

Gerätehandbuch

SENTRON

Messgeräte

Energiezähler 7KT PAC1600

09/2020

siemens.de/energiemonitoring

SIEMENS

Einleitung	
Sicherheitshinweise	2
Beschreibung	3
Einbau/Ausbau	4
Anschließen	5
In Betrieb nehmen	6
Instandhalten und Warten	7
Technische Daten	8
Maßbilder	9
EGB-Richtlinien	Α

1

SENTRON

Messgeräte Energiezähler 7KT16

Gerätehandbuch

Rechtliche Hinweise

Warnhinweiskonzept

Dieses Handbuch enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Die Hinweise zu Ihrer persönlichen Sicherheit sind durch ein Warndreieck hervorgehoben, Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt.

bedeutet, dass Tod oder schwere Körperverletzung eintreten wird, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

MWARNUNG

bedeutet, dass Tod oder schwere Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

∕∆vorsicht

bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

bedeutet, dass Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

Qualifiziertes Personal

Das zu dieser Dokumentation zugehörige Produkt/System darf nur von für die jeweilige Aufgabenstellung **qualifiziertem Personal** gehandhabt werden unter Beachtung der für die jeweilige Aufgabenstellung zugehörigen Dokumentation, insbesondere der darin enthaltenen Sicherheits- und Warnhinweise. Qualifiziertes Personal ist auf Grund seiner Ausbildung und Erfahrung befähigt, im Umgang mit diesen Produkten/Systemen Risiken zu erkennen und mögliche Gefährdungen zu vermeiden.

Bestimmungsgemäßer Gebrauch von Siemens-Produkten

Beachten Sie Folgendes:

MWARNUNG

Siemens-Produkte dürfen nur für die im Katalog und in der zugehörigen technischen Dokumentation vorgesehenen Einsatzfälle verwendet werden. Falls Fremdprodukte und -komponenten zum Einsatz kommen, müssen diese von Siemens empfohlen bzw. zugelassen sein. Der einwandfreie und sichere Betrieb der Produkte setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung, Montage, Installation, Inbetriebnahme, Bedienung und Instandhaltung voraus. Die zulässigen Umgebungsbedingungen müssen eingehalten werden. Hinweise in den zugehörigen Dokumentationen müssen beachtet werden.

Marken

Alle mit dem Schutzrechtsvermerk [®] gekennzeichneten Bezeichnungen sind eingetragene Marken der Siemens AG. Die übrigen Bezeichnungen in dieser Schrift können Marken sein, deren Benutzung durch Dritte für deren Zwecke die Rechte der Inhaber verletzen kann.

Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft, notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten.

🕑 09/2020 Änderungen vorbehalten

Inhaltsverzeichnis

1	Einleitung		7
	1.1	Lieferumfang	7
	1.2	Aktuelle Informationen	7
	1.3	Weiterführende Trainings	7
	1.4	Open-Source-Software	8
	1.5	Qualifiziertes Personal	9
2	Sicherheit	shinweise	11
3	Beschreibu	ing	15
	3.1	Leistungsmerkmale	15
	3.2	Messeingänge	17
	3.2.1	Strommessung	17
	3.2.2	Spannungsmessung	18
	3.3	1-Phasen-Geräte	18
	3.3.1	Tastaturfunktionen	
	3.3.2	Erweiterte Funktionen	20 21
	3.3.3 3 3 4	Auswahl der Messwerte	
	3.3.4.1	Geräte mit RS485-Schnittstelle	
	3.3.4.2	Geräte mit M-Bus-Schnittstelle	
	3.3.4.3	Geräte mit S0-Schnittstelle oder digitalem Ausgang	23
	3.3.4.4	Setup-Parametertabelle	24
	3.4	3-Phasen-Geräte 80 A	28
	3.4.1	Tastaturfunktionen	29
	3.4.2	Erweiterte Funktionen	
	3.4.3	Auswahl der Messwerte	ן 3 כב
	3441	Geräte mit RS485-Schnittstelle	
	3.4.4.2	Geräte mit M-Bus Schnittstelle	
	3.4.4.3	Setup-Parametertabelle für Geräte mit RS485- und M-Bus-Schnittstelle	33
	3.4.4.4	Geräte mit S0-Schnittstelle oder digitalem Ausgang	37
	3.4.4.5	Setup-Parametertabelle für Geräte mit SO-Schnittstelle	
	3.4.4.6	Programmierbarer AC-Eingang	40
	2.4.4.7		
	3.5 2 E 1	3-Phasen-Gerate 5 A	42
	3.5.1	Frweiterte Funktionen	45 45
	3.5.3	Auswahl der Messwerte	
	3.5.4	Parametrieren	
	3.5.4.1	Parameter einstellen (Setup)	47
	3.5.4.2	Energiemessung	49

	3.5.4.3	Tarife	50
	3.5.4.4	Stundenzähler	
	3.5.4.5 3 5 4 6	Grenzwert Statusanzeige (LIMX)	
	3.5.4.7	Parametertabelle	
	3.5.4.8	Befehlsmenü	65
	3.5.5	Verdrahtungstest	66
	3.6	Hilfssoftware	67
	3.6.1	powermanager	
	3.0.2	powerconing	
4	Einbau/Aus	bau	69
	4.1	Einbauort	69
	4.2	1-Phasen-Gerät ein-/ausbauen	70
	4.3	3-Phasen-Gerät einbauen	70
	4.4	3-Phasen-Gerät ausbauen	70
5	Anschließe	n	71
	5.1	Anschlussbeispiel für Modbus RTU Kommunikation	73
	5.2	1-Phasen-Gerät anschließen	73
	5.3	3-Phasen-Gerät anschließen	75
	5.4	Verdrahtungsprüfung	77
6	In Betrieb r	nehmen	79
	6.1	Übersicht	79
	6.2	Mess-Spannung anlegen	80
	6.3	Parametrieren über powerconfig	80
	6.4	Modbus Adressenregister	82
	6.4.1	Modbus Adressentabelle für 1-Phasen-Geräte mit Modbus-Schnittstelle	82
	6.4.2 6.4.3	Modbus Adressentabelle für 3-Phasen-Geräte 80 A mit Modbus-Schnittstelle	
7	U.T.J	ton und Warton	
,	7 1		
	7.1 7.2	Verlerenes oder vergessenes Pesswert	
	7.2	Magnahman zur Pahahung von Fahlern	
	7.5		
	7.4	Gewanneistung	
•	7.5 T I · I		
ð	rechnische	- Vaten	101
	8.1	rechnische Daten	101
-	8.2	Beschriftungen auf dem Gehause	105
9	Maßbilder		107
	9.1	1-Phasen-Gerät	107

	9.2	3-Phasen-Gerät	107
Α	EGB-Richtli	nien	109
	A.1	Elektrostatisch gefährdete Bauelemente (EGB)	109
	Index		111

Einleitung

1.1 Lieferumfang

Im Paket sind enthalten:

- Betriebsanleitung
- Energiezähler 7KT PAC1600

Lieferbares Zubehör

- Software powerconfig (https://support.industry.siemens.com/cs/ww/de/view/63452759)
- Software powermanager (https://support.industry.siemens.com/cs/document/64850998)

1.2 Aktuelle Informationen

Ständig aktuelle Informationen

Weitere Unterstützung erhalten Sie im Internet (<u>http://www.siemens.de/lowvoltage/technical-assistance</u>).

1.3 Weiterführende Trainings

Unter folgendem Link können Sie sich über verfügbare Trainings informieren.

Training for Industry (https://www.siemens.de/sitrain-lowvoltage)

Hier können Sie sich entscheiden zwischen:

- Web-Based-Trainings (online, informativ, kostenlos)
- Classroom-Trainings (Präsenzveranstaltung, ausführlich, kostenpflichtig).

Außerdem haben Sie die Möglichkeit über Lernwege Ihr persönliches Trainingsportfolio zusammenzustellen.

1.4 Open-Source-Software

1.4 Open-Source-Software

STM32L1xx_StdPeriph_Driver V1.2.0:

Redistribution and use in source and binary forms, with or without modification, are permitted, provided that the following conditions are met:

- 1. Redistribution of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of STMicroelectronics nor the names of other contributors to this software may be used to endorse or promote products derived from this software without specific written permission.
- 4. This software, including modifications and/or derivative works of this software, must execute solely and exclusively on microcontroller or microprocessor devices manufactured by or for STMicroelectronics.
- 5. Redistribution and use of this software other than as permitted under this license is void and will automatically terminate your rights under this license.

THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright notices:

COPYRIGHT (c) 2015 STMicroelectronics International N.V. All rights reserved.

1.5 Qualifiziertes Personal

Die folgenden Arbeiten werden teilweise bei Vorhandensein gefährdender Spannungen durchgeführt. Sie dürfen deshalb nur von entsprechend qualifizierten Personen vorgenommen werden, die mit den Sicherheitsbestimmungen und Vorsichtsmaßnahmen vertraut sind und die Sicherheitsbestimmungen und Vorsichtsmaßnahmen befolgen.

- Tragen Sie die vorgeschriebene Schutzkleidung.
- Beachten Sie die allgemeinen Einrichtungsvorschriften und Sicherheitsvorschriften für das Arbeiten an Starkstromanlagen (z. B. DIN VDE, NFPA 70E) sowie die nationalen oder internationalen Vorschriften.
- Stellen Sie sicher, dass die in den technischen Daten genannten Grenzwerte nicht überschritten werden, auch nicht bei der Inbetriebnahme oder Prüfung des Geräts.
- Schalten Sie die Sekundäranschlüsse von zwischengeschalteten Stromwandlern an diesen kurz, bevor Sie die Stromzuleitungen zu dem Gerät unterbrechen.
- Prüfen Sie die Polarität und die Phasenzuordnung der Messwandler.
- Stellen Sie vor dem Anschließen des Geräts sicher, dass die Netzspannung mit der auf dem Typschild angegebenen Spannung übereinstimmt.
- Stellen Sie vor der Inbetriebnahme sicher, dass alle Anschlüsse sachgerecht ausgeführt sind.
- Bevor das Gerät erstmalig an Spannung gelegt wird, müssen Sie es mindestens 2 Stunden im Betriebsraum legen. Dadurch schaffen Sie einen Temperaturausgleich und vermeiden Feuchtigkeit und Betauung.

Sicherheitshinweise

GEFAHR

Lebensgefahr durch elektrischen Schlag und Lichtbogenüberschlag!

Beim 5-A-Gerät ist die Strommessung nur über externe Stromwandler möglich. Bei Verwendung der Stromwandler wird der Stromkreis nicht mit einer Sicherung abgesichert.

- Bevor Sie am Gerät arbeiten, schalten Sie alle Stromquellen aus und versehen Sie alle Stromquellen mit einer Einschaltsicherung.
- Öffnen Sie den Sekundärstromkreis der Stromwandler niemals unter Last.
- Schließen Sie die Sekundärstromklemmen des Stromwandlers kurz, bevor Sie das Gerät entfernen.
- Beachten Sie stets die Sicherheitshinweise der verwendeten Stromwandler.

AGEFAHR

Lebensgefahr durch gefährliche Spannung!

Schalten Sie vor Beginn der Arbeiten die Anlage und das Gerät spannungsfrei.

WARNUNG

Mögliche Lebensgefahr durch beschädigtes Gerät!

Der Einsatz von beschädigten Geräten kann zum Tod, schwerer Körperverletzung oder Sachschaden führen.

- Bauen Sie keine beschädigten Geräte ein.
- Nehmen Sie beschädigten Geräte nicht in Betrieb.

ACHTUNG

Anlageschaden durch Nichtabsicherung

Nicht abgesicherte Spannungsmesseingänge können zu Schäden am Gerät oder an der Anlage führen.

Sichern Sie das Gerät stets mit einer nach IEC zugelassenen Sicherung oder mit einem nach IEC zugelassenen Leitungsschutzschalter ab.

ACHTUNG

Geräteschaden durch Betauung

Ohne Temperaturausgleich kann Luftfeuchtigkeit das Gerät betauen. Die Betauung kann das Gerät beim Anschließen an die Spannung beschädigen.

Schließen Sie das Gerät erst nach einem Temperaturausgleich an die Spannung an. Führen Sie einen Temperaturausgleich durch, indem Sie das Gerät mindestens 2 Stunden in den Betriebsraum legen.

Hinweis

RS485-Terminierung empfohlen

Um Reflexionen auf der Busleitung zu vermeiden, wird empfohlen, die Busleitung am Anfang und am Ende mit einem Abschlusswiderstand von 120Ω zu versehen.

Um Modbus RTU-Kommunikation herstellen zu können, müssen die Kommunikationsparameter bekannt sein. Dazu gehören Baud-Rate und Format. Des Weiteren müssen Sie die Slave-Adresse im Gerät angegeben haben.

Sicherheitsrelevante Symbole auf dem Gerät

Symbol	Bedeutung
\wedge	Gefahr durch elektrischen Schlag
	Elektroinstallation erfordert Fachkompetenz

Hinweise

Siemens bietet Produkte und Lösungen mit Industrial Security-Funktionen an, die den sicheren Betrieb von Anlagen, Systemen, Maschinen und Netzwerken unterstützen. Um Anlagen, Systeme, Maschinen und Netzwerke gegen Cyber-Bedrohungen zu sichern, ist es erforderlich, ein ganzheitliches Industrial Security-Konzept zu implementieren (und kontinuierlich aufrechtzuerhalten), das dem aktuellen Stand der Technik entspricht. Die Produkte und Lösungen von Siemens formen nur einen Bestandteil eines solchen Konzepts.

Der Kunde ist dafür verantwortlich, unbefugten Zugriff auf seine Anlagen, Systeme, Maschinen und Netzwerke zu verhindern. Systeme, Maschinen und Komponenten sollten nur mit dem Unternehmensnetzwerk oder dem Internet verbunden werden, wenn und soweit dies notwendig ist und entsprechende Schutzmaßnahmen (z. B. Nutzung von Firewalls und Netzwerksegmentierung) ergriffen wurden. Zusätzlich sollten die Empfehlungen von Siemens zu entsprechenden Schutzmaßnahmen beachtet werden. Weiterführende Informationen über Industrial Security finden Sie im Internet (http://www.siemens.com/industrialsecurity).

Die Produkte und Lösungen von Siemens werden ständig weiterentwickelt, um sie noch sicherer zu machen. Siemens empfiehlt ausdrücklich, Aktualisierungen durchzuführen, sobald die entsprechenden Updates zur Verfügung stehen und immer nur die aktuellen Produktversionen zu verwenden. Die Verwendung veralteter oder nicht mehr unterstützter Versionen kann das Risiko von Cyber-Bedrohungen erhöhen.

Um stets über Produkt-Updates informiert zu sein, abonnieren Sie den Siemens Industrial Security RSS Feed (<u>http://support.automation.siemens.com</u>).

Hinweis

Manipulationsrisiko!

Um das Manipulationsrisiko am Gerät zu verringern, wird empfohlen, die im Gerät vorhandenen Schutzmechanismen zu aktivieren.

Standardpasswörter der Schutzmechanismen:

- Verwenden Sie 1000 für Benutzerrechte ohne schreibenden Zugriff.
- Verwenden Sie 2000 für erweiterte Rechte mit Schreibzugriff.

Plombieren Sie die Abdeckung zur Sicherheit.

Beschreibung

3.1 Leistungsmerkmale

Das PAC1600 ist ein Messgerät zur Erfassung der elektrischen Basisgrößen in der Niederspannungs-Energieverteilung. Messgrößen werden im Display des PAC1600 angezeigt.

Das PAC1600 wird auf eine Hutschiene montiert oder durch Schrauben mit extrahierbaren Clips.

Ausführungen

Das Messgerät PAC1600 ist in mehreren Ausführungen lieferbar:

• 5 A-Geräte:

Zur Stromerfassung sind x / 5 A Stromwandler verwendbar.

• 63 A- und 80 A-Geräte:

Zur Stromerfassung sind keine Stromwandler notwendig. Schließen Sie das Gerät direkt an das Niederspannungsnetz an. Das Gerät kann Strom bis 63 A oder 80 A direkt messen.

Je nach Geräteausführung verfügt das Messgerät PAC1600 über eine S0-, RS485- oder eine M-Bus-Schnittstelle.

1-Phasen-Geräte	Benennung	
	7KT1651	63 A, Modbus RTU
	7KT1652	63 A, Modbus RTU, MID
<u>ti</u>	7KT1653	63 A, M-Bus
	7KT1654	63 A, M-Bus MID
	7KT1655	63 A, S0
	7KT1656	63 A, S0, MID

Beschreibung

3.1 Leistungsmerkmale

3-Phasen-Geräte		Benennung
	7KT1661	5 A, Modbus RTU
	7KT1662	5 A, Modbus RTU, MID
\$ \$ \$ \$ \$ 11 \$ \$ \$ \$ \$	7KT1663	5 A, M-Bus
	7KT1664	5 A, M-Bus, MID
	7KT1672	5 A, S0
	7KT1673	5 A, S0, MID
	7KT1665	80 A, Modbus RTU
	7KT1666	80 A, Modbus RTU, MID
	7KT1667	80 A, M-Bus
<u> </u>	7KT1668	80 A, M-Bus, MID
	7KT1670	80 A, S0
	7KT1671	80 A, S0, MID

Messung

Messung aller relevanten elektrischen Größen eines Wechselstromsystems.

Schnittstellen

Schnittstellen optional je nach Geräteausführung:

- S0
- RS485
- M-Bus
- Digitaleingang
- Digitalausgang

Speicher

Eingestellte Geräteparameter werden dauerhaft im Gerätespeicher abgelegt.

MID-Zulassung

Im Portfolio sind Geräte mit MID Zulassung enthalten. Diese Geräte sind für Verrechnungszwecke geeignet. Bei den Geräten mit einem MID-Zeichen können bestimmte Aktionen nicht durchgeführt werden, z. B. FW-Update, Rücksetzen der Energiewerte.

3.2 Messeingänge

3.2.1 Strommessung

ACHTUNG	
Geräteschaden durch Gleichstrom	
Das Gerät ist nicht für die Messung von Gleichstrom geeignet.	
Messen Sie mit dem Gerät ausschließlich Wechselstrom.	

Auslegung des 5 A-Geräts

Das 5 A-Gerät ist ausgelegt für einen Bemessungsstrom von 5 A zum Anschluss von Standardstromwandlern.

Jeder Strommesseingang ist dauerhaft mit 6 A belastbar.

Auslegung der 63 A- und 80 A-Geräte

Die 63 A- und 80 A-Geräte sind ausgelegt für den Direktanschluss an das Niederspannungsnetz.

3.2.2 Spannungsmessung

ACHTUNG

Geräteschaden durch Gleichspannung

Das Gerät ist nicht für die Messung von Gleichspannung geeignet.

Messen Sie mit dem Gerät ausschließlich Wechselspannung.

Auslegung des Geräts PAC1600

PAC1600 ist ausgelegt für

- Direktmessung am Netz
- Messeingangsspannungen bis 264 V gegen Neutralleiter
- Messeingangsspannungen bis 456 V Leiter gegen Leiter

3.3 1-Phasen-Geräte

- ① Plombierabdeckung
- 2 Energieflussanzeige
 - Wenn das Gerät einen aktiven Energiefluss zur Last erkennt, wird oben rechts im Display ein rotierendes "U" angezeigt.
 - Wenn kein aktiver Energieverbrauch vorhanden ist oder wenn die Last weniger als den Anlaufstrom zieht, verschwindet das rotierende "U".
- ③ Wirkenergie-Impulsanzeige

Die rote LED an der Vorderseite gibt 1000 Impulse für jede kWh verbrauchte Energie aus. Die LED-Impulsfrequenz ist proportional zur Energie.

④ Fronttaste

Informationen zur Bedienung finden Sie im Kapitel Tastaturfunktionen (Seite 19).

Grundlegende Eigenschaften

- DIN-Schienengehäuse, 2 TE (36 mm breit)
- Direkter Anschluss für Ströme bis 63 A
- LCD mit Hintergrundbeleuchtung
- Zähler 6-stellig mit einer Nachkommastelle
- Taste zur Auswahl von Messgrößen und zur Parametrierung
- Wirkenergiezähler und Blindenergiezähler
- Teilzähler für Wirk- und Blindenergie
- Stundenzähler
- Puls-LED für Wirkenergieverbrauch
- Anzeige des momentanen Verbrauchs (Wirkleistung)
- Optional: RS485-, M-Bus- oder SO-Schnittstelle
- Optional: MID-Zertifizierung

3.3.1 Tastaturfunktionen

Das Gerät können Sie mit der Fronttaste bedienen.

Die Fronttaste wird mit unterschiedlichen Funktionen belegt.

Die Funktion der Fronttaste ist von der verwendeten Menüebene abhängig.

Navigation mit Fronttaste

- 1. Um in das Menü zu gelangen, drücken Sie die Fronttaste (> 5 s).
- 2. Während das Display SETUP zeigt, drücken Sie die Fronttaste (> 3 s).

Das Display zeigt den ersten Parametercode P-01.

- 3. Drücken Sie kurz die Fronttaste, um zu den nächsten Parametern (z. B. P-02, P-03) zu gelangen.
- 4. Wenn das Display den Code des zu ändernden Parameters zeigt, drücken Sie die Fronttaste (> 3 s).
 - Wenn es sich um einen numerischen Parameter (Passwort, Schwellenwerte, Verzögerungen) handelt, zeigt das Display den aktuellen Wert. Die einzelnen Ziffern blinken nacheinander.

