

ITP16

Temperaturanzeige

Bedienungsanleitung

Inhaltsverzeichnis

1	Ü	bersicht	2		
2	Т	echnische Daten	2		
	2.1	Galvanische Trennung			
	2.2	Betriebsbedingungen			
3	В	Bestimmungsgemäße Verwendung			
4		unktionen			
5		Iontage und elektrischer Anschluss			
_	5.1				
	5	.1.1 Eingang			
	_	.1.2 Ausgang			
6	_	Betrieb			
Ū	6.1	Regelung			
	6.2	Alarm			
	6.3	Filter			
	6.4	Quadratwurzel-Funktion			
	6.5	Fehler			
7	0.0				
7		Programmierung			
8		Vartung			
9		ransport und Lagerung			
10		ieferumfang			
Ar	Anhang A. Maßbilder12				

1 Übersicht

ITP16 ist eine universell einsetzbare Prozessanzeige und kann mit verschiedenen Eingangssignalen verwendet werden: RTD, TC, lineare Spanungssignale. Das Gerät benötigt 24V DC Hilfsspannung. Es ist für die Steuerung und Überwachung von industriellen Prozessen konzipiert.

2 Technische Daten

ITP16 kann in verschiedenen Ausführungen bestellt werden. Sie unterscheiden sich in der Anzeigefarbe. Bestellschlüssel:

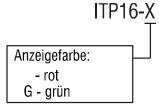


Tabelle 2.1 Technische Daten

Spannungsversorgung	24 (1030) V DC
Leistungsaufnahme, max.	1 W
Eingang	1
Eingangssignal	siehe Tabelle 2.2
Abtastzeit, max.	2 s
Genauigkeit	± 0,25% FS
Temperatureinfluss	≤ 0,2% / 10 °C
Eingangswiderstand	
0-1 V, -50+50mV	≥ 250 kOhm
Ausgang	1
Тур	NPN transistor
Belastbarkeit	200 mA, 42 V DC
Gehäuse	Tafeleinbau
Zeichenhöhe	14 mm
Abmessungen	48 x 26 x 65 mm
Gewicht	ca. 30 g

Tabelle 2.2 Eingangssignal

Display	Signalart	Messbereich, °C	Temperaturkoeffizient, °C ⁻¹				
	RTD nach IEC 60751:2008						
P50	Pt50	-200+850	0,00385				
P (00	Pt100	-200+850	0,00385				
P500	Pt500	-200+850	0,00385				
P 1E3	Pt1000	-200+850	0,00385				
	RTD r	nach GOST 6651					
⊆5 0	Cu50	-50+200	0,00426				
c.50	50M	-180+200	0,00428				
P.50	50P	-200+850	0,00391				
c 100	Cu100	-50+200	0,00426				
c. 100	100M	-180+200	0,00428				
P. 100	100P	-200+850	0,00391				
n (DD	Ni100	-60+180	0,00617				
c 500	Cu500	-50+200	0,00426				
c.500	500M	-180+200	0,00428				
P.500	500P	-200+850	0,00391				
<i>~500</i>	Ni500	-60+180	0,00617				

D'autou	0'	Manakanatak 00	T		
Display	Signalart	Messbereich, °C	Temperaturkoeffizient, °C ⁻¹		
c 1E3	Cu1000	-50+200	0,00426		
c. 1E3	1000M	-180+200	0,00428		
P. 1E3	1000P	-200+850	0,00391		
n 1E3	Ni1000	-60+180	0,00617		
	TC nach	IEC 60584-1:2013			
EP.YR	K	-200+1300			
EP.J	J	-200+1200			
Ł₽.n	N	-200+1300			
Ł₽.Ł	Т	-250+400			
<i>₽</i> .5	S	<i>−</i> 50…+1750	-		
₽P.r	R	<i>−</i> 50…+1750			
ŁР.Ь	В	+200+1800			
EP.R (Α	0+2500			
TC nach GOST 8.585					
ŁP.L	L	-200+800			
EP.R2	A-2	0+1800	-		
EP.R3	A-3	0+1800			
		nach DIN 43710			
EP.EL	L	-200+900	-		
		neare Signale			
50.50	-5050 mV	0100 %	_		
□- 1	0-1 V	0100 %	_		
Reserviert					
PY 15					
PY20	nicht belegt	-	-		
PC20					

2.1 Galvanische Trennung

Die ITP16 hat drei galvanische Gruppen:

- Spannungsversorgung 24 V DC
- Analogeingang
- Digitalausgang

Galvanische Trennung jeder Gruppe gegenüber dem Gehäuse 500 V Galvanische Trennung zwischen den einzelnen Gruppen 500 V

2.2 Betriebsbedingungen

Das Gerät ist für die selbstständige Konvektionskühlung ausgelegt. Dies ist bei der Auswahl des Installationsortes zu beachten.

