Modularer Power Analyser

UMG 801

Benutzerhandbuch und technische Daten

www.janitza.de

Janitza electronics GmbH Vor dem Polstück 6 D-35633 Lahnau Support Tel. +49 6441 9642-22 E-Mail: info@janitza.de www.janitza.de

Janitza®

UMG 801 Modulares Multifunktionsmessgerät zur Erfassung von Energiemessgrößen Dok.-Nr.: 2.053.006.1.f Stand: 09/2021 Die deutsche Version ist die Originalausführung der Dokumentation

Technische Änderungen vorbehalten

Die Inhalte unserer Dokumentation wurden mit größter Sorgfalt zusammengestellt und entsprechen unserem derzeitigen Informationsstand. Dennoch weisen wir darauf hin, dass die Aktualisierung dieses Dokuments nicht immer zeitgleich mit der technischen Weiterentwicklung unserer Produkte durchgeführt werden kann. Informationen und Spezifikationen können jederzeit geändert werden. Bitte informieren Sie sich über die aktuelle Version unter www.janitza.de.

Inhaltsverzeichnis

1.	Hinwe	eise zum Gerät und Benutzerhandbuch	
	1.1	Haftungsausschluss	
	1.2	Urheberrechtsvermerk	
	1.3	Technische Änderungen	
	1.4	Über dieses Benutzerhandbuch	
	1.5	Defektes Gerät/Entsorgung	11
2.	Sicher	rheit	
	2. 1	Darstellung der Warn- und Sicherheitshinweise	
	2.2	Gefahrenstufen	
	2.3	Produktsicherheit	
	2.4	Gefahren im Umgang mit dem Gerät	
	2.5	Elektrotechnisch qualifiziertes Personal	
	2.6	Gewährleistung bei Schäden	
	2.7	Sicherheitshinweise zum Umgang mit Stromwandlern und Messgeräten mit Differenzstrommessung	14
	2.8	Umgang mit Batterien/Akkumulatoren	
3.	Produ	uktbeschreibung	
	3. 1	Gerätebeschreibung	
	3. 2	Eingangskontrolle	
	3.3	Bestimmungsgemäße Verwendung	
	3.4	Leistungsmerkmale	
	3.5	EU-Konformitätserklärung	
	3.6	FCC-Konformitätserklärung	
	3.7	Lieferumfang	
	3.8	Lieferbares Zubehör	
	3.9	Messverfahren	
	3. 10	Messwandler	
	3. 11	Bedienkonzept	
	3. 12	Netzanalysesoftware GridVis®	
	3. 13	Funktionsumfang im Überblick	
		3. 13. 1 Konfiguration am Gerät (über 6 Tasten)	
		3. 13. 2 Kommunikation	
		3. 13. 3 Messwerte (mit Spannungskomponente)	
		3. 13. 4 Messwerte (mit Stromkomponente)	

4.	Aufbau des Geräts			
	4. 1	Gerätefr	ont und Display	24
	4.2	Seitenar	isichten	26
	4.3	Ansicht	von unten	26
	4.4	Kennzei	chnung des Geräts (Typenschild)	27
5.	Monta	ge		28
	5. 1	Einbauo	rt	
	5.2	Einbaula	ge und Befestigung	
6.	Netzsy	vsteme		30
7	Install			00
7.	Installa	ation		
	7.1	Nennspa	annungen	32
		7. 1. 1	Dreiphasen-4-Leiternetz mit geerdetem Neutralleiter	32
	7.2	Trennsch	nalter	
	7.3	Versorgu	Ingsspannung	33
	7.4	Spannur	ngsmessung	34
		7. 4. 1	Überspannung	35
		7.4.2	Netzfrequenz	35
		7.4.3	Anschlussvarianten Spannungsmessung	
	7.5	Stromme	essung	
		7. 5. 1	Anschlussvarianten Strommessung	38
		7. 5. 2	Summenstrommessung.	
		7.5.3	Amperemeter	39
	7.6	Multifun	ktionskanäle.	40
	7.7	Differenz	zstrommessung (RCM)	
		7. 7. 1	Stromrichtung der Differenzstromwandler	41
		7.7.2	Beispiel Differenzstromwandler	42
		7.7.3	Wichtige Hinweise zu den Differenzstrom-Messeingängen	42
		7.7.4	Anschlussbeispiele - Differenzstrommessung.	
		7.7.5	Anschlussbeispiel - Differenzstromüberwachung	44

	7.8	Differenz	zstrommessung - Grenzwertberechnung	45
		7. 8. 1	Statische Grenzwertberechnung	45
		7. 8. 2	Dynamische Grenzwertberechnung	
		7.8.3	Schrittweise Grenzwertberechnung	47
		7.8.4	Beispiel: Differenzstrom-Grenzwert-Überschreitung	
		7. 8. 5	Kabelbrucherkennung (Ausfallüberwachung) RCM für die Multifunktionskanäle aktivieren.	49
	7.9	Tempera	aturmessung	
0		aabluaa		E 1
ο.	PC-AI	SCHIUSS		
	8. 1	Anschlus	ss an einen PC	51
9.	Periph	erie		<u>.</u> 52
	9. 1	Ethernet	-Schnittstelle	
	9.2	Daisy-Cl	hain-Verbindung	
	9.3	RS485-S	Schnittstelle (serielle Schnittstelle)	
		9. 3. 1	Abschirmung	
		9. 3. 2	Abschlusswiderstände/Terminierung	<u>5</u> 4
		9. 3. 3	Bus-Struktur (Bussegment)	
	9.4	JanBus-	Schnittstelle	55
	9.5	Digitale I	Eingänge	
	9.6	Digitale /	Ausgänge	
	9.7	Analoge	r Ausgang	
10	. Bedier	nung und	Tastenfunktionen	60
	10. 1	Bedienel	lemente	60
	10. 2	Funktion	istasten.	60
	10. 3	Messwe	rtanzeige	60
	10. 4	Menü		
	10. 5	PIN (Pas	sswort)	
	10. 6	Übersich	nt Menüanzeigen	

11. Konfig	juration	64
11. 1	Das Fenster Konfiguration	
11.2	Ethernet (TCP/IP) konfigurieren	<u>6</u> 4
	11. 2. 1 Einstellungen zur Kommunikation	65
	11. 2. 2 Kommunikation über OPC UA	
11.3	Feldbus konfigurieren (RS485-Schnittstelle)	
	11. 3. 1 Einstellungen zur Kommunikation	66
11.4	Stromwandler konfigurieren	
11.5	Spannungswandler konfigurieren	
11.6	Anzeige konfigurieren	69
	11. 6. 1 Sprache	69
	11. 6. 2 Stand by (nach)	
11.7	System konfigurieren	70
	11. 7. 1 PIN	
	11.7.2 Helligkeit	
	11. 7. 3 Zeit	
	11. 7. 4 Datum	71
11.8	Reset (Zurücksetzen)	
	11.8.1 Werkseinstellungen	
	11.8.2 Neustart	
	11.8.3 Minimal-, Maximal- und Mittelwerte zurücksetzen	
11.9	Modul-Identifikation / Diagnose	
12. Digita	e Ein- und Ausgänge	74
12. 1	4 Digitale Eingänge	74
12. 2	4 Digitale Ausgänge	76
13. Analog	ger Ausgang	

l

14. Inbetri	ebnahme	
14. 1	Versorgungsspannung	
14. 2	Messspannung	
14. 3	Messstrom	
14.4	Frequenzmessung	
14.5	Drehfeldrichtung	
14.6	Grundlagen Zeigerdiagramm	
14. 7	Einzelleistungen prüfen	
14. 8	Kontrolle der Spannungs- und Stromeingänge mittels Zeigerdiagramm	
14.9	Phasenzuordnung prüfen	
14. 10	Leistungsmessung prüfen	
14. 11	Messung prüfen	84
14. 12	Summenleistungen prüfen	
To. Opers	cht Messwert- und Geräleanzeigen	
16. Ansch	lussbeispiel	
16. Ansch 17. Servic	lussbeispiel e und Wartung	
16. Ansch 17. Servic 17. 1	lussbeispiel e und Wartung Instandsetzung und Kalibrierung.	
 16. Ansch 17. Servic 17. 1 17. 2 	lussbeispiel e und Wartung Instandsetzung und Kalibrierung. Frontfolie und Display.	
 16. Ansch 17. Servic 17. 1 17. 2 17. 3 	lussbeispiel e und Wartung Instandsetzung und Kalibrierung Frontfolie und Display. Service	
 16. Ansch 17. Servic 17. 1 17. 2 17. 3 17. 4 	lussbeispiel e und Wartung Instandsetzung und Kalibrierung Frontfolie und Display Service Gerätejustierung	.96 .98 .98 .98 .98 .98 .98 .99
 16. Ansch 17. Servic 17. 1 17. 2 17. 3 17. 4 17. 5 	lussbeispiel e und Wartung Instandsetzung und Kalibrierung Frontfolie und Display Service Gerätejustierung Firmware-Update	
16. Ansch 17. Servic 17. 1 17. 2 17. 3 17. 4 17. 5 17. 6	lussbeispiel e und Wartung Instandsetzung und Kalibrierung Frontfolie und Display Service Gerätejustierung Firmware-Update Uhr/Batterie	.96 .98 .98 .98 .98 .98 .98 .99 .99 .99
16. Ansch 17. Servic 17. 1 17. 2 17. 3 17. 4 17. 5 17. 6 17. 7	lussbeispiel e und Wartung Instandsetzung und Kalibrierung. Frontfolie und Display. Service Gerätejustierung. Firmware-Update. Uhr/Batterie. Batteriewechsel	.96 .98 .98 .98 .98 .98 .99 .99 .99 .99 .99
 16. Ansch 17. Servic 17. 1 17. 2 17. 3 17. 4 17. 5 17. 6 17. 7 18. Fehler 	lussbeispiel e und Wartung Instandsetzung und Kalibrierung. Frontfolie und Display. Service. Gerätejustierung. Firmware-Update. Uhr/Batterie. Batteriewechsel.	
 16. Ansch 17. Servic 17. 1 17. 2 17. 3 17. 4 17. 5 17. 6 17. 7 18. Fehler 18. 1 	Iussbeispiel e und Wartung Instandsetzung und Kalibrierung Frontfolie und Display Service Gerätejustierung Firmware-Update Uhr/Batterie Batteriewechsel meldungen	

19	. Techni	sche Daten	
	19. 1	Technische Daten	
	19. 2	Kenngrößen von Funktionen	
	19.3	Parameter- und Modbus-Adressenliste	109
	19. 4	Information zum Speichern von Messwerten und Konfigurationsdaten	
20	. Maßbi	lder	110

1. Hinweise zum Gerät und Benutzerhandbuch

1.1 Haftungsausschluss

Die Beachtung der Informationsprodukte zu den Geräten ist Voraussetzung für den sicheren Betrieb und um angegebene Leistungsmerkmale und Produkteigenschaften zu erreichen.

Für Personen-, Sach- oder Vermögensschäden, die durch Nichtbeachtung der Informationsprodukte entstehen, übernimmt die Janitza electronics GmbH keine Haftung.

Sorgen Sie dafür, dass Ihre Informationsprodukte leserlich zugänglich sind.

1.2 Urheberrechtsvermerk

© 2019 - Janitza electronics GmbH - Lahnau. Alle Rechte vorbehalten.

Jede, auch auszugsweise, Vervielfältigung, Bearbeitung, Verbreitung und sonstige Verwertung dieses Informationsprodukts ist verboten.

Alle Markenzeichen und ihre daraus resultierenden Rechte gehören den jeweiligen Inhabern dieser Rechte.

1.3 Technische Änderungen

- · Achten Sie darauf, dass Ihr Gerät mit dem Benutzerhandbuch übereinstimmt.
- Dieses Benutzerhandbuch ist gültig für das UMG 801. Gesonderte Gültigkeiten und Unterscheidungen sind gekennzeichnet.
- · Lesen und verstehen Sie zunächst produktbegleitende Dokumente.
- Halten Sie produktbegleitende Dokumente während der gesamten Lebensdauer verfügbar und geben Sie diese gegebenenfalls an nachfolgende Benutzer weiter.
- Informieren Sie sich über Geräte-Revisionen und die damit verbundenen Anpassungen der produktbegleitenden Dokumentation auf www.janitza.de.