Während eine Ziffer blinkt, können Sie die Ziffer durch Drücken der Fronttaste erhöhen. Einige Sekunden lang wartet die Auswahl auf die nächste Ziffer.

 Wenn die Parameter eine Auswahl zwischen verschiedenen Funktionen (z. B. Ausgabefunktionen, Messen) ermöglichen, können Sie durch Drücken der Fronttaste nacheinander die gewünschte Funktion auswählen.

5. Bestätigen Sie mit der Fronttaste (> 3 s), um zur Auswahl des Parametercodes zurückzukehren.

Nach dem letzten Parametercode erscheint auf dem Display ESC.

6. Drücken Sie die Fronttaste (> 3 s).

Die Parameter werden gespeichert. Das System kehrt in den Normalbetrieb zurück.

3.3.2 Erweiterte Funktionen

Vorgehensweise

- 1. Drücken Sie die Fronttaste von einer beliebigen Anzeige aus (> 5 s).
 - Ist der Passwortschutz aktiviert, zeigt das Display PASS. Fahren Sie bei Punkt 2 fort (Eingabe des Passworts).
 - Ist der Passwortschutz deaktiviert (Werkseinstellung, Standardpasswort = 0000), fahren Sie bei Punkt 5 fort (Auswahl der Funktion).
- 2. Lassen Sie die Taste los.

Nach ca. 2 bis 3 Sekunden zeigt das Gerät 0000. Das Gerät wartet auf die Eingabe des Passworts.

3. Geben Sie das Passwort ein. Durch Drücken der Fronttaste können Sie die jeweils blinkende Ziffer erhöhen.

Nach 3 Sekunden wechselt das Eingabefeld zur nächsten Stelle.

- 4. Nach Eingabe des Passworts drücken Sie die Fronttaste zur Bestätigung.
 - Ist das Passwort falsch, zeigt das Display PASS Er und kehrt zur normalen Anzeige zurück.
 - Ist das Passwort korrekt, fahren Sie mit dem nächsten Punkt fort.
- 5. Das Display zeigt den ersten Eintrag der folgenden Liste der Funktionen:
 - CLEAR P: Löschen von Teilenergiezählern
 - CLEAR h: Löschen des Teilstundenzählers (falls aktiviert)
 - CLEAR d: Löschen der maximalen Bedarfswerte (falls aktiviert)
 - SETUP: Parameterprogrammierung (Setup)
 - INFO: Revision und Prüfsumme der internen Software
 - ESC: Rückkehr zur normalen Anzeige

Zum Blättern durch die Liste drücken Sie kurz die Fronttaste.

6. Zur Auswahl einer Funktion drücken Sie die Fronttaste > 3 s, während das Display die Funktion angezeigt.

Hinweis

Wenn Sie die Fronttaste länger als 60 s nicht drücken, wird das Menü automatisch verlassen.

3.3.3 Auswahl der Messwerte

Durch kurzes Drücken der Fronttaste können Sie die angezeigten Werte auf dem Display gemäß der unten angegebenen Reihenfolge wählen.

Jede Messgröße wird durch das entsprechende Symbol im unteren Teil des Displays angezeigt.

Eine Minute nach dem letzten Tastendruck schaltet die Anzeige automatisch auf den Bildschirm für die Gesamtwirkenergie.

Symbol	Messgröße	Format
kWh	Gesamtwirkenergie	000000,0
kWh + Part	Teilwirkenergie	000000,0
kvarh	Gesamtblindenergie	000000,0
kvarh + Part	Teilblindenergie	000000,0
V	Spannung	000,0
А	Strom	00,00
kW	Wirkleistung	00,00
kvar	Blindleistung	00,00
PF	Leistungsfaktor	0,00
Hz	Frequenz	00,0
h ¹⁾	Stundenzähler (hhhhh.mm)	00000,00
h + Part ¹⁾	Teilstundenzähler (hhhhh.mm)	00000,00
kW + d ²⁾	15 min Leistungsmittelwerte	00,00
$kW + d + \blacktriangle^{2}$	Leistungsmittelwerte max	00,00

¹⁾ Die Messungen werden nur angezeigt, wenn der Parameter P-08 aktiviert wird

²⁾ Die Messungen werden nur angezeigt, wenn der Parameter P-09 aktiviert wird

3.3.4 Parametrieren

Hinweis

Beachten Sie zum Einstellen der Parameter die Menübedienung. Weitere Informationen dazu finden Sie im Kapitel Tastaturfunktionen (Seite 19).

3.3.4.1 Geräte mit RS485-Schnittstelle

Über die RS485-Schnittstelle können Sie die Messwerte der Energiezähler übertragen.

Das Gerät verhält sich wie ein Standard-Modbus-Slave.

Die Konfiguration der seriellen Kommunikation erfolgt mit den Setup-Parametern von P-20 bis P-24.

Die Modbus-Registertabellen finden Sie im Kapitel Modbus Adressentabelle für 1-Phasen-Geräte mit Modbus-Schnittstelle (Seite 82).

Über die Parameter von P-02 bis P-07 kann das Verhalten einer programmierbaren Grenzschwelle definiert werden und deren Status wird übertragen.

Die programmierbare Grenzwertschwelle kann z. B. verwendet werden, um eine Alarmsituation an ein entferntes Gerät zu signalisieren.

Die Aktivierung der programmierbaren Grenzwertschwelle zeigt das Display durch das Symbol ① an.

Hinweis

Während der Parametrierung (Setup) wird der Status der programmierbaren Grenzwertschwelle nicht aktualisiert.

3.3.4.2 Geräte mit M-Bus-Schnittstelle

Geräte mit M-Bus-Schnittstelle unterstützen 2 Adressierungswege:

- Primäradresse von 1 bis 250
- Sekundäradresse von 00000000 bis 99999999.

Baud-Raten von 300 bis 38400 bps

Über die Parameter von P-02 bis P-07 kann das Verhalten einer programmierbaren Grenzschwelle definiert werden und deren Status wird übertragen.

Die programmierbare Grenzwertschwelle kann z. B. verwendet werden, um eine Alarmsituation an ein entferntes Gerät zu signalisieren.

Die Aktivierung der programmierbaren Grenzwertschwelle wird auf dem Display durch das Symbol 🗇 angezeigt.

Hinweis

Während der Parametrierung (Setup) wird der Status der programmierbaren Grenzwertschwelle nicht aktualisiert.

3.3.4.3 Geräte mit S0-Schnittstelle oder digitalem Ausgang

Den digitalen Ausgang können Sie entweder als SO-Impulsausgang oder als Grenzwertverletzung verwenden.

Sie können das Gerät im PNP- oder NPN-Modus verbinden. Weitere Informationen finden Sie im Kapitel Technische Daten (Seite 101), Maßbilder (Seite 107) und 1-Phasen-Gerät anschließen (Seite 73).

Die Aktivierung der digitalen Ausgabe wird im Display durch das Symbol 🗇 angezeigt.

Den digitalen Ausgang SO-Schnittstelle können Sie z. B. durch folgende, externe Geräte auswerten:

- Elektromechanische Zähler
- SPS

Wenn Sie die Einstellung Grenzwertverletzung wählen, können Sie den Ausgang verwenden für:

- Trennung von nicht vorrangigen Lasten
- Alarmsignalisierung

Hinweis

Während der Parametereinstellung (Setup) wird der Status der statischen Ausgabe nicht aktualisiert.

3.3.4.4 Setup-Parametertabelle

Für alle 1-Phasen-Geräte

Code	Beschreibung	Default	Bereich
P-01	Passwort	0000	0000 9999
P-02	Programmierbare Grenzwertschwelle	OFF	• OFF
	aktivieren		• THR
P-03	Grenzwert	kW	• 01 = kW
			• 02 = kvar
			• 03 = V
			• 04 = A
			• 05 = Hz
			• 06 = kWh Part
			• 07 = h Part
			• $08 = kW$ demand
P-04	Schwellwert EIN	100.00	0.00 999.99
P-05	Verzögerung EIN	5 s	0 9999 s
P-06	Schwellwert AUS	50,00	0,00 999,99
P-07	Verzögerung AUS	5 s	0 9999 s
P-08	Stundenzähler aktivieren	OFF	• OFF
			• ON
			• THR
P-09	Mittelwerte aktivieren	OFF	• OFF
			• ON

Erläuterungen zum Code

- P-01 Bei Einstellung auf 0000 (Standard) ist der Passwortschutz deaktiviert.
- P-02 Definiert die Funktion der Ausgänge, abhängig von der Geräteausführung

100 PUL...1 PUL

Digitale Ausgänge arbeiten als Impulsgeber für aktive Energiezählung. Diese Auswahlmöglichkeiten definieren die Anzahl der Impulse, die für jede kWh gesendet werden.

THR

Der digitale Ausgang wird zu einer Alarmschwelle für die maximale oder minimale Grenze, abhängig von den in P-04 und P-06 programmierten Werten.

- P-04 > P-06:
 - Ausgang wird aktiviert, wenn der durch P-03 definierte Wert höher ist als P-04.
 - Ausgang wird deaktiviert, wenn sein Wert kleiner als P-06 wird (maximale Grenze mit Hysterese).
- P-04 < P-06:
 - Ausgang wird aktiviert, wenn der durch P-03 definierte Wert niedriger als P-04 ist.
 - Ausgang wird aktiviert, wenn sein Wert höher als P-06 wird (minimale Grenze mit Hysterese).
- P-03 Auswahl der Messgröße.
- P-04, Schwellwert und Verzögerung für die Aktivierung des Ausgangs.
- P-05 Die Messungen werden alle 1 Sekunde aktualisiert.
- P-06, Schwellwert und Verzögerung für die Deaktivierung des Ausgangs.
- P-07
- P-08 Definiert den Betriebsstundenzähler:
 - OFF = Stundenzähler deaktiviert. Der Stundenzähler wird nicht auf dem Display angezeigt.
 - ON = Der Stundenzähler wird solange hochgezählt, wie der Energiezähler Energie misst.
 - THR = Der Stundenzähler wird solange hochgezählt, wie der mit dem Parameter definierte Schwellwert (P-02, P-03, P-04 und P-05) aktiv ist.
- P-09 Ermöglichung die Berechnung und Anzeige des aktiven Energiebedarfs und der maximalen Nachfrage.

Code	Beschreibung	Default	Bereich
P-20	Adresse	001	001 255
P-21	Baud-Rate	9600	• 1200
			• 2400
			• 4800
			• 9600
			• 19200
			• 38400
P-22	Datenformat	8 bit - n	• 8 bit, no parity
			• 8 bit odd, 8 bit even
			• 7 bit odd, 7 bit even
P-23	Stopbits	1	• 1
			• 2
P-24	Protokoll	Modbus RTU	Modbus RTU
			Modbus ASCII

Für 1-Phasen-Geräte mit RS485-Schnittstelle

Erläuterungen zum Code

- P-20 Adresse für die serielle Kommunikation
- P-21 Baud-Rate (Geschwindigkeit) für serielle Kommunikation
- P-22 Datenformat der seriellen Kommunikation
- P-23 Stopbits der seriellen Kommunikation
- P-24 Auswahl des Modbus-Protokolls

Für 1-Phasen-Geräte mit M-Bus-Schnittstelle

Code	Beschreibung	Default	Bereich
P-20	Primäradresse	001	001 250
P-21	Sekundäradresse HIGH	Serien- nummer	0000 9999
P-22	Sekundäradresse LOW	Serien- nummer	0000 9999
P-23	Baud-Rate	2400	• 300
			• 600
			• 1200
			• 2400
			• 4800
			• 9600
			• 19200
			• 38400

Erläuterungen zum Code

- P-20 Hauptadresse
- P-21, Sekundäradresse 1. Hälfte (4 Ziffern), 2. Hälfte (4 Ziffern).
- P-22 Die vollständige sekundäre Adresse erhalten Sie durch Verketten der Inhalte von Parameter P8.02 mit P8.03.

Beispiel:

Sekundäradresse 12345678, setzen Sie P8.02 = 1234 und P8.03 = 5678.

3.4 3-Phasen-Geräte 80 A

3.4 3-Phasen-Geräte 80 A

- ① Plombierabdeckung
- 2 Energieflussanzeige
 - Wenn das Gerät einen Wirkenergiefluss erkennt, wird oben rechts im Display ein rotierendes Symbol angezeigt.
 - Wenn kein Wirkenergieverbrauch vorhanden ist oder wenn die Last weniger als den Anlaufstrom zieht, verschwindet das rotierende Symbol.
 - Wenn die Energiemessung (Lieferung) aktiviert ist (P01.02 = ON) und wenn das Gerät einen Wirkenergiefluss erkennt, wird oben rechts im Display ein Symbol angezeigt, das sich gegen den Uhrzeigersinn dreht.
 - Wenn die Messung der Wirkenergie (Abgabe) deaktiviert ist (P01.02 = OFF) und wenn eine oder mehrere Phasen falsch angeschlossen wurden, zeigt das Display den Fehlercode Err 3 an. Prüfen Sie die Anschlüsse.
- ③ Taste "Erhöhen"
- ④ Taste "Verringern" Informationen zur Bedienung finden Sie im Kapitel Tastaturfunktio-
- 5 Taste "Weiter"
- nen (Seite 29) ff.
- 6 Wirkenergie-Impulsanzeige

Die rote LED an der Vorderseite gibt 1000 Impulse für jede kWh verbrauchte oder gelieferte Energie aus. Wenn mindestens aus einer der Phasen die Energie geliefert wird, zeigt die LED die Energie als ein Gleichgewicht von bezogener und gelieferter Energie an. Die LED Impulsfrequenz ist proportional zur Energie.

Grundlegende Eigenschaften

- DIN-Schienengehäuse, 4 TE (72 mm breit)
- Direkter Anschluss für Ströme bis 80 A
- LCD mit Hintergrundbeleuchtung
- Zähler 6-stellig mit einer Nachkommastelle
- 3 Tasten zur Auswahl von Messgrößen und zur Parametrierung
- Wirk- und Blindenergiezähler
- Teilzähler für Wirk- und Blindenergie
- 3 Stundenzähler
- Puls-LED für Wirkenergieverbrauch
- Anzeige des momentanen Verbrauchs (Wirkleistung)
- Optional: RS485-, M-Bus- oder SO-Schnittstelle
- Optional: MID-Zertifizierung
- AC-Eingang für Tarifauswahl

3.4.1 Tastaturfunktionen

Das Gerät können Sie mit 3 Tasten bedienen.

Die Tasten werden mit unterschiedlichen Funktionen belegt.

Die Funktionen der Tasten sind von der verwendeten Menüebene abhängig.

Tasten "Erhöhen" und "Verringern"

- Tasten "Erhöhen" oder "Verringern" drücken:
 - Blättern zwischen den Bildschirmen
 - Auswählen von verfügbaren Optionen auf dem Display
 - Ändern (Erhöhen/Verringern) der Einstellungen
- Tasten "Erhöhen" und "Verringern" gleichzeitig drücken (> 5 s): Die verschiedenen Anzeige- und Setup-Menüs aufrufen oder verlassen.

Taste "Weiter"

- Blättern auf Unterseiten
- Bestätigen ausgewählter Optionen
- Umschalten zwischen den Anzeigemodi

3.4 3-Phasen-Geräte 80 A

Parameter einstellen

1. Während das Display SETUP anzeigt, drücken Sie die Taste "Weiter".

Das Display zeigt den ersten Parametercode P1-01.

- 2. Um zu den nächsten Parametern P-02, P-03 usw. zu gelangen, verwenden Sie die Taste "Erhöhen" oder "Verringern".
- 3. Wenn das Display den Code des zu ändernden Parameters anzeigt, drücken Sie die Taste "Weiter".
- 4. Wenn die Anzeige den Code des Parameters anzeigt, der geändert werden muss, drücken Sie die Taste "Weiter".

Das Display zeigt den aktuellen Wert des Parameters an.

- 5. Ändern Sie den Wert mit der Taste "Erhöhen" oder "Verringern".
- 6. Drücken Sie gleichzeitig die Tasten "Erhöhen" und "Verringern", um den Standardwert festzulegen.
- 7. Um zur Auswahl der Parameter zurückzukehren, bestätigen Sie mit der Taste "Weiter".
- 8. Drücken Sie gleichzeitig die Tasten "Erhöhen" und "Verringern" (> 1 s).

Die Parameter werden gespeichert. Das System kehrt in den Normalbetrieb zurück.

3.4.2 Erweiterte Funktionen

Vorgehensweise

- 1. Drücken Sie von einer beliebigen Anzeige beide Tasten "Erhöhen" und "Verringern" gleichzeitig (> 5 s).
 - Ist der Passwortschutz aktiviert, zeigt das Display PASS. Fahren Sie bei Punkt 2 fort (Eingabe des Passworts).
 - Ist der Passwortschutz deaktiviert (Werkseinstellung, Standardpasswort = 0000), fahren Sie bei Punkt 6 fort (Auswahl der Funktion).
- 2. Lassen Sie die Tasten los.

Das Display zeigt 0000. Das Gerät wartet auf die Eingabe des Passworts.

- 3. Ändern Sie die blinkende Ziffer durch Drücken der Tasten "Erhöhen" oder "Verringern".
- 4. Wählen Sie die nächste Ziffer durch Drücken der Taste "Weiter".
- 5. Nach Eingabe des Passworts drücken Sie die Taste "Weiter" zur Bestätigung.
 - Ist das Passwort falsch, zeigt das Display PASS Er und kehrt zur normalen Anzeige zurück.
 - Ist das Passwort korrekt, fahren Sie mit dem nächsten Punkt fort.

- 6. Das Display zeigt den ersten Eintrag der folgenden Liste an:
 - CLEAR P: Löschen von Teilenergiezählern
 - CLEAR h: Löschen des Teilstundenzählers (falls aktiviert)
 - CLEAR d: Löschen der maximalen Bedarfswerte (falls aktiviert)
 - ET-DEF: Setzen aller Parameter auf Standardwerte
 - SETUP: Parameterprogrammierung (Setup)
 - INFO: Revision und Prüfsumme der internen Software
 - ESC: Rückkehr in den Normalbetrieb

Zum Blättern durch die Liste drücken Sie die Tasten "Erhöhen" oder "Verringern".

7. Um eine Funktion auszuwählen, drücken Sie die Taste "Weiter".

Hinweis

Wenn Sie die Tasten länger als 60 s nicht drücken, wird das Menü automatisch verlassen.

3.4.3 Auswahl der Messwerte

Durch Drücken der Taste "Erhöhen" oder "Verringern" wählen Sie die Messwerte auf dem Display gemäß der Reihenfolge in der unten aufgeführten Tabelle. Jede Messgröße wird durch das entsprechende Symbol im unteren Teil des Displays angezeigt.

Mit der Taste "Weiter" können Sie die Anzeige von Gesamt- oder Einzel-Phasen-Messung auswählen.

Normalerweise zeigt das Display die Gesamtwerte (System) an, die in der folgenden Tabelle mit dem Symbol Σ gekennzeichnet sind. In diesem Fall zeigt das Display nur den Wert und die Maßeinheit an.

Wenn stattdessen die ausgewählte Messung auf eine bestimmte Phase bezogen ist, zeigt das Display im oberen Teil das Symbol dieser Phase (L1, L2, L3) an.

Eine Minute nach dem letzten Tastendruck schaltet die Anzeige automatisch auf den Bildschirm für die Wirkenergiesumme.

Hinweis

Die Messungen in **Fettschrift** werden nur angezeigt, wenn Sie den entsprechenden Aktivierungsparameter aktiviert haben.

3.4 3-Phasen-Geräte 80 A

Symbol	Seiten Messgrößen	Format	Unterseiten			
	Auswählen mit Taste "Erhöhen" oder "Verrin- gern"		Auswählen mit Taste "Weiter"			
kWh	Summe Wirkenergie Bezug	000000,0	Σ	L1	L2	L3
kWh + Part	Teilwirkenergie Bezug	000000,0	Σ	L1	L2	L3
kWh T1 ¹⁾	Wirkenergie Bezug Tarif 1	000000,0	Σ	L1	L2	L3
kWh T2 ¹⁾	Wirkenergie Bezug Tarif 2	000000,0	Σ	L1	L2	L3
kWh	Summe Wirkenergie Lieferung	-000000,0	Σ	L1	L2	L3
kWh + Part	Teilwirkenergie Lieferung	-000000,0	Σ	L1	L2	L3
kWh T1 ¹⁾	Wirkenergie Lieferung Tarif 1	-000000,0	Σ	L1	L2	L3
kWh T2 1)	Wirkenergie Lieferung Tarif 2	-000000,0	Σ	L1	L2	L3
kvarh	Summe Blindenergie Bezug	000000,0	Σ	L1	L2	L3
kvarh + Part	Teilblindenergie Bezug	000000,0	Σ	L1	L2	L3
kvarh T1 1)	Blindenergie Bezug Tarif 1	000000,0	Σ	L1	L2	L3
kvarh T2 1)	Blindenergie Bezug Tarif 2	000000,0	Σ	L1	L2	L3
kvarh	Summe Blindenergie Lieferung	-000000,0	Σ	L1	L2	L3
kvarh + Part	Teilblindenergie Lieferung	-000000,0	Σ	L1	L2	L3
kvarh T1 ¹⁾	Blindenergie Lieferung Tarif 1	-000000,0	Σ	L1	L2	L3
kvarh T2 ¹⁾	Blindenergie Lieferung Tarif 2	-000000,0	Σ	L1	L2	L3
V	Spannung Phase L/N oder L/L	000,0	Σ	L1	L2	L3
			Σ	L1L2	L2L3	L3L1
A	Strom	00,00	-	L1	L2	L3
kW	Wirkleistung	00,00	Σ	L1	L2	L3
kvar ²⁾	Blindleistung	00,00	Σ	L1	L2	L3
PF	Leistungsfaktor	0,00	Σ	L1	L2	L3
Hz	Frequenz	00,0	-	-	-	-
h + Part	Teilstundenzähler (hhhhh.mm)	00000,00	-	L1	L2	L3
kW + d	15 min Leistungsmittelwerte	00,00	-	-	-	-
kW + d + ▲	Leistungsmittelwerte max.	00,00	-	-	-	_

¹⁾ Diese Messungen werden nur angezeigt, wenn die programmierbare Eingabefunktion auf Tarifauswahl gesetzt wird. Der momentan vom externen Eingang gewählte Tarif wird durch das blinkende T1- oder T2-Symbol angezeigt.

