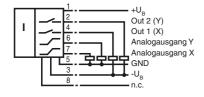


Bestellbezeichnung


INY360D-F99-2I2E2-V17

Merkmale

- E1-Typgenehmigung
- Messbereich 0 ... 360°
- Analogausgang 4 mA ... 20 mA
- Auswertegrenzen einlernbar
- 2 programmierbare Schaltausgänge
- Hohe Schockfestigkeit
- Erhöhte Störfestigkeit 100 V/m

Elektrischer Anschluss

Normsymbol/Anschluss:

Technische Daten

ΑI	Igemei	ine D	aten

тур	Neigungssensor, 2-achsig
Messbereich	0 360 °
Absolute Genauigkeit	≤ ± 0,5 °
Ansprechverzug	≤ 25 ms
Auflösung	≤ 0,1 °
Reproduzierbarkeit	≤ ± 0,1 °
Temperatureinfluss	≤ 0,027 °/K
Variable to the first transfer of the sub-site	

Kenndaten funktionale Sicherheit

MTTF _d	300 a
Gebrauchsdauer (T _M)	20 a
Diagnosedeckungsgrad (DC)	0 %

Anzeigen/Bedienelemente LED grün

Detriebatizeige	LLD, grain
Teach-In-Anzeige	2 LEDs gelb (Schaltzustand), blinkend

Taster 2 Taster (Einlernen der Schaltpunkte, Einlernen des Auswertebereiches)

Schaltzustand 2 LEDs gelb: Schaltzustand (je Ausgang)

Elektrische Daten

Betriebsspannung UB 10 ... 30 V DC Leerlaufstrom I₀ \leq 25 mA Bereitschaftsverzug t, ≤ 200 ms

Schaltausgang

Ausgangstyp 2 Schaltausgänge pnp, Schließer , verpolgeschützt , kurzschlussfest Betriebsstrom I_I ≤ 100 mA

< 3 V

Spannungsfall Analogausgang

2 Stromausgänge 4 ... 20 mA (1 Ausgang für jede Achse) Ausgangstyp Lastwiderstand 0 ... 200 Ω bei U_B = 10 ... 18 V 0 ... 500 Ω bei U_B = 18 ... 30 V

Umgebungsbedingungen

Umgebungstemperatur -40 ... 85 °C (-40 ... 185 °F) Lagertemperatur -40 ... 85 °C (-40 ... 185 °F)

Mechanische Daten

Anschlussart Gerätestecker M12 x 1, 8-polig Gehäusematerial PA IP68 / IP69K Schutzart Masse 240 g

Werkseinstellungen

Analogausgang (X) -45 ° ... 45 ° -45 ° ... 45 Analogausgang (Y) -30 ° ... 30 ° Schaltausgang (X) Schaltausgang (Y) -30 ° ... 30 °

Normen- und Richtlinienkonformität

Normenkonformität

Schock- und Stoßfestigkeit 100 g gemäß DIN EN 60068-2-27 EN 60947-5-2:2007 Normen

Zulassungen und Zertifikate

UL-Zulassung cULus Listed, Class 2 Power Source cCSAus Listed, General Purpose, Class 2 Power Source CSA-Zulassung E1-Typgenehmigung 10R-04

С

IEC 60947-5-2:2007

EMV-Eigenschaften

Störfestigkeit nach DIN ISO 11452-2: 100 V/m Frequenzband 20 MHz bis 2 GHz

Leitungsgeführte Störgrößen nach ISO 7637-2: Impuls 2a 2b За 3b Schärfegrad Ш Ш Ш Ш Ш Ш Α

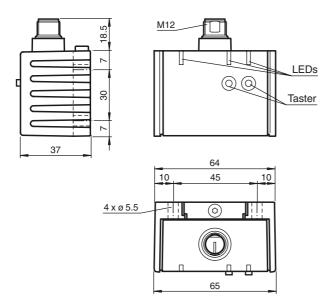
С

Α Α

EN 61000-4-2: CD: 8 kV / AD: 15 kV Schärfegrad IV

EN 61000-4-3: 30 V/m (80...2500 MHz) Schärfegrad IV

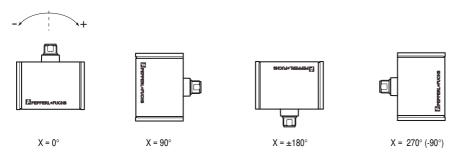
С

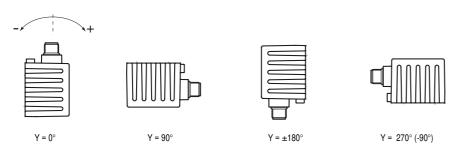

EN 61000-4-4: 2 kV Schärfegrad Ш

Ausfallkriterium

EN 61000-4-6: 10 V (0,01...80 MHz)

Schärfegrad Ш EN 55011: Klasse A


Abmessungen


Einbaulage

Im Auslieferungszustand ist die Null-Lage der Sensorachsen erreicht, wenn der elektrische Anschluss des Sensors senkrecht nach oben weist.