Die folgenden Umgebungsbedingungen müssen beachtet werden:

- saubere, trockene und kontrollierte Umgebung, staubarm
- geschlossene explosionsgeschützte Räume ohne aggressive Dämpfe und Gase

Tabelle 2.3

Umgebungsbedingungen	zulässiger Bereich
Umgebungstemperatur	-40+60 °C
Lagertemperatur	-25+55 °C

Umgebungsbedingungen	zulässiger Bereich		
Schutzart	frontseitig IP65, rückseitig IP20		
Schutzklasse	III		
Luftfeuchtigkeit	bis 80% (bei +35°C, nicht kondensierend)		

3 Bestimmungsgemäße Verwendung

Das Gerät darf nur in der in dieser Bedienungsanleitung beschriebenen Weise, im ordnungsgemäß installierten Zustand und in Übereinstimmung mit den technischen Daten verwendet werden. Schäden, die durch Nichtbeachtung der Hinweise in der Bedienungsanleitung entstehen, entbehren jeder Haftung.

Nicht bestimmungsgemäße Verwendung

Jede andere Verwendung gilt als nicht bestimmungsgemäß. Besonders zu beachten ist hierbei:

- Das ITP16 darf nicht eingesetzt werden für medizinische Geräte, die menschliches
 Leben oder k\u00f6rperliche Gesundheit erhalten, kontrollieren oder sonst wie beeinflussen.
- Das Gerät darf nicht in einer explosionsfähigen Umgebung eingesetzt werden.
- Das Gerät darf nicht eingesetzt werden in einer Atmosphäre, in der ein chemisch aktiver Stoff vorhanden ist.

4 Funktionen

Auf der Vorderseite des Geräts befindet sich ein 4-stelliges LED-Display mit 14 mm Zeichenhöhe, um den Prozesswert oder Fehlermeldungen im Betrieb (siehe 6) und Programmierparameter im Programmiermodus (siehe 7) anzuzeigen. Die Funktionstasten befinden sich am hinteren Teil des Geräts.

Hauptfunktionen:

- Analoge Eingangssignale entsprechend der Tabelle 2.2
- Messen und Anzeigen einer Prozessgröße
- Skalierung des linearen Spanungssignals
- Einstellbare Dezimalpunktposition
- Anzeigebereich -999...9999
- Quadratwurzel-Funktion (für spezielle Transmitter)
- Digitaler Filter
- Alarmfunktion
- Fehleranzeige, bei einer Unter- /Überschreitung der Messgrenzen
- Fehleranzeige bei Leitungsbruch oder Kurzschluss

5 Montage und elektrischer Anschluss

Die Folgen einer nicht fachgerecht ausgeführten Montage und Anschlusses könnten schwere oder leichte Verletzungen sowie Schäden am Gerät sein. Montage und Anschluss darf nur durch Fachkräfte oder durch eine beauftragte Fachkraft durchgeführt werden!

Das Gerät ist für Tafeleinbau in eine Bohrung Ø22,5 mm vorgesehen (für die Maßbilder siehe Anhang A).

Setzen Sie die mitgelieferte Dichtung sorgfältig auf die Rückseite des Displays. Setzen Sie den zylindrischen Körper des Gerätes in das Bohrloch ein und ziehen Sie die Mutter von der Rückseite der Schalttafel an.

5.1 Elektrischer Anschluss

Schalten Sie die Versorgungsspannung nur nach der vollständigen Verdrahtung des Geräts ein.

► HINWEIS

Schalten Sie das Gerät aus, bevor Sie den Sensor und Anschlussleitungen überprüfen. Zur Stromkreisintegritätsprüfung nur das Messgerät mit der max. Ausgangsspannung 4,5 V verwenden, um das Gerät nicht zu beschädigen. Trennen Sie den Sensor bei höheren Spannungen.

HINWEIS

Signal- und Datenleitungen dürfen nicht zusammen mit Stromleitungen verlegt werden. Für die Signalleitungen darf ausschließlich ein geschirmtes Kabel verwendet werden.