1.4 Über dieses Benutzerhandbuch

Haben Sie Fragen, Anregungen oder Verbesserungsvorschläge zum Benutzerhandbuch, informieren Sie uns bitte per E-Mail: info@janitza.de.

(i) INFORMATION

Dieses Benutzerhandbuch beschreibt das UMG 801 und liefert Informationen zum Betrieb des Geräts. Beachten Sie zu diesem Benutzerhandbuch auch die weiterführende Dokumentation, wie:

- · Installationsanleitung.
- · Datenblatt.
- · Sicherheitshinweise.
- Gegebenenfalls Dokumente zu Erweiterungsmodulen.
- Online-Hilfe zur Netzvisualisierungs-Software GridVis[®].

Bevor Sie **defekte Geräte, Module oder Komponenten** zur Überprüfung zurück an den Hersteller senden:

- · Kontaktieren Sie den Support des Herstellers.
- · Versenden Sie Geräte, Module oder Komponenten komplett mit Zubehör.
- · Berücksichtigen Sie hierbei die Transportbedingungen.

(i) INFORMATION

Defekte oder beschädigte Geräte senden Sie bitte zurück an die Janitza electronics GmbH unter Berücksichtigung der Versandvorschriften für Luftfracht und Straße (komplett mit Zubehör). Beachten Sie gesonderte Bestimmungen für Geräte mit verbauten Batterien oder Akkus!

Versuchen Sie nicht das Gerät (die Komponente) eigenständig zu öffnen oder zu reparieren, da ansonsten der Anspruch auf Gewährleistung erlischt!

Für die **Entsorgung** des Geräts beachten Sie bitte nationale Bestimmungen! Entsorgen Sie gegebenenfalls einzelne Teile, je nach Beschaffenheit und existierende länderspezifische Vorschriften, z.B. als

- \cdot Elektroschrott,
- · Batterien und Akkumulatoren,
- · Kunststoffe,
- · Metalle.

Beauftragen Sie unter Umständen einen zertifizierten Entsorgungsbetrieb mit der Verschrottung.

Informationen zu Service und Wartung Ihres Geräts finden Sie im Kap. "17. Service und Wartung" auf Seite 98.

2. Sicherheit

Das Kapitel Sicherheit enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit und zur Vermeidung von Sachschäden beachten müssen.

2.1 Darstellung der Warn- und Sicherheitshinweise

Die nachstehend aufgeführten Warnhinweise

- \cdot finden Sie in der gesamten Dokumentation.
- · finden Sie auf den Geräten selbst.
- · verweisen auf potenzielle Risiken und Gefahren.
- · bekräftigen Informationen, die Vorgehensweisen verdeutlichen oder vereinfachen.

Das zusätzliche Symbol auf dem Gerät selbst deutet auf eine elektrische Gefahr hin, die zu schweren Verletzungen oder Tod führen kann.

Das allgemeine Warnsymbol macht Sie auf mögliche Verletzungsgefahren aufmerksam. Beachten Sie alle unter diesem Symbol aufgeführten Hinweise, um mögliche Verletzungen oder gar Todesfälle zu vermeiden.

2.2 Gefahrenstufen

Warn- und Sicherheitshinweise sind durch ein Warnsymbol hervorgehoben und die Gefahrenstufen sind je nach Gefährdungsgrad wie folgt dargestellt:

🛕 GEFAHR

Warnt vor einer unmittelbar drohenden Gefahr, die bei Nichtbeachtung zu schweren bzw. tödlichen Verletzungen führt.

WARNUNG

Warnt vor einer möglicherweise gefährlichen Situation, die bei Nichtbeachtung zu schweren Verletzungen oder Tod führen kann.

AVORSICHT

Warnt vor einer unmittelbar gefährlichen Situation, die bei Nichtbeachtung zu geringfügigen oder mäßigen Verletzungen führen kann.

ACHTUNG

Warnt vor einer unmittelbar gefährlichen Situation, die bei Nichtbeachtung zu Sachschäden oder Umweltschäden führen kann.

i INFORMATION

Verweist auf Vorgänge bei denen **keine** Gefahr von Personen- oder Sachschäden besteht.

2.3 Produktsicherheit

Das Gerät entspricht dem Stand der Technik und den anerkannten sicherheitstechnischen Regeln, trotzdem können Gefahren entstehen.

Beachten Sie Sicherheitsvorschriften und Warnhinweise. Sollten Sie den Hinweisen nicht folgen, kann dies Personenschäden und/oder Schäden am Produkt hervorrufen.

Jegliche unerlaubte Manipulation oder Verwendung dieses Geräts,

- die über die angegebenen mechanischen, elektrischen oder anderweitigen Betriebsgrenzen hinausgeht, kann Personenschäden und/oder Schäden am Produkt hervorrufen.
- begründet "Missbrauch" und/oder "Fahrlässigkeit" im Sinne der Gewährleistung für das Produkt und schließt somit die Gewährleistung für die Deckung möglicher daraus folgender Schäden aus.

Lesen und verstehen Sie vor der Installation, dem Betrieb, der Wartung und dem Gebrauch des Geräts das Benutzerhandbuch.

Betreiben Sie das Gerät nur in einwandfreiem Zustand unter Beachtung dieses Benutzerhandbuchs und der beiliegenden Dokumente. Senden Sie defekte Geräte unter Beachtung der Transportbedingungen zurück an den Hersteller. Bewahren Sie das Benutzerhandbuch während der gesamten Lebensdauer des Geräts auf und halten es zum Nachschlagen bereit.

Beachten Sie bei Gebrauch des Gerätes zusätzlich die für den jeweiligen Anwendungsfall erforderlichen Rechts- und Sicherheitsvorschriften für Ihre Anlage.

2.4 Gefahren im Umgang mit dem Gerät

Beim Betrieb elektrischer Geräte stehen zwangsläufig bestimmte Teile dieser Geräte unter gefährlicher Spannung. Es können deshalb schwere Körperverletzung oder Sachschäden auftreten, wenn nicht fachgerecht gehandelt wird. Beachten Sie im Umgang mit unseren Geräten deshalb grundsätzlich:

- die im Benutzerhandbuch und auf dem Typenschild genannten Grenzwerte nicht überschreiten! Dies ist auch bei der Prüfung und Inbetriebnahme zu beachten!
- · Sicherheits- und Warnhinweise in allen Dokumenten, die zu den Geräten gehören!

AWARNUNG

Die Missachtung von Anschlussbedingungen der Janitza-Messgeräte oder deren Komponenten kann zu Verletzungen bis hin zum Tod oder zu Sachschäden führen!

Janitza-Messgeräte oder -Komponenten nicht für kritische Schalt-, Steuerungs- oder Schutzanwendungen verwenden, bei denen die Sicherheit von Personen und Sachwerten von dieser Funktion abhängt.

Schalthandlungen mit den Janitza-Messgeräten oder -Komponenten nicht ohne vorherige Prüfung Ihres Anlagenverantwortlichen mit Fachkenntnis vornehmen! Dabei sind insbesondere die Sicherheit von Personen, Sachwerten und einschlägige Normen zu berücksichtigen!

Verletzungsgefahr durch elektrische Spannung! Schwere Körperverletzungen oder Tod können erfolgen! Beachten Sie deshalb:

- Vor Arbeitsbeginn an Ihrer Anlage, die Anlage spannungsfrei schalten! Gegen Wiedereinschalten sichern! Spannungsfreiheit feststellen! Erden und Kurzschließen! Benachbarte, unter Spannung stehende Teile abdecken oder abschranken!
- Achten Sie auch bei der Bedienung und Fehlersuche (insbesondere bei Hutschienengeräten) Ihre Anlage auf gefährliche Spannungen zu prüfen und gegebenenfalls abzuschalten!
- Tragen Sie f
 ür Arbeiten an Elektroanlagen Schutzkleidung und eine Schutzausr
 üstung nach geltenden Richtlinien!
- · Vor Anschluss von Verbindungen das Gerät/ die Komponente am Schutzleiteranschluss, wenn vorhanden, erden!
- Blanke oder abisolierte Adern, die unter Spannung stehen nicht berühren! Leiter aus Einzeldrähten mit Aderendhülsen versehen!
- · Gefährliche Spannungen können in allen mit der Spannungsversorgung verbundenen Schaltungsteilen anstehen.
- Ihre Leitungen, Kabel und Geräte mit einem geeigneten Leitungsschutzschalter/einer Sicherung sichern!
- · Sicherheitsvorrichtungen niemals abschalten, demontieren oder manipulieren!
- Auch nach Abtrennen der Versorgungsspannung können gefährliche Spannungen im Gerät oder in der Komponente vorhanden sein (Kondensatorspeicher).
- Betriebsmittel mit Stromwandlerkreisen nicht offen betreiben.
- Nur Schraubklemmen mit gleicher Polzahl und Bauart verbinden!
- Die im Benutzerhandbuch und auf dem Typenschild genannten Grenzwerte nicht überschreiten! Dies ist auch bei der Prüfung und der Inbetriebnahme zu beachten.
- Sicherheits- und Warnhinweise in den Dokumenten, die zu den Geräten und deren Komponenten gehören!

2.5 Elektrotechnisch qualifiziertes Personal

Um Personen- und Sachschäden zu vermeiden, darf nur elektrotechnisch qualifiziertes Personal an Geräten und deren Komponenten, Modulen, Baugruppen, Systemen und Stromkreisen arbeiten mit Kenntnissen

- · der nationalen und internationalen Unfallverhütungsvorschriften.
- · in Standards der Sicherheitstechnik.
- in Installation, Inbetriebnahme, Bedienung, Freischalten, Erden und Kennzeichnen von elektrotechnischen Betriebsmitteln.
- · in den Anforderungen an die persönliche Schutzausrüstung.

Elektrotechnisch qualifiziertes Personal im Sinne der sicherheitstechnischen Hinweise aller zum Gerät und deren Komponenten gehörenden Dokumente sind Personen, die eine fachliche Qualifikation als Elektrofachkraft nachweisen können.

Warnung vor unerlaubten Manipulationen oder unsachgemäßer Verwendung des Geräts oder dessen Komponenten!

Das Öffnen, Zerlegen oder unerlaubtes Manipulieren des Geräts und dessen Komponenten, das über die angegebenen mechanischen, elektrischen oder anderweitigen Betriebsgrenzen hinausgeht, kann zu Sachschaden oder Verletzungen bis hin zum Tod führen.

- Es darf nur elektrotechnisch qualifiziertes Personal an Geräten und deren Komponenten, Baugruppen, Systemen und Stromkreisen arbeiten!
- · Verwenden Sie Ihr Gerät oder Ihre Komponente stets so, wie in der zugehörigen Dokumentation beschrieben.

Senden Sie bei erkennbaren Beschädigungen das Gerät oder die Komponente zurück an den Hersteller!

2.6 Gewährleistung bei Schäden

Jegliche unerlaubte Manipulation oder Verwendung des Geräts begründet "Missbrauch" und/oder "Fahrlässigkeit" im Sinne der Gewährleistung für das Produkt und schließt somit die Gewährleistung für die Deckung möglicher, daraus folgender Schäden aus. Beachten Sie hierzu Kap. "3.3 Bestimmungsgemäße Verwendung" auf Seite 17. 2.7 Sicherheitshinweise zum Umgang mit Stromwandlern und Messgeräten mit Differenzstrommessung

Verletzungsgefahr durch große Ströme und hohe elektrische Spannungen an den Stromwandlern!

Sekundärseitig offen betriebene Stromwandler (hohe berührungsgefährliche Spannungsspitzen) können schwere Körperverletzungen oder Tod zur Folge haben.