²⁾ Bei induktivem Wert wird das Zeichen "I" auf dem Display angezeigt. Bei kapazitivem Wert wird das Zeichen "C" angezeigt.

3.4.4 Parametrieren

3.4.4.1 Geräte mit RS485-Schnittstelle

Über die RS485-Schnittstelle können Sie die Messwerte der Energiezähler übertragen.

Das Gerät verhält sich wie ein Standard-Modbus-Slave.

Die Modbus-Registertabelle wird im Anhang gezeigt. Weitere Informationen finden Sie im Kapitel Modbus Adressentabelle für 3-Phasen-Geräte 80 A mit Modbus-Schnittstelle (Seite 90).

3.4.4.2 Geräte mit M-Bus Schnittstelle

Geräte mit M-Bus-Schnittstelle unterstützen 2 Adressierungswege:

- Primäradresse von 1 bis 250
- Sekundäradresse von 00000000 bis 99999999.

Baud-Raten von 300 bis 38400 bps.

3.4.4.3 Setup-Parametertabelle für Geräte mit RS485- und M-Bus-Schnittstelle

Für alle Varianten

Code	Beschreibung	Default	Bereich
P1-01	Passwort	0000	0000 9999
P1-02	Aktivieren von Energieanzeigen (Lie-	OFF	OFF
	ferung)		• ON
P2-01	Messgröße für Stundenzähler 1 Grenzwert	01 kW	Siehe Einstellbare Werte für die Parame- ter P2.01, P3.01, P4.01 (Seite 40).
P2-02	Grenzwert 1 EIN	10.00	-9999.99 9999.99
P2-03	Grenzwert 1 AUS	5.00	-9999.99 9999.99
P3-01	Messgröße für Stundenzähler 2 Grenzwert	01 kW	Siehe Einstellbare Werte für die Parame- ter P2.01, P3.01, P4.01 (Seite 40).
P3-02	Grenzwert 2 EIN	10.00	-9999.99 9999.99
P3-03	Grenzwert 2 AUS	5.00	-9999.99 9999.99
P4-01	Messgröße für Stundenzähler 3 Grenzwert	01 kW	Siehe Einstellbare Werte für die Parame- ter P2.01, P3.01, P4.01 (Seite 40).
P4-02	Grenzwert 3 EIN	10.00	-9999.99 9999.99
P4-03	Grenzwert 3 AUS	5.00	-9999.99 9999.99
P5-01	Funktion Eingang 1	OFF	 OFF = deaktiviert ON = aktiviert
			• TAR = Tarifauswahl
			• CLr Part = Teilenergiezähler löschen
			• CLr Hr = Stundenzähler löschen
			• CLr dE = Max. Mittelwerte löschen
P6-01	Stundenzähler 1 aktivieren	OFF	 OFF ON THR INP
P6-02	Stundenzähler 2 aktivieren	OFF	 OFF ON THR INP

3.4 3-Phasen-Geräte 80 A

Code	Beschreibung	Default	Bereich
P6-03	Stundenzähler 3 aktivieren	OFF	• OFF
			• ON
			• THR
			• INP
P7-01	Aktivierung Mittelwerte	OFF	• OFF
			• ON
P7-02	Rechenmethode Blindleistung	FUND	• TOT
			• FUND

Für die Variante mit RS485-Schnittstelle

Code	Beschreibung	Default	Bereich
P8-01	Adresse	001	001 255
P8-02	Baud-Rate	9600	• 1200
			• 2400
			• 4800
			• 9600
			• 19200
			• 38400
P8-03	Datenformat	8 bit = n	• 8 bit, no parity
			• 8 bit, odd
			• 8 bit, even
			• 7 bit, odd
			• 5 bit, even
P8-04	Stopbit	1	• 1
			• 2
P8-05	Protokoll	Modbus RTU	Modbus RTU
			Modbus ASCII
Code	Beschreibung	Default	Bereich
-------	----------------------	-------------------	---
P8-01	Primäradresse	001	001 250
P8-02	Sekundäradresse HIGH	Serien- nummer	0000 9999
P8-03	Sekundäradresse LOW	Serien- nummer	0000 9999
P8-04	Baud-Rate	2400	 300 600 1200 2400 4800 9600 19200
			• 38400

Für die Variante mit M-Bus-Schnittstelle

Erläuterungen zum Code

- P1-01 Bei Einstellung auf 0000 (Standard) ist der Passwortschutz deaktiviert. Jede andere Einstellung definiert das Passwort für den Zugriff auf die erweiterten Funktionen.
- P1-02 Aktivieren von Energieanzeigen (Lieferung)
- P2-01 Auswahl der Kennzahl zum Vergleich mit den Schwellenwerten für den Stundenzähler 1. Weitere Informationen finden Sie im Einstellbare Werte für die Parameter P2.01, P3.01, P4.01 (Seite 40).
- P2-02 Schwelle für Aktivierung des Stundenzählers 1. Hinweis: Die Messungen werden alle Sekunde aktualisiert.
- P2-03 Schwelle für die Deaktivierung des Stundenzähler 1. Die Messungen werden alle Sekunde aktualisiert.
 - P2-02 ≥ P2-03:
 - Stundenzähler wird aktiviert, wenn der durch P2-01 definierte Wert höher als P2-02 ist.
 - Stundenzähler wird deaktiviert, wenn sein Wert kleiner als P2-03 wird (maximale Grenze mit Hysterese).
 - P2-02 < P2-03:
 - Stundenzähler wird aktiviert, wenn der durch P2-01 definierte Wert niedriger als P2-02 ist.
 - Stundenzähler wird deaktiviert, wenn sein Wert höher als P2-03 wird (Mindestgrenze mit Hysterese).
- P3-01, Wie P2-01, P2-02 und P2-03, bezogen auf den Stundenzähler 2.

P3-02,

P3-03

- P4-01, Wie P2-01, P2-02 und P2-03, bezogen auf den Stundenzähler 3.
- P4-02,
- P4-03

- P5-01 Wählt die Funktion des programmierbaren Eingangs:
 - OFF = Eingabe deaktiviert.
 - ON = Eingang aktiviert (für allgemeine Funktionen wie Stundenzählerfreigabe).
 - TAR = Auswahl des Energietarifs (T1 / T2).
 - CLr Part = Löscht die Teilenergiezähler.
 - CLr Hr = Löscht alle Stundenzähler.
 - CLr dE = Löscht die max. Mittelwerte.
- P6-01 Definiert den Betrieb des Stundenzählers 1:
 - OFF = Stundenzähler deaktiviert. Er wird nicht auf dem Display angezeigt.
 - ON = Der Stundenzähler wird solange erhöht, wie der Energiezähler Energie misst.
 - THR = Der Stundenzähler wird so lange hochgezählt, wie der mit dem Parameter definierte Schwellwert P2-01, P2-02 und P2-03 aktiv ist.
 - INP = Der Stundenzähler wird solange hochgezählt, solange der programmierbare Eingang aktiviert ist. Der Parameter P5.01 muss auf ON gesetzt sein.
- P6-02 Definiert den Betrieb des Stundenzählers 2:
 - OFF = Stundenzähler deaktiviert. Er wird nicht auf dem Display angezeigt.
 - ON = Der Stundenzähler wird solange erhöht, wie der Energiezähler Energie misst.
 - THR = Der Stundenzähler wird so lange hochgezählt, wie der mit dem Parameter definierte Schwellwert P3-01, P3-02 und P3-03 aktiv ist.
 - INP = Der Stundenzähler wird solange hochgezählt, solange der programmierbare Eingang aktiviert ist. Der Parameter P5.01 muss auf ON gesetzt sein.
- P6-03 Definiert den Betrieb des Stundenzählers 3:
 - OFF = Stundenzähler deaktiviert. Er wird nicht auf dem Display angezeigt.
 - ON = Der Stundenzähler wird solange erhöht, wie der Energiezähler Energie misst.
 - THR = Der Stundenzähler wird so lange hochgezählt, wie der mit dem Parameter definierte Schwellwert P4-01, P4-02 und P4-03 aktiv ist.
 - INP = Der Stundenzähler wird solange hochgezählt, solange der programmierbare Eingang aktiviert ist. Der Parameter P5.01 muss auf ON gesetzt sein.

Wenn einer der Stundenzähler läuft, blinkt der entsprechende Dezimalpunkt.

- P7-01 Aktivierung der Berechnung und Visualisierung von Leistungsmittelwerten und Max. Mittelwerten.
- P7-02 Auswahl der Berechnungsmethode für die Blindleistung.
 - TOT: Die Blindleistung beinhaltet alle Harmonischen. In diesem Fall: $P_{Blind^2} = P_{Schein^2} P_{Wirk^2}$ und auf der PF/cos ϕ -Seite wird PF angezeigt.
 - FUND: Die Blindleistung beinhaltet nur die Grundschwingung. In diesem Fall: $P_{Blind^2} \le P_{Schein^2} - P_{Wirk^2}$ und auf der PF/cos ϕ -Seite wird cos ϕ angezeigt.

3.4.4.4 Geräte mit S0-Schnittstelle oder digitalem Ausgang

Die Geräte verfügen über 2 voneinander unabhängige Digitalausgänge.

Den digitalen Ausgang können Sie entweder als SO-Impulsausgang oder als Grenzwertverletzung verwenden.

Sie können das Gerät im PNP- oder NPN-Modus verbinden. Weitere Informationen finden Sie in den Kapiteln Technische Daten (Seite 101), Maßbilder (Seite 107) und 3-Phasen-Gerät anschließen (Seite 75).

Die Aktivierung der digitalen Ausgänge wird im Display durch die Symbole 1 und 2 angezeigt.

Wenn der Ausgang als SO-Schnittstelle programmiert ist, können Sie den Energiezähler an folgende Geräte anschließen:

- Elektromechanischer Zähler
- SPS

Wenn Sie die Einstellung Grenzwertverletzung wählen, können Sie den Ausgang verwenden für:

- Trennung von unwichtigen Lasten
- Alarmsignalisierung

Hinweis

Während der Parametereinstellung (Setup) wird der Status der digitalen Ausgabe nicht aktualisiert.

3.4.4.5 Setup-Parametertabelle für Geräte mit S0-Schnittstelle

Parameter in Abhängigkeit des Geräts

Code	Beschreibung	Default	Bereich
P1-01	Passwort	0000	0000 9999
P2-01	Funktion Ausgang 1	10 PUL/k Wh	 OFF = deaktiviert 1000 PUL/kWh
			• 100 PUL/kWh
			• 10 PUL/kWh
			• 1 PUL/kWh
			• THR = programmierbare Grenzwerte
P2-02	Messgröße für Grenzwert Ausgang 1	01 kW	Siehe Einstellbare Werte für die Parame- ter P2.01, P3.01, P4.01 (Seite 40).
P2-03	Grenzwert 1 EIN	100.00	0.00 999.99
P2-04	Verzögerung 1 EIN	5 s	0 9999 s
P2-05	Grenzwert 1 AUS	50.00	0.00 999.99
P2-06	Verzögerung 1 AUS	5 s	0 9999 s
P3-01	Funktion Ausgang 2	OFF	• OFF = disabled
			• 1000 PUL/kWh
			• 100 PUL/kWh
			• 10 PUL/kWh
			• 1 PUL/kWh
			• THR = programmable thresholds
P3-02	Messgröße für Grenzwert Ausgang 2	01 kW	Siehe Einstellbare Werte für die Parame- ter P2.01, P3.01, P4.01 (Seite 40).
P3-03	Grenzwert 2 EIN	100.00	0.00 999.99
P3-04	Verzögerung 2 EIN	5 s	0 9999 s
P3-05	Grenzwert 2 AUS	50.00	0.00 999.99
P3-06	Verzögerung 2 AUS	5 s	0 9999 s
P4-01	Funktion Eingang 1	OFF	• OFF = deaktiviert
			ON = aktiviert
			• TAR = Tarifauswahl
			• CLr Part = Teilenergiezähler löschen
			• CLr Hr = Stundenzähler löschen
			• CLr dE = Max. Mittelwerte löschen

Code	Beschreibung	Default	Bereich
P5-01	Stundenzähler aktivieren	OFF	• OFF
			• ON
			• THR1
			• THR2
			• INP
P5-02	Mittelwerte aktivieren	OFF	• OFF
			• ON

- P1-01 Bei Einstellung auf 0000 (Standard) ist der Passwortschutz deaktiviert. Jede andere Einstellung definiert das Passwort für den Zugriff auf die erweiterten Funktionen.
- P2-01 Definiert die Funktion des Ausgang 1:
 - OFF = Deaktiviert
 - 1000 PUL ... 1 PUL = Der Ausgang 1 arbeitet als Impulsgeber für die aktive Energiezählung. Diese Auswahl definiert die Anzahl der Impulse, die für jede kWh gesendet werden.
 - THR = Ausgang 1 wird zu einer Alarmschwelle für die maximale oder minimale Grenze, abhängig von den in P2-03 und P2-05 programmierten Werten.

Wenn P2-03 \ge P2-05 ist, wird der Ausgang aktiviert, wenn die durch P2-02 definierte Messung höher als P2-03 ist, und deaktiviert, wenn sein Wert kleiner als P2-05 wird (maximale Grenze mit Hysterese).

Wenn P2-03 < P2-05 ist, wird der Ausgang aktiviert, wenn die durch P2-02 definierte Messung niedriger als P2-03 ist, und aktiviert, wenn sein Wert höher als P2-05 wird (minimale Grenze mit Hysterese).

- P2-02 Auswahl der Messgröße zum Vergleich mit Grenzwerten. Weitere Informationen dazu finden Sie in Einstellbare Werte für die Parameter P2.01, P3.01, P4.01 (Seite 40).
- P2-03, Grenzwert und Verzögerung für die Aktivierung des Ausgangs.
- P2-04 Hinweis: Die Messungen werden jede Sekunde aktualisiert. Die Ungenauigkeit dieser Verzögerung liegt im Bereich von 0 bis 1 Sekunde.
- P2-05, Grenzwert und Verzögerung für die Deaktivierung des Ausgangs.

P2-06

P3-01 ... Gleiche Funktion wie P2-01 ... P2-06, aber bezogen auf Ausgang 2.

P3-06

- P4-01 Wählt die Funktion des programmierbaren Eingangs:
 - OFF = Eingabe deaktiviert.
 - ON = Eingang aktiviert (für allgemeine Funktionen wie Stundenzählerfreigabe).
 - TAR = Auswahl des Energietarifs (T1/T2).
 - CLr Part = Löscht die Teilenergiezähler.
 - CLr Hr = Löscht den Stundenzähler.
 - CLr dE = Löscht die max. Mittelwerte.

- P5-01 Definiert den Betriebsstundenzähler:
 - OFF = Stundenzähler deaktiviert. Es wird nichts auf dem Display angezeigt.
 - ON = Der Stundenzähler wird solange erhöht, wie der Energiezähler Energie misst.
 - THR1 = Der Stundenzähler wird so lange hochgezählt, wie der mit den Parametern (P2-01 ... P2-06) definierte Grenzwert aktiv ist.
 - THR2 = Der Stundenzähler wird so lange hochgezählt, wie der mit Parametern definierte Grenzwert (P3-01 ... P3-06) aktiv ist.
 - INP = Der Stundenzähler wird erhöht, solange der programmierbare Eingang aktiviert ist. Der Parameter P4.01 muss auf ON gesetzt sein.
- P5-02 Aktivierung der Berechnung und Anzeige von Leistungsmittelwerten und max. Mittelwerten

3.4.4.6 Programmierbarer AC-Eingang

Die 3-Phasen-Geräte verfügen über einen programmierbaren AC-Eingang.

Standardmäßig ist diese Eingabe deaktiviert. Stellen Sie den Parameter P5.01 ein, um die gewünschte Funktion auszuwählen.

Die Eingabe können Sie folgendermaßen verwenden:

- Für 2 verschiedene Tarife (T1 und T2) mit unabhängigen Energiezählern
- Zum Rücksetzen von Teilzählern, Stundenzählern und Mittelwerten
- Zum Aktivieren der Stundenzähler

3.4.4.7 Einstellbare Werte für die Parameter P2.01, P3.01, P4.01

Setup	Maßeinheit	Messwert
01	kW	Wirkleistung ¹⁾
02	kW	Gesamtwirkleistung
03	kW L1	Wirkleistung L1
04	kW L2	Wirkleistung L2
05	kW L3	Wirkleistung L3
06	kvar	Blindleistung ¹⁾
07	kvar	Blindleistung
08	kvar L1	Blindleistung L1
09	kvar L2	Blindleistung L2
10	kvar L3	Blindleistung L3
11	kVA	Scheinleistung ¹⁾
12	kVA	Gesamtscheinleistung
13	kvar L1	Scheinleistung L1
14	kvar L2	Scheinleistung L2
15	kvar L3	Scheinleistung L3
16	V L-n	Phasen Spannung ¹⁾
17	V L1	Phasen Spannung L1N

Beschreibung

3.4 3-Phasen-Geräte 80 A

Setup	Maßeinheit	Messwert
18	V L2	Phasen Spannung L2N
19	V L3	Phasen Spannung L3N
20	V L-L	Leiter Spannung ¹⁾
21	V L1L2	Leiter Spannung L1L2
22	V L2L3	Leiter Spannung L2L3
23	V L3L1	Leiter Spannung L-L1
24	A	Spannung ¹⁾
25	A L1	Spannung L1
26	A L2	Spannung L2
27	A L3	Spannung L3
28	PF	Leistungsfaktor ¹⁾
29	PF	Leistungsfaktor (Summe)
30	PF L1	Leistungsfaktor L1
31	PF L2	Leistungsfaktor L2
32	PF L3	Leistungsfaktor L3
33	HZ	Frequenz
34	kWh+ Part	Teilwirkenergie
35	kWh+ L1 Part	Teilwirkenergie L1 (Bezug)
36	kWh+ L2 Part	Teilwirkenergie L2 (Bezug)
37	kWh+ L3 Part	Teilwirkenergie L3 (Bezug)
38	kWh– Part	Teilwirkenergie (Lieferung)
39	kWh– L1 Part	Teilwirkenergie L1 (Lieferung)
40	kWh– L2 Part	Teilwirkenergie L2 (Lieferung)
41	kWh– L3 Part	Teilwirkenergie L3 (Lieferung)
42	kWh+ Part	Teilblindenergie (Bezug)
43	kWh+ L1 Part	Teilblindenergie L1 (Bezug)
44	kWh+ L2 Part	Teilblindenergie L2 (Bezug)
45	kWh+ L3 Part	Teilblindenergie L3 (Bezug)
46	kWh– Part	Teilblindenergie (Lieferung)
47	kWh– L1 Part	Teilblindenergie L1 (Lieferung)
48	kWh– L2 Part	Teilblindenergie L2 (Lieferung)
49	kWh-L3 Part	Teilblindenergie L3 (Lieferung)
50	kW d	Mittelwerte Wirkleistung

¹⁾ Wenn Grenzwerte für diese Messungen verwendet werden, wird der Vergleich unter Verwendung der höchsten oder der niedrigsten der 3 Phasen durchgeführt, abhängig von der Art der Grenze (Maximum oder Minimum).

Beispiel:

Wenn ein Maximum-Grenzwert für die Phasenspannungen festgelegt ist, wird der Grenzwert aktiviert, wenn eine der 3 Spannungen über dem Grenzwert liegt.

3.5 3-Phasen-Geräte 5 A

- ① Plombierabdeckung
- 2 Display
- ③ Wirkenergie-Impulsanzeige

Die rote LED an der Vorderseite gibt 10000 Impulse für jede kWh verbrauchte oder gelieferte Energie, bezogen auf den sekundären Stromwandler.

Die Blinkfrequenz der LED zeigt sofort an, wie viel Strom in einem bestimmten Moment benötigt wird.

Die Dauer des Blinkens, die Farbe und die Intensität der LED entsprechen den Normen, die ihre Verwendung für die messtechnische Überprüfung der Genauigkeit des Energiezählers vorschreiben.