X-Orientierung

Y-Orientierung

Pinout

Adernfarben

1	WH	(weiß)
2	BN	(braun)
3	GN	(grün)
4	YE	(gelb)
5	GY	(grau)
6	PK	(pink)
7	BU	(blau)
8	RD	(rot)

Zubehör

V17-G-2M-PUR

Kabeldose, M12, 8-polig, geschirmt, PUR-Kabel

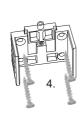
V17-G-5M-PUR

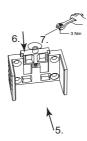
Kabeldose, M12, 8-polig, geschirmt, PUR-Kabel

V17-G-10M-PUR

Kabeldose, M12, 8-polig, geschirmt, **PUR-Kabel**

V17-G-10M-PVC-ABG


Kabeldose, M12, 8-polig, geschirmt, **PVC-Kabel**


PEPPERL+FUCHS

Montage des Sensors

Sensoren der Baureihe -F99 bestehen aus dem Sensormodul und dem dazugehörigen Gehäuse aus Aluminium-Druckguss. Wählen Sie zur Montage des Sensors eine senkrechte, ebene Fläche mit den Mindestabmessungen 70 mm x 50 mm. Zur Sensormontage gehen Sie wie folgt vor:

- Lösen Sie die Zentralschraube unterhalb des Sensoranschlusses.
- Schieben Sie das Klemmelement so weit zurück, bis Sie das Sensormodul aus dem Gehäuse entnehmen können.
- Nehmen Sie das Sensormodul aus dem Gehäuse
- Positionieren Sie das Gehäuse am gewünschten Montageort und befestigen Sie es mit vier Senkkopfschrauben. Achten Sie darauf, dass die Schraubenköpfe nicht überstehen
- Setzen Sie das Sensormodul in das Gehäuse ein.
- Schieben Sie das Klemmelement bündig in das Gehäuse. Kontrollieren Sie den ordnungsgemäßen Sitz des Sensorelements.
- 7. Ziehen Sie nun die Zentralschraube fest. Der Sensor ist nun montiert.

LED-Anzeige

Anzeigen in Abhängigkeit des Betriebszustandes	LED grün Power	LED gelb out 1	LED gelb out 2
Schaltpunkte einlernen (X-Achse):	aus	blinkt	aus
Schaltpunkte einlernen (Y-Achse):	aus	aus	blinkt
Lernmodus Analoggrenzen aktivieren:	aus	blinkt	blinkt
Analoggrenze einlernen (X-Achse)	aus	blinkt	aus
Analoggrenze einlernen (Y-Achse)	aus	aus	blinkt
Normalbetrieb	ein	Schaltzu-	Schaltzu-
		stand	stand
Rücksetzen auf Werkseinstellungen:			
2 s 10 s	aus	blinkt	blinkt
> 10 s Ende des Rücksetzvorgangs	blinkt	aus	aus
danach wie Normalbetrieb			
Unterspannung	blinkt	aus	aus

Achsendefinition

Die Definition der X-Achse und Y-Achse ist auf dem Sensorgehäuse durch aufgedruckte und beschriftete Doppelpfeile dargestellt.

Einlernen der Schaltpunkte (X-Achse)

- Taste T1 > 2 s drücken (siehe LED-Anzeige)
- Sensor in Schaltposition 1 bringen
- Taste T1 kurz drücken. LED "out 1" leuchtet 1,5 s zur Bestätigung. Schaltpunkt 1 ist eingelernt
- Sensor in Schaltposition 2 bringen Taste T1 kurz drücken. LED "out 1" leuchtet 1,5 s zur Bestätigung. Schaltpunkt 2 ist eingelernt
- 6. Sensor kehrt in den Normalbetrieb zurück (siehe LED-Anzeige)

Die Schießerfunktion (Ausgang aktiv) ist stets definiert als der Bereich zwischen der ersten und der zweiten parametrierten Schaltposition im Uhrzeigersinn von der ersten Schaltposi-

Fall 1: Der Schaltpunkt 1 sei in der Position +45°, der Schaltpunkt 2 sei in der Position +90° eingelernt (Einlernen im Uhrzeigersinn).