- Den offenen Betrieb der Stromwandler vermeiden, unbelastete Wandler kurzschließen!
- Vor Unterbrechung der Stromzuleitung, die Sekundäranschlüsse der Stromwandler kurzschließen. Prüfschalter, die Sekundärleitungen der Stromwandler automatisch kurzschließen, in den Status "Prüfen" bringen (Prüfschalter/Kurzschließer vorher prüfen)!
- Nur Stromwandler mit Basisisolierung gemäß IEC 61010-1:2010 verwenden!
- · Vorsicht, auch offensichere Stromwandler können bei offenem Betrieb berührungsgefährlich sein!
- Achten Sie darauf, dass Schraubklemmen f
 ür den Stromwandleranschluss am Ger
 ät, ausreichend befestigt sind!
- Befolgen Sie Hinweise und Bestimmungen in der Dokumentation Ihrer Stromwandler!

Verletzungsgefahr oder Beschädigung des Messgeräts durch hohe Messströme an den Anschlüssen der Stromwandler!

Durch hohe Messströme können an den Anschlüssen der Stromwandler Temperaturen bis zu 80 °C (176 °F) entstehen.

- Verwenden Sie Leitungen, die für eine Betriebstemperatur von mindestens 80 °C (176 °F) ausgelegt sind!
- Àuch nach dem Ausschalten der Spannungsversorgung können Stromwandler heiß sein.
 Anschlüsse der Stromwandler und Anschlussleitungen vor dem Berühren abkühlen lassen!

WARNUNG

Verletzungsgefahr oder Beschädigung des Messgeräts durch falsche Nutzung! Messgeräte mit Differenzstrommessung können bei Überschreitung von Grenzwerten Warnimpulse auslösen, die ausschließlich der Überwachung von Differenzströmen oder der Ausfallüberwachung dienen. Die Verwendung der Warnimpulse als eigenständige Schutzeinrichtung gegen elektrische Schläge kann zu Verletzungen bis zum Tod führen!

Verwenden Sie Geräte mit Differenzstrommessung nicht als eigenständige Schutzeinrichtung. Wählen Sie geeignete Schutzeinrichtungen für Ihre Anlage!

Verletzungsgefahr oder Beschädigung des Messgeräts/Ihrer Anlage durch Kurzschluss! Zu geringe Isolierung der Betriebsmittel am Differenzstrom-Messeingang gegenüber den Netzstromkreisen kann zu berührungsgefährlichen Spannungen am Messeingang oder zur Beschädigung Ihres Geräts/Ihrer Anlage führen.

· Sorgen Sie für eine verstärkte oder doppelte Isolierung zu den Netzstromkreisen! Trennen Šie Differenzstrom-Messeingänge galvanisch voneinander!

2.8 Umgang mit Batterien/Akkumulatoren

Für die verwendete Batterie im Gerät gilt:

Verletzungsgefahr durch Feuer oder Verätzun-

gen! Die im Gerät verwendete Batterie kann bei unsachgemäßem Gebrauch zu Brand oder Verätzungen führen.

- · Die Batterie nur durch gleiche oder von Janitza empfohlene Typen ersetzen!
- Beim Einbau der Batterie die Polarität beachten!
- Batterien nur mit nicht leitenden Werkzeugen (z.B. Pinzetten aus Kunststoff) entnehmen! Batterien nicht wieder aufladen, nicht zerle-
- gen, nicht über 100 °C (212 °F) aufheizen oder verbrennen!
- Batterien nicht mit dem Hausmüll entsorgen! Entsorgungsvorschriften in der jeweiligen Geräte-Dokumentation beachten!
- Batterien von Kindern und Tieren fernhalten! Senden Sie Geräte mit eingelöteter Batterie bei Beschädigungen, unter Beachtung der Transportbedingungen, zurück an den Hersteller!

3. Produktbeschreibung

3.1 Gerätebeschreibung

Das Gerät ist ein multifunktionaler Netzanalysator und geeignet für

- Messungen und Berechnungen von elektrischen Größen, wie Spannung, Strom, Leistung, Energie, Oberschwingungen in der Gebäudeinstallation, an Verteilern, Leistungsschaltern und Schienenverteilern.
- eine modulare Erweiterung des Funktionsumfangs durch Strommessmodule.
- die Anbindung räumlich entfernter Messstellen im Schaltschrank oder Installationskleinverteilern durch Übergabemodule.
- Messungen von Spannungen und Strömen aus dem gleichen Netz.
- Messungen in Niederspannungsnetzen (3-Phasen-4-Leitersysteme), in denen Nennspannungen bis 480 V Leiter gegen Erde und Stoßspannungen der Überspannungskategorie III vorkommen.
- Messungen in Mittel- und Hochspannungsnetzen über Strom- und Spannungswandler.
- · die Strommessung über
- externe ../1 A oder ../5 A Stromwandler.
- die Multifunktionskanäle (mA-Stromeingänge).
- · den Einbau in ortsfeste Schaltschränke oder Installationskleinverteiler, bei beliebiger Einbaulage.
- die Messung von Dlfferenzströmen (Residual Current Monitoring, RCM) einer elektrischen Anlage. Das Messgerät ist keine Schutzeinrichtung gegen elektrischen Schlag!
- · den Einsatz in Industriebereichen.

Messergebnisse werden vom Messgerät dargestellt und können über Schnittstellen ausgelesen und weiterverarbeitet werden.

A VORSICHT

Fehlfunktion und Beschädigung des Geräts oder Verletzungsgefahr durch unsachgemäßen Anschluss.

Unsachgemäß angeschlossene Geräte können fehlerhafte Messwerte liefern, das Gerät beschädigen oder eine Verletzungsgefahr für Personen bedeuten. Beachten Sie:

Das Messspannungen und Messströme aus dem gleichen Netz stammen.

Das Gerät nicht für die Messung von Gleichstrom verwenden!

· Leitende Schalttafeln erden!

3.2 Eingangskontrolle

Der einwandfreie und sichere Betrieb dieses Geräts und dessen Komponenten setzen sachgemäßen Transport, sachgerechte Lagerung, Aufstellung und Montage, Bedienung und Instandhaltung sowie Beachtung der Sicherheits- und Warnhinweise voraus.

Nehmen Sie das Aus- und Einpacken mit der üblichen Sorgfalt ohne Gewaltanwendung und nur unter Verwendung von geeignetem Werkzeug vor.

Vor der Installation des Geräts prüfen Sie bitte

- · dessen einwandfreien mechanischen Zustand durch Sichtkontrolle.
- · den Lieferumfang auf Vollständigkeit.

Wenn anzunehmen ist, dass ein gefahrloser Betrieb des Geräts nicht mehr möglich ist,

- · trennen Sie das Gerät unverzüglich vom Betrieb!
- · sichern Sie das Gerät gegen wiedereinschalten!

Es ist anzunehmen, dass ein gefahrloser Betrieb nicht mehr möglich ist, wenn das Gerät z.B.

- · eine sichtbare Beschädigung aufweist.
- trotz intakter Netzversorgung nicht mehr arbeitet.
- längere Zeit ungünstigen Verhältnissen (z.B. Lagerung außerhalb der zulässigen Klimagrenzen ohne Anpassung an das Raumklima, Betauung o. Ä.) oder Transportbeanspruchungen (z.B. Fall aus großer Höhe auch ohne sichtbare äußere Beschädigung o. Ä.) ausgesetzt war.

3.3 Bestimmungsgemäße Verwendung

Das Gerät ist:

- nur f
 ür den Einsatz im industriellen Bereich bestimmt.
- · für den Einbau in Schaltschränke und Installationskleinverteiler bestimmt.
- nicht f
 ür den Einbau in Fahrzeuge bestimmt! Der Einsatz des Ger
 äts in nicht ortsfesten Ausr
 üstungen gilt als au
 ßergew
 öhnliche Umweltbedingung und ist nur nach gesonderter Vereinbarung zul
 ässig.
- nicht f
 ür den Einbau in Umgebungen mit sch
 ädlichen
 Ölen, S
 äuren, Gasen, D
 ämpfen, St
 äuben, Strahlungen, usw. bestimmt.
- · als Innenraumzähler konzipiert.

Der einwandfreie und sichere Betrieb des Geräts setzt sachgemäßen Transport, sachgemäße Lagerung, Montage, Installation, Bedienung und Instandhaltung voraus.

3.4 Leistungsmerkmale

Allgemeines

- Hutschienenmessgerät mit den Abmessungen 144 x 90 x 76 mm.
- · Montage auf Hutschiene 35 mm.
- · TFT-Display.
- · Bedienung über 6 Tasten.
- · Passwortschutz.
- · Anschluss über Schraubsteck-Klemmen.
- · 4 Spannungsmesseingänge (1000 V, CATIII).
- · 2x 4 Strommesseingänge (über Stromwandler).
- RS485 Schnittstelle (Modbus RTU, mit DIP-Schalter für die Terminierung).
- · 2x Ethernet-Schnittstelle (RJ45).
- · 4 digitale Eingänge.
- · 4 digitale Ausgänge.
- · 1 analoger Ausgang (galvanisch getrennt).
- 4 Multifunktionskanäle für die Verwendung als Differenzstrom- oder Temperatur-Messeingänge und zusätzliche Strommesskanäle (mA).
- · Uhr und Batterie.

Messunsicherheit

- Wirkenergie, Messunsicherheit Klasse 0,2 S für ../5 A Wandler.
- Wirkenergie, Messunsicherheit Klasse 0,5 S für ../1 A Wandler.
- Wirkenergie, Messunsicherheit Klasse 0,5 S für .../50 mA Wandler.
- · Blindenergie, Klasse 1.

Messung

- · Messung in TN-, TT- und IT-Netzen
- Messung in Netzen mit Nennspannungen bis L-L 830 V und L-N 480 V.
- \cdot Messbereich Spannung 720 V $_{eff\ L-N};$ 1000 V $_{eff\ L-L};$ 100 V $_{N-PE}.$
- · Messbereich Strom 0,005 .. 6 Aeff
- · Echte Effektivwertmessung (TRMS)
- Kontinuierliche Abtastung der Spannungs- und Strommesseingänge.
- Frequenzbereich der Grundschwingung 40 Hz .. 70 Hz.
- · Spannung: 1..127 Harmonische und Zwischenharmonische.
- · Strom: 1..63 Harmonische.
- Differenzstrom nach IEC/TR 60755 (2008-01), Typ A + Typ B und B+.

3.5 EU-Konformitätserklärung

Die von der Janitza electronics GmbH angewendeten Gesetze, Normen und Richtlinien für die Geräte entnehmen Sie der EU-Konformitätserklärung auf www.janitza.de. Aus der EU-Konformitätserklärung und den darin erwähnten Gesetzen, Normen und Richtlinien ergibt sich die CE-Kennzeichnungspflicht für das Gerät.

3.6 FCC-Konformitätserklärung

Das Gerät

- erfüllt Teil 15 der FCC-Vorschriften für Grenzwerte von digitalen Geräten der Klasse B (Grenzwerte zum Schutz vor störenden Abstrahlungen in Wohngebieten).
- · erzeugt, verwendet und kann Hochfrequenzenergie abstrahlen.
- kann bei unsachgemäßer Installation und Verwendung schädliche Störungen der Funkkommunikation erzeugen. Es gibt keine Garantie, dass bei bestimmten Installationen, keine Störungen auftreten.

Bei Störungen des Rundfunk- oder Fernsehempfangs, erkennbar beim Ein- und Ausschalten des Geräts, handeln Sie wie folgt:

- · Empfangsantenne ausrichten oder neu platzieren.
- Abstand zwischen Gerät und Rundfunk-/ Fernseh-Empfänger vergrößern.
- · Gerät und Rundfunk-/Fernseh-Empfänger in unterschiedlichen Stromkreisen anschließen.
- · ggf. Janitza-Support oder einen Radio-/Fernsehtechniker kontaktieren.

Code of Federal Regulations, Title 47, Part 15, Subpart B - Unintentional Radiators.

