootmanager des Gerätes aktiv 	
(2 Hz)	Bootmanager	 Keine Firmware vorhanden bzw. noch nicht gestartet 	
Rot Schreibzugriff(e) auf das Flash		 Firmware wird ins Flash geschrie- ben 	
		 Konfiguration wird ins Flash ge- schrieben 	
Rot blinkend	Betriebsstörung	 Firmware zeigt eine Störung an 	

Tabelle 3-5: Zustände der Status-LED

3.2.3 Ethernet-LED (ETH)

Mit Hilfe der zweifarbigen (grün und rot) Ethernet-LED wird eine Kommunikation über Ethernet angezeigt. Mit jedem erfolgreich versendeten TCP/IP-Paket leuchtet die Ethernet-LED grün auf. Im Falle eines Sendefehlers leuchtet die LED rot auf.

Dies gilt nur für TCP/IP-Pakete, nicht für UDP-Pakete. UDP-Kommunikation wird nicht über diese LED angezeigt.

Leuchtmuster Beschreibung		Ursachen/Hinweise	
Aus	Keine Kommunikation über Ethernet	 Gerät nicht korrekt initialisiert 	
		 Gerät nicht an Ethernet ange- schlossen 	
		 Keine Kommunikation vorhanden 	
Grün/grün blin- kend	Ethernet Paket(e) er- folgreich versendet	 Kommunikation vorhanden und OK 	
Rot/rot blin- kend	Ethernet Paket(e) konnte nicht versen- det werden	 TCP/IP Verbindung nicht vorhan- den, d.h. Kabel defekt oder keine Netzwerkverbindung mehr vorhan- den 	

Tabelle 3-6: Zustände der Ethernet-LED

3.2.4 Collision-LED (COL)

Mit Hilfe der gelben Collision-LED werden Kollisionen der Ethernet-Kommunikation angezeigt.

Leuchtmuster	Beschreibung	Ursachen/Hinweise
Aus	Keine Kollision	 Fehlerfreie/keine Ethernet-Kom- munikation
Gelb/gelb blin- kend	Kollisionen detektiert	 Kollisionen in der Ethernet-Kom- munikation festgestellt

Tabelle 3-7: Zustände der Collision-LED

3.2.5 Link/Data Activity-LED (ACT)

Mit Hilfe der grünen Link/Data Activity-LED wird der Verbindungsstatus des Ethernet-Ports angezeigt.

Leuchtmuster	Beschreibung	Ursachen/Hinweise	
Aus	Kein Link vorhanden	 Keine Verbindung zu einem Ether- net-Netzwerk 	
		 Defektes Netzwerkkabel 	
Grün	Link vorhanden, je- doch keine Aktivität	 Korrekte Netzwerkverbindung vor- handen, allerdings momentan keine Kommunikation 	
Grün blinkend	Ethernet-Kommuni- kation	 Keine Ethernet-Kommunikation 	

Tabelle 3-8: Zustände der Link/Data Activity-LED

3.2.6 CAN LED (CAN)

Die zweifarbige (grün und rot) LED für CAN leuchtet bei jeder fehlerfrei empfangenen oder gesendeten Nachricht grün auf.

Befindet sich der CAN-Controller im Zustand "Error warning" oder "Error passiv", leuchtet die LED bei jeder CAN-Nachricht rot auf. Ist der CAN-Controller im Zustand "Bus off", leuchtet die LED ununterbrochen rot.

Leuchtmuster	Beschreibung	Ursachen/Hinweise	
Aus	Keine CAN- Kommunikation	 Keine CAN-Kommunikation 	
		 Gerät nicht mit CAN verbunden 	
Grün/grün blinkend	CAN- Kommunikation	 Mit jedem CAN-Telegramm wird die LED eingeschaltet 	
Rot blinkend	CAN-Kommunikation, CAN-Controller aber im Error-Zustand	 CAN-Controller befindet sich im Zustand "Error Warning" oder "Er- ror passiv", es werden aber noch CAN-Telegramme empfangen 	
Rot	Bus Off	 CAN-Controller befindet sich im Zustand "Bus Off", keine CAN- Kommunikation möglich 	

Tabelle 3-9: Zustände der CAN LED

3.3 CAN-Busabschluss

Auf dem CAN@net II ist kein Busabschlusswiderstand für den CAN-Bus bestückt.

Als Zubehör steht ein Busabschlusswiderstand in Form eines Durchführungssteckers bei HMS zur Verfügung (Bestellnummer 1.04.0075.03000).

4 Konfiguration

4.1 Konfigurationstool

4.1.1 Übersicht

Mit Hilfe des Konfigurationstools, welches bei der Installation des VCI-Treibers automatisch mit installiert wird, können die Netzwerkparameter des CAN@net II eingestellt werden.