Abb. 5.1 Leitervorbereitung

Verwenden Sie keine Aderendhülsen beim Anschluss von Litzen.

Um eine feindrähtige Litze anzuschliessen, verzinnen Sie das Leiterende

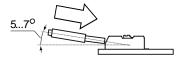


Abb. 5.2 Anschluss an die Klemmen

Beim Anschluss von massiven Leiter stecken Sie den Leiter in die Klemme.

Beim Anschluss von Litzen, drücken Sie den Lösehebel und stecken Sie den Leiter in die Klemme.

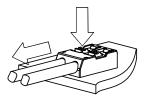


Abb. 5.3 Leiter von der Klemme trennen

Drücken Sie den Lösehe-bel um den Leiter zu lösen.

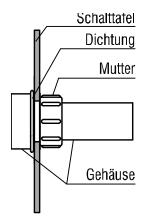
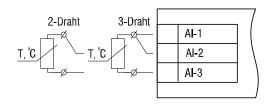



Abb. 5.4 Befestigung

- Die elektrischen Anschlüsse sind auf der Abb. 5.5-5.8, die Klemmenbelegung ist in der Tabelle 5.1 dargestellt.
- Stellen Sie sicher, dass für das Gerät eine eigene Stromversorgungsleitung und eine elektrische Sicherung I = 0,5 A vorgesehen sind.
- Querschnitt für massiven Leiter: 0,2 ... 0,8 mm². Querschnitt für Litze: 0,45 ... 0,7 mm².Den Leiter soll für ca. 8 mm abisoliert werden.

5.1.1 Eingang

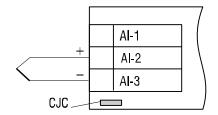


Abb. 5.5 RTD-Sensorverdrahtung

Abb. 5.6 TC-Sensorverdrahtung

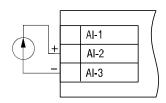


Abb. 5.7 Spannungssignal-Verdrahtung

Tabelle 5.1 Klemmenbelegung

Bezeichnung	Beschreibung
24VDC -	Spannungsversorgung
24VDC +	Spannungsversorgung
DO-	Ausgang -
DO+	Ausgang +
Al1	+ (3-Draht RTD)
Al2	+
Al3	_

Table 5.2 Sensor cables

Sensor	Leitungslänge, max.	Widerstand (je Draht), max.	Anforderung
RTD	100 m	30 Ohm	Gleicher Länge und Querschnitt für 3-Draht
TC	20 m	100 Ohm	Thermoelementleitung

5.1.2 Ausgang

Der NPN-Transistorausgang ist für die Steuerung von Niederspannungsrelais bis 42 V DC / 200 mA vorgesehen.

► HINWEIS

Schließen Sie eine Diode ($U_{VD} \ge 1,3U$, $I_{VD} \ge 1,3I$) parallel zu einer Ausgangslast an, um ein Rückwärtsstrom am Ausgang zu vermeiden.

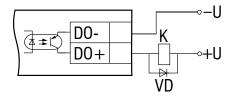


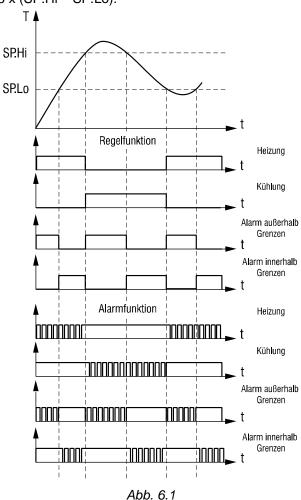
Abb. 5.8 NPN-Transistorausgang

6 Betrieb

Nach dem Einschalten des Gerätes wird der Betriebsmodus aktiviert. Der Signaltyp kann im Parameter **in.t** "Eingangssignal" ausgewählt werden. Die vollständige Liste der Programmierparameter ist in Tabelle 7.2 dargestellt.

Der Dezimalpunktposition der Anzeige kann im Parameter **di.P**. angegeben werden. Die Parameter **di.Lo** "Untere Messgrenze" und **di.Hi** "Obere Messgrenze" werden für die Skalierung verwendet. Für weitere Funktionen für Signalverarbeitung siehe 6.1…6.3. Für angezeigte Fehler siehe Tabelle 6.1.

