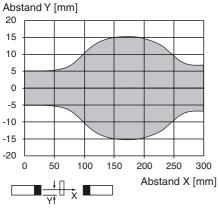


Bestellbezeichnung


UBEC300-18GH40-SE2-V1

Merkmale

- Kurze Bauform, 40 mm
- Edelstahlgehäuse
- Chemisch beständig
- **Schaltausgang**
- Lerneingang

Diagramme

Charakteristische Ansprechkurve

Hindernis: ebene Platte 100 mm x 100 mm

Technische Daten

Allgemeine Daten	
Erfassungsbereich	100 300 mm
Normmessplatte	100 mm x 100 mm
Wandlerfrequenz	ca. 255 kHz

Elektrische Daten Betriebsspannung UB

10 ... 30 V DC , Welligkeit 10 $\%_{\rm SS}$ Leerlaufstrom I₀ ≤ 20 mA

Eingang Eingangstyp

1 Lerneingang [Empfänger] Schaltpunkt 1: -U_B... +1 V, Schaltpunkt 2: +6 V ... +U_B

Eingangsimpedanz: > 4,7 k Ω Pulsdauer: \geq 1 s

1 Testeingang [Sender] Sender deaktiviert: +6 V ... +UB Eingangsimpedanz: > 4,7 k Ω

Ausgang Ausgangstyp

Schließer pnp Bemessungsbetriebsstrom I, 200 mA, kurzschluss-/überlastfest

Spannungsfall U_d ≤ 3 V . Einschaltverzug t_{on} < 5 ms Schaltfrequenz f ≤ 100 Hz

Umgebungsbedingungen

Umgebungstemperatur -25 ... 70 °C (-13 ... 158 °F) Lagertemperatur -40 ... 85 °C (-40 ... 185 °F)

Mechanische Daten

Anschlussart Gerätestecker M12 x 1, 4-polig

Schutzart IP68 / IP69K Material

Gehäuse Edelstahl 1.4435 / AISI 316L (V4A)

O-Ring für Deckelabdichtung: EPDM

Wandler PTFE (Membranoberfläche) Masse 25 g

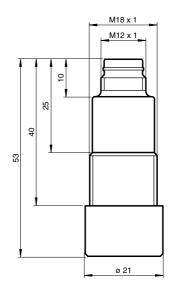
Normen- und Richtlinienkonformität

Normenkonformität

Normen EN 60947-5-2:2007 + A1:2012

IEC 60947-5-2:2007 + A1:2012

Zulassungen und Zertifikate


UL-Zulassung cULus Listed, General Purpose CSA-Zulassung cCSAus Listed, General Purpose

CCC-Zulassung Produkte, deren max. Betriebsspannung ≤36 V ist, sind nicht

zulassungspflichtig und daher nicht mit einer CCC-

Kennzeichnung versehen.

Abmessungen

www.pepperl-fuchs.com

Elektrischer Anschluss

Normsymbol/Anschluss: (Version E2, pnp)

Empfänger:

Sender

Adernfarben gemäß EN 60947-5-2

Pinout

Adernfarben gemäß EN 60947-5-2

1	BN	(braun)
2	WH	(weiß)
3	BU	(blau)
4	BK	(schwarz)

Zubehör

UB-PROG2

Programmiergerät

V1-GV4A-2M-PVC

Kabeldose, M12, Edelstahl

V1-WV4A-2M-PVC

Kabeldose, M12, Edelstahl

Funktionsweise

Eine Ultraschall-Einwegschranke besteht immer aus je einem Sender und einem Empfänger. Das Funktionsprinzip der Ultraschall-Einwegschranken beruht auf der Unterbrechung der Schallübertragung vom Sender zum Empfänger durch das zu erfassende Objekt (Hindernis).

Der Sender erzeugt ein Ultraschall-Signal, welches vom Empfänger ausgewertet wird. Wenn der Ultraschall durch das zu erfassende Objekt gedämpft oder unterbrochen wird, schaltet der Empfänger.

Zwischen Sender und Empfänger sind keine elektrischen Verbindungen erforder-

Die Funktion der Ultraschall-Einwegschranken ist unabhängig von der Einbaulage. Es empfiehlt sich dennoch, zur Vermeidung der Ablagerung von Schmutzpartikeln, bei vertikaler Einbaurichtung den Sender unten zu montieren.

Inbetriebnahme und Parametrierung

Im Auslieferungszustand ist der Empfänger vorkonfiguriert auf einen Abstand zwischen Sender und Empfänger von 300 mm. Soll die Ultraschall-Einwegschranke bei anderen Abständen eingesetzt werden, so muss ein TEACH-IN durchgeführt wer-

PEPPERL+FUCHS

den.

TEACH-IN

- 1. Montieren Sie Sender und Empfänger der Ultraschall-Einwegschranke im gewünschten Abstand.
- 2. Richten Sie Sender und Empfänger exakt aufeinander aus und fixieren Sie die Geräte.
- 3. Entfernen Sie alle Gegenstände zwischen Sender und Empfänger.
- 4. Verbinden Sie den Lerneingang des Empfängers für mindestens 2 s mit - U_B .
 - Der Empfänger ermittelt nun den Signalpegel der freien Luftstrecke.
- 5. Positionieren Sie das zu erfassende Hindernis im erforderlichen Abstand in der Ultraschall-Strecke.
- Verbinden Sie den Lerneingang des Empfängers für mindestens 2 s mit +U_B.
 Der Empfänger ermittelt nun den Signalpegel der bedämpften Luftstrecke und ermittelt die optimale Schaltschwelle. Die Schaltschwelle wird nun nichtflüchtig im Empfänger gespeichert.
- 7. Trennen Sie den Lerneingang des Empfängers von +U_B.