- ④ Taste "Erhöhen"
- 5 Taste "Verringern" Informationen zur Bedienung finden Sie im Kapitel Tastaturfunktio-
- 6 Taste "Weiter" nen (Seite 43) ff.

Grundlegende Eigenschaften

- DIN-Schienengehäuse, 4 TE (72 mm breit)
- Stromwandler Anschluss x / 5 A
- LCD mit Hintergrundbeleuchtung
- 3 Tasten zur Auswahl von Messgrößen und zur Parametrierung
- Wirk- und Blindenergiezähler
- Teilzähler für Wirk- und Blindenergie
- Mehrere Stundenzähler
- 2-Level-Passwortschutz
- Puls-LED für Wirkenergieverbrauch
- Anzeige des momentanen Verbrauchs (Wirkleistung)
- Optional: RS485-, M-Bus oder SO-Schnittstelle
- Optional: MID-Zertifizierung

- AC-Eingang für Tarifauswahl
- Texte in 6 Sprachen
 - Englisch
 - Italienisch
 - Französisch
 - Spanisch
 - Portugiesisch
 - Deutsch

Anzeige des Displays

- ① Messgrößen Einheit
- 2 Ausgewählte Phase
- ③ Kommunikation aktiv
- ④ Untergeordnete Seite: Messart
- 5 Alarmsymbol
- 6 Skalen Endausschlag
- ⑦ Balkendiagramm
- (8) Messgrößenanzeige

3.5.1 Tastaturfunktionen

Das Gerät können Sie mit 3 Tasten bedienen.

Die Tasten werden mit unterschiedlichen Funktionen belegt.

Die Funktionen der Tasten sind von der verwendeten Menüebene abhängig.

Tasten "Erhöhen" und "Verringern"

- Taste "Erhöhen" oder "Verringern" drücken:
 - Blättern zwischen den Bildschirmen
 - Auswählen von verfügbaren Optionen auf dem Display
 - Ändern (Erhöhen/Verringern) der Einstellungen
- Tasten "Erhöhen" und "Verringern" kurz gleichzeitig drücken: Die verschiedenen Anzeige- und Setup-Menüs aufrufen oder verlassen.

Taste "Weiter"

- Ausgewählter Optionen bestätigen
- Nächste Option wählen

Auf Hauptmenü zugreifen

Drücken Sie die Tasten "Erhöhen" und "Verringern" gleichzeitig.

Das Hauptmenü wird angezeigt mit den verfügbaren Optionen:

- SET: Zugriff auf das Setup-Menü
- CMD: Zugriff auf das Befehlsmenü

Weitere Informationen dazu finden Sie im Kapitel Befehlsmenü (Seite 65).

• PAS: Passworteingabe

Die ausgewählte Option blinkt.

Beschreibender Text für die Auswahl scrollt in der alphanumerischen Anzeige.

3.5.2 Erweiterte Funktionen

Vorgehensweise

1. Drücken Sie von einer beliebigen Anzeige beide Tasten "Erhöhen" und "Verringern" gleichzeitig.

Das Gerät wechselt zur Anzeige Menü.

- 2. Wechseln Sie zur Anzeige Set durch Drücken der Tasten "Erhöhen" oder "Verringern".
- 3. Bestätigen Sie die Auswahl durch Drücken der Taste "Weiter".

Das Display zeigt Passwort eingeben.

- 4. Bestätigen Sie die Auswahl durch Drücken der Taste "Weiter".
- 5. Tragen Sie das Passwort ein.

Ändern Sie die blinkende Ziffer durch Drücken der Tasten "Erhöhen" oder "Verringern".

Bestätigen Sie die Eingabe einer Ziffer durch Drücken der Taste "Weiter".

- Ist das Passwort falsch, zeigt das Display PASS Er.
 Drücken Sie die Taste "Weiter".
 Geben Sie das Passwort erneut ein.
- Ist das Passwort korrekt, zeigt das Display Erweiterte Passworteingabe OK. Drücken Sie die Taste "Weiter".
- 6. Das Display zeigt den ersten Eintrag der folgenden Liste an:
 - CLEAR P: Löschen von Teilenergiezählern
 - CLEAR h: Löschen des Teilstundenzählers (falls aktiviert)
 - CLEAR d: Löschen der maximalen Bedarfswerte (falls aktiviert)
 - ET-DEF: Setzen aller Parameter auf Standardwerte
 - SETUP: Parameterprogrammierung (Setup)
 - INFO: Revision und Prüfsumme der internen Software
 - ESC: Rückkehr in den Normalbetrieb

Zum Blättern durch die Liste drücken Sie die Tasten "Erhöhen" oder "Verringern".

7. Um eine Funktion auszuwählen, drücken Sie die Taste "Weiter".

Hinweis

Wenn Sie die Tasten länger als 120 s nicht drücken, wird das Menü automatisch verlassen.

3.5.3 Auswahl der Messwerte

Mit den Tasten "Verringern" und "Weiter" können Sie die Anzeigeseiten der Messgrößen nacheinander durchlaufen.

Abhängig von der Parametrierung und der Verbindung zeigt das Gerät möglicherweise nicht alle Messungen an.

Beispiel:

Wenn für ein System ohne Neutralleiter programmiert wurde, sind die Messungen für den Neutralleiter nicht anzeigbar.

Mit der Taste "Weiter" können Sie auf untergeordnete Seiten zugreifen (z. B. zur Anzeige der für die ausgewählte Messung aufgezeichneten Höchst- und Mindestwerte).

Die aktuell angezeigte Seite wird unten rechts durch eines der folgenden Symbole angezeigt:

• IN = Momentanwert

Aktueller Momentanwert der Messung, der standardmäßig bei jedem Seitenwechsel angezeigt wird.

• HI = Höchste Spitze

Höchster Wert, der vom Energiezähler für die entsprechende Messung gemessen wird. Spitzenwerte werden auch ohne Stromversorgung gespeichert und erhalten. Sie können die gespeicherten Spitzenwerte durch einen speziellen Befehl zurücksetzen. Weitere Informationen dazu finden Sie im Kapitel Befehlsmenü (Seite 65).

• LO = Niedrigster Wert

Gemessen vom Energiezähler ab dem Zeitpunkt, an dem Spannung anliegt. Sie können den Wert mit demselben Befehl zurücksetzen, der auch für die HI-Werte verwendet wird. Weitere Informationen dazu finden Sie im Kapitel Befehlsmenü (Seite 65).

• AV = Durchschnittswert

Zeitintegrierter (Durchschnitts-) Wert der Messung. Weitere Informationen zum Parameter "P04 Integration" finden Sie im Kapitel Parametertabelle (Seite 53).

• MD = Max. Mittelwert

Bleibt im nicht flüchtigen Speicher gespeichert und kann mit einem speziellen Befehl zurückgesetzt werden.

Startseite

- ① Wirkleistungsprozentsatz in Bezug auf den Nennwert
- 2 RS485-Kommunikation aktiv (blinkend)
- ③ Gesamtwirkenergie-Zähler
- ④ Wirkleistung

Hinweis

Das System kehrt nach Ablauf einer bestimmten Zeit automatisch zu den Seiten und den untergeordneten Seiten zurück, ohne dass die Tasten gedrückt werden.

Sie können den Energiezähler auch so programmieren, dass immer die zuletzt gewählte Anzeige angezeigt wird. Informationen zum Einrichten dieser Funktionen finden Sie im PO2 Sonstiges im Kapitel Parametertabelle (Seite 53).

3.5.4 Parametrieren

3.5.4.1 Parameter einstellen (Setup)

Menü auswählen

- 1. Drücken Sie im Standard-Messanzeige-Display gleichzeitig die Tasten "Erhöhen" und "Verringern", um das Hauptmenü aufzurufen.
- Wählen Sie SET und drücken Sie die Taste "Weiter", um das Einstellungsmenü aufzurufen.
 Das Display zeigt oben links die erste Menüebene P01 mit blinkender Auswahl 01 an.

3. Wählen Sie mit den Tasten "Erhöhen" oder "Verringern" das gewünschte Menü (z. B. P01, P02, P03).

Während der Auswahl zeigt die alphanumerische Anzeige eine kurze Beschreibung des aktuell ausgewählten Menüs.

Um zu beenden und zur Messanzeige zurückzukehren, drücken Sie gleichzeitig die Tasten "Erhöhen" und "Verringern".

Hinweis

Die folgende Tabelle listet die verfügbaren Menüs in Abhängigkeit der Geräteausführungen auf. Nicht alle Codes sind bei allen Geräten verfügbar.

Code	Menu	Beschreibung
P01	ALLGEMEIN	Spezifikation des Systems
P02	SONSTIGES	Sprache, Helligkeit, Display usw.
P03	PASSWORT	Aktivierung Passwort
P04	INTEGRATION	Integrationszeiten
P05	STUNDENZAEHLER	Einstellungen Stundenzähler
P07	KOMMUNIKATION ¹⁾	Kommunikationseinstellungen
P08	GRENZWERTE	Grenzwerte
P09	ALARME	Alarmmeldungen
P11	ENERGIEIMPULSE 2)	Konfiguration Energieimpulse (S0)
P13	EINGAENGE	Programmierbare Eingänge
P14	AUSGAENGE 2)	Programmierbare Ausgänge

1) Nur bei M-BUS- und RS485-Geräten

- 2) Nur bei SO-Geräten
- 4. Drücken Sie die Taste "Weiter", um auf das ausgewählte Menü zuzugreifen.
- 5. Wählen Sie gegebenenfalls das Untermenü und die fortlaufende Parameternummer aus.
- 6. Wenn der gewünschte Parameter eingestellt wurde, können Sie mit der Taste "Weiter" in den Bearbeitungsmodus umschalten.

Verwenden Sie die Tasten wie folgt:

- Drücken der Taste "Erhöhen" oder "Verringern" ändert den Parameter innerhalb des zulässigen Bereichs.
- Gleichzeitiges Drücken der Tasten "Verringern" und "Weiter" setzt den minimal möglichen Wert.
- Gleichzeitiges Drücken der Tasten "Erhöhen" und "Weiter" setzt den maximal möglichen Wert.
- Gleichzeitiges Drücken der Tasten "Erhöhen" und "Verringern" stellt den werksseitigen Standardwert wieder her.

Der gewünschte Wert ist ausgewählt.

7. Speichern Sie den Parameter durch Drücken der Taste "Weiter".

Das Display kehrt zur vorherigen Menüebene zurück.

8. Drücken Sie mehrmals gleichzeitig die Tasten "Erhöhen" und "Verringern", um die Parameter zu verlassen und zu speichern.

Das Gerät startet neu.

Hinweis

Wenn Sie 2 Minuten lang keine Taste drücken, verlässt das System das Setup-Menü und kehrt zur Standardanzeige zurück, ohne die Parameter zu speichern.

Hinweis

Nur für die Daten, die mit den Tasten bearbeitet werden können, können Sie bei den Geräten eine Sicherungskopie im EEPROM erstellen. Schreiben Sie bei Bedarf diese Daten in den Arbeitsspeicher zurück.

Die Sicherungs- und Datenwiederherstellungsbefehle befinden sich im Kapitel Befehlsmenü (Seite 65).

3.5.4.2 Energiemessung

Folgende Seiten sind speziell für den Energiezähler:

- Wirkenergie, Bezug und Lieferung
- Induktive oder kapazitive Blindenergie
- Scheinenergie

Jede Seite zeigt den Gesamt- und Teilwert an. Den Teilwert können Sie über das Befehlsmenü (Seite 65) zurücksetzen.

Eine kontinuierliche Anzeige der Maßeinheit bedeutet, dass die Messanzeige für Energie (Bezug) positiv ist.

Die Anzeige der negativen Energien (Lieferung) können Sie aktivieren, indem Sie den Parameter P02.09 auf ON setzen.

Diese Energien werden durch das Blinken der Maßeinheit und durch das Zeichen "-" hervorgehoben und nach den Energien (Bezug) durch Drücken der Taste "Verringern" angezeigt.

- Lieferung: Anzeige blinkt
- Bezug: Anzeige blinkt nicht.

Wenn die Anzeige der Energie für die einzelnen Phasen aktiviert ist (PO2.10 = ON), zeigt das Display 3 unabhängige zusätzliche Seiten (eine Seite pro Phase), einschließlich der Gesamtund Teilenergie.

Wenn der programmierbare Eingang P13.01 auf TAR-A eingestellt ist, sind auch alle angegebenen Energiezähler geteilt durch Tarif 1 und Tarif 2 vorhanden. Diese Zähler werden auf den Unterseiten des Systemzählers angezeigt. Weitere Informationen finden Sie im Kapitel Tarife (Seite 50).

3.5.4.3 Tarife

Für die Energiemessung können zusätzlich zu den Gesamt- und Teilenergien zwei unabhängige Tarife verwaltet werden.

- Der Tarif wird normalerweise über den digitalen Eingang oder optional über das Kommunikationsprotokoll ausgewählt.
- Zur Auswahl der zwei Tarife steht die TAR-A-Eingabefunktion zur Verfügung. Aktivieren Sie TAR-A-Eingabefunktion, um die in der Tabelle dargestellte Auswahl zu treffen:

TAR-A	Tarif
ON	1
OFF	2

Das Gerät verfügt über einen programmierbaren V AC-Eingang.

- Die Standardfunktionseinstellung ist TAR-A, wodurch die Auswahl zwischen den beiden Tarifen 1 und 2 möglich ist.
- Der Text tAr-1 oder tAr-2 blinkt, um den gewählten Tarif und damit den steigenden Zählerstand anzuzeigen.
- Die Zählerstände für die Tarife werden als Unterseiten der Systemzähler angezeigt (gesamt und Phase, falls aktiviert).
- Den aktiven Tarif können Sie bei Geräten mit Modbus über einen speziellen Befehl im Modbus-Protokoll auswählen. Weitere Informationen finden Sie im Kapitel Modbus Adressentabelle für 3-Phasen-Geräte 80 A mit Modbus-Schnittstelle (Seite 90).

3.5.4.4 Stundenzähler

Bei aktiviertem Stundenzähler zeigen die Geräte die Stundenzähler-Seite im folgenden Format an:

- ① Stunden
- ② Sekunden
- ③ Minuten

Der Energiezähler hat einen Gesamtstundenzähler und 4 Teilstundenzähler. Beide Stundenzähler können Sie mit verschiedenen Quellen zurücksetzen und aktivieren. Weitere Informationen dazu finden Sie im Kapitel Parametertabelle (Seite 53).

3.5.4.5 Grenzwert Statusanzeige (LIMx)

Wenn die Grenzwertschwellen aktiviert sind, zeigen die Geräte die Seite mit dem entsprechenden Status und dem in der Abbildung angegebenen Format an:

- ① Grenzwerte deaktiviert
- ② Grenzwerte aktiviert
- Bei aktivierter Grenzwertschwelle blinkt das Wort ON.
- Bei deaktivierter Funktion ist das Wort OFF konstant.
- Wenn keine Grenzwertschwelle programmiert ist, werden Striche angezeigt.

Weitere Informationen zu Grenzwertschwellen finden Sie im Kapitel Parametertabelle (Seite 53).

3.5.4.6 Alarmanzeige

Wenn Alarme aktiviert sind, zeigt das Gerät die Seite mit dem entsprechenden Status und dem folgenden Format an:

- ① Alarm 2 aktiviert/deaktiviert
- 2 Alarmtext aktiviert
- ③ Alarmcode aktiviert
- ④ Alarm 1 aktiviert/deaktiviert

Weitere Informationen zu Parameter PO9 finden Sie in Kapitel Parametertabelle (Seite 53):

- Bei aktiviertem Alarm blinkt das Wort ON mit dem Dreiecksymbol, bei nicht aktiviertem Alarm ist das Wort OFF konstant.
- Wenn kein Alarm programmiert ist, werden Striche angezeigt. Nach ca. 3 s erscheint der Lauftext des im Parameter P09.n.05 programmierten Alarms.
- Bei mehreren aktiven Alarmen werden die Texte nacheinander angezeigt.
- Sie können den Parameter P02.14 für das Sonstiges-Menü verwenden, um die Hintergrundbeleuchtung des Displays im Falle eines Alarms blinken zu lassen und das Vorhandensein des Fehlers hervorzuheben.
- Die Alarm-Reset-Methode hängt vom Parameter P09.n.03 ab. Der Parameter bestimmt, ob es bei nicht vorhandenen Alarmbedingungen automatisch oder manuell über das Befehlsmenü (Parameter C.07) festgelegt wird. Weitere Informationen finden Sie in Kapitel Befehlsmenü (Seite 65).

3.5.4.7 Parametertabelle

Die folgenden Tabellen zeigen alle verfügbaren Programmierparameter mit dem Bereich der möglichen Einstellungen und Werkseinstellungen sowie eine Erklärung der Parameterfunktion.

Die Beschreibung des auf dem Display sichtbaren Parameters kann wegen der begrenzten Anzahl verfügbarer Zeichen in einigen Fällen von den Angaben in der Tabelle abweichen. Der Parametercode ist in jedem Fall eine gültige Referenz.

Die Auswahl der Parameter ist abhängig von den entsprechenden Geräten.

P01 Allgemein

		Einheit	Default	Bereich
P01.01	Primärstrom des Strom- wandlers	A	5	1 10000
P01.02	Sekundärstrom des Stromwandlers	A	5	1 5
P01.03	Nennspannung	V	AUT	AUT220 415
P01.04	Bemessungsleistung	kW	AUT	AUT1 10000
P01.05	Anschlussart	_	L1-L2-L3-N	 L1-L2-L3-N L1-L2-L3 L1-L2-L3-N BIL L1-L2-L3 BIL L1-N-L2 L1-N

Beschreibung

3.5 3-Phasen-Geräte 5 A

P02 Sonstiges

		Einheit	Default	Bereich
P02.01	Sprache	_	English	 English Italiano Francais Espanol Portuguese Deutsch
P02.02	Hintergrundbeleuchtung (Hoch)	%	100	0 100
P02.03	Hintergrundbeleuchtung (Niedrig)		30	050
P02.04	Verzögerung Hinter- grundbeleuchtung (Nied- rig)	S		5 600
P02.05	Zurück zur Default-Seite		60	OFF10 600
P02.06	Default-Seite	_	W + kWh	 VL-L VL-N
P02.07	Default untergeordnete Seite		INST	 INST HI LO AVG MD
P02.08	Display Aktualisierungszeit	S	0,5	0,1 5,0
P02.09	Messwert Energie Liefe- rung	-	OFF	OFF ON
P02.10	Phasen Messwert Energie			• ON
P02.11	Messwert Unsymmetrie U/I			
P02.12	Messwert THD			OFFTHD
P02.13	Unsymmetrie Leistung			OFF
P02.14	Hintergrundbeleuchtung blinkt im Alarmzustand			• ON
P02.15	Berechnung Blindleistung			TOTFUND

- P02.05 Wenn OFF eingestellt ist, wird immer die zuletzt gewählte Menüseite angezeigt. Wenn auf einen Wert eingestellt ist, kehrt die Anzeige nach dieser Zeit zu der mit P02.06 eingestellten Seite zurück.
- P02.06 Nummer der Seite, die automatisch angezeigt wird, sobald die Zeit P02.05 seit dem letzten Drücken einer Taste abgelaufen ist.
- P02.07 Art der Seite, zu der die Anzeige nach Ablauf von P02.05 zurückkehrt.
- P02.09 Ermöglicht die Messung und Anzeige von gelieferten Energien (generiert in Richtung Netz).
- P02.10 Ermöglicht die Messung und Anzeige von Energien nach einzelnen Phasen.
- P02.11 Ermöglicht die Messung und Anzeige von Spannungs- und Stromunsymmetrie.
- P02.12 Aktiviert die Messung und Anzeige von Spannungs- und Strom-THDs (% Harmonic Distortion).
- P02.13 Ermöglicht die Berechnung und Anzeige der Phasenunsymmetrien.
- P02.14 Bei einem Alarm blinkt die Hintergrundbeleuchtung des Displays, um den Fehler zu markieren.
- P02.15 Auswahl der Berechnungsmethode der Blindleistung.
 - TOT = Die Blindleistung beinhaltet die harmonischen Beiträge. In diesem Fall: PBlind² = PSchein² - PWirk²
 - FUND = Die Blindleistung beinhaltet nur die Grundschwingung.In diesem Fall: $P_{Blind}^2 \le P_{Schein}^2 - P_{Wirk}^2$

P03 Passwort

		Einheit	Default	Bereich
P03.01	Passwort Freigabe	-	OFF	OFF
				• ON
P03.02	Passwort Benutzer		1000	0 9999
P03.03	Passwort erweitert		2000	

- P03.01 Bei Einstellung auf OFF ist die Passworteinstellung deaktiviert und es besteht freier Zugriff auf die Einstellungen und das Befehlsmenü. Weitere Informationen finden Sie im Kapitel Befehlsmenü (Seite 65).
- P03.02 Mit P03.01 aktiv, Wert zum Angeben des Benutzerzugriffs.
- P03.03 Wie P03.02, Administrator-Zugriff.