3.7 Lieferumfang

Anzahl	Art. Nr.	Bezeichnung
1	52.31.001	UMG 801 (Basisgerät)
1	52.31.205	Busverbinder für Modul-Anschluss an das UMG 801 (Basisgerät)
1	33.03.376	Installationsanleitung DE/EN
1	33.03.342	Beileger "Sicherheitshinweise"
1	10.01.953	Endwinkel
1	08.01.505	Patch-Kabel
1	10.01.941	PUSH-IN-Ferderanschluss- Klemme steckbar, 2-polig (Versorgungsspannung)
2	10.01.940	PUSH-IN-Ferderanschluss- Klemme, steckbar, 8-polig (Strommessung 1114 und 1518)
1	10.01.880	Schraubklemme, steckbar, 2-polig (A, D)
1	10.01.891	Schraubklemme, steckbar, 8-polig (Differenzstrom-/Temperaturmes- sung)
1	10.01.857	Schraubklemme, steckbar, 2-polig (analoger Ausgang)
1	10.01.863	Schraubklemme, steckbar, 5-polig (digitale Eingänge)
1	10.01.863	Schraubklemme, steckbar, 5-polig (digitale Ausgänge)
1	10.01.909	Schraubklemme, steckbar, 3-polig (RS485)

Tab. Lieferumfang

Bei Auslieferung besitzt das Gerät die erforderlichen Schraubklemmen.

3.8 Lieferbares Zubehör

Anzahl	Art. Nr.	Bezeichnung
1	21.01.058	Batterie Typ Lithium CR2032, 3 V, (Zulassung nach UL 1642)
1	13.09.227	USB-Abdeckung
1	52.31.201	Modul 800-CT8-A (Strommessmodul)
1	52.31.210	Set Modul 800-CON (2er-Set - Übergabemodule)

Tab. Lieferbares Zubehör

i INFORMATION

· Alle gelieferten Optionen und Ausführungsvarianten sind auf dem Lieferschein beschrieben.

3.9 Messverfahren

Das Gerät misst lückenlos und berechnet alle Effektivwerte über

- · ein 200 ms-Perioden-Intervall.
- den echten Effektivwert (TRMS), der an den Messeingängen angelegten Spannungen und Ströme.

3.10 Messwandler

Verwenden Sie für Janitza-Messgeräte und -Komponenten **ausschließlich** Stromwandler für Messzwecke ("Messwandler")!

"Messwandler" gehen im Gegensatz zu "Schutzwandlern" bei hohen Stromspitzen in Sättigung. "Schutzwandler" besitzen dieses Sättigungsverhalten nicht und können dadurch im Sekundärstromkreis deutlich über die normierten Werte hinausgehen. Dies kann die Strommesseingänge der Messgeräte überlasten!

Beachten Sie ferner Janitza-Messgeräte und -Komponenten **grundsätzlich** nicht für kritische Schalt-, Steuerungs- oder Schutzanwendungen (Schutzrelais) zu verwenden! Beachten Sie hierzu die Sicherheits- und Warnhinweise im Kapitel "Installation" und "Produktsicherheit"!

3.11 Bedienkonzept

Um das Messgerät zu bedienen, zu konfigurieren oder auszulesen bietet es folgende Optionen:

- 6 Funktionstasten mit Display zur Konfiguration und Erfassung von Daten.
- Die Netzanalyse- und Programmiersoftware GridVis[®] zur Programmierung und Analyse von Daten.

Eine Standard-Modbus-Adressenliste erhalten Sie auf www.janitza.de.

Dieses Benutzerhandbuch beschreibt die Bedienung des Messgeräts über die 6 Tasten. Die Software GridVis[®] besitzt eine "Online-Hilfe" und E-Learning-Anleitungen.

3.12 Netzanalysesoftware GridVis®

Mit der auf www.janitza.de erhältlichen Netzanalysesoftware GridVis[®] konfigurieren Sie Ihr Messgerät und lesen Daten zur Analyse aus. Hierfür verbinden Sie einen PC über die Ethernet-Schnittstelle mit Ihrem Messgerät.

Leistungsmerkmale der Software GridVis®

- · Konfigurieren und Auslesen des Geräts.
- · Grafische Darstellung von Messwerten.
- · Analyse von ausgelesenen Daten.
- · Speichern von Daten in Datenbanken.
- · Erstellung von Reporten.

Verbindungen zum PC

Verbindungen zur Kommunikation zwischen PC und Messgerät finden Sie im Kap. "8. PC-Anschluss" auf Seite 51.

3.13 Funktionsumfang im Überblick

3.13.1 Konfiguration am Gerät (über 6 Tasten)

- · Passwortschutz (ausschließlich am Gerät konfigurierbar) und Zeit.
- · Ethernet TCP/IP
- · Feldbus
- · Stromwandler Primär / Sekundär
- · Spannungswandler Primär / Sekundär
- · Sprache, LCD-Helligkeit, Standby nach.
- · Werkseinstellungen, Neustart, Min.-/Max.-Werte
- · u.a Parameter, wie
- Geräteadresse, Baudrate (RS485-Schnittstelle), Datenrahmen (Stoppbits / Parität).

3.13.2 Kommunikation

- · eine RS485-Schnittstelle zur Kommunikation mit Modbus/RTU-Geräten.
- · Firmware-Update über Ethernet.
- · 2 Ethernet-Schnittstellen zur Kommunikation über verschiedene IP-Protokolle (OPC-UA, Modbus/IP, DHCP, NTP).

Messwerte (mit Spannungskomponente)	Gerät-/System- bezogen	Kanal bezogen	MinWert	MaxWert	Mittelwert
Frequenz	1		~	~	\checkmark
Drehfeld-Richtung U	1			✓ System	
Messung von Mit-, Gegen-, Nullsystem	1		~	~	\checkmark
Unsymmetrie in %	1		~	~	\checkmark
Effektivspannung U _{NPE_eff}	1			~	
Effektivspannung U _{LN_eff}		3	~	~	\checkmark
Effektivspannung U _{LL_eff}		3	~	~	\checkmark
Verzerrungsfaktor U _{LN_THD}		3	~	✓	\checkmark
Verzerrungsfaktor ULL_THD		3	\checkmark	✓	\checkmark
Realanteil Spannung Re{ULN}		3	\checkmark	✓	\checkmark
Imaginäranteil Spannung Im{U _{LN} }		3	~	~	\checkmark
Harmonische U _{LN_1127}		3x127		~	
Zwischenharmonische ULN_0,5126,5		3x127		~	
Harmonische ULL_1127		3x127		~	
Zwischenharmonische ULL_0,5126,5		3x127		~	
Crest-Faktor U _{LN-Crest}	3			✓ System	

3.13.3 Messwerte (mit Spannungskomponente)

Tab. Übersicht der Messwerte, die vom Gerät erfasst werden.

Weitere Informationen zu den Messwerten finden Sie im Kap. "19.2 Kenngrößen von Funktionen" auf Seite 108.

3.13.4 Messwerte (mit Stromkomponente)

Messwerte (mit Stromkomponente)	Gerät-/System- bezogen	Kanal bezogen	MinWert	MaxWert	Mittelwert
Effektivstrom I _{eff}		12		\checkmark	\checkmark
Realteil Strom Re{I}		12		\checkmark	\checkmark
Imaginäranteil Strom Im{I}		12		\checkmark	\checkmark
Wirkleistung P		12		~	\checkmark
Blindleistung Q		12		✓	\checkmark
Scheinleistung S		12		✓	\checkmark
Verzerrungsblindleistung D		12		~	\checkmark
Wirkleistung der Grundschwingung P ₁		12		\checkmark	\checkmark
Blindleistung der Grundschwingung Q ₁		12		\checkmark	\checkmark
Leistungsfaktor PF		12	\checkmark	\checkmark	\checkmark
GrundschwLeistungsfaktor PF1 / Cos(Phi)		12	\checkmark	\checkmark	\checkmark
Verzerrungsfaktor I _{THD}		12		\checkmark	\checkmark
Leistungsbez. Verzerrungsfaktor I _{TDD}		12		\checkmark	\checkmark
Crest-Faktor I _{Crest}		12			
Harmonische I		12			
Drehfeld-Richtung I				✓ System	
Messung von Mit-, Gegen-, Nullsystem	3			\checkmark	\checkmark
Berechneter Neutralleiterstrom I _{N_calc}	3			~	\checkmark
Systemsumme Effektivstrom I _{eff}	3			\checkmark	\checkmark
Systemsumme Wirkleistung P	3			\checkmark	\checkmark
Systemsumme Blindleistung Q	3			✓	\checkmark
Systemsumme Scheinleistung S	3			~	\checkmark
Systemsumme Verzerrungsblindleistung D	3			\checkmark	\checkmark
Systemsumme Wirkleistung der Grundschwingung P1	3			\checkmark	\checkmark
Systemsumme Blindleistung der Grundschwingung Q1	3			\checkmark	\checkmark
Systemsumme Leistungsfaktor PF	3		\checkmark	\checkmark	\checkmark
Systemsumme GrundschwLeistungsfaktor / Cos(Phi) PF ₁	3		\checkmark	\checkmark	\checkmark

Tab. Übersicht der Messwerte, die vom Gerät erfasst werden. Weitere Informationen zu den Messwerten finden Sie im Kap. "19.2 Kenngrößen von Funktionen" auf Seite 108.

Messwerte (mit Stromkomponente)	Gerät-/System- bezogen	Kanal bezogen	MinWert	MaxWert	Mittelwert	
Energien (3 Tarife, bestehend aus 1 Haupttarif u	nd 2 Nebentarifen)					
Wirkarbeit W _P	3 x 3 Tarife		:	Systemsumme		
Wirkarbeit W _P bezogen	3 x 3 Tarife			Systemsumme	;	
Wirkarbeit W _P geliefert	3 x 3 Tarife			Systemsumme	;	
Blindarbeit W _Q	3 x 3 Tarife		:	Systemsumme	;	
Blindarbeit bezogen W _Q induktiv	3 x 3 Tarife		:	Systemsumme	;	
Blindarbeit bezogen W _Q kapazitiv	3 x 3 Tarife			Systemsumme	;	
Blindarbeit geliefert W _Q induktiv	3 x 3 Tarife		:	Systemsumme	;	
Blindarbeit geliefert W _Q kapazitiv	3 x 3 Tarife		:	Systemsumme	÷	
Scheinarbeit W _S	3 x 3 Tarife			Systemsumme	;	

Tab. Übersicht der Messwerte, die vom Gerät erfasst werden. Weitere Informationen zu den Messwerten finden Sie im Kap. "19.2 Kenngrößen von Funktionen" auf Seite 108.

4. Aufbau des Geräts

4.1 Gerätefront und Display

Pos.	Funktion/Bezeichnung
1	Anschluss Versorgungsspannung
2	Strommesseingänge I5 bis I8 für · Messung eines zusätzlichen Systems (L1, L2, L3, N) · Einzelkanalmessungen
3	Strommesseingänge I1 bis I4 für · Messung eines Systems (L1, L2, L3, N) · Einzelkanalmessungen
4	Symbol "Gefahrenzeichen" - Allgemeines Warnsymbol. Beachten Sie die auf dem Gerät abgebildeten und in den Nutzungsinformationen aufgeführten Warnhinweise, um mögliche Verletzungen oder gar Todesfälle zu vermeiden.
5	USB-Schnittstelle (2.0), Typ A (z. B. Anschluss für das externe Display RD 96 - Optional)
6	Ethernet-Schnittstelle (RJ45)
7	Ethernet-Schnittstelle (RJ45)
8	Batterie-Fach (Typ Lithium CR2032, 3 V, Zulassung nach UL 1642)
9	Symbol "Gefahrenzeichen" - Warnsymbol, dass auf eine elektrische Gefahr hindeutet. Beachten Sie die auf dem Gerät abgebildeten und in den Dokumenten aufgeführten Warnhinweise, um mögliche Verletzungen oder gar Todesfälle zu vermeiden.
10	Spannungsmesseingänge V1, V2, V3 und VN
11	Anschlüsse für Funktionserde
12	Anschlüsse für Differenzstrom- (RCM) und Temperaturmessung, mA-Strommesskanäle
13	1 Analoger Ausgang
14	4 Digitale Eingänge
15	4 Digitale Ausgänge
16	RS485-Schnittstelle
17	DIP-Schalter zur RS485-Terminierung - vgl. Kap. "9.3.3 Bus-Struktur (Bussegment)" auf Seite 55
18	Geräte-Display
19	Geräte-Unterseite: JanBus-Schnittstelle (Busverbinder-Anschluss, Modul-Verbindung)
20	Funktionstasten 1 - 6 (siehe Kap. "10.2 Funktionstasten" auf Seite 60).
21	Geräte-Bezeichnung und Hersteller-Logo
22	Symbol "Schutzklasse" - Schutzklasse II (verstärkte oder doppelte Isolierung) nach IEC 60536 (VDE 0106, Teil 1).