6.1 Regelung


Die Zweipunktregelung erfolgt mit dem NPN-Transistorausgang (siehe 5.1.2). Die Parameter **SP.Lo** "Untere Sollwertgrenze" und **SP.Hi** "Obere Sollwertgrenze" bestimmen die Regelgrenzen. Die Regelfunktion kann im Parameter **Cnt** gewählt werden:

- Heizung
- Kühlung
- Alarm innerhalb Grenzen
- Alarm außerhalb Grenzen

Der sichere Ausgangszustand kann im Parameter out. E. gewählt werden.

Hinweis:

Schalthysterese: 0,05 x (SP.Hi – SP.Lo).

6.2 Alarm

Ist die Steuerfunktion **Cnt** eingestellt und die Alarmfunktion **d.FnC** = ON, blinkt die Anzeige mit einer Frequenz von ca. 2 Hz, wenn der Ausgang eingeschaltet ist (siehe Abb. 6.1).

6.3 Filter

Unerwünschte Signalschwankungen können durch den einstellbaren Filter im Parameter **td** "Filterzeitkonstante" unterdrückt werden (siehe Abb. 6.1 und Tabelle 7.2).

Die Filterzeitkonstante kann im Bereich von 0...10 Sekunden eingestellt werden. Je höher der Wert, desto langsamer reagiert die Anzeige auf die Veränderungen des Eingangssignals und desto geringer ist die Störempfindlichkeit. Der Filter ist deaktiviert, wenn **td** = 0



Abb. 6.2 Filterzeitkonstante

6.4 Quadratwurzel-Funktion

Die Funktion ist für die Transmitter mit einer quadratischen Kennlinie vorgesehen. Um die Funktion zu aktivieren, setzen Sie den Parameter **Sqrt** = ON.

6.5 Fehler

Tabelle 6.1 Fehleranzeige

Anzeige	Mögliche Ursachen	Behebung
		Überprüfen Sie das Eingangssignal.
		Überprüfen Sie den
Er. 1	Messwertfehler	Sensor und die
E1. (Messwertienier	Signalleitung.
		Wenden Sie sich an den
		Technischen Support
		der akYtec GmbH.
LLLL	Der gemessene Wert liegt unterhalb der unteren	Überprüfen Sie das
	Grenze für das ausgewählte Signal (siehe Tabelle 2.2)	Eingangssignal
НННН	Der gemessene Wert liegt oberhalb der oberen Grenze	Überprüfen Sie das
70001	für das ausgewählte Signal (siehe Tabelle 2.2)	Eingangssignal
		Überprüfen Sie den
11	Sensorbruch oder Kurzschluss	Sensor und die
		Signalleitung
		Wenden Sie sich an den
Er.Ej	CJC-Sensorfehler	Technischen Support
		der akYtec GmbH

7 Programmierung

Tabelle 7.1 Funktionstasten

Tasten	Beschreibung	
PROG	Drücken > 3 s: - Programmiermodus aktivieren - Programmiermodus verlassen Drücken < 1 s: - Parameter speichern	
PROG +	Drücken > 3 s: - Service-Menü aufrufen	
*	Wert erhöhen oder Menü- Navigation	
₩	Wert verringern oder Menü- Navigation	

- Bei der Parameteränderung halten Sie die Taste

 oder
 gedrückt, um die Rampenfunktion zu aktivieren.
- Wenn innerhalb von 20 s keine Taste gedrückt wurde, kehrt das Gerät automatisch in den Betriebsmodus zurück.

Table 7.2 Programming parameters

Name	Anzeige	Parameter	Gültige Werte	Bedeutung	Standard
SP.Lo	5P.Lo	Untere Sollwertgrenze	-9999999	abhängig von di.P	0
SP.Hi	SP.HC	Obere Sollwertgrenze	-9999999	abhängig von di.P	30
			oFF	OFF	
			Heat	Heizung	
			CooL	Kühlung	
Cnt	Ent	Regelfunktion	U	Alarm außerhalb Grenzen	U
			П	Alarm innerhalb Grenzen	
in.t	īn.t	Eingangssignal	Sieh	Siehe Tabelle 2.2	
td	Łd	Filterzeitkonstante	010 s		0
out.E	out.E	Sicherer	ON		OFF
Out.L	OUC.E	Ausgangzustand	OFF		
di.Lo	dī.Lo	Untere Messgrenze *	-9999999	abhängig von di.P	0
di.Hi	dī.Hī	Obere Messgrenze *	-9999999	abhängig von di.P	100
SQrt	59r£	Quadratwurzel-		ON	OFF
Jan	שיויב	Funktion		OFF	0
				0000	
di.P	d⊂.P Dezimalpunkt	Dezimalpunkt		0.000	
			00.00	_	
			-,	0.000	
2u3u	2030	RTD-Anschluss	3-Ln	3- Draht	3-Ln
			2-Ln	2- Draht	
d.FnC	d.FnC	Alarmfunktion	ON OFF		OFF