P04 Integration

		Einheit	Default	Bereich
P04.01	Mittelwertbildung	_	Shift	• Fixed
				• Shift
				• Bus
P04.02	Mittelwerte Leistung	min	15	1 60
P04.03	Mittelwerte Strom			
P04.04	Mittelwerte Spannung		1	
P04.05	Mittelwerte Frequenz			

P04.01 Integrierter Messberechnungsmodus

- Fixed = Die momentanen Messungen werden für die eingestellte Zeit integriert. Jedes Mal, wenn die eingestellte Zeit verstrichen ist, wird die integrierte Messung mit dem Ergebnis der letzten Integration aktualisiert.
- Shift = Die momentanen Messungen sind für eine Zeit = 1/15 der eingestellten Zeit integriert. Jedes Mal, wenn dieses Intervall verstreicht, wird der älteste Wert durch den neu berechneten Wert ersetzt. Die integrierte Messung wird alle 1/15 der eingestellten Zeit aktualisiert. Dabei wird ein Zeitverschiebungsfenster mit den letzten 15 berechneten Werte berücksichtigt, die der eingestellten Zeit entsprechen.
- Bus = als fester Modus, die Integrationsintervalle werden aber durch Synchronisationsbefehle bestimmt, die auf dem seriellen Bus gesendet werden.
- P04.02 Durchschnittliche (AVG) Integrationszeit der Messung für Wirk-, Blind- und Scheinleistung.
- P04.03 Mittlere Integrationszeit (AVG) Ströme.
- P04.04 Mittlere Integrationszeit (AVG) Spannungen.
- P04.05 Mittlere Integrationszeit (AVG) Frequenz.

P05 Stundenzähler

		Einheit	Default	Bereich
P05.01	Gesamtstundenzähler aktivieren	-	ON	OFF ON
P05.02	Teilstundenzähler 1 aktivieren			OFFONLIMx
P05.03	Stundenzähler Kanalnummer 1		1	1 4
P05.04	Teilstundenzähler 2 aktivieren		ON	OFFONLIMx
P05.05	Stundenzähler Kanalnummer 2		1	1 4
P05.06	Teilstundenzähler 3 aktivieren		ON	OFFONLIMx
P05.07	Stundenzähler Kanalnummer 3		1	1 4
P05.08	Teilstundenzähler 4 aktivieren		ON	OFFONLIMx
P05.09	Stundenzähler Kanalnummer 4		1	1 4

- P05.01 Bei OFF sind die Stundenzähler deaktiviert. Das Display zeigt die Stundenzähler nicht an.
- P05.02, Bei OFF ist der Teilstundenzähler (1, 2, 3 oder 4) nicht hochzählbar.
- P05.04, P05.06, Bei ON wird der Teilstundenzähler erhöht, wenn der Energiezähler Energie liefert.
- Wenn der Teilstundenzähler mit einer der internen Variablen (LIMn) verknüpft ist, ist der Teilstundenzähler nur hochzählbar, wenn diese Bedingung wahr ist.
- P05.03, Kanalnummer (n) einer internen Variablen, die im vorherigen Parameter verwendet
- P05.05, wurde.
- P05.07, Beispiel:
- P05.09 Wenn der Teilstundenzähler die Zeit zählen muss, in der eine Messung über einer bestimmten Schwelle liegt, die von LIM3 definiert wurde, dann programmieren Sie LIMx im vorherigen Parameter und geben Sie "3" in diesem Parameter ein.

		Einheit	Default	Bereich
P07.01	Adresse	-	01	01 255
P07.02	Baud-Rate	bps	9600	• 1200
				• 2400
				• 4800
				• 9600
				• 19200
				• 38400
				• 57600
				• 115200
P07.03	Datenformat. 7-bit-	-	8 bit - n	• 8 bit, no parity
	ASCII-Protokoll verfügbar.			• 8 bit, odd
	5			• 8 bit, even
				• 7 bit, odd
				• 7 bit, even
P07.04	Stopbits		1	12
P07.05	Protokoll		Modbus RTU	Modbus RTU
				Modbus ASCII

P07 Kommunikation nur für Geräte mit Modbus-Schnittstelle

- P07.03 Datenformat. 7-bit-Einstellungen nur für das ASCII-Protokoll verfügbar.
- P07.04 Anzahl der Stopbits
- P07.05 Auswahl des Kommunikationsprotokolls

P07 Komm	unikation n	ur für (Geräte	mit M-	Bus-Schni	ittstelle
----------	-------------	----------	--------	--------	-----------	-----------

		Einheit	Default	Bereich
P07.01	Primäradresse	-	01	01 250
P07.02	Sekundäradresse		Seriennummer	• 0000000
				• 99999999
P07.03	Baud-Rate		2400	• 300
				• 600
				• 1200
				• 2400
				• 4800
				• 9600
				• 19200
				• 38400

P07.01 Primäradresse für M-Bus-Netzwerk

P07.02 Sekundäradresse für M-Bus-Netzwerk.

P07.03 Geschwindigkeit der Kommunikation

P08 Grenzwerte (LIMn, n = 1 bis 4)

Hinweis

Dieses Menü ist in 4 Abschnitte für die Grenzwertschwellen LIM 1 ... 4 in P08.n.01 unterteilt. Das Menü legt fest, auf welche Energiezählermessung die Grenzwertschwelle angewendet wird.

		Einheit	Default	Bereich
P08.n.01	Referenz Messgröße	-	OFF	OFF (measures)
P08.n.02	Funktion		Max	• Max
				• Min
				• Max + Min
P08.n.03	Obere Schwelle		0	-9999 +9999
P08.n.04	Multiplikator		x1	/100 x10k
P08.n.05	Verzögerung	S	0	0,0 +1000,0
P08.n.06	Untere Schwelle	-		-9999 +9999
P08.n.07	Multiplikator		x1	/100 x10k
P08.n.08	Verzögerung	S	0	0,0 +1000,0
P08.n.09	Status	-	OFF	• OFF
P08.n.10	Rücksetzmodus			• ON

P08.n.02 Definiert, auf welche Energiezählermessung der Grenzwert angewendet wird.

- Max = LIMn aktiv, wenn die Messung P08 überschreitet. P08.n.03 ist die Rücksetzschwelle.
- Min = LIMn aktiv, wenn die Messung unter PO8 liegt. PO8.n.06 ist die Rücksetzschwelle.
- Min + Max = LIMn aktiv, wenn die Messung über P08.n.03 oder unter P08.n.06 liegt.

P08.n.03, Definiert die obere Schwelle, die sich aus der Multiplikation von Wert P08.n.03 mit P08.n.04 ergibt.

- POS n O5 Auslösovorzögarung bei oberer
- P08.n.05 Auslöseverzögerung bei oberer Schwelle
- P08.n.06, Definiert die untere Schwelle, die sich aus der Multiplikation von Wert P08.n.06
- P08.n.07 mit P08.n.07 ergibt.
- P08.n.08 Auslöseverzögerung bei unterer Schwelle
- P08.n.09 Erlaubt die Invertierung des Status der Grenzwertschwelle LIMn.
- P08.n.10 ON = Schwellwert wird gespeichert und muss manuell zurückgesetzt werden.
 - OFF = Schwellwert wird gespeichert und automatisch zurückgesetzt.

P09 Alarme (ALAn, n = 1 bis 4)

Hinweis

Dieses Menü ist in 4 Abschnitte unterteilt für Alarme ALA1 ... 4.

		Default	Bereich
P09.n.01	Alarmquelle	OFF	• OFF
			• LIMx
P09.n.02	Kanalnummer (n)	1	1 4
P09.n.03	Rücksetzmodus	OFF	• OFF
			• ON
P09.n.04	Priorität	Low	• Low
			• High
P09.n.05	Text	ALAn	(Freitext für Alarm, max. 16 Zeichen)

- P09.n.01 Signal, das den Alarm auslöst, wenn ein Schwellenwert (LIMx) überschritten wird.
- P09.n.02 Kanalnummer (n) mit Bezug auf den vorherigen Parameter.
- P09.n.03 ON = Alarm wird gespeichert und muss manuell zurückgesetzt werden.
 - OFF = Alarm wird gespeichert und automatisch zurückgesetzt.
- Wenn der Alarm eine hohe Priorität hat, schaltet seine Aktivierung die Anzeige automatisch auf die Alarmseite um und zeigt das Alarmsymbol an.
 - Wenn der Alarm eine niedrige Priorität hat, ändert sich die Seite nicht und es wird mit dem Symbol "Information" angezeigt.

P11 Energieimpulse (PUL1 und PUL2) nur für Geräte mit S0-Schnittstelle/digitalen Ausgängen

Hinweis

Dieses Menü ist in 2 Abschnitte unterteilt für die Impulse PUL1 und PUL2.

		Einheit	Default	Bereich
P11.n.01	Messgröße für die Impulserzeugung.	_	OFF	 OFF Wh+ Wh- varh+ varh- VAh
P11.n.02	Anzahl der Impulse	lmpuls/ kWh	10	 100 10 1 0,1
P11.n.03	Dauer der Impulse	S	0,10	0,01 1,00

- P11.n.01 Messgröße für die Impulserzeugung.
- P11.n.02 Anzahl der Impulse
- P11.n.03 Dauer der Impulse

P13 Eingang

		Default	Bereich
P13.01	Eingabefunktion	-	• OFF
			• LOCK
			• TAR-A
			• C01 C08
P13.02	Ruhezustand		• OFF
			• ON
P13.03	Verzögerung "EIN"	S	1 4
P13.04	Verzögerung "AUS"		

P13.01 Eingabefunktion:

- AUS = Eingabe deaktiviert
- LOCK = Einstellungssperre. Verhindert den Zugriff auf beide Ebenen.
- TAR-A = Auswahl des Energietarifs. Weitere Informationen finden Sie im Kapitel Tarife (Seite 50).
- C01 ... C08 = Wenn dieser Eingang aktiviert ist (zur Anstiegszeit), wird der entsprechende Befehl im Befehlsmenü ausgeführt. Weitere Informationen finden Sie im Kapitel Befehlsmenü (Seite 65).
- P13.02 Ruhezustand eingeben. Erlaubt die Invertierung der Aktivierungslogik.
- P13.03 Einstellung der Verzögerung für "EIN".
- P13.04 Einstellung der Verzögerung für "AUS".

P14 Ausgänge (OUT1 und OUT2) nur für Geräte mit S0-Schnittstelle/digitalen Ausgängen

Hinweis

Dieses Menü ist in 2 Abschnitte unterteilt für die Ausgänge OUT1 und OUT2.

		Einheit	Default	Bereich
P14.n.01	Ausgabefunktion	-	OFF	• OFF
				• Wh+
				• Wh–
				• varh+
				• varh–
				• VAh
P14.n.02	Kanalnummer		1	1 4
P14.n.03	Normalstatus		OFF	• OFF
				• ON
P14.n.04	Verzögerung "EIN"	S	0,0	0,0 6000,0
P14.n.05	Verzögerung "AUS"		0,0	

P14.n.01 Ausgabefunktion:

- OFF = Ausgang deaktiviert.
- ON = Ausgang wird immer aktiviert, wenn das Messgerät eingeschaltet wird.
- SEQ = Ausgang aktiviert bei Phasenfolgefehler.
- LIM ALA = Ausgang aktiviert bei Grenzwertüberschreitung oder Alarm.
- PUL = Ausgang, der als Impulsgenerator gemäß P11 verwendet wird.
- P14.n.03 Ausgabe des normalen Status. Erlaubt die Invertierung der Aktivierungslogik.
- P14.n.04 Einstellung der Verzögerung für "EIN".
- P14.n.05 Einstellung der Verzögerung für "AUS".

3.5.4.8 Befehlsmenü

Das Befehlsmenü erlaubt die Ausführung von gelegentlichen Operationen (z. B. Zurücksetzen von Messgrößen, Zählern).

Wenn das Passwort für die erweiterte Ebene eingegeben wurde, können Sie mit dem Befehlsmenü auch einige automatische Vorgänge ausführen, die für die Konfiguration des Geräts nützlich sind.

In der folgenden Tabelle sind die Funktionen aufgeführt, die im Befehlsmenü verfügbar sind, geteilt durch die erforderliche Zugriffsebene.

Hinweis

C.11 ist bei MID-Geräten nicht auswählbar.

Code	Befehl	Zugriffsstufe	Beschreibung
C.01	RESET HI-LO	Benutzerlevel/	Setzt die HI- und LO-Werte aller Mes- sungen zurück.
C.02	RESET MAX DEMAND		Setzt die Max-Mittelwerte für alle Mes- sungen zurück.
C.03	RESET PAR.ENERGIE		Setzt die Teilenergiezähler zurück.
C.04	RESET PAR.STUNDEN		Setzt die Teilstundenzähler zurück.
C.06	RESET TARIFFS		Setzt die Energiezähler für Tarif 1 und 2 zurück.
C.07	RESET ALARME		Setzt Alarme zurück.
C.08	RESET GRENZW.		Setzt Grenzwerte zurück.
C.11	RESET GES.ENERGIE	Administrator	Setzt die Gesamt- und Teilenergiezähler zurück.
C.12	RESET GES.STUNDEN		Setzt den Gesamtstundenzähler zurück.
C.13	SETUP TO DEFAULT		Stellt alle Einstellungen auf die Werks- einstellungen zurück
C.14	BACKUP SETUP		Speichert eine Sicherungskopie aller Setup-Parameter.
C.15	RESTORE SETUP		Lädt die Einstellungen von der Siche- rungskopie.
C.16	VERDRAHTUNGSTEST		Führt den Test durch, um zu überprü- fen, ob das Gerät richtig angeschlossen ist. Siehe Kapitel Verdrahtungstest (Seite 66).

1. Wählen Sie den gewünschten Befehl aus.

- 2. Drücken Sie die Taste "Weiter", um den Befehl auszuführen.
- 3. Durch erneutes Drücken der Taste "Weiter" wird der Befehl ausgeführt.
- 4. Um die Befehlsausführung abzubrechen, drücken Sie MENU.
- 5. Um das Befehlsmenü zu verlassen, drücken Sie gleichzeitig die Tasten "Erhöhen" und "Verringern".

3.5.5 Verdrahtungstest

Mit dem Verdrahtungstest können Sie die korrekte Installation des Energiezählers prüfen.

Voraussetzung

Um den Test auszuführen, müssen Sie den Energiezähler mit folgenden Bedingungen an ein aktives System angeschlossen haben:

- Dreiphasensystem mit allen Phasen (V > AC 187 V PH-N)
- Minimaler Stromfluss in jeder Phase (> 1 % des Stromwandler-Vollausschlags)
- Positive Energieflüsse (normales System, bei dem die induktive Last Strom aus der Versorgung bezieht)

Verdrahtungstest ausführen

- 1. Rufen Sie das Befehlsmenü auf. Weitere Informationen finden Sie im Kapitel Befehlsmenü (Seite 65).
- 2. Wählen Sie den Befehl C.16 gemäß den Anweisungen im Kapitel Befehlsmenü (Seite 65).
- 3. Prüfen Sie die folgenden Punkte:
 - Lesen der 3 Spannungen
 - Phasenfolge
 - Spannungsunsymmetrie
 - Verpolung eines oder mehrerer Stromwandler
 - Fehlanpassung zwischen Spannungs- / Stromphasen

Wenn der Test nicht erfolgreich ist, zeigt das Display den Grund des Fehlers an.

3.6 Hilfssoftware

3.6.1 powermanager

Mit der Energiemanagement-Software powermanager können Sie Energiedaten des Messgeräts erfassen, überwachen, auswerten, darstellen und archivieren.

powermanager Funktionen

- Baumansicht der Kundenanlage (Projektbaum)
- Messwertanzeige mit vordefinierten Benutzersichten
- Alarmmanagement
- Gangliniendarstellung
- Reporting, verschiedene Reportarten (z. B. Kostenstellenreport)
- Lastüberwachung Reaktionspläne
- Leistungsspitzenanalyse (ab powermanager V3.0 SP1 verfügbar)
- Unterstützung verteilter Liegenschaften (Systeme)
- Archivierungssystem
- Benutzerverwaltung

3.6 Hilfssoftware

3.6.2 powerconfig

Hinweis

Nur relevant für Geräte mit RS485-Schnittstelle.

Die Software powerconfig ist das gemeinsame Inbetriebnahme- und Service-Tool für kommunikationsfähige Messgeräte und Leistungsschalter der SENTRON-Familie.

Das PC-basierte Tool erleichtert das Einstellen der Geräte durch erhebliche Zeitersparnis, besonders wenn mehrere Geräte einzustellen sind.

Mit powerconfig können Sie die Messgeräte über verschiedene Kommunikationsschnittstellen parametrieren und bedienen sowie Messwerte dokumentieren und überwachen.

powerconfig Funktionen

- Die Software vereint folgende Funktionen:
 - Parametrieren
 - Dokumentieren
 - Bedienen
 - Beobachten
- Komfortables Dokumentieren von Einstellen und Messwerten
- Übersichtliche Darstellung der verfügbaren Parameter inklusive Plausiblilisierung der Eingabewerte
- Anzeigen der verfügbaren Gerätezustände und Messwerte in standardisierten Ansichten
- Projektorientierte Ablage der Gerätedaten
- Einheitliche Bedienung und Usability
- Unterstützung der verschiedenen Kommunikationsschnittstellen (Modbus RTU, Modbus TCP, PROFIBUS, PROFINET)
- Update der Geräte-Firmware (geräteabhängig)
- Laden von Sprachenpaketen (geräteabhängig)

Hinweis

Die Online-Hilfe in SETRON powerconfig starten Sie mit der Taste F1.

Einbau/Ausbau

4.1 Einbauort

WARNUNG

Mögliche Lebensgefahr durch beschädigtes Gerät!

Der Einsatz von beschädigten Geräten kann zum Tod, schwerer Körperverletzung oder Sachschaden führen.

- Bauen Sie keine beschädigten Geräte ein.
- Nehmen Sie beschädigten Geräte nicht in Betrieb.

ACHTUNG

Sachschaden durch Betauung!

Plötzliche Temperaturschwankungen können eine Betauung verursachen. Betauung kann die Funktion des Geräts beeinträchtigen.

Lagern Sie das Gerät mindestens 2 Stunden im Betriebsraum, bevor Sie mit der Montage beginnen.

Der Energiezähler PAC1600 wird auf eine TH35-Hutschiene (nach EN 60715) montiert und ist für den Einbau in ortsfeste Anlagen in geschlossenen Räumen vorgesehen.

Umgebungsbedingungen

4.2 1-Phasen-Gerät ein-/ausbauen

4.2 1-Phasen-Gerät ein-/ausbauen

Der Ein- und Ausbau eines 1-Phasen-Geräts erfolgt entsprechend einem 3-Phasen-Gerät.

4.3 3-Phasen-Gerät einbauen

4.4 3-Phasen-Gerät ausbauen

Anschließen

Sicherheitshinweise

∱GEFAHR

Lebensgefahr durch gefährliche Spannung!

Schalten Sie vor Beginn der Arbeiten die Anlage und das Gerät spannungsfrei.

∕ GEFAHR

Lebensgefahr durch elektrischen Schlag und Lichtbogenüberschlag!

Beim 5-A-Gerät ist die Strommessung nur über externe Stromwandler möglich. Bei Verwendung der Stromwandler wird der Stromkreis nicht mit einer Sicherung abgesichert.

- Bevor Arbeiten am Gerät durchgeführt werden, schalten Sie alle Stromquellen aus und versehen Sie alle Stromquellen mit einer Einschaltsicherung.
- Öffnen Sie den Sekundärstromkreis der Stromwandler niemals unter Last.
- Schließen Sie die Sekundärstromklemmen des Stromwandlers kurz, bevor Sie das Gerät entfernen.
- Beachten Sie stets die Sicherheitshinweise der verwendeten Stromwandler.

WARNUNG

Mögliche Lebensgefahr durch beschädigtes Gerät!

Der Einsatz von beschädigten Geräten kann zum Tod, schwerer Körperverletzung oder Sachschaden führen.

- Bauen Sie keine beschädigten Geräte ein.
- Nehmen Sie beschädigten Geräte nicht in Betrieb.

ACHTUNG

Anlageschaden durch Nichtabsicherung

Nicht abgesicherte Spannungsmesseingänge können zu Schäden am Gerät oder an der Anlage führen.

Sichern Sie das Gerät stets mit einer nach IEC zugelassenen Sicherung oder mit einem nach IEC zugelassenen Leitungsschutzschalter ab.

Hinweis

RS485-Terminierung empfohlen

Um Reflexionen auf der Busleitung zu vermeiden, wird empfohlen, die Busleitung am Anfang und am Ende mit einem Abschlusswiderstand 120Ω zu versehen.

Um Modbus RTU-Kommunikation herstellen zu können, müssen die Kommunikationsparameter bekannt sein. Dazu gehören Baud-Rate und Format. Des Weiteren müssen Sie die Slave-Adresse im PAC1600 Gerät angeben.

Qualifizierte Personen

Die folgenden Arbeiten werden teilweise bei Vorhandensein gefährdender Spannungen durchgeführt. Sie dürfen deshalb nur von entsprechend qualifizierten Personen vorgenommen werden, die mit den Sicherheitsbestimmungen und Vorsichtsmaßnahmen vertraut sind und die Sicherheitsbestimmungen und Vorsichtsmaßnahmen befolgen.