Tab.: Geräteaufbau - Anschlüsse und Bedienelemente

4.2 Seitenansichten

4.3 Ansicht von unten

(i) INFORMATION

Bei Auslieferung des Geräts stecken die Busverbinder bereits in der JanBus-Schnittstelle!

4.4 Kennzeichnung des Geräts (Typenschild)

Pos.	Bezeichnung	Beschreibung
1	MAC-Adresse	Eindeutige Kennzeichnung des Geräts in einem Rechner-Netzwerk.
2	Betriebsdaten	Versorgungsspannung und maximale Leistungsaufnahme.
3	Artikelnummer des Messgeräts	Artikelnummer des Herstellers.
4	Symbol "Gefahrenzeichen"	Allgemeines Warnsymbol. Beachten Sie die auf dem Gerät abgebildeten und in den Nutzungsinformationen aufgeführten Warnhinweise, um mög- liche Verletzungen oder gar Todesfälle zu vermeiden.
5	Gerätetyp	Geräte-Bezeichnung.
6	Data-Matrix-Code	Codierte Herstellerdaten.
7	Hersteller-Logo	Logo des Geräte-Herstellers.
8	CE-Kennzeichnung	Siehe "3.5 EU-Konformitätserklärung" auf Seite 18.
9	Herstellerspezifische Daten	Herstellerdaten.
10	Hardware-Version	Hardware-Version des Geräts.
11	Typ-/Seriennummer	Nummer zur Identifikation des Geräts.
12	Herkunftsbezeichnung/ Web-Adresse	Herkunftsland und Web-Adresse des Herstellers.

Tab.: Gerätekennzeichnung Typenschild

5. Montage

5.1 Einbauort

GEFAHR

Gefahr durch elektrischen Schlag!

Elektrische Schläge führen zu ernsten Verletzungen, bis hin zum Tod.

- · Vor der Montage und Anschluss des Geräts Ihre Anlage spannungsfrei schalten!
- · Gegen Wiedereinschalten sichern!
- · Spannungsfreiheit feststellen!
- · Erden und Kurzschließen!
- Benachbarte, unter Spannung stehende Teile abdecken oder abschranken!
 Die Montage darf nur von gualifiziertem Perso-

nal mit elektrotechnischer Ausbildung durchgeführt werden!

Montieren Sie das Messgerät in Schaltschränke oder Installationskleinverteiler nach DIN 43880 auf einer 35 mm Tragschiene (Typ siehe Technische Daten) nach DIN EN 60715. Die Einbaulage ist beliebig.

ACHTUNG

Sachschaden durch unsachgemäßen Umgang oder Nichtbeachtung der Montagehinweise! Falsche Montage des UMG 801 kann die Kontakte des Busverbinders (JanBus-Schnittstelle) zerstören! · Verwenden Sie zur Montage des Messgeräts geeignete Tragschienen nach DIN EN 60715! Geeignete Tragschienen-Typen siehe Kap. "19. Technische Daten" auf Seite 102.

- Bevor Sie mit der Tragschienenmontage und Verkabelung Ihres UMG 801 beginnen, stecken Sie, falls noch nicht erfolgt, den Busverbinder in die Buchsen auf der Geräte-Unterseite!
- Kontakte des Busverbinders niemals
- berühren oder manipulieren!
- mit Gewalt in die Busverbinder-Buchsen drücken!

Abb.: Busverbinder des UMG 801 (Lieferumfang)

(i) INFORMATION

Bei Auslieferung des Geräts stecken die Busverbinder bereits in der JanBus-Schnittstelle!

5.2 Einbaulage und Befestigung

Bei der Tragschienenmontage des UMG 801 gehen Sie wie folgt vor:

 Prüfen Sie die Montage des Busverbinders (im Lieferumfang enthalten, vormontiert) auf der Unterseite Ihres Geräts. Falls noch nicht geschehen, stecken Sie den Busverbinder in die Buchsen auf der Unterseite des Messgeräts (siehe Abbildungen).

Abb. Geräte- und Busverbinder-Unterseite

Abb. Geräte-Unterseite mit montiertem Busverbinder

2.) Bodenriegel des Klemmmechanismus eindrücken.

Abb. Geräte-Unterseite mit montiertem Busverbinder und eingedrückten Bodenriegel.

(3.) Drücken Sie Ihr Messgerät mit dem Busverbinder frontal auf die Tragschiene, bis die 4 Bodenriegel einrasten. Das UMG 801 eignet sich für den Anschluss von bis zu 10 Modulen über die Busverbinder (Jan-Bus-Schnittstelle).

Abb. Gerät mit Busverbinder auf Tragschiene nach DIN EN 60715 (Tragschienen-Typen siehe Technische Daten)

Abb.: Gerät auf Tragschiene (Hutschiene) nach DIN EN 60715 (Draufsicht)

ACHTUNG

Sachschaden durch Nichtbeachtung der Montagehinweise!

Nichtbeachtung der Montagehinweise kann Ihr Gerät beschädigen oder zerstören.

 Sorgen Sie in Ihrer Einbau-Umgebung für ausreichende Luftzirkulation, bei hohen Temperaturen ggf. für Kühlung!

6. Netzsysteme

Geeignete Netzsysteme und Maximale Nennspannungen nach DIN EN 61010-1/A1:

Einsatzbereich des Messgeräts:

- · 3- und 4-Leiter-Netze (TN-, TT- und IT-Netze).
- · Industriebereiche.

Verletzungsgefahr durch elektrische Spannung! Bemessungs-Stoßspannungen oberhalb der zugelassenen Überspannungskategorie können Isolierungen im Gerät beschädigen. Die Sicherheit des Geräts ist beeinträchtigt. Dies kann zu schweren Körperverletzungen oder Tod führen.

- Das Gerät nur in Umgebungen verwenden, in denen die zulässige Bemessungs-Stoßspannung eingehalten wird.
- Halten Sie die im Benutzerhandbuch und auf dem Typenschild genannten Grenzwerte ein.

(i) INFORMATION

Die Funktionserde

- · Anschluss D in TN-, TT- und IT-Netzen immer anschließen.
- · Anschluss A nur in TN- und TT-Netzen anschließen (nicht in IT-Netzen).

7. Installation

Verwenden Sie das Messgerät für die Spannungsmessung in TN-, TT- und IT-Netzen mit der zugelassenen Überspannungskategorie von 1000 V CAT III nach IEC und 600 V CAT III nach UL (Bemessungsstoßspannung 8 kV).

WARNUNG

Verletzungsgefahr durch elektrische Spannung! Sekundärseitige Anschlüsse von Spannungswandlern nicht kurzschließen! Dies kann zu schweren Körperverletzungen oder Tod führen.

· Spannungswändler gemäß deren Dokumentation anschließen!

Überprüfen Sie Ihre Installation!

Die Nichtbeachtung von Anschlussbedingungen der Messwandler an Janitza-Messgeräten oder deren Komponenten kann zu Verletzungen bis hin zum Tod oder zu Sachschäden führen!

Verwenden Sie Janitza-Messgeräte oder -Komponenten nicht für kritische Schalt-, Steuerungsoder Schutzanwendungen (Schutzrelais)! Es ist unzulässig Messwerte oder Messgeräteausgänge für kritische Anwendungen zu verwenden!
 Verwenden Sie für Janitza-Messgeräte und dessen Komponenten ausschließlich "Messwandler für Messzwecke", die sich für das Energie-Monitoring Ihrer Anlage eignen. Keine "Messwandler für Schutzzwecke" verwenden!
 Beachten Sie Hinweise, Bestimmungen und Grenzwerte in den Nutzungsinformationen der "Messwandler für Messzwecke", auch bei der Prüfung und Inbetriebnahme des Janitza-Messgeräts, der Janitza-Komponente und Ihrer

7.1 Nennspannungen

7.1.1 Dreiphasen-4-Leiternetz mit geerdetem Neutralleiter

Geeignete Netze und Nennspannungen für Ihr Messgerät:

U_{L-N} / U_{L-L}	
66 V / 115 V	
120 V / 208 V	
127 V / 220 V	
220 V / 380 V	
230 V / 400 V	
240 V / 415 V	
260 V / 440 V	
277 V / 480 V	
347 V / 600 V	Maximale Nennspannung des Netzes nach UL
400 V / 690 V	
417 V / 720 V	
480 V / 830 V	Maximale Nennspannung des Netzes nach IEC

Tab.: Für Messeingänge geeignete Netz-Nennspannungen nach EN 60664-1:2003

(i) INFORMATION

Näheres zu den Technischen Daten finden Sie im Kap. "19. Technische Daten" auf Seite 102.

Anlage.

7.2 Trennschalter

Sehen Sie bei der Gebäude-Installation einen geeigneten Trennschalter für die Versorgungsspannung vor, um Ihre Anlage und damit Ihr Gerät strom- und spannungsfrei zu schalten.

- Installieren Sie den Trennschalter Ihrer Anlage oder Ihres Geräts für den Benutzer leicht erreichbar.
- · Kennzeichnen Sie den Schalter als Trennvorrichtung für Ihre Anlage oder Ihres Geräts.

7.3 Versorgungsspannung

WARNUNG

Verletzungsgefahr durch elektrische Spannung! Schwere Körperverletzungen oder Tod können erfolgen, durch:

- · Berühren von blanken oder abisolierten Adern, die unter Spannung stehen.
- · Berührungsgefährliche Eingänge des Geräts.
- · Vor der Montage und Anschluss des Geräts Ihre Anlage spannungsfrei schalten!
- · Gegen Wiedereinschalten sichern!
- · Spannungsfreiheit feststellen!
- · Erden und Kurzschließen!
- · Benachbarte, unter Spannung stehende Teile abdecken oder abschranken!

Für den Betrieb des Geräts ist eine Versorgungsspannung erforderlich. Art und Höhe der Versorgungsspannung für Ihr Gerät entnehmen Sie dem Typenschild.

Der Anschluss der Versorgungsspannung erfolgt über Steckklemmen (Lieferumfang) auf der Geräte-Vorderseite.

Stellen Sie vor dem Anlegen der Versorgungsspannung sicher, dass Spannung und Frequenz mit den Angaben auf dem Typenschild übereinstimmen.

Nach Anschluss der Versorgungsspannung, erscheint eine Anzeige auf dem Display.

(i) INFORMATION

Beachten Sie, dass das Gerät beim Start eine Initialisierungsphase (Boot-Zeit) benötigt!

Erscheint keine Anzeige, überprüfen Sie:

- · den Anschluss Ihres Geräts.
- \cdot die Versorgungsspannung.

i INFORMATION

Die Sicherung ist ein Leitungsschutz - sie ist kein Geräteschutz!

ACHTUNG

Sachschaden durch Nichtbeachtung der Anschlussbedingungen.

Durch Nichtbeachtung der Anschlussbedingungen oder Überschreiten des zulässigen Spannungsbereichs kann Ihr Gerät beschädigt oder zerstört werden.

Bevor Sie das Gerät an die Versorgungsspannung anlegen beachten Sie bitte:

- Spannung und Frequenz müssen den Angaben des Typenschilds entsprechen!
- Grenzwerte (siehe Kap. ""19. Technische Daten" auf Seite 102), wie beschrieben, einhalten!
- In der Gebäude-Installation die Versorgungsspannung mit einem UL/IEC gelisteten Leitungsschutzschalter/einer Sicherung sichern!
- · Die Trennvorrichtung:
- für den Nutzer leicht erreichbar und in der Nähe des Geräts anbringen.
- für das jeweilige Gerät kennzeichnen.
- Die Versorgungsspannung nicht an den Spannungswandlern abgreifen.

 Für den Neutralleiter eine Sicherung vorsehen, wenn der Neutralleiteranschluss der Quelle nicht geerdet ist.