Der Ausgang ist dann aktiv zwischen +45° und +90°.

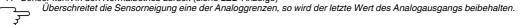
Fall 2: Der Schaltpunkt 1 sei in der Position +90°, der Schaltpunkt 2 sei in der Position +45° eingelernt (Einlernen entgegen dem Uhrzeigersinn).

Der Ausgang ist dann aktiv zwischen +90° aufsteigend über die 360°/0° Position hinweg bis

+45°, also insgesamt über einen Winkelbereich von 315°. Das Vertauschen der Schaltpositionen führt also zu einer Umkehrung des Schaltverhaltens.

Einlernen der Schaltpunkte (Y-Achse)

- Taste T2 > 2 s drücken (siehe LED-Anzeige)
- Sensor in Schaltposition 1 bringen
- Taste T2 kurz drücken. LED "out 2" leuchtet 1,5 s zur Bestätigung. Schaltpunkt 1 ist eingelernt Sensor in Schaltposition 2 bringen
- Taste T2 kurz drücken. LED "out 2" leuchtet 1,5 s zur Bestätigung. Schaltpunkt 2 ist eingelernt
- Sensor kehrt in den Normalbetrieb zurück (siehe LED-Anzeige)


Die Schießerfunktion (Ausgang aktiv) ist stets definiert als der Bereich zwischen der ersten und der zweiten parametrierten Schaltposition im Uhrzeigersinn von der ersten Schaltposi-

tion aus gesehen . Siehe Beispiel oben

Einlernen der Analoggrenzen (X-Achse)

- 1. Aktivieren Sie den Lernmodus für die Analoggrenzen, indem die Tasten T1 und T2 gleichzeitig > 2 s drücken (siehe LED-Anzeige)

- Taste T1 > 2 s drücken (siehe LED-Anzeige)
 Sensor in die Position der Auswertegrenze "Minimum" bringen
 Taste T1 kurz drücken. LED "out 1" leuchtet 1,5 s zur Bestätigung. Auswertegrenze "Minimum" ist eingelernt. In dieser Position liefert der Analogausgang des Sensors seinen Minimalwert
- Sensor in die Position der Auswertegrenze "Maximum" bringen
 Taste T1 kurz drücken. LED "out 1" leuchtet 1,5 s zur Bestätigung. Auswertegrenze "Maximum" ist eingelernt. In dieser Position liefert der Analogausgang des Sensors seinen Maximalwert
- Sensor kehrt in den Normalbetrieb zurück (siehe LED-Anzeige)

Einlernen der Analoggrenzen (Y-Achse)

1. Aktivieren Sie den Lernmodus für die Analoggrenzen, indem die Tasten T1 und T2 gleichzeitig > 2 s drücken (siehe LED-Anzeige)

201501_ger.xml

Ausgabedatum: 2018-10-15

- Taste T2 > 2 s drücken (siehe LED-Anzeige)
 Sensor in die Position der Auswertegrenze "Minimum" bringen
 Taste T2 kurz drücken. LED "out 2" leuchtet 1,5 s zur Bestätigung. Auswertegrenze "Minimum" ist eingelernt. In dieser Position liefert der Analogausgang des Sensors seinen Minimalwert.
 Sensor in die Position der Auswertegrenze "Maximum" bringen
 Taste T2 kurz drücken. LED "out 2" leuchtet 1,5 s zur Bestätigung. Auswertegrenze "Maximum" ist eingelernt. In dieser Position liefert der Analogausgang des
- Sensors seinen Maximalwert.

Rücksetzen des Sensors auf Werkseinstellungen

- Taste T1 und Taste T2 > 10 s drücken (siehe LED-Anzeige)
 Die Rücksetzung ist erfolgt, wenn nach ca. 10 s die grüne LED "Power" wieder an geht.

Unterspannungs-Erkennung

Unterschreitet die Versorgungsspannung einen Wert von ca. 7 V, so werden alle Ausgänge und gelben LEDs abgeschaltet. Die grüne LED "power" blinkt schnell. Überschreitet die Versorgungsspannung einen Wert von ca. 8 V, so setzt der Sensor seinen Normalbetrieb fort.