- Tragen Sie die vorgeschriebene Schutzkleidung.
- Beachten Sie die allgemeinen Einrichtungsvorschriften und Sicherheitsvorschriften für das Arbeiten an Starkstromanlagen (z. B. DIN VDE, NFPA 70E) sowie die nationalen oder internationalen Vorschriften.
- Stellen Sie sicher, dass die in den technischen Daten genannten Grenzwerte nicht überschritten werden, auch nicht bei der Inbetriebnahme oder Prüfung des Geräts.
- Schalten Sie die Sekundäranschlüsse von zwischengeschalteten Stromwandlern an diesen kurz, bevor Sie die Stromzuleitungen zu dem Gerät unterbrechen.
- Prüfen Sie die Polarität und die Phasenzuordnung der Messwandler.
- Stellen Sie vor dem Anschließen des Geräts sicher, dass die Netzspannung mit der auf dem Typschild angegebenen Spannung übereinstimmt.
- Stellen Sie vor der Inbetriebnahme sicher, dass alle Anschlüsse sachgerecht ausgeführt sind.
- Bevor das Gerät erstmalig an Spannung gelegt wird, müssen Sie es mindestens 2 Stunden im Betriebsraum legen. Dadurch schaffen Sie einen Temperaturausgleich und vermeiden Feuchtigkeit und Betauung.

Siehe auch

PAC4200-Handbuch (https://support.industry.siemens.com/cs/ww/de/view/34261595)

5.1 Anschlussbeispiel für Modbus RTU Kommunikation

Anschluss von PAC1600 Geräten an PAC4200 als Modbus RTU / TCP Gateway

PAC1600		PAC1600	PAC1600		PAC4200/RS485 Erweite- rungsmodul	
TR		TR	TR		Ter	
А		А	 А		В	
В		В	 В		А	
SG		SG	 SG		Com	

In einer Linie sind maximal 32 Teilnehmer möglich.

Abhängig von der verwendeten Baudrate ist die maximale Länge der gesamten Kommunikationsverkabelung 1200 m.

5.2 1-Phasen-Gerät anschließen

ACHTUNG

Zerstörung des Geräts

Ein falscher Netzanschluss kann das Gerät zerstören.

Stellen Sie vor dem Anschluss des PAC1600 sicher, dass die örtlichen Netzverhältnisse mit den Angaben auf dem Typschild übereinstimmen.

5.2 1-Phasen-Gerät anschließen

Vorgehensweise

Schaltplan 1-Phasen-Gerät (Ausgänge abhängig von der Gerätetype)

Die Sicherung im Spannungsmesseingang dient ausschließlich dem Leitungsschutz.

	Anziehdrehmoment	Leitungsquerschnitt (mm²)
L1 / N 63A	1,8 2,2 [15,9 19,5]	2,5 16
RS485 / SO / M-Bus	0,14 0,16 [1,2 1,4]	0,5 4

Parametrierung

Weitere Informationen zur Parametrierung finden Sie im Kapitel Tastaturfunktionen (Seite 19).

5.3 3-Phasen-Gerät anschließen

ACHTUNG

Zerstörung des Geräts

Ein falscher Netzanschluss kann das Gerät zerstören.

Stellen Sie vor dem Anschluss des PAC1600 sicher, dass die örtlichen Netzverhältnisse mit den Angaben auf dem Typschild übereinstimmen.

Hinweis

RS485 Terminierung wird empfohlen!

Um Reflexionen auf der Busleitung zu vermeiden, wird empfohlen, die Busleitung am Anfang und am Ende mit einem Abschlusswiderstand 120 Ohm zu versehen.

Um MODBUS RTU-Kommunikation herstellen zu können, müssen Kommunikationsparameter bekannt sein. Dazu gehören Baud-Rate und Format. Des Weiteren müssen Sie die Slave-Adresse im Gerät angeben.

Vorgehensweise

*

5.3 3-Phasen-Gerät anschließen

Schaltplan 3-Phasen-Gerät 5 A (Ausgänge abhängig von der Gerätetype)

Die Sicherung im Spannungsmesseingang dient ausschließlich dem Leitungsschutz.

	Anziehdrehmoment	Leitungsquerschnitt (mm²)
I1 / I2 / I3 / 5A und RS485 / M-Bus / SO	0,40 0,48 (3,5 4,2)	0,2 2,5
Tarifeingang und Spannungseingänge	0,7 0,8 (6,2 7,1)	0,2 4,0

Schaltplan 3-Phasen-Gerät 80 A (Ausgänge abhängig von der Gerätetype)

Die Sicherung im Spannungsmesseingang dient ausschließlich dem Leitungsschutz.

	Anziehdrehmoment	Leitungsquerschnitt (mm²)
L1 / L2 / L3 / N / 80 A	1,8 2,2	2,5 25
	(15,9 19,5)	
Tarifeingang	0,44 0,53	0,2 2,5
	(3,9 4,7)	
RS485 / M-Bus / S0	0,14 0,16	0,2 2,5
	(1,2 1,4)	

Parametrierung

Die Parametrierung der Geräte ist im Kapitel Parametrieren (Seite 32) beschrieben.

5.4 Verdrahtungsprüfung

Wenn das Gerät bei falscher Verdrahtung einen umgekehrten Energiefluss erkennt, zeigt das Display die Meldung **Err 3**.

Dieser Fehler wird entweder durch falsche Verdrahtung der Stromeingänge (Klemmen L \uparrow und L \downarrow) oder durch falsche Spannungsverdrahtung (Klemmen N - L \uparrow) verursacht.

Unter diesen Bedingungen wird die Energie nicht gezählt.

Anschließen

5.4 Verdrahtungsprüfung

In Betrieb nehmen

6.1 Übersicht

Voraussetzungen

- Das Gerät wurde montiert.
- Das Gerät wurde entsprechend der möglichen Anschlussarten angeschlossen.

Schritte zur Inbetriebnahme des Geräts

ACHTUNG

Zerstörung des Geräts!

Ein falscher Netzanschluss kann das Gerät zerstören, zum Ausfall des Geräts oder zu Fehlfunktionen führen.

- Stellen Sie vor dem Anschluss des PAC1600 sicher, dass die örtlichen Netzverhältnisse mit den Angaben auf dem Typschild übereinstimmen.
- Prüfen Sie vor der Inbetriebnahme des PAC1600 alle Anschlüsse auf sachgerechte Ausführung

Hinweis

Bei einer Isolationsprüfung der Gesamtinstallation mit AC oder DC müssen Sie das Gerät vor der Prüfung abtrennen.

- 1. Mess-Spannung anlegen. Weitere Informationen dazu finden Sie im Kapitel Mess-Spannung anlegen (Seite 80).
- 2. Gerät parametrieren. Weitere Informationen dazu finden Sie im Kapitel Parametrieren über powerconfig (Seite 80).
- 3. Messwerte prüfen.

6.2 Mess-Spannung anlegen

6.2 Mess-Spannung anlegen

Lebensgefahr durch zu hohe Spannung!

Das Überschreiten der Spannungsnennbereiche kann zu Tod, schwerer Körperverletzung oder Sachschaden führen.

Halten Sie die in den technischen Daten und auf dem Typschild genannten Grenzwerte stets ein.

Das Gerät wird über die Mess-Spannung versorgt.

Die Art und die Größe der möglichen Versorgungsspannung entnehmen Sie dem Kapitel Technische Daten (Seite 101) bzw. dem Typschild.

Weitere Informationen finden Sie im Kapitel Anschließen (Seite 71).

6.3 Parametrieren über powerconfig

Die Konfigurationssoftware powerconfig können Sie auf der Industry Online Support Website unter dem Link (<u>https://support.industry.siemens.com/cs/ww/de/view/63452759</u>) herunterladen.

Weitere Informationen zur Bedienung von powerconfig finden Sie in der Online-Hilfe der Konfigurationssoftware oder Sie wenden sich an den Technical Support.

Die Online-Hilfe in powerconfig starten Sie mit der Taste F1.

Voraussetzung (nur RS485-Geräte)

Sie können nur RS485-Geräte an powerconfig anbinden. Wenn Sie RS485-Geräte an powerconfig anbinden wollen, muss eine RS485-Schnittstelle vorhanden sein und eine Versorgungsspannung anliegen.

Zur Konfiguration des Messgeräts PAC1600 müssen Sie Mess-Spannungen anschließen und die Kommunikation zum Gerät aufbauen.

Verbindung zum Gerät herstellen

Um eine Verbindung zum PAC1600 herzustellen, gehen Sie wie folgt vor:

- 1. Verbinden Sie das PAC1600-Gerät mit dem PC.
- 2. Öffnen Sie die Konfigurationssoftware powerconfig.
- 3. Klicken Sie in der Schaltflächenleiste auf die Schaltfläche **Nach verfügbaren Geräten** suchen oder drücken Sie die Taste F11.

Das Fenster "Nach verfügbaren Geräten suchen" wird geöffnet.

4. Klicken Sie im Fenster "Nach verfügbaren Geräten suchen" auf den Reiter **Seriell**, falls Sie über RS485-Schnittstelle auf das Gerät zugreifen wollen.

Die Ansicht "Seriell" erscheint.

- 5. Wählen Sie PAC1600 in der Auswahl Suche nach dem Gerät aus.
- 6. Tragen Sie die Kommunikationsparameter ein:
 - COM-Port
 - Adresse
 - Baud-Rate
 - Format
 - Protokoll
- 7. Klicken Sie auf die Schaltfläche Starte Suche.

Im Fenster "Ergebnis" werden alle gefundenen Geräte angezeigt.

- 8. Wählen Sie das gewünschte Gerät aus.
- 9. Klicken Sie auf die Schaltfläche Geräte anlegen.

Das ausgewählte Gerät wird hinzugefügt.

10. Wählen Sie im Menüeintrag Ansichten das Untermenü "Parameter" aus.

Das Fenster "Parameter" wird geöffnet.

11.Klicken Sie im Fenster "Eigenschaften" auf die Schaltfläche Laden in PC.

Die Konfiguration wird vom Gerät in den PC geladen.

Gerät parametrieren

Die Eingabe und Änderung der Parameter erfolgt im Offline-Modus.

Um zwischen Online- und Offline Modus zu schalten, drücken Sie **Online Sicht aktivieren** im Menüeintag **Optionen** oder drücken Sie die Taste F12.

Stellen Sie die benötigten Grundparameter ein.

Nutzen Sie auch die Online Hilfe in powerconfig.

Um die Parameter in das Gerät zu laden, gehen Sie wie folgt vor:

- 1. Binden Sie das Gerät in powerconfig ein.
- 2. Wählen Sie im Menüeintrag **Ansichten** das Untermenü **Parameter** aus oder drücken Sie gleichzeitig die Tasten "Strg" und "Pos1".

Das Fenster "Parameter" wird geöffnet.

3. Klicken Sie im Fenster "Parameter" auf die Schaltfläche Laden in PC.

Die eingestellten Parameter werden auf das Gerät geladen.

4. Prüfen Sie die Geräteparameter bzw. passen Sie die Geräteparameter an.

Hinweis

Die Parameter können Sie nur im Offline-Modus verändern. Weitere Informationen zur Parametrierung finden Sie in der powerconfig Online-Hilfe.

Klicken Sie im Fenster "Parameter" auf die Schaltfläche "Laden in Gerät".
 Die eingestellten Parameter werden in das Gerät geladen.

6.4 Modbus Adressenregister

6.4.1 Modbus Adressentabelle für 1-Phasen-Geräte mit Modbus-Schnittstelle

Kontinuierliche Messwerte

Adress	e	Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße	
Hex	Dezimal	Register						
0002	2	2	UINT32	R	V	0,01	Spannung	
0004	4	2	-	-	-	-	-	
0006	6	2	-	-	-	-	_	
0008	8	2	UINT32	R	А	0,001	Strom	
000A	10	2	-	-	-	-	_	
000C	12	2	-	-	-	-	-	
000E	14	2	-	-	-	-	_	
0010	16	2	-	-	-	-	_	
0012	18	2	-	-	-	-	-	
0014	20	2	INT32	R	W	10,0	Wirkleistung	
0016	22	2	-	-	-	-	-	
0018	24	2	-	-	-	-	_	
001A	26	2	INT32	R	var	10,0	Blindleistung	
Bereich	Bereichsgrenze							
0026	38	2	INT32	R	-	0,01	Leistungsfaktor	
Bereich	sgrenze							
0032	50	2	INT32	R	Hz	0,1	Frequenz	

Leistungswerte

Adresse		Anzahl	Anzahl Format		Einheit	heit Faktor	Messgröße
Hex	Dezimal	Register					
0812	2066	2	INT32	R	W	0,1	Durchschnittliche Wirkleistung
							(15m demand)
Bereichs	sgrenze						
0A12	2578	2	INT32	R	W	0,1	Max. durchschnittliche Wirkleistung
							(max demand)

Modbus-Messgrößen mit den Funktionscodes 03 und 04

Energiezähler

Modbus-Messgrößen mit den Funktionscodes 03 und 04

Adress	e	Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1A20	6688	2	UINT32	R	Wh	1,0	Gesamt-Wirkenergie
1A22	6690	2	-	-	-	-	-
1A24	6692	2	UINT32	R	varh	1,0	Gesamt-Blindenergie
1A26	6694	2	-	-	-		_
1A28	6696	2	-	-	-	-	-
1A2A	6698	2	UINT32	R	Wh	1,0	Partielle Wirkenergie
1A2C	6700	2	-	-	-	-	-
1A2E	6702	2	UINT32	R	varh	1,0	Partielle Blindenergie

Betriebsstundenzähler

Modbus-Messgrößen mit den Funktionscodes 03 und 04

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1E00	7680	2	UINT32	R	s	1,0	Betriebsstundenzähler
1E02	7682	2	UINT32	R	S	1,0	Partieller Betriebsstundenzähler

Status

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
2210	8720	1	UINT	R	-	-	Status des programmierbaren Schwellwerts

6.4.2 Modbus Adressentabelle für 3-Phasen-Geräte 5 A mit Modbus-Schnittstelle

Kontinuierliche Messwerte

Adress	e	Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
0002	2	2	UINT32	R	V	0,01	Spannung L1N
0004	4	2	UINT32	R	V	0,01	Spannung L2N
0006	6	2	UINT32	R	V	0,01	Spannung L3N
0008	8	2	UINT32	R	А	0,0001	Strom L1
000A	10	2	UINT32	R	А	0,0001	Strom L2
000C	12	2	UINT32	R	А	0,0001	Strom L3
000E	14	2	UINT32	R	V	0,01	Spannung L1L2
0010	16	2	UINT32	R	V	0,01	Spannung L2L3
0012	18	2	UINT32	R	V	0,01	Spannung L3L1
0014	20	2	INT32	R	W	0,01	Wirkleistung L1
0016	22	2	INT32	R	W	0,01	Wirkleistung L2
0018	24	2	INT32	R	W	0,01	Wirkleistung L3
001A	26	2	INT32	R	var	0,01	Blindleistung L1
001C	28	2	INT32	R	var	0,01	Blindleistung L2
001E	30	2	INT32	R	var	0,01	Blindleistung L3
0020	32	2	UINT32	R	VA	0,01	Scheinleistung L1
0022	34	2	UINT32	R	VA	0,01	Scheinleistung L2
0024	36	2	UINT32	R	VA	0,01	Scheinleistung L3
0026	38	2	INT32	R	-	0,0001	Leistungsfaktor L1
0028	40	2	INT32	R	-	0,0001	Leistungsfaktor L2
002A	42	2	INT32	R	-	0,0001	Leistungsfaktor L3
002C	44	2	-	R	-	-	-
002E	46	2	-	R	-	-	_
0030	48	2	-	R	-	-	-
0032	50	2	UINT32	R	Hz	0,001	Frequenz
0034	52	2	UINT32	R	V	0,01	Durchschnittliche Spannung LN
0036	54	2	UINT32	R	V	0,01	Durchschnittliche Spannung LL
0038	56	2	UINT32	R	А	0,0001	Durchschnittlicher Strom
003A	58	2	INT32	R	W	0,01	Durchschnittliche Wirkleistung
003C	60	2	INT32	R	var	0,01	Durchschnittliche Blindleistung
003E	62	2	UINT32	R	VA	0,01	Durchschnittliche Scheinleistung
0040	64	2	INT32	R	-	0,0001	Durchschnittlicher Leistungsfaktor
0042	66	2	UINT32	R	%	0,01	Asymmetrie Spannung LL
0044	68	2	UINT32	R	%	0,01	Asymmetrie Spannung LN
0046	70	2	UINT32	R	%	0,01	Asymmetrie Strom
0048	72	2	UINT32	R	Α	0,0001	Strom N

Messgrößen max. (HI)

Modbus-Messgrößen mit den Funktionscodes 03 und 04

Adresse		Anzahl	Anzahl Format 2		Zugriff Einheit F		Messgröße	
Hex	Dezimal	Register						
0400	1024	2	UINT32	R	V	0,01	Spannung L1N	
Gleich	Gleiche Struktur wie Momentanwerte.							
0446	1094	2	UINT32	R	А	0,0001	Strom N	

Messgrößen min. (LO)

Modbus-Messgrößen mit den Funktionscodes 03 und 04

Adresse	e	Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße		
Hex	Dezimal	Register							
0600	1536	2	UINT32	R	V	0,01	Spannung L1N		
Gleich	Gleiche Struktur wie Momentanwerte.								
0646	1606	2	UINT32	R	A	0,0001	Strom N		

Messgrößen Durchschnitt (AV)

Modbus-Messgrößen mit den Funktionscodes 03 und 04

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße		
Hex	Dezimal	Register							
0800	2048	2	UINT32	R	V	0,01	Spannung L1N		
Gleiche Struktur wie Momentanwerte.									
0846	2118	2	UINT32	R	Α	0,0001	Strom N		

Mittelwerte max. (MD)

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße		
Hex	Dezimal	Register							
0A00	2560	2	UINT32	R	V	0,01	Spannung L1N		
Gleiche Struktur wie Momentanwerte.									
0A46	2630	2	UINT32	R	A	0,0001	Strom N		

In Betrieb nehmen

6.4 Modbus Adressenregister

Energiezähler

Modbus-Messgrößen mit	den Funktionscodes	03	und 04	1
-----------------------	--------------------	----	--------	---

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1B20	6944	4	UINT64	R	Wh	10,0	Gesamt Wirkenergie - Import
1B24	6948	4	UINT64	R	Wh	10,0	Gesamt Wirkenergie - Export
1B28	6952	4	UINT64	R	varh	10,0	Gesamt Blindenergie - Import
1B2C	6956	4	UINT64	R	varh	10,0	Gesamt Blindenergie - Export
1B30	6960	4	UINT64	R	VAh	10,0	Gesamt Scheinenergie
1B34	6964	4	UINT64	R	Wh	10,0	Partielle Wirkenergie - Import
1B38	6968	4	UINT64	R	Wh	10,0	Partielle Wirkenergie - Export
1B3C	6972	4	UINT64	R	varh	10,0	Partielle Blindenergie - Import
1B40	6976	4	UINT64	R	varh	10,0	Partielle Blindenergie - Export
1B44	6980	4	UINT64	R	VAh	10,0	Partielle Scheinenergie
1B48	6984	4	UINT64	R	Wh	10,0	T1 Wirkenergie - Import
1B4C	6988	4	UINT64	R	Wh	10,0	T1 Wirkenergie - Export
1B50	6992	4	UINT64	R	varh	10,0	T1 Blindenergie - Import
1B54	6996	4	UINT64	R	varh	10,0	T1 Blindenergie - Export
1B58	7000	4	UINT64	R	VAh	10,0	T1 Scheinenergie
1B5C	7004	4	UINT64	R	Wh	10,0	T2 Wirkenergie - Export
1B60	7008	4	UINT64	R	Wh	10,0	T2 Wirkenergie - Export
1B64	7012	4	UINT64	R	varh	10,0	T2 Blindenergie - Import
1B68	7016	4	UINT64	R	varh	10,0	T2 Blindenergie - Export
1B6C	7020	4	UINT64	R	VAh	10,0	T2 Scheinenergie

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1B98	7064	4	UINT64	R	Wh	10,0	T1 Wirkenergie L1 - Import
1B9C	7068	4	UINT64	R	Wh	10,0	T1 Wirkenergie L1 - Export
1BA0	7072	4	UINT64	R	varh	10,0	T1 Blindenergie L1 - Import
1BA4	7076	4	UINT64	R	varh	10,0	T1 Blindenergie L1 - Export
1BA8	7080	4	UINT64	R	VAh	10,0	T1 Scheinenergie L1
1BAC	7084	4	UINT64	R	Wh	10,0	T2 Wirkenergie L1 - Import
1BBO	7088	4	UINT64	R	Wh	10,0	T2 Wirkenergie L1 - Export
1BB4	7092	4	UINT64	R	varh	10,0	T2 Blindenergie L1 - Import
1BB8	7096	4	UINT64	R	varh	10,0	T2 Blindenergie L1 - Export
1BBC	7100	4	UINT64	R	VAh	10,0	T2 Scheinenergie L1
1BC0	7104	4	UINT64	R	Wh	10,0	T1 Wirkenergie L2 - Import
1BC4	7108	4	UINT64	R	Wh	10,0	T1 Wirkenergie L2 - Export
1BC8	7112	4	UINT64	R	varh	10,0	T1 Blindenergie L2 - Import
1BCC	7116	4	UINT64	R	varh	10,0	T1 Blindenergie L2 - Export
1BD0	7120	4	UINT64	R	VAh	10,0	T2 Wirkenergie L2 - Import
1BD4	7124	4	UINT64	R	Wh	10,0	T2 Wirkenergie L2 - Export
1BD8	7128	4	UINT64	R	Wh	10,0	T2 Blindenergie L2 - Import