7.4 Spannungsmessung

Das Gerät hat 4 Spannungsmesseingänge und eignet sich für verschiedene Anschlussvarianten.

A WARNUNG Verletzungsgefahr oder Beschädigung des Geräts durch elektrische Spannung und unsachgemäßen Anschluss! Durch Nichtbeachtung der Anschlussbedingungen für die Spannungsmesseingänge können Sie das Gerät beschädigen oder sich schwer verletzen, bis hin zur Todesfolge. Beachten Sie deshalb: · Vor Arbeitsbeginn an Ihrer Anlage, die Anlage spannungsfrei schalten! Gegen Wiedereinschalten sichern! Spannungsfreiheit feststellen! Erden und Kurzschließen! Benachbarte, unter Spannung stehende Teile abdecken oder abschranken! Die Spannungsmesseingänge - nicht mit Gleichspannnung belegen. - mit einer geeigneten, gekennzeichneten und in der Nähe platzierten Sicherung und Trennvorrichtung (Alternativ: Leitungsschutzschalter) versehen. sind berührungsgefährlich. Spannungen, die die erlaubten Netz-Nennspannungen überschreiten über Spannungswandler anschließen. Messspannungen und -ströme müssen aus dem gleichen Netz stammen.

L1 12 ast 13 Ν PE/FE Funktionserde Sicherung (UL/IEC listed) Trennvorrichtung **4** ³ **v**⁵ 4 UMG 801 Janitza + 11 t + 12 t + 13 t + 14 t 30 31 32 33 34 35 36 37 + |5t + |6t + |7t + |8t 38 39 40 41 42 43 44 45 + V= -46 47 •_____ •_____ PELV

Abb. Anschlussbeispiel "Spannungsmessung".

(i) INFORMATION

Alternativ zur Sicherung und Trennvorrichtung können Sie einen Leitungsschutzschalter verwenden.

(i) INFORMATION

Die Funktionserdung ist ein funktioneller Teil und für den regulären Betrieb der elektrischen Anlage wesentlich.

7.4.1 Überspannung

Die Spannungsmesseingänge sind für Messungen in Niederspannungsnetzen ausgelegt, in denen Nennspannungen vorkommen, wie im Kapitel "19. Technische Daten" auf Seite 102 beschrieben. Angaben zu den Bemessungsstoßspannungen und zu den Überspannungskategorien finden Sie ebenfalls in den technischen Daten.

7.4.2 Netzfrequenz

Das Gerät:

- benötigt für die Messung und die Berechnung von Messwerten die Netzfrequenz.
- ist für die Messung in Netzen geeignet, in denen die Grundschwingung der Spannung im Bereich von 40 Hz bis 70 Hz liegt.
- benötigt für die automatische Ermittlung der Netzfrequenz am Spannungsmesseingang V1, eine Spannung L1-N von größer 10 V_{eff}.
- · berechnet aus der Netzfrequenz die Abtastfrequenz der Spannungs- und Strommesseingänge.

i INFORMATION

Das Gerät ermittelt Messwerte nur, wenn am Spannungsmesseingang V1 eine Spannung L1-N von größer 10 V_{eff} (4-Leitermessung) oder eine Spannung L1-L2 von größer 18 V_{eff} (3-Leitermessung) anliegt.

Verwenden Sie als Überstrom-Schutzeinrichtung für die Spannungsmessung einen Leitungsschutz mit IEC-/UL-Zulassung (1 - 10 A, Auslösecharakteristik B).

7.4.3 Anschlussvarianten Spannungsmessung

Dreiphasen-Vierleitersystem mit Spannungswandler

Dreiphasen-Dreileitersystem mit Spannungswandler

(i) INFORMATION

- Bei einer Messbereichsüberschreitung erscheint eine Warnmeldung in der Messgeräteanzeige (siehe Kap. "18.1 Messbereichsüberschreitung" auf Seite 100).
- Für eine PE/N-Messung Messeingang A als Funktionserde anschließen. Verwenden Sie hierbei keine grün-gelbe Leitung, da der Leiter keine Schutzfunktion besitzt!
Das Gerät

- · misst Strom ausschließlich über Stromwandler.
- erlaubt den Anschluss von Stromwandlern mit einem Wandlerverhältnis ../1 A und../5 A für die Strommesseingänge I1 bis I8
- besitzt als Standardeinstellung das Stromwandlerverhältnis 5/5A (I1 bis I8).
- erlaubt eine mA-Strommessung über die Multifunktionskanäle (Klemmen 7 bis 14) nur mit geeigneten Stromwandlern.

Die Stromwandler benötigen eine Basisisolierung gemäß IEC 61010-1:2010 für die Nennspannung des Stromkreises.

Abb. Anschlussbeispiel "Strommessung".

ACHTUNG

Sachschaden durch Nichtbeachtung der Anschlussbedingungen bei der Strommessung. Durch Nichtbeachtung der Anschlussbedingungen Ihres Geräts, kann der zulässige Strommessbereich überschritten werden. Dies kann zur Beschädigung oder Zerstörung Ihres Geräts oder Ihrer Anlage und damit zu Sachschäden führen!

- Stromwandler zur Strommessung verwenden! Das Gerät erlaubt nur eine Strommessung über Stromwandler!
- · Beachten Sie Anschlussbedingungen der Strommesseingänge Ihres Geräts und der Stromwandler!

Verletzungsgefahr durch große Ströme und hohe elektrische Spannungen!

Schwere Körperverletzungen oder Tod können erfolgen, durch:

- · Berühren von blanken oder abisolierten Adern, die unter Spannung stehen.
- · Berührungsgefährliche Strommesseingänge des Geräts und an den Stromwandlern.
- Beachten Sie deshalb, Ihre Anlage:
- · Vor Arbeitsbeginn spannungsfrei schalten!
- · Gegen Wiedereinschalten sichern!
- · Spannungsfreiheit feststellen!
- Erden und Kurzschließen! Verwenden Sie zum Erden die Erdanschlussstellen mit Erdungssymbol!
- Benachbarte, unter Spannung stehende Teile abdecken oder abschranken!

Verletzungsgefahr durch elektrische Spannung an Stromwandlern!

An Stromwandlern die sekundärseitig offen betrieben werden, können hohe berührungsgefährliche Spannungsspitzen auftreten, die schwere Körperverletzung oder Tod zur Folge haben können. Beachten Sie deshalb:

- Vor Arbeitsbeginn Ihre Anlage spannungsfrei schalten! Gegen Wiedereinschalten sichern!
 Spannungsfreiheit feststellen! Erden und Kurzschließen! Benachbarte, unter Spannung stehende Teile abdecken oder abschranken!
 Vermeiden Sie den offenen Betrieb der
- Vermeiden Sie den offenen Betrieb der Stromwandler.
- · Unbelastete Stromwandler kurzschließen.
- Vor Unterbrechung der Stromzuleitung die Sekundäranschlüsse der Stromwandler kurzschließen.
- · Ist ein Prüfschalter vorhanden, der die Stromwandlersekundärleitungen automatisch kurzschließt, reicht es aus, diesen in die Stellung "Prüfen" zu bringen, sofern die Kurzschließer vorher überprüft worden sind.
- · Verwenden Sie nur Stromwandler, die über eine Basisisolierung gemäß IEC 61010-1:2010 verfügen.
- Fixieren Sie die aufgesetzte Schraubklemme mit den zwei Schrauben am Gerät.
- Auch offensichere Stromwandler sind berührungsgefährlich, wenn sie offen betrieben werden.

Verletzungsgefahr oder Beschädigung des Geräts durch elektrische Spannung und unsachgemäßen Anschluss!

Bei hohen Messströmen können an den Anschlüssen Temperaturen von bis zu 80 °C (176 °F) entstehen.

Verwenden Sie Leitungen für eine Betriebstemperatur von bis zu 80 °C (176 °F)!

7.5.1 Anschlussvarianten Strommessung

Strommessung I1 bis I4 und I5 bis I8

(i) INFORMATION

Einstellung in der Software GridVis®:

Um die Aron-Schaltung im Messgruppen-Modus "Dreiphasen-System" zu aktivieren, wählen Sie "berechnen" für den Stromkanal I2 (L2). Für den Messgruppen-Modus "Einzelmessungen" besteht diese Funktion nicht.

(i) INFORMATION

Stromwandler-Verhältnisse konfigurieren Sie benutzerfreundlich über

- · das Geräte-Menü.
- die Software GridVis[®].

Informationen zur Programmierung der Stromwandlerverhältnisse finden Sie im Kap. "11.4 Stromwandler konfigurieren" auf Seite 67.

Bei einer Messbereichsüberschreitung zeigt die Messgeräteanzeige für den Strom einen Warnhinweis mit der Angabe der Phase (siehe Kap. "18.1 Messbereichsüberschreitung" auf Seite 100).

7.5.2 Summenstrommessung

Stellen Sie für eine Summenstrommessung über zwei Stromwandler zunächst deren Gesamtübersetzungsverhältnis am Gerät ein (Einstellen der Stromwandlerverhältnisse siehe Kap. "11.4 Stromwandler konfigurieren" auf Seite 67).

Beispiel:

Die Strommessung erfolgt über zwei Stromwandler. Beide Stromwandler haben ein Übersetzungsverhältnis von 1000/5 A. Die Summenmessung wird mit einem Summenstromwandler 5+5/5 A durchgeführt.

Stellen Sie das Gerät wie folgt ein: Primärstrom: 1000 A + 1000 A = **2000 A** Sekundärstrom: **5A**

Abb. Beispiel für die Strommessung über einen Summenstromwandler.

7.5.3 Amperemeter

Für eine Strommessung mit einem zusätzlichen Amperemeter, schalten Sie das Amperemeter in Reihe zum UMG:

Abb. Beispiel-Schaltbild mit Amperemeter in Reihenschaltung

7.6 Multifunktionskanäle

Die Klemmenpaare 7/8, 9/10, 11/12 und 13/14 dienen optional als Anschlüsse (4 Kanäle) für folgende Messungen:

- 1. Differenzstrommessung (RCM).
- 2. Temperaturmessung.
- 3. Messung weiterer Stromkanäle (mA-Bereich) über geeignete Stromwandler.

(i) INFORMATION

Die Funktion des jeweiligen Anschlusses, Differenzstrom- oder Temperaturmessung, konfigurieren Sie in der Software GridVis[®].

Wählen Sie für den Anschluss der Multifunktionskanäle aus den Optionen Differenzstrommessung, Temperaturmessung, mA-Strommessung oder einer Kombination aus diesen Messungen.

Beachten Sie bitte:

Nach einer Änderung der Messung der Multifunktionskanäle (z.B. Konfiguration des Kanals 7/8 von Differenzstrommessung auf Temperaturmessung) starten Sie Ihr Gerät neu (Menü Konfiguration -> Untermenü Reset -> Eintrag Neustart)!

Bei einem Neustart initialisiert das Gerät die Multifunktionskanäle neu und das jeweilige Modbusprofil enthält die entsprechenden Messwerte.

7.7 Differenzstrommessung (RCM)

Das Messgerät eignet sich als Differenzstrom-Überwachungsgerät (RCM - Residual Current Monitoring) zur Überwachung von Wechselströmen, pulsierenden Gleichströmen und Gleichströmen.

Abb. Anschlussbeispiel "Differenzstrommessung" über Stromwandler (Typ A).

Das Messgerät misst Differenzströme nach IEC/TR 60755 (2008-01) vom:

 \gtrsim Typ B und Typ B+

^j (über entsprechende Stromwandler)

Für die Differenzstrommessung des Messgeräts eignen sich Differenzstromwandler mit einem Nennstrom von siehe Kap. "19. Technische Daten" auf Seite 102.

ACHTUNG

Fehlerhafte Querströme, falsche Messungen, bis hin zur Beschädigung des Geräts und/oder Ihrer Anlage durch fehlende galvanische Trennungen!

Eine fehlende galvanische Trennung von aktiven externen Stromwandlern (oder anderen Stromgebern) an den Multifunktionskanälen gegenüber der Versorgungsspannung des Geräts, kann zu fehlerhaften Querströmen, falschen Messungen, bis hin zur Beschädigung Ihres Geräts und/oder Ihrer Anlage führen.