Das Konfigurationstool durchsucht das Netzwerk, welches an den Rechner angeschlossen ist, nach verfügbaren CAN@net II Geräten. Alle gefundenen Geräte werden in der "Device List" angezeigt und können dann separat eingerichtet werden.

CAN@net II Configurator		_ 🗆 🗙
Device List:	🔽 Show Details	
System: CAN@net II Serial number: HW800515 Name: CAN_at_net_II_02_03 Connection state: Not Connected IP-Address: 192.168.10.22		Rescan Autoscan Configure Close
Configuration		×
C DHCP Mode C DHCP Static	IP Address 192.168.10.22 Subnet Mask 255.255.255.0 Gateway 192.168.10.254	OK Cancel
Hostname CAN_	at_net_II_02_03	Set Password

Bild 4-1: Konfigurationstool

4.1.2 Bedienung

Beim Start des Konfigurationstools wird das Netzwerk nach CAN@net II Geräten durchsucht. Um ein nachträglich angeschlossenes Gerät zu erkennen, gibt es zwei Möglichkeiten:

- Aktivieren der Funktion "Autoscan", somit wird der Suchvorgang alle drei Sekunden durchgeführt, oder
- mittels des "Rescan"-Schalters, hierbei wird ein Suchvorgang manuell gestartet.

Um die Netzwerkparameter eines CAN@net II zu ändern, muss das gewünschte Gerät in der "Device List" ausgewählt werden. Anschließend wird durch Betätigen des "Configure"-Schalters der Konfigurationsdialog für das Gerät geöffnet. Der Konfigurationsdialog kann aber nur geöffnet werden, sofern das Gerät nicht mit einer Applikation verbunden ist (Connection State: Not Connected).

Über den Konfigurationsdialog kann DHCP aktiviert bzw. deaktiviert werden. Ist der DCHP-Mode nicht aktiviert, können die IP Adresse, die Subnet Mask und das Gateway eingestellt werden. Des Weiteren kann der Hostname und das Passwort eingestellt werden.

Durch "OK" wird das zuvor ausgewählte CAN@net II mit den eingestellten Netzwerkparameter konfiguriert. Hierbei ist die Eingabe des Passwortes erforderlich. Über "Cancel" kann die Konfiguration abgebrochen werden.

Die Werkseinstellungen der Netzwerkparameter sind im Anhang aufgeführt.

4.2 Zurücksetzen auf die Werkseinstellung

Mit Hilfe des DIP-Schalters kann die Netzwerkkonfiguration des CAN@net II wieder auf die Werkseinstellung zurückgesetzt werden.

Hierzu sind folgende Arbeitsschritte notwendig:

- (1) Stellen Sie sicher, dass Sie elektrostatisch entladen sind.
- (2) Trennen Sie das CAN@net II von der Spannungsversorgung.
- (3) Trennen Sie das Gehäuseoberteil inkl. der Platine vom Gehäuseunterteil. Drücken Sie hierzu die beiden Verriegelungen an der Schmalseite des Gehäuses leicht ein.
- (4) Die Position 1 des DIP-Schalters auf "ON" stellen.
- (5) Schieben Sie die Platine wieder in das Gehäuseunterteil. Achten Sie hierbei auf die ESD-Schutzfolie, diese muss unbedingt wieder mit eingebaut werden.
- (6) Schließen Sie das CAN@net II an die Spannungsversorgung an. Es muss ein Lauflicht (grün/rot abwechselnd) über die LEDs angezeigt werden.
- (7) Trennen Sie das CAN@net II von der Spannungsversorgung.
- (8) Entnehmen Sie die Platine wie zuvor aus dem Gehäuseunterteil.
- (9) Setzen Sie die Position 1 des DIP-Schalters auf "Off".

(10) Führen Sie das Gehäuseoberteil mit Platine und ESD-Folie in das Gehäuseunterteil ein. Achten Sie darauf, dass das Gehäuse wieder verriegelt.

Bild 4-2: Position des DIP-Schalters

Schalter	Stellung	Signal	
1	Off	Normaler Betrieb (Werkseinstellung)	
	On	Rücksetzen der Netzwerkparameter auf die Werkseinstellungen	
2	Off	Nicht genutzt (Werkseinstellung)	
	On	Nicht genutzt	