Adress	e	Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1BDC	7132	4	UINT64	R	varh	10,0	T2 Blindenergie L2 - Export
1BEO	7136	4	UINT64	R	varh	10,0	T2 Blindenergie L2 - Export
1BE4	7140	4	UINT64	R	VAh	10,0	T2 Scheinenergie L2
1BE8	7144	4	UINT64	R	Wh	10,0	T1 Wirkenergie L3 - Import
1BEC	7148	4	UINT64	R	Wh	10,0	T1 Wirkenergie L3 - Export
1BF0	7152	4	UINT64	R	varh	10,0	T1 Blindenergie L3 - Import
1BF4	7156	4	UINT64	R	varh	10,0	T1 Blindenergie L3 - Export
1BF8	7160	4	UINT64	R	VAh	10,0	T1 Scheinenergie L3
1BFC	7164	4	UINT64	R	Wh	10,0	T2 Wirkenergie L3 - Import
1C00	7168	4	UINT64	R	Wh	10,0	T2 Wirkenergie L3 - Export
1C04	7172	4	UINT64	R	varh	10,0	T2 Blindenergie L3 - Import
1C08	7176	4	UINT64	R	varh	10,0	T2 Blindenergie L3 - Export
1C0C	7180	4	UINT64	R	VAh	10,0	T2 Scheinenergie L3

Adress	e	Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1E20	7712	4	UINT64	R	Wh	10,0	Gesamt Wirkenergie L1 - Import
1E24	7716	4	UINT64	R	Wh	10,0	Gesamt Wirkenergie L1 - Export
1E28	7720	4	UINT64	R	varh	10,0	Gesamt Blindenergie L1 - Import
1E2C	7724	4	UINT64	R	varh	10,0	Gesamt Blindenergie L1 - Export
1E30	7728	4	UINT64	R	VAh	10,0	Gesamt Scheinenergie L1
1E34	7732	4	UINT64	R	Wh	10,0	Partielle Wirkenergie L1 - Import
1E38	7736	4	UINT64	R	Wh	10,0	Partielle Wirkenergie L1 - Export
1E3C	7740	4	UINT64	R	varh	10,0	Partielle Blindenergie L1 - Import
1E40	7744	4	UINT64	R	varh	10,0	Partielle Blindenergie L1 - Export
1E44	7748	4	UINT64	R	VAh	10,0	Partielle Scheinenergie L1
1E48	7752	4	UINT64	R	Wh	10,0	Gesamt Wirkenergie L2 - Import
1E4C	7756	4	UINT64	R	Wh	10,0	Gesamt Wirkenergie L2 - Export
1E50	7760	4	UINT64	R	varh	10,0	Gesamt Blindenergie L2 - Import
1E54	7764	4	UINT64	R	varh	10,0	Gesamt Blindenergie L2 - Export
1E58	7768	4	UINT64	R	VAh	10,0	Gesamt Scheinenergie L2
1E5C	7772	4	UINT64	R	Wh	10,0	Partielle Wirkenergie L2 - Import
1E60	7776	4	UINT64	R	Wh	10,0	Partielle Wirkenergie L2 - Export
1E64	7780	4	UINT64	R	varh	10,0	Partielle Blindenergie L2 - Import
1E68	7784	4	UINT64	R	varh	10,0	Partielle Blindenergie L2 - Export
1E6C	7788	4	UINT64	R	VAh	10,0	Partielle Scheinenergie L2
1E70	7792	4	UINT64	R	Wh	10,0	Gesamt Wirkenergie L3 - Import
1E74	7796	4	UINT64	R	Wh	10,0	Gesamt Wirkenergie L3 - Export
1E78	7800	4	UINT64	R	varh	10,0	Gesamt Blindenergie L3 - Import
1E7C	7804	4	UINT64	R	varh	10,0	Gesamt Blindenergie L3 - Export
1E80	7808	4	UINT64	R	VAh	10,0	Gesamt Scheinenergie L3
1E84	7812	4	UINT64	R	Wh	10,0	Partielle Wirkenergie L3 - Import
1E88	7816	4	UINT64	R	Wh	10,0	Partielle Wirkenergie L3 - Export

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1E8C	7820	4	UINT64	R	varh	10,0	Partielle Blindenergie L3 - Import
1E90	7824	4	UINT64	R	varh	10,0	Partielle Blindenergie L3 - Export
1E94	7828	4	UINT64	R	VAh	10,0	Partielle Scheinenergie L3

Stundenzähler

Modbus-Messgrößen mit den Funktionscodes 03 und 04

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1E00	7680	2	UINT32	R	S	1,0	Gesamt Betriebsstundenzähler
1E02	7682	2	UINT32	R	S	1,0	Partieller Betriebsstundenzähler 1
1E04	7684	2	UINT32	R	S	1,0	Partieller Betriebsstundenzähler 2
1E06	7686	2	UINT32	R	S	1,0	Partieller Betriebsstundenzähler 3
1E08	7688	2	UINT32	R	S	1,0	Partieller Betriebsstundenzähler 4

Status

Modbus-Messgrößen mit den Funktionscodes 03 und 04

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
2140	8512	1	UINT16	R	BOOL	-	ODER über alle Limits *1
2141	8513	1	UINT16	R	BOOL	-	Limit 1
2142	8514	1	UINT16	R	BOOL	-	Limit 2
2143	8515	1	UINT16	R	BOOL	-	Limit 3
2144	8516	1	UINT16	R	BOOL	-	Limit 4
2145	8517	1	UINT16	R	BOOL	-	Limit 5
2146	8518	1	UINT16	R	BOOL	-	Limit 6
2147	8519	1	UINT16	R	BOOL	-	Limit 7
2148	8520	1	UINT16	R	BOOL	-	Limit 8

¹ Beispiel: Wenn der Wert (hex) =0x05 ist, sind die Eingänge 1 und 3 aktiv.

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
4F00	20224	1	UINT16	R	BOOL	-	Remote 1
4F01	20225	1	UINT16	R	BOOL	-	Remote 2
4F02	20226	1	UINT16	R	BOOL	-	Remote 3
4F04	20227	1	UINT16	R	BOOL	-	Remote 4

Modbus-Befehlsparameter

Adress	e	Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
2FF0	12272	1	UINT16	W	0	-	Reset max & min Werte
			UINT16	W	1	-	Reset max demand Werte
			UINT16	W	2	-	Reset partielle Energiezähler
			UINT16	W	3	-	Reset partielle Betriebsstundenzähler
			UINT16	W	4	-	Reset externe Zähler
			UINT16	W	5	-	Reset Energie Tarife
			UINT16	W	6	-	Reset Alarme
			UINT16	W	7	-	Reset Limits
			UINT16	W	11	-	Reset Gesamtenergie
			UINT16	W	12	-	Reset aller Betriebsstundenzähler
			UINT16	W	13	-	Reset aller Parameter auf Werkseinstel- lung ¹⁾
			UINT16	W	14	-	Backup aller Parameter ¹⁾
			UINT16	W	15	-	Wiederherstellen aller Parameter ¹⁾
			UINT16	W	16	-	Verdrahtungstest ²⁾
			UINT16	W	100	-	Reset max Werte
			UINT16	W	200	-	Reset min Werte
2FF1	12273	1	UINT16	W	1	-	System neustart
Bereich	sgrenze						
4200	16896	1	UINT16	W	1, 2	_	Setze Wirkenergie Tarif ³⁾

Modbus-Messgrößen mit dem Funktionscode 06

¹⁾ Nachdem Sie diesen Befehl ausgeführt haben, wird empfohlen, den REBOOT-Befehl zu senden.

²⁾ Nachdem Sie diesen Befehl ausgeführt haben, können Sie die Abfrage unter Adresse 0x1F20 verwenden, um das Testergebnis zu erhalten. Die Bedeutung der Antwortbits wird in der folgenden Tabelle Verdrahtungstest Ergebnisse gezeigt.

³⁾ Diese Funktion ist nur aktiv, wenn keiner der Eingänge mit der Tariffunktion (TAR-A und TAR-B) belegt ist.

Verdrahtungstest Ergebnisse

Adress	e	Anzahl	Format	Zugriff	Aktives	Messgröße
Hex	Dezimal	Register			bit	
1F20	7968	2	UINT32	R	0	Spannung L1N
			UINT32	R	1	Spannung L2N
			UINT32	R	2	Spannung L3N
			UINT32	R	3	Strom L1
			UINT32	R	4	Strom L2
			UINT32	R	5	Strom L3
			UINT32	R	6	Falsche Phasenfolge
			UINT32	R	7	Phasenunsymmetrie
			UINT32	R	8	Stromwandler L1 Invertiert
			UINT32	R	9	Stromwandler L2 Invertiert
			UINT32	R	10	Stromwandler L3 Invertiert

Adresse		Anzahl	Format	Zugriff	Aktives	Messgröße
Hex	Dezimal	Register			bit	
			UINT32	R	11	Stromwandler L1 auf L2
			UINT32	R	12	Stromwandler L1 auf L3
			UINT32	R	13	Stromwandler L2 auf L1
			UINT32	R	14	Stromwandler L2 auf L3
			UINT32	R	15	Stromwandler L3 auf L1
			UINT32	R	16	Stromwandler L3 auf L2

Die Verdrahtung ist korrekt, wenn das Ergebnis 0 bzw. kein Bit aktiv ist.

Parameter Setup

Parameter werden gemäß den folgenden Regeln gelesen und geändert:

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
5000	20480	1	UINT16	RW	-	-	Menü Nummer Auswahl ¹⁾
5001	20481	1	UINT16	RW	-	-	Untermenü Nummer Auswahl ¹⁾
5002	20482	1	UINT16	RW	-	-	Parameter Nummer Auswahl ¹⁾
5004	20484	1 28	UINT16	RW	-	-	Parameter Wert ²⁾
2F01	12033	1	UINT16	RW	-	0,1	Schreibe in Flash-Speicher ¹⁾

¹⁾ Zugänglich über die Funktionscodes 0x04 (read) oder 0x06 (write).

²⁾ Zugänglich über die 0x04 (read), 0x06 (write) oder 0x16 (multiwrite).

6.4.3 Modbus Adressentabelle für 3-Phasen-Geräte 80 A mit Modbus-Schnittstelle

Kontinuierliche Messwerte

Adress	e	Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
0002	2	2	UINT32	R	V	0,01	Spannung L1N
0004	4	2	UINT32	R	V	0,01	Spannung L2N
0006	6	2	UINT32	R	V	0,01	Spannung L3N
0008	8	2	UINT32	R	А	0,0001	Strom L1
000A	10	2	UINT32	R	А	0,0001	Strom L2
000C	12	2	UINT32	R	А	0,0001	Strom L3
000E	14	2	UINT32	R	V	0,01	Spannung L1L2
0010	16	2	UINT32	R	V	0,01	Spannung L2L3
0012	18	2	UINT32	R	V	0,01	Spannung L3L1
0014	20	2	INT32	R	W	0,01	Wirkleistung L1
0016	22	2	INT32	R	W	0,01	Wirkleistung L2

Adress	e	Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
0018	24	2	INT32	R	W	0,01	Wirkleistung L3
001A	26	2	INT32	R	var	0,01	Blindleistung L1
001C	28	2	INT32	R	var	0,01	Blindleistung L2
001E	30	2	INT32	R	var	0,01	Blindleistung L3
0020	32	2	UINT32	R	VA	0,01	Scheinleistung L1
0022	34	2	UINT32	R	VA	0,01	Scheinleistung L2
0024	36	2	UINT32	R	VA	0,01	Scheinleistung L3
0026	38	2	INT32	R	-	0,0001	Leistungsfaktor L1
0028	40	2	INT32	R	-	0,0001	Leistungsfaktor L2
002A	42	2	INT32	R	-	0,0001	Leistungsfaktor L3
002C	44	2	-	-	-	-	_
002E	46	2	-	-	-	-	_
0030	48	2	-	-	-	-	-
0032	50	2	UINT32	R	Hz	0,01	Frequenz
0034	52	2	UINT32	R	V	0,01	Durchschnittl. Spannung LN
0036	54	2	UINT32	R	V	0,01	Durchschnittl. Spannung LL
0038	56	2	-	-	-	-	-
003A	58	2	INT32	R	W	0,01	Durchschnittl. Wirkleistung
003C	60	2	INT32	R	var	0,01	Durchschnittl. Blindleistung
003E	62	2	UINT32	R	VA	0,01	Durchschnittl. Scheinleistung
0040	64	2	INT32	R	_	0.0001	Durchschnittl. Leistungsfaktor

Energiezähler

Adress	e	Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1A20	6688	2	UINT32	R	Wh	1,0	Wirkenergie - Import
1A22	6690	2	UINT32	R	Wh	1,0	Wirkenergie - Export
1A24	6692	2	UINT32	R	varh	1,0	Blindenergie - Import
1A26	6694	2	UINT32	R	varh	1,0	Blindenergie - Export
1A28	6696	2	-	-	-	-	-
1A2A	6698	2	UINT32	R	Wh	1,0	Partielle Wirkenergie - Import
1A2C	6700	2	UINT32	R	Wh	1,0	Partielle Wirkenergie - Export
1A2E	6702	2	UINT32	R	varh	1,0	Partielle Blindenergie - Import
1A30	6704	2	UINT32	R	varh	1,0	Partielle Blindenergie - Export
1A32	6706	2	_	-	-	-	-
1A34	6708	2	UINT32	R	Wh	1,0	L1 Wirkenergie - Import
1A36	6710	2	UINT32	R	Wh	1,0	L1 Wirkenergie - Export
1A38	6712	2	UINT32	R	varh	1,0	L1 Blindenergie - Import
1A3A	6714	2	UINT32	R	varh	1,0	L1 Blindenergie - Export
1A3C	6716	2	-	-	-	-	_
1A3E	6718	2	UINT32	R	Wh	1,0	Partielle L1 Wirkenergie - Import

In Betrieb nehmen

6.4 Modbus Adressenregister

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1A40	6720	2	UINT32	R	Wh	1,0	Partielle L1 Wirkenergie - Export
1A42	6722	2	UINT32	R	varh	1,0	Partielle L1 Blindenergie - Import
1A44	6724	2	UINT32	R	varh	1,0	Partielle L1 Blindenergie - Export
1A46	6726	2	-	-	-	-	-
1A48	6728	2	UINT32	R	Wh	1,0	L2 Wirkenergie - Import
1A4A	6730	2	UINT32	R	Wh	1,0	L2 Wirkenergie - Export
1A4C	6732	2	UINT32	R	varh	1,0	L2 Blindenergie - Import
1A4E	6734	2	UINT32	R	varh	1,0	L2 Blindenergie - Export
1A50	6736	2	-	-	-	-	-
1A52	6738	2	UINT32	R	Wh	1,0	Partielle L2 Wirkenergie - Import
1A54	6740	2	UINT32	R	Wh	1,0	Partielle L2 Wirkenergie - Export
1A56	6742	2	UINT32	R	varh	1,0	Partielle L2 Blindenergie - Export
1A58	6744	2	UINT32	R	varh	1,0	Partielle L2 Blindenergie - Export
1A5A	6746	2	-	-	-	-	_
1A5C	6748	2	UINT32	R	Wh	1,0	L3 Wirkenergie - Import
1A5E	6750	2	UINT32	R	Wh	1,0	L3 Wirkenergie - Export
1A60	6752	2	UINT32	R	varh	1,0	L3 Blindenergie - Import
1A62	6754	2	UINT32	R	varh	1,0	L3 Blindenergie - Export
1A64	6756	2	-	-	-	-	_
1A66	6758	2	UINT32	R	Wh	1,0	Partielle L3 Wirkenergie - Export
1A68	6760	2	UINT32	R	Wh	1,0	Partielle L3 Wirkenergie - Export
1A6A	6762	2	UINT32	R	varh	1,0	Partielle L3 Blindenergie - Import
1A6C	6764	2	UINT32	R	varh	1,0	Partielle L3 Blindenergie - Export
1A6E	6766	2	-	-	-	-	-

Tarifenergiezähler

Adresse	e	Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1B48	6984	2	UINT32	R	Wh	1,0	T1 Wirkenergie - Import
1B4A	6986	2	_	-	-	-	-
1B4C	6988	2	UINT32	R	Wh	1,0	T1 Wirkenergie - Export
1B4E	6990	2	-	-	-	-	-
1B50	6992	2	UINT32	R	varh	1,0	T1 Blindenergie - Import
1B52	6994	2		-	-	-	-
1B54	6996	2	UINT32	R	varh	1,0	T1 Blindenergie - Export
1B56	6998	2	-	-	-	-	-
1B58	7000	2	-	-	-	-	-
1B5A	7002	2	-	-	-	-	-
1B5C	7004	2	UINT32	R	Wh	1,0	T2 Wirkenergie - Import
1B5E	7006	2	-	-	-	-	-
1B60	7008	2	UINT32	R	Wh	1,0	T2 Wirkenergie - Export

Adresse	e	Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1B62	7010	2	-	-	-	-	-
1B64	7012	2	UINT32	R	varh	1,0	T2 Blindenergie - Import
1B66	7014	2	-	-	-	-	_
1B68	7016	2	UINT32	R	varh	1,0	T2 Blindenergie - Export
1B6A	7018	2	-	-	-	-	_
1B6C	7020	2	-	-	-	-	-
1B6E	7022	2	-	-	-	-	_
1B70	7024	2	-	-	-	-	-
1B72	7026	2	-	-	-	-	_
1B74	7028	2	-	-	-	-	-
1B76	7030	2	-	-	-	-	-
1B78	7032	2	-	-	-	-	_
1B7A	7034	2	-	-	-	-	-
1B7C	7036	2	-	-	-	-	_
1B7E	7038	2	-	-	-	-	_
1B80	7040	2	-	-	-	-	_
1B82	7042	2	-	-	-	-	_
1B84	7044	2	-	-	-	-	_
1B86	7046	2	-	-	-	-	_
1B88	7048	2	-	-	-	-	-
1B8A	7050	2	-	-	-	-	-
1B8C	7052	2	-	-	-	-	-
1B8E	7054	2	-	-	-	-	-
1B90	7056	2	-	-	-	-	-
1B92	7058	2	-	-	-	-	-
1B94	7060	2	-	-	-	-	-
1B96	7062	2	-	-	-	-	-
1B98	7064	2	UINT32	R	Wh	1,0	T1 Wirkenergie L1 - Import
1B9A	7066	2	-	-	-	-	-
1B9C	7068	2	UINT32	R	Wh	1,0	T1 Wirkenergie L1 - Export
1B9E	7070	2	-	-	-	-	-
1BA0	7072	2	UINT32	R	varh	1,0	T1 Blindenergie L1 - Import
1BA2	7074	2	-	-	-	-	-
1BA4	7076	2	UINT32	R	varh	1,0	T1 Blindenergie L1 - Export
1BA6	7078	2	-	-	-	-	-
1BA8	7080	2	-	-	-	-	-
1BAA	7082	2	-	-	-	-	-
1BAC	7084	2	UINT32	R	Wh	1,0	T2 Wirkenergie L1 - Import
1BAE	7086	2	-	-	-	-	-
1BBO	7088	2	UINT32	R	Wh	1,0	T2 Wirkenergie L1 - Export
1BB2	7090	2	-	-	-	-	-
1BB4	7092	2	UINT32	R	varh	1,0	T2 Blindenergie L1 - Import
1BB6	7094	2	-	-	-	-	-
1BB8	7096	2	UINT32	R	varh	1,0	T2 Blindenergie L1 - Export

In Betrieb nehmen

6.4 Modbus Adressenregister

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1BBA	7098	2	-	-	-	-	-
1BBC	7100	2	-	-	-	-	-
1BBE	7102	2	-	-	-	-	-
1BC0	7104	2	UINT32	R	Wh	1,0	T1 Wirkenergie L2 - Import
1BC2	7106	2	-	-	-	-	-
1BC4	7108	2	UINT32	R	Wh	1,0	T1 Wirkenergie L2 - Export
1BC6	7110	2	-	-	-	-	-
1BC8	7112	2	UINT32	R	varh	1,0	T1 Blindenergie L2 - Import
1BCA	7114	2	-	-	-	-	-
1BCC	7116	2	UINT32	R	varh	1,0	T1 Blindenergie L2 - Export
1BCE	7118	2	-	-	-	-	-
1BD0	7120	2	-	-	-	-	_
1BD2	7122	2	-	-	-	-	-
1BD4	7124	2	UINT32	R	Wh	1,0	T2 Wirkenergie L2 - Import
1BD6	7126	2	-	-	-	-	_
1BD8	7128	2	UINT32	R	Wh	1,0	T2 Wirkenergie L2 - Export
1BDA	7130	2	-	-	-	-	_
1BDC	7132	2	UINT32	R	varh	1,0	T2 Blindenergie L2 - Import
1BDE	7134	2	-	-	-	-	-
1BEO	7136	2	UINT32	R	varh	1,0	T2 Blindenergie L2 - Export
1BE2	7138	2	-	-	-	-	_
1BE4	7140	2	-	-	-	-	_
1BE6	7142	2	-	-	-	-	_
1BE8	7144	2	UINT32	R	Wh	1,0	T1 Wirkenergie L3 - Import
1BEA	7146	2	-	-	-	-	-
1BEC	7148	2	UINT32	R	Wh	1,0	T1 Wirkenergie L3 - Export
1BEE	7150	2	-	-	-	-	_
1BF0	7152	2	UINT32	R	varh	1,0	T1 Blindenergie L3 - Import
1BF2	7154	2	-	-	-	-	-
1BF4	7156	2	UINT32	R	varh	1,0	T1 Blindenergie L3 - Export
1BF6	7158	2	-	-	-	-	-
1BF8	7160	2	-	-	-	-	-
1BFA	7162	2	-	-	-	-	-
1BFC	7164	2	UINT32	R	Wh	1,0	T2 Wirkenergie L3 - Import
1BFE	7166	2	-	-	-		-
1C00	7168	2	UINT32	R	Wh	1,0	T2 Wirkenergie L3 - Export
1C02	7170	2	-	-	-		-
1C04	7172	2	UINT32	R	varh	1,0	T2 Blindenergie L3 - Import
1C06	7174	2	-	-	-		-
1C08	7176	2	UINT32	R	varh	1,0	T2 Blindenergie L3 - Export
1C0A	7178	2	-	_	_	-	-

Stundenzähler

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
1E00	7680	2	UINT32	R	S	1,0	Partieller Betriebsstundenzähler 1
1E02	7682	2	UINT32	R	s	1,0	Partieller Betriebsstundenzähler 2
1E04	7684	2	UINT32	R	S	1,0	Partieller Betriebsstundenzähler 3

Modbus-Messgrößen mit den Funktionscodes 03 und 04

Parameter Setup

Hinweis

Write-Befehle sind nur möglich beim 7KT1665 80 A, Modbus RTU (nicht MID).