Die Hilfsspannungsversorgung aktiver externer Stromwandler (oder anderen Stromgebern an den Multifunktionskanälen nicht der Versorgungsspannung des Geräts entnehmen! Verwenden Sie für jeden aktiven Stromwandler, galvanisch getrennte Netzgeräte (sekundärseitig).
Passive Stromwandler an den Multifunktionskanälen nicht erden! Beachten Sie Nutzungsinformationen des Stromwandler-Herstellers.

Mit der Überwachung von Differenzströmen einer elektrischen Anlage über die Differenzstrom-Eingänge des Geräts (Klemmen 7/8, 9/10, 11/12 und 13/14), kann mit der Software GridVis[®] ein Alarm-Management aufgebaut werden. Somit kann z.B. ein Anlagenbetreiber, bevor eine Schutzeinrichtung anspricht, alarmiert werden.

Die Messung in Mittel- und Hochspannungsnetzen erfolgt grundsätzlich über Strom- und Spannungswandler.

(i) INFORMATION

Grenzwerte für Warnungen und Alarme, z.B. für den Geräte- oder Anlagenbetreiber, konfigurieren Sie bequem in der Software GridVis[®]. In der Software GridVis[®] konfigurieren Sie zudem die Übersetzungsverhältnisse der Differenzstromwandler für jeden Differenzstrom-Eingang gesondert.

(i) INFORMATION

Das Messgerät ist keine eigenständige Schutzeinrichtung gegen einen elektrischen Schlag!

7.7.1 Stromrichtung der Differenzstromwandler

Bei einer Differenzstrommessung mit Stromwandlern im AC-Betrieb an den Messeingängen, unterscheidet das Gerät nicht zwischen den Stromrichtungen. Ein fehlerhafter Anschluss der Differenzstromwandler im AC-Betrieb erfordert kein nachträgliches Umklemmen.

(i) INFORMATION

AC-Betrieb:

Das Messgerät unterscheidet nicht zwischen den Stromrichtungen der Differenzströme. Die Differenzströme der Netz- oder Lastseite sind **nicht** richtungsselektiv.

AC-/DC-Betrieb:

Achten Sie beim Einsatz von Stromwandlern im AC-/DC-Betrieb auf die Polarität! Siehe Kap. "7.7.4 Anschlussbeispiele - Differenzstrommessung" auf Seite 43.

Verletzungsgefahr durch große Ströme und hohe elektrische Spannungen an den Stromwandlern!

Sekundärseitig offen betriebene Stromwandler (hohe berührungsgefährliche Spannungsspitzen) können schwere Körperverletzungen oder Tod zur Folge haben.

- Den offenen Betrieb der Stromwandler vermeiden, unbelastete Wandler kurzschließen!
- Vor Unterbrechung der Stromzuleitung, die Sekundäranschlüsse der Stromwandler kurzschließen. Prüfschalter, die Sekundärleitungen der Stromwandler automatisch kurzschließen, in den Status "Prüfen" bringen (Prüfschalter/Kurzschließer vorher prüfen)!
 Nur Stromwandler mit Basisisolierung gemäß
- IEC 61010-1:2010 verwenden! Vorsicht, auch offensichere Stromwandler können bei offenem Betrieb berührungsge-
- fährlich sein! Achten Sie darauf, dass Schraubklemmen für den Stromwandleranschluss am Gerät ausreichend befestigt sind!
- · Befolgen Sie Hinweise und Bestimmungen in der Dokumentation Ihrer Stromwandler!
- · Vorhandene Erdungsanschlüsse an den Sekundärwicklungen der Stromwandler mit der Erde verbinden!
- · Beachten Sie die allgemeinen Sicherheitshinweise zum Umgang mit Stromwandlern und Geräten mit Differenzstrommessung.

7.7.2 Beispiel Differenzstromwandler

Angeschlossene Betriebsmittel müssen eine verstärkte oder doppelte Isolierung zu Netzstromkreisen aufweisen!

Beispiel:

Ein Differenzstromwandler soll auf isolierte Netzleitungen in einem 300 V CAT III Netz messen. *Lösung:*

Für die Isolierung der Netzleitungen und die Isolierung des Differenzstromwandlers eine Basisisolierung für 300 V CAT III vorsehen. Dies entspricht einer Prüfspannung von 1500 V AC (1 Min. Dauer) für die isolierten Netzleitungen und einer Prüfspannung von 1500 V AC (1 Min. Dauer) für den Differenzstromwandler.

7.7.3 Wichtige Hinweise zu den Differenzstrom-Messeingängen

Verletzungsgefahr oder Beschädigung des Messgeräts/Ihrer Anlage durch Kurzschluss! Zu geringe Isolierung der Betriebsmittel am Differenzstrom-Messeingang gegenüber den Netzstromkreisen kann zu berührungsgefährlichen Spannungen am Messeingang oder zur Beschädigung Ihres Geräts/Ihrer Anlage führen.

Sorgen Sie für eine verstärkte oder doppelte Isolierung zu den Netzstromkreisen. Trennen Sie Differenzstrom-Messeingänge galvanisch voneinander und galvanisch zur Versorgungsspannung (24 V)!

(i) INFORMATION

Übersetzungsverhältnisse für die Differenzstromwandler-Eingänge konfigurieren Sie einzeln am Messgerät oder über die Netzvisualisierungs-Software GridVis[®].

7.7.4 Anschlussbeispiele - Differenzstrommessung

Vorsicht Verletzungsgefahr oder Beschädigung des Messgeräts/Ihrer Anlage durch Kurzschluss! Zu geringe Isolierung der Betriebsmittel am Differenzstrom-Messeingang gegenüber den Netzstromkreisen kann zu berührungsgefährlichen Spannungen am Messeingang oder zur Beschädigung Ihres Geräts/Ihrer Anlage führen. • Sorgen Sie für eine verstärkte oder doppelte Isolierung zu den Netzstromkreisen! • Trennen Sie Differenzstrom-Messeingänge galvanisch voneinander und galvanisch zur Versorgungsspannung (24 V)!

Abb. Anschlussvariante Differenzstrommessung über Stromwandler vom Typ A und Typ B. (Netzteil mit U = 24 V DC, Restwelligkeit < 5%, Leistung = 24 W.

(i) INFORMATION

Achten Sie beim Einsatz von Stromwandlern des Typs CT-AC/DC auf die Polarität!

Abb. Anschlussvariante Differenzstrommessung über Stromwandler vom Typ B. Jeder Differenzstromwandler der Baureihe CT-AC/ DC Typ B+ RCM benötigt ein eigenes Netzteil (mit U = 24 V DC, Restwelligkeit < 5%, Leistung = 24 W).

(i) INFORMATION

Trennen Sie die Sekundärseiten der Netzteile (24 V DC) galvanisch voneinander und achten Sie darauf, dass die Netzteile keinen gemeinsamen Massebezug besitzen!

7.7.5 Anschlussbeispiel - Differenzstromüberwachung

Abb. Anschlussbeispiel UMG 801 mit Differenzstromüberwachung über 2 Multifunktionskanäle (7/8, 9/10) als Messeingänge für die Differenzströme.

Zur Einstellung und Berechnung von Differenzstrom-Grenzwerten benötigt das Gerät Parameter, die Sie in der **Software GridVis**[®] einstellen.

Ein Referenzwert für die Differenzstrom-Grenzwertberechnung kann neben den Stromkanälen und -gruppen des Basisgeräts auch für angereihte Strommessmodule angewendet und in der Software GridVis[®] konfiguriert werden.

Die Differenzstrommessung des UMG 801 und der Strommessmodule besitzt 3 Arten der Grenzwertberechnung:

- 1. **Die statische Grenzwertberechnung** Es wird ein konstanter Grenzwert festgelegt. Wird dieser Grenzwert überschritten, entsteht eine Grenzwertverletzung.
- Die dynamische Grenzwertberechnung Abhängig von einem Referenzwert ändert sich der Grenzwert für Verletzungen stetig und damit auch die jeweilige Warnung. Der jeweilige Grenzwert berechnet sich aus dem Referenzwert, multipliziert mit einem Skalierungsfaktor, plus einem statischen Offset.
- 3. Die schrittweise Grenzwertberechnung Abhängig von einem Referenzwert ändert sich der Grenzwert für Verletzungen schrittweise und damit auch die jeweilige Warnung. Es können für bis zu 10 aufsteigende Schwellenwerte des Referenzwertes (Leistungsstufen), individuelle Grenzwerte definiert werden. Die jeweiligen Grenzwerte berechnen sich aus dem statischen Offset, plus dem Grenzwert-Offset des höchsten, vom Referenzwert überschrittenen Schwellenwerts.

7.8.1 Statische Grenzwertberechnung

Benötigte Parameter:

- · Statischer Differenzstrom-Grenzwert.
- Minimale Überschreitungszeit des Differenzstrom-Grenzwerts (RCM-Alarm).
- Warnung vor Erreichen des statischen Differenzstrom-Grenzwerts (Warnlevel in %).

Differenzstrom-Grenzwert X Warnlevel = Warn-Grenzwert

Prozentualer Wert des Differenzstrom-Grenzwertes

Beispiel-Graph

Der folgende Beispiel-Graph erklärt die Differenzstrommessung mit statischer Grenzwertberechnung:

- · Differenzstrom-Grenzwert: 300 mA.
- · Warnlevel (in %)

RCM-Strom

Erläuterung:

- Die statische Grenzwertberechnung (konstanter Wert) ist aktiv.
- · Überschreitet ein **gemessener Differenzstrom** den Warnlevel, zeigt das Gerät eine Warnung.
- · Überschreitet ein **gemessener Differenzstrom** den Differenzstrom-Grenzwert, zeigt das Gerät eine Überstromverletzung an.
- Überschreitet der gemessene Differenzstrom den Differenzstrom-Grenzwert länger als die minimale Überschreitungszeit (einstellbar in der Software GridVis[®]), löst das Gerät einen Alarm aus.

7.8.2 Dynamische Grenzwertberechnung

Benötigte Parameter:

- Minimale Überschreitungszeit des Differenzstrom-Grenzwerts (RCM-Alarm).
- Warnlevel (%- Wert, Warnung vor Erreichen des Grenzwerts).
- Referenzwert Messwert (wählbar aus den Multifunktionskanälen, den Stromkanälen des Basisgeräts oder der Module).
- Tolerierter Differenzstrom (dynamischer Grenzwertanteil im Bezug auf den Referenzwert).
- · Offset (statischer Anteil) des Grenzwerts.

Der dynamische Grenzwert

- · ist abhängig von einem Referenzwert (Messwert).
- passt den Grenzwert f
 ür Verletzungen dynamisch an.

Der dynamische Grenzwert berechnet sich aus:

RCM-Grenzwert / Referenzwert

Warn-Grenzwert

Der dynamische Warn-Grenzwert ergibt sich somit aus folgender Formel:

Beispiel-Graph

Der Beispiel-Graph zum dynamischen Grenzwert zeigt den Zusammenhang zwischen Differenzstromgrenzwert und dem Referenzwert (z.B. "Leistung") mit folgenden Einstellungen:

- · Referenzwert: Leistung in kW
- · Skalierung: 10 mA / kW
- · Offset für Differenzstrom-Messung: 20 mA

Abb. Beispiel-Graph "Berechnung des dynamischen Differenzstrom-Grenzwerts".

7.8.3 Schrittweise Grenzwertberechnung

Benötigte Parameter:

- · Referenzwert (z.B. Leistung in kW).
- Minimale Überschreitungszeit des Differenzstrom-Grenzwerts (RCM-Alarm).
- Warnlevel (%- Wert, Warnung vor Erreichen des Grenzwerts).
- Eingabe von Differenzstrom-Grenzwerten für die jeweiligen Leistungsstufen (Schritte).
- · Offset (statischer Anteil) des Grenzwerts.