^{*} nur für lineare Signale

Tabelle 7.3 Service-Menü

Anzeige	Parameter		Gültige Werte
rE5	Werkseinstellungen	0	Benutzereinstellungen
IES	wiederherstellen	1	Werkseinstellungen
ЕГР	Service-Funktion	-	
Ł.Ľ	Service-Funktion		
5 [J	Service-Funktion		
5oFt	Firmware-Version		

Hinweis:

- Das Minuszeichen wird an der höchstwertigen Stelle zusammen mit der Eins angezeigt.
 Bei di.P = ---- ist der Anzeigebereich -199,9...999,9.
- 2. Bei der Einstellung der Signalgrenzen ist zu berücksichtigen, dass in manchen Fällen der korrekte Wert nicht angezeigt werden kann, obwohl keine Fehleranzeige vorliegt.

Beispiel 1:

di.Lo: -999 -> 4 mA **di.Hi**: 9999 -> 20 mA

Für den Eingangsstrom von 3,8 mA sollte die korrekte Anzeige "-1068" sein. Eigentlich wird "1068" angezeigt.

Beispiel 2:

di.Lo: -999 -> 4 mA **di.Hi**: 9999 -> 20 mA

Für den Eingangsstrom von 20,8 mA sollte die korrekte Anzeige "10548" sein. Eigentlich wird "0548" angezeigt

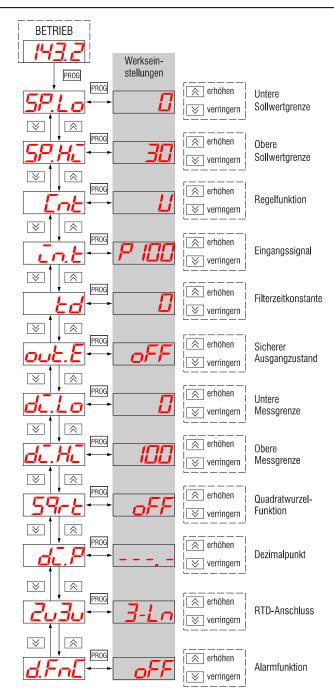


Abb. 7.1 Geräte-Menü

8 Wartung

Die Wartung umfasst:

- Reinigung des Gehäuses und der Klemmleisten vom Staub, Schmutz und Fremdkörper
- Prüfung der Befestigung des Geräts
- Prüfung der Anschlüsse

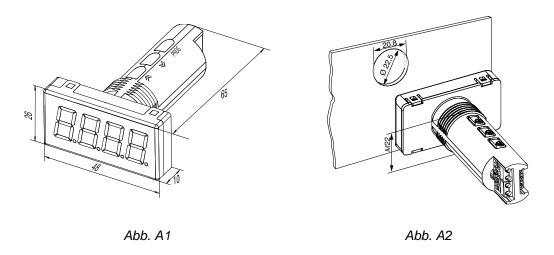
Das Gerät sollte nur mit einem feuchten Tuch gereinigt werden. Keine Scheuermittel oder lösemittelhaltige Reinigungsmittel verwenden.

9 Transport und Lagerung

Packen das Gerät so, dass es für die Lagerung und den Transport sicher gegen Stöße geschützt wird. Die Originalverpackung bietet optimalen Schutz.

Wird das Gerät nicht unmittelbar nach der Anlieferung in Betrieb genommen, muss es sorgfältig an einer geschützten Stelle gelagert werden. Es darf kein chemisch aktiver Stoff in der Luft vorhanden sein.

Zulässige Lagertemperatur: -25...+55 °C


HINWEIS

Das Gerät könnte beim Transport beschädigt worden sein. Überprüfen Sie das Gerät auf Transportschäden und auf Vollständigkeit! Melden Sie festgestellte Transportschäden unverzüglich dem Spediteur und akYtec GmbH!

10 Lieferumfang

_	ITP16	1
_	Gasket	1
-	Mounting nut	1
_	User guide	1

Anhang A. Maßbilder

Um ein Durchdrehen des Geräts zu verhindern, muss die Bohrung in der Frontplatte den Maßen in Abb. A.2 entsprechen.