Parameter werden gemäß den folgenden Regeln gelesen und geändert:

Adresse		Anzahl	Format	Zugriff	Einheit	Faktor	Messgröße
Hex	Dezimal	Register					
5000	20480	1	UINT16	RW	-	-	Menü Nummer Auswahl ¹⁾
5002	20482	1	UINT16	RW	-	-	Parameter Nummer Auswahl ¹⁾
5004	20484	1 28	UINT16	RW	-	-	Parameter Wert ²⁾
2F01	12033	1	UINT16	W	-	0,1	Schreibe in Flash-Speicher ¹⁾

¹ Zugänglich über die Funktionscodes 0x04 (read) oder 0x06 (write).

² Zugänglich über die 0x04 (read), 0x06 (write) oder 0x16 (multiwrite).

Instandhalten und Warten

Das Gerät wurde vor der Auslieferung vom Hersteller justiert. Bei Einhaltung der Umgebungsbedingungen ist eine Nachjustierung nicht notwendig.

7.1 Firmware-Update

Ein Firmware-Update ist nicht möglich.

7.2 Verlorenes oder vergessenes Passwort

Wenn Sie das Passwort verlieren oder vergessen, zeigt das Display nach 3 aufeinanderfolgenden fehlerhaften Versuchen einen 6-stelligen Entsperrcode an. Weitere Informationen dazu sowie den Freischaltcode erhalten Sie vom Siemens-Support (http://www.siemens.de/lowvoltage/support-request/).

Nach Eingabe des Freischaltcodes steht es Ihnen frei, die Einstellung in der üblichen Weise zu ändern (Parameter P.01). Weitere Informationen finden Sie im Kapitel Befehlsmenü (Seite 65).

7.3 Maßnahmen zur Behebung von Fehlern

Fehler	Maßnahmen	
Gerät funktioniert nicht.	Spannungsanschluss prüfen.	
	Sicherung prüfen.	
Spannungs- oder Strommesswerte werden nicht angezeigt.	 Sicherung prüfen. Konfiguration prüfen. Weitere Informationen finden Sie unter Parametrieren über power- config (Seite 80). 	
Spannungswerte sind nicht plausibel.	Falls Stromwandler vorhanden, die Einstellungen und den Anschluss der Stromwandler prüfen und korrigieren.	
Stromwerte sind nicht plausibel.	Einstellung und Verdrahtung des Stromwandlers (falls vorhanden) prüfen und gegebenenfalls korrigieren.	

7.4 Gewährleistung

hmen
nikationseinstellungen prüfen.
nnungen und Ströme der Phasen prüfen, s sie zueinander passend angeschlossen Ing der Stromwandler prüfen, falls vor-

7.4 Gewährleistung

Hinweis

Verlust der Gewährleistung

Wenn Sie das Gerät öffnen, verliert das Gerät die Gewährleistung der Fa. Siemens. Nur der Hersteller darf Reparaturen am Gerät durchführen. Senden Sie defekte oder beschädigte Geräte zur Reparatur oder zum Austausch an Siemens zurück.

Vorgehensweise

Wenn das Gerät defekt oder beschädigt ist, gehen Sie wie folgt vor (nur innerhalb der Gewährleistung):

- 1. Bauen Sie das Gerät aus. Weitere Informationen finden Sie im Kapitel 3-Phasen-Gerät ausbauen (Seite 70).
- 2. Verpacken Sie das Gerät versandfähig, sodass es beim Transport nicht beschädigt werden kann.
- 3. Senden Sie das Gerät an Siemens zurück. Die Adresse erfahren Sie von:
 - Ihrem Siemens-Vertriebspartner
 - Technical Assistance

Weitere Informationen finden Sie in Kapitel Aktuelle Informationen (Seite 7).

7.5 Entsorgung

- Entsorgen Sie die Baugruppe nach den in ihrem Land geltenden Gesetzen und Vorschriften.
- Entsorgen Sie das Gerät nicht zusammen mit dem Hausmüll.
- Altgeräte müssen Sie getrennt sammeln und entsorgen.

7.5 Entsorgung

Technische Daten

8.1 Technische Daten

PAC1600

	Stromein- gang (A)	Modbus RTU	M-Bus	S0 / digital er Ausgang	MID	Tarifein- gang	Genauig- keit ¹	Gewicht (g)
1-Phasen Ge	räte							
7KT1651	63	•	_	_	-	-	Klasse 1	148
7KT1652	63	•	_	_	•	-	Klasse B	148
7KT1653	63	_	٠	_	-	-	Klasse 1	148
7KT1654	63	-	•	_	•	-	Klasse B	148
7KT1655	63	-	Ι	•	-	-	Klasse 1	148
7KT1656	63	-	-	•	•	-	Klasse B	148
3-Phasen Ge	räte							
7KT1661	5	•	-	_	-	•	Klasse 0,5s	332
7KT1662	5	•	-	_	•	•	Klasse B	332
7KT1663	5	-	•	_	_	•	Klasse 0,5s	332
7KT1664	5	-	•	_	•	•	Klasse B	332
7KT1665	80	•	-	_	-	•	Klasse 0,5s	360
7KT1666	80	•	-	_	•	•	Klasse B	360
7KT1667	80	-	•	_	_	•	Klasse 1	360
7KT1668	80	-	•	_	•	•	Klasse B	360
7KT1670	8	-	-	2	_	•	Klasse 1	360
7KT1671	80	-	_	2	•	•	Klasse B	271
7KT1672	5	_	_	2	_	•	Klasse 1	332
7KT1673	5	_	_	2	•	•	Klasse B	332

¹ Genauigkeit Wirkenergie: (Versionen ohne MID-Zulassung IEC/EN 62053-21/22. Versionen mit MID: EN 50470-3)

Eingangsspannung	
Nennspannung 1-Phasen-Geräte	230 V~
Nennspannung 3-Phasen-Geräte	230 V~/ 400 V~ L-L
Betriebsspannungsbereich 1-Phasen-Geräte	187 264 V~ L-N
Betriebsspannungsbereich 3-Phasen-Geräte	187 264 V~ L-N 323 456 V~ L-L
Nennfrequenz MID-Geräte	50 Hz
Nennfrequenz nicht MID-Geräte	50/60 Hz
Betriebsfrequenzbereich	45 66 Hz

Technische Daten

8.1 Technische Daten

Eingangsstrom			
Mindeststrom (Imin)	• Bei 63/80 A: 0,5 A		
	• Bei 5 A: 0,05 A		
Max. Strom (Imax) 63 A Geräte	63 A		
Max. Strom (Imax) 80 A Geräte	80 A		
Max. Strom (Imax) 5 A Geräte	6 A		
Anlaufstrom (Ist) 63 und 80 A-Geräte	40 mA		
Anlaufstrom (lst) 5 A-Geräte	10 mA		
Bürde per Phase bei 5 A-Geräten	≤ 0,3 W		

LED-Impulse		
Geräte mit 63 und 80 A	1000 Impulse/kWh	
Geräte mit 5-A-Eingang	10000 Impulse/kWh	
Länge	30 ms	

Umgebungsbedingungen			
Montage	nur innen benutzen		
Betriebstemperatur	−25 +55 °C		
Lagertemperatur	–25 +70 °C		
Relative Luftfeuchtigkeit (IEC EN 60068-2-78)	< 80 % nicht kondensierend		
Maximaler Verschmutzungsgrad	2		
Überspannungskategorie	Ш		
Höhe	≤ 2000 m		
Klimatische Sequenz	Z/ABDM (IEC/EN 60068-2-61)		
Stoßfestigkeit	10 g (IEC/EN 60068-2-27)		
Vibrations-Resistenz	0,7 g (IEC/EN 60068-2-6)		
Mechanische Umgebung	Class M1		
Elektromagnetische Umgebung	Class E2		

Isolationsspannung	
Bemessungsisolationsspannung L-N	250 V~
Bemessungsstoßspannungsfestigkeit Uimp	6 kV
Wechselspannung-Spannungsfestigkeit	4 kV

Gehäuse	
1-Phasen-Geräte	2 TE (DIN 43880)
3-Phasen-Geräte	4 TE (DIN 43880)
Montage	35 mm DIN rail (EN 60715) oder durch Schrauben mit extrahierbaren Clips
Material	Polyamide RAL 7035

8.1 Technische Daten

Gehäuse	
Schutzart	Front IP40
	Klemmen IP20
Zertifizierung	EAC, CE

Geräte mit Tarifeingang			
Nennspannung Unenn	100 240 V~		
Betriebsspannungsbereich	85 264 V~		
Nennfrequenz	50/60 Hz		
Betriebsfrequenzbereich	45 66 Hz		
Stromverbrauch, Verlustleistung 80 A-Geräte	0,9 VA, 0,6 W		
Stromverbrauch, Verlustleistung 5 A-Geräte	0,25 VA, 0,18 W		

Geräte mit S0-Schnittstelle oder digitalem Ausgang			
Pulszahl 1-Phasen-Geräte programmierbar	• 1 Pulse/kWh		
	• 10 Pulse/kWh		
	• 100 Pulse/kWh		
Pulszahl 3-Phasen-Geräte 80 A programmierbar	• 1 Pulse/kWh		
	• 10 Pulse/kWh		
	• 100 Pulse/kWh		
	• 1000 Pulse/kWh		
Pulszahl 3-Phasen-Geräte 5 A programmierbar	• 0,1 Pulse/kWh		
	• 1 Pulse/kWh		
	• 10 Pulse/kWh		
	• 100 Pulse/kWh		
Pulslänge	• 60 ms für 1000 Pulse/kWh		
	• 100 ms für alle anderen Werte		
Externe Spannung	DC 10 V DC 30 V		
Maximalstrom	50 mA		

Geräte mit RS485-Schnittstelle	
Geschwindigkeit 63 A- und 80 A-Geräte pro- grammierbar	1200 38400 bps
Geschwindigkeit 5 A-Geräte programmierbar	1200 115200 bps

Geräte mit M-Bus (Slave)	
Buslänge	Gemäß M-Bus-Spezifikation
Geschwindigkeit	Programmierbar 300 38400 Baud
Typischer Stromverbrauch	≤ 3 mA (2 Ladeeinheiten)

8.1 Technische Daten

Zertifizierungen

Das SENTRON PAC1600 stimmt mit den Vorschriften der folgenden Europäischen Richtlinien überein:

CE

- RICHTLINIE 2014/30/EU DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 26. Februar 2014 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit und zur Aufhebung der Richtlinie 89/336/EWG
- RICHTLINIE 2014/35/EU DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 26. Februar 2014 zur Angleichung der ·Rechtsvorschriften der Mitgliedstaaten betreffend elektrische Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen
- RICHTLINIE 2011/65/EU DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 8. Juni 2011 zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektround Elektronikgeräten

Die Konformität mit diesen Richtlinien wird nachgewiesen durch die Einhaltung folgender Normen:

- EN 61010-1:2011
- EN 61010-2-030: 2011
- EN 61326-1: 2013
- EN 50581: 2012
- CLC/TR 50579

Zulassung für eurasische Zollunion

EHC

Gültig in Russland, Weißrussland, Kasachstan, Kirgisistan und Armenien.

MID-Konformität (optional)

Geräte mit MID-Kennzeichnung sind mit den Vorschriften der Richtlinie 2014/32/EU DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 26. Februar 2014 zur Harmonisierung der Rechtsvorschriften der Mitgliedstaaten über die Bereitstellung von Messgeräten auf dem Markt.

Nachweis

Die Konformität mit diesen Richtlinien wird nachgewiesen durch die Einhaltung folgender Normen:

- EN 50470-1: 2006
- EN 50570-3: 2006

8.2 Beschriftungen auf dem Gehäuse

Symbol, Beschriftung	Erklärung
PAC1600	Produkt-/Gerätebezeichnung
LOB/YYMMDDxxxxxx	Seriennummer des Geräts
ERE	EAC-Zertifizierung
CAT III	Überspannungskategorie CAT III für Strom- und Spannungseingän- ge
	Schutzisolierung, Gerät der Schutzklasse II
CE	CE-Kennzeichnung. Bestätigung der Konformität des Produkts mit den zutreffenden EG-Richtlinien und der Einhaltung der darin fest- gelegten wesentlichen Anforderungen
	Elektroinstallation erfordert Fachkompetenz.
M20 327/MID	Metrologie-Kennzeichnung. Bestätigung der Konformität des Pro- dukts in der Messgeräterichtlinie 2014/32/EU und der Einhaltung der darin festgelegten wesentlichen Anforderungen. M: MID Kennzeichnung (Measurement Instruments Directive) M20: Jahr 2020 - Jahr der Kalibrierung in der Fertigung 0051: Identifizierungsnummer der benannten Stelle IMQ 327: Nummer des Zertifikats
X	Das Gerät dürfen Sie nicht zusammen mit dem Hausmüll entsorgen.
Maßbilder

9

9.1 1-Phasen-Gerät

9.2 3-Phasen-Gerät

Maßbilder

9.2 3-Phasen-Gerät

A.1 Elektrostatisch gefährdete Bauelemente (EGB)

Elektrostatisch gefährdete Bauelemente werden durch Spannungen und Energien zerstört, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Solche Spannungen treten bereits auf, wenn ein Bauelement oder eine Baugruppe von einer nicht elektrostatisch entladenen Person berührt wird. Elektrostatisch gefährdete Baugruppen, die solchen Spannungen ausgesetzt wurden, werden in den meisten Fällen nicht sofort als fehlerhaft erkannt, da sich erst nach längerer Betriebszeit ein Fehlverhalten einstellt.

EGB-Richtlinien

ACHTUNG

Elektrostatisch gefährdete Bauelemente

Elektronische Baugruppen enthalten elektrostatisch gefährdete Bauelemente. Diese Bauelemente können bei unsachgemäßer Handhabung leicht zerstört oder beschädigt werden.

- Entladen Sie Ihren Körper elektrostatisch, unmittelbar bevor Sie eine elektronische Baugruppe berühren. Berühren Sie dazu einen leitfähigen, geerdeten Gegenstand, z. B. ein metallblankes Schaltschrankteil oder die Wasserleitung.
- Fassen Sie die Baugruppe nur am Kunststoffgehäuse an.
- Bringen Sie elektronische Baugruppen nicht mit elektrisch isolierendem Material in Berührung, z. B. Plastikfolie, Kunststoffteile, isolierenden Tischauflagen oder Kleidung aus synthetischen Fasern.
- Legen Sie die Baugruppe nur auf leitfähigen Unterlagen ab.
- Lagern und transportieren Sie elektronische Baugruppen und Bauteile nur in EGB-sicherer leitfähiger Verpackung, z. B. metallisierten Kunststoffbehältern oder Metallbehältern. Belassen Sie die Baugruppe bis zu ihrem Einbau in der Verpackung.

ACHTUNG

Lagerung und Transport

Wenn Sie die Baugruppe dennoch in nicht leitender Verpackung lagern oder transportieren, müssen Sie die Baugruppe in EGB-sicheres, leitendes Material einpacken, z. B. leitfähigen Schaumgummi, EGB-Beutel.

A.1 Elektrostatisch gefährdete Bauelemente (EGB)

EGB-Arbeitsplatz

Die folgenden Zeichnungen veranschaulichen die erforderlichen EGB-Schutzmaßnahmen für elektrostatisch gefährdete Bauelemente.

- 2 EGB-Stehplatz
- ③ EGB-Stehplatz und EGB-Sitzplatz

Schutzmaßnahmen

- a Leitfähiger Fußboden
- b EGB-Tisch
- c EGB-Schuhe
- d EGB-Mantel
- e EGB-Armband
- f Erdungsanschluss der Schränke

Index

1

1-Phasen-Geräte Navigation mit Fronttaste, 19

3

3-Phasen-Geräte 80 A Taste Weiter, 29 Tasten Erhöhen und Verringern, 29

Α

Aktuelle Informationen, 7 Anschließen 1-Phasen-Gerät, 74 3-Phasen-Gerät, 75 Ausbau 3-Phasen-Gerät, 70

С

CE-Konformität, 104 Classroom Training, 7

Е

EGB-Richtlinien, 109 Einbau 3-Phasen-Gerät, 70 Einbauort Umgebungsbedingungen, 69 Entsorgung, 99

G

Geräteausführung 1-Phasen-Gerät, 19 3-Phasen-Gerät mit 5 A, 42 3-Phasen-Gerät mit 80 A, 29 Geräteausführungen, 15 Gewährleistung Vorgehensweise, 98

Н

Haupteintrag Auf Hauptmenü zugreifen, 44 Taste Weiter, 44 Tasten Erhöhen und Verringern, 44

I

Inbetriebnahme Mess-Spannung, 80 Voraussetzungen, 79

L

Lieferumfang Lieferbares Zubehör, 7

Μ

Messeingänge Spannungsmessung, 18 Strommessung, 17 Messwerte 1-Phase-Gerät, 21 3-Phasen-Gerät, 31 MID-Konformität, 104 MID-Zulassung, 17 Modbus Adressentabelle 1-Phasen-Geräte, (Kontinuierliche Messwerte), (Leistungswerte), (Energiezähler), (Stu ndenzähler), (Status) 3-Phasen-Geräte 5 A, (Kontinuierliche Messwerte), (Messgrößen max. (HI)), (Messgrößen min. (LO)), (Messgrößen Durchschnitt (AV)), (Mittelwerte max. (MD)), (Energiezähler), (Stundenzähler), (Status), (Modbus-Befehlsparameter), (Verdrahtungstest Ergebnisse), (Parameter Setup) 3-Phasen-Geräte 80 A, (Kontinuierliche Messwerte), (Energiezähler), (Tarifenergiezähler), (S tundenzähler), (Parameter Setup)

0

Open-Source-Software, 8

Ρ

Parametertabellen P01 General, 53 PO2 Sonstiges, 54 P03 Passwort, 55 P04 Integration, 56 P05 Stundenzähler, 57 P07 Kommunikation M-Bus, 59 P07 Kommunikation Modbus, 58 P08 Grenzwerte, 60 P09 Alarme, 61 Parametrieren Gerätemenü, 3-Phasen-Gerät, 30 Parametertabelle, 1-Phasen-Gerät, 24 Parametertabelle, 3-Phasen-Gerät, 33 powerconfig, 80 powerconfig Funktionen, 68

Q

Qualifiziertes Personal, 9

S

Schnittstellen, 16 Schulung, 7 Sicherheitshinweise, 11 Sicherheitsrelevante Symbole, 12

Т

Tastaturfunktion 1-Phasen-Gerät, 19 3-Phasen-Gerät 80 A, 29, 43 Techische Daten Umgebungsbedingungen, 102 Technische Daten Digitaleingang, 101 Eingangsspannung, 101 Eingangsstrom, 102 Gehäuse, 102 Genauigkeit, 101 Gewicht, 101 Isolationsspannung, 102 LED-Impulse, 102 M-Bus, 103 RS485-Schnittstelle, 103 S0-Schnittstelle, 103 Stromeingang, 101 Tarifeingang, 103 Training, 7 Lernwege, 7 WBT, 7

W

WBT Training, 7 WBT - Web-Based-Training, 7

Weitere Informationen

Immer für Sie da: Unser umfassender Support www.siemens.de/online-support

Siemens AG Smart Infrastructure Electrical Products Postfach 10 09 53 93009 REGENSBURG Deutschland

Änderungen vorbehalten.

SI EP Online