Tabelle 4-1: Belegung des DIP-Schalters

5 Anhang 5.1 Technische Daten

Ethernet-Interface:	10/100 MBit, Twisted-Pair
Mikrocontroller:	Freescale MCF5235, 150 MHz
RAM / Flash:	8 MByte SDRAM / 4 MByte
CAN-Controller: CAN-Transceiver: Max. Anzahl CAN-Bus Knoten: CAN-Busabschlusswiderstand: CAN-Durchlaufverzögerung: CAN-Baudraten: Max. CAN-Durchsatz (mit VCI, Empfangsrichtung): Max. CAN-Durchsatz (mit VCI, Senderichtung):	intern und 1x Philips SJA1000T Texas Instruments SN65HVD251P 120 keiner bei galvanischer Trennung typisch 32 ns 10 kBaud bis 1 MBaud 21000 Nachrichten/s (kontinuierlich) 21000 Nachrichten/s (Burst) 7200 Nachrichten/s (kontinuierlich)
Spannungsversorgung: Stromaufnahme Normalbetrieb:	+9 V bis +32 V DC typisch 110 mA (bei 24 V) maximal 250 mA (bei 24 V)
Gehäusematerial:	Polyamid
Abmessungen:	114,5 x 99 x 22,5 mm
Gewicht:	ca. 300 g
Schutzart:	IP30
Arbeitstemperaturbereich:	-20 °C bis +70 °C
Lagertemperaturbereich:	-40 °C bis +85 °C
Relative Feuchte:	10 bis 95 %, keine Betauung
Galvanische Trennung:	500 V AC für 1 min
EMV-Prüfung nach:	DIN EN 55022:1998 + A1:2000 + A2:2003
Umweltrichtlinie:	RoHS, WEEE, Directive (2002/95/EC)

Netzwerkparameter	Voreinstellung	Bemerkung
DHCP	Aktiv	
IP-Adresse	169. 254. (BYTE)(Seriennr. – 800000)/254). (BYTE)(Seriennr. – 800000)%254+1)	Entsprechend APIPA wenn kein DHCP-Ser- ver erreichbar ist
Subnet Mask	255.255.0.0	
Gateway Adresse	0.0.0.0	
Host Name	CAN_at_net_II_ 4. Byte der MAC-Adresse als Hex- Wert_ 5. Byte der MAC-Adresse als Hex-Wert	
Passwort	IXXAT	MD5-Verschlüs- selte Übertra- gung

5.2 Werkeinstellung der Netzwerkparameter

Tabelle 5-1: Werkseinstellung der Netzwerkparameter

5.3 Windows Firewall Settings

Die Applikation und der Konfigurator müssen durch die Firewall des lokalen PCs kommunizieren können. Wenn die Applikation oder der Konfigurator zum ersten Mal ausgeführt werden, fragt das Betriebssystem um Erlaubnis durch die Firewall zu kommunizieren. Um der Applikation und dem Konfigurator die Erlaubnis zu erteilen, sind Administratorrechte notwendig.

Ein anderer Weg die Erlaubnis zu erteilen, ist über die Systemsteuerung. **Systemsteuerung – System und Sicherheit – Windows-Firewall – Zugelassene Programme** öffnen, die Applikation oder den Konfigurator wählen und die entsprechenden Einstellungen treffen. Um das Blockieren des CAN@net II durch die Windows-Firewall zu verhindern, müssen die folgenden Einstellungen sichergestellt werden.

1.1.1 CAN@net II/VCI

Konfigurationsverbindung:

- CAN@net II/VCI: 15000/udp
- PC: 15001/udp

VCI-Verbindung:

- CAN@net II/VCI: 15000/tcp, 15001/tcp
- PC: 1024-65535/tcp

Der PC muss von beliebigen Ports (1024-65535) aus Zugriff auf die Ports 15000/tcp und 15001/tcp des CAN@net II/VCI bekommen. Das CAN@net muss von den Ports 15000/tcp und 15001/tcp aus Zugriff auf die Ports 1024-65535 des PCs bekommen.

1.1.2 CAN@net II/Generic

Das CAN@Net II/Generic verwendet den Port 19227/tcp. Der PC muss von beliebigen Ports (1024-65535) aus Zugriff auf den Port 19227/tcp des CAN@net II/VCI bekommen. Das CAN@net II/Generic muss vom Port 19227/tcp aus Zugriff auf die Ports 1024-65535 des PCs bekommen.

5.4 Zubehör

5.4.1 CAN-Busabschlusswiderstand

Als Zubehör steht ein Busabschlusswiderstand in Form eines Durchführungssteckers bei HMS zur Verfügung (Bestellnummer 1.04.0075.03000).

Bild 5-1: Verbindungen des CAN-Busabschlusswiderstandes

Bild 5-2: CAN-Busabschlusswiderstand

5.5 Hinweise zur EMV

Das PC/CAN-Interface CAN@net II darf nur zusammen mit einem PC verwendet werden, der über ein CE-Zeichen verfügt. Der an das Interface angeschlossene CAN-Bus muss über eine geschirmte Leitung verfügen, das Schirmgeflecht ist flächig auf das Steckergehäuse aufzulegen.

5.6 Konformitätserklärung

Dieses Produkt entspricht der EG-Richtlinie über die elektromagnetische Verträglichkeit. Weitere Informationen und die Konformitätserklärung finden Sie unter <u>www.ixxat.de.</u>

5.7 FCC Compliance

Declaration of conformity

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- this device may not cause harmful interference, and
- this device must accept any interference received, including interference that may cause undesired operation.

Class A digital device instructions:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.