Der schrittweise Grenzwert

- · ist abhängig von einem Referenzwert.
- passt den Differenzstrom-Grenzwert schrittweise an, entsprechend den Leistungsstufen und den dazugehörigen Grenzwert-Offsets.
- berechnet sich aus einem statischen Offset und dem jeweiligen Grenzwert-Offset (dem höchsten vom Referenzwert überschrittenen Schwellenwert).
- · Ohne konfigurierte Leistungsstufe gilt der statische Offset.

RCM-Grenzwert / Referenzwert

Kürzel	Beschreibung	
S1, S2, S3	Schwellenwerte der schrittweisen Differenzstrom- Grenzwerte	
OS	Statischer Offset	
0 ₁ , 0 ₂ , 0 ₃	Den Differenzstrom-Schwellenwerten zugeordnete Grenzwert-Offsets	

Beispiel-Graph

Der Beispiel-Graph zeigt die stufenweise Erhöhung der Differenzstrom-Grenzwerte in Abhängigkeit des Referenzwerts "Leistung" (des Systems) mit folgenden Leistungsstufen (Schritte):

- \cdot Referenzwert: Leistung in kW.
- · Variabler Differenzstrom-Grenzwert pro Leistungsstufe.

Grenzwert RCM-Strom

Abb. Beispiel-Graph "Berechnung des schrittweisen Differenzstrom-Grenzwerts"

(i) INFORMATION

Diese Grenzwertberechnung ermöglicht eine nichtlineare Konfiguration der Schritte. Diese nichtlineare verlaufenden Schritte ermöglichen z.B. bei höheren Referenzwerten einen niedrigeren Grenzwert zu konfigurieren. Somit können z.B. Maschinen, die mit hoher Leistung einen vergleichsweise niedrigen Differenzstrom haben, optimal konfiguriert werden.

7.8.4 Beispiel: Differenzstrom-Grenzwert-Überschreitung

t min ... minimale Überschreitungszeit

Die nebenstehenden Graphen erklären die 3 Ereignisse Warngrenzwert-Überschreitung, Differenzstrom-Grenzwert-Überschreitung und das Alarm-Flag mit den Zuständen:

- Warngrenzwert-Überschreitung am Zeitpunkt Z₁: Warn-Flag (=1).
- Differenzstromgrenzwert-Überschreitung am Zeitpunkt Z₂: Überstrom-Flag (=1).
- Differenzstrom-Grenzwert-Überschreitung über die minimale Überschreitungsdauer t_{min} hinweg am Zeitpunkt Z₃: Alarm-Flag (=1).
- Differenzstrom-Grenzwert-Unterschreitung am Zeitpunkt Z_{4:} Das Gerät setzt das Überstrom-Flag (=0).
- Warngrenzwert-Unterschreitung am Zeitpunkt Z₅: Das Gerät setzt das Warn-Flag (=0).
- Das Alarm-Flag bleibt bis zur manuellen Quittierung gesetzt.

(i) INFORMATION

- Das Gerät besitzt eine Alarm-Vorlaufzeit die dazu dient, dass bei geringfügigen (kurzen) Differenzstrom-Grenzwert-Überschreitungen das Gerät **keinen** Alarm auslöst.
- Grenzwerte für Alarme und Warnungen, z.B. für den Geräte- oder Anlagenbetreiber, konfigurieren Sie bequem in der **Software GridVis**[®].

7.8.5 Kabelbrucherkennung (Ausfallüberwachung) RCM für die Multifunktionskanäle aktivieren.

Das Gerät besitzt über die **Software GridVis®/ OPC-UA** die Funktion "Kabelbrucherkennung" (Ausfallüberwachung) . Dabei kontrolliert das Gerät die Verbindungen zu den Differenzstromwandlern an den Messeingängen (Multifunktionskanälen).

Die Kabelbrucherkennung (Ausfallüberwachung) aktivieren Sie in der **Software GridVis**[®].

(i) INFORMATION

Die Kabelbrucherkennung zur Kontrolle der Stromwandler-Verbindungen funktioniert ausschließlich mit passiven Stromwandlern (AC) und Stromwandler mit 4-20 mA-Sekundärausgang.

7.9 Temperaturmessung

Wie schon im Kap. "7.6 Differenzstrommessung (RCM)" auf Seite 40 beschrieben, dienen die Klemmenpaare 7/8, 9/10, 11/12 und 13/14 optional als Anschlüsse für eine Temperaturmessung.

Die Messwerte der als Temperatureingänge deklarierten Anschlüsse entstehen durch die Bestimmung des Durchschnittswerts aus akkumulierten Widerstandswerten. Das Messgerät berechnet aus dem Durchschnittswert den Temperaturwert.

Abb. Anschlussbeispiel "2x Temperaturmessung" über PT100.

Für eine Temperaturmessung eignen sich folgende Temperatursensoren:

- · KTY83
- · KTY84
- · PT100
- · PT1000

ACHTUNG

Beschädigung des Messgeräts und/oder Ihrer Anlage durch Kurzschluss!

Zu geringe Isolierung der Betriebsmittel (z.B. des Temperatursensors) an den Temperaturmesseingängen gegenüber den Netzstromkreisen kann zur Beschädigung Ihres Messgeräts und/oder Ihrer Anlage führen.

- Sorgen Sie für eine verstärkte oder doppelte Isolierung Ihrer Betriebsmittel zu den Netzstromkreisen!
- · Verwenden Sie abgeschirmte Leitungen, um den Temperatursensor anzuschließen!
- Eine Gesamtbürde von 4 kΩ nicht überschreiten (Temperatursensor und Leitung)!

Beispiel Temperatursensor:

Ein Temperatursensor soll in der Nähe von unisolierten Netzleitungen in einem 300 V CAT III Netz messen.

Lösung:

Für den Temperatursensor eine verstärkte oder doppelte Isolierung für 300V CAT III vorsehen! Dies entspricht einer Prüfspannung für den Temperatursensor von 3000 V AC (1 Min. Dauer).

8. PC-Anschluss

8.1 Anschluss an einen PC

Zur Kommunikation des Geräts mit einem PC (mit installierter Software GridVis[®]) sind folgend die gängigsten Anschluss-Methoden beschrieben.

1. Verbindung mit einem DHCP-Server und PC. Der DHCP-Server vergibt automatisch IP-Adressen an das Gerät und den PC.

2. Anschluss als Master-Gerät mit hinterlagerter RS485-Busstruktur zu einem PC und OPC UA-Client.

3. PC-Direktverbindung zum Gerät. PC und Gerät benötigen eine feste IP-Adresse.

ACHTUNG

Sachschaden durch Sicherheitslücken in Programmen, IT-Netzwerken und Protokollen. Sicherheitslücken können zu Datenmissbrauch und zu Störungen bis hin zum Stillstand Ihrer IT-Infrastruktur führen.

Zum Schutz Ihres IT-Systems, Netzwerks, Ihrer Datenkommunikation und Messgeräte:

 Informieren Sie Ihren Netzwerkadministrator und/oder IT-Beauftragten.

Halten Sie die Messgeräte-Firmware immer auf dem aktuellen Stand und schützen Sie die Kommunikation zum Messgerät mit einer externen Firewall. Schließen Sie ungenutzte Ports.

Ergreifen Sie Schutzmaßnahmen zur Abwehr von Viren und Cyber-Angriffen aus dem Internet, durch z.B. Firewall-Lösungen, Sicherheits-Updates und Viren-Schutzprogramme. Schließen Sie Sicherheitslücken und aktualisieren oder erneuern Sie bestehende Schutzeinrichtungen für Ihre IT-Infrastruktur.

ACHTUNG

Sachschaden durch falsche Netzwerkeinstellungen.

Falsche Netzwerkeinstellungen können Störungen im IT-Netzwerk verursachen!

Informieren Sie sich bei Ihrem Netzwerkadministrator über die korrekten Netzwerkeinstellungen für Ihr Gerät.

9. Peripherie

9.1 Ethernet-Schnittstelle

Das Gerät verfügt über 2 Ethernet-Schnittstellen (Ethernet A und B). Die beiden Ethernet-Schnittstellen

- sind in Serie miteinander verbunden (eine Daisy-Chain-Verbindung ist damit realisierbar).
- · kommunizieren über **eine** IP-Adresse.

Verwenden Sie mindestens CAT5-Kabel!

ACHTUNG

Sachschaden durch falsche Netzwerkeinstellungen.

Falsche Netzwerkeinstellungen können Störungen im IT-Netzwerk verursachen!

Informieren Sie sich bei Ihrem Netzwerkadministrator über die korrekten Netzwerkeinstellungen für Ihr Gerät.

9.2 Daisy-Chain-Verbindung

Bei dieser Verbindungsart verknüpft man mehrere Geräte (Hardwarekomponenten) in Serie miteinander. Mit den beiden Ethernet-Schnittstellen des UMG 801 realisieren sie die Daisy-Chain-Verbindung, wie folgt:

Abb.: UMG 801 in einer Daisy-Chain-Verbindung

(i) INFORMATION

In dieser Abbildung besteht die Daisy-Chain-Verbindung nur, wenn

• am UMG 801 die Versorgungsspannung anliegt.
 • das UMG 801 hochgefahren ist.

Beachten Sie ferner die Verbindungsunterbrechungen bei Neustarts!

9.3 RS485-Schnittstelle (serielle Schnittstelle)

Die RS485-Schnittstelle ist bei diesem Gerät als 3-poliger Steckkontakt ausgeführt und kommuniziert über das Modbus-RTU-Protokoll.

Anschlussvermögen der Klemmen siehe Kap. "19. Technische Daten" auf Seite 102.

Beispiele RS485-Schnittstelle - UMG 801

Abb.-Bsp.:

RS485-Schnittstelle des UMG 801 (am Anfang einer Bus-Topologie - 3-poliger Steckkontakt).

RS485-Schnittstelle - UMG 801:

Abb.-Bsp.:

RS485-Schnittstelle des UMG 801 (inmitten einer Bus-Topologie - 3-poliger Steckkontakt).

i INFORMATION

- Das Gerät enthält einen integrierten Abschlusswiderstand (Schalter S1). Für ein UMG 801 am Anfang oder Ende eines Bussegments, terminieren Sie das Gerät über den Schalter S1 - S1 auf Schalterstellung "I" (on). Näheres siehe Kap. "9.3.2 Abschlusswiderstände/Terminierung" auf Seite 54.
- Für die Busverdrahtung sind CAT-Kabel ungeeignet! **Empfehlung:** Verwenden Sie zur Busverdrahtung Unitronic Li2YCY(TP) 2x2x0,22 (Lapp-Kabel).
- Ein Segment einer RS485-Busstruktur kann bis zu 32 Teilnehmer/Geräte enthalten. Verwenden Sie bei mehr als 32 Teilnehmern/Geräten Repeater, um Segmente zu verbinden.
- Um bei der Verwendung von mehreren Geräten die Addition von Ableitströmen zu verhindern, montieren Sie den Data GND als Funktionserde (siehe nebenstehende Abbildungen)!

9.3.1 Abschirmung

Verwenden Sie für Verbindungen über die Schnittstellen ein verdrilltes und abgeschirmtes Kabel und beachten Sie bei der Abschirmung folgendes:

- Erden Sie die Schirme aller Kabel, die in den Schaltschrank führen, am Schrankeintritt.
- Führen Sie Kabel über passende Kabeleinführungen in den Schaltschrank, z.B. PG-Verschraubungen.
- Verbinden Sie den Schirm großflächig und gut leitend mit einer fremdspannungsarmen Erde.
- · Verbinden Sie den Schirm **NICHT** mit Klemme C (GND).
- Fangen Sie die Kabel oberhalb der Erdungsschelle mechanisch ab, um Beschädigungen durch Bewegungen des Kabels zu vermeiden (Zugentlastung).

Abb. Abschirmungsauslegung bei Schaltschrankeintritt.

9.3.2 Abschlusswiderstände/Terminierung

Das Gerät enthält einen integrierten Abschlusswiderstand (S1). Terminieren Sie den Anfang und das Ende Ihrer Bussegmente mit Abschlusswiderständen (Schalter S1 des UMG 801 = "I" oder mit Abschlusswiderstand 120 Ω /0,25 W - siehe Kap. "9.3.3 Bus-Struktur (Bussegment)" auf Seite 55).

9.3.3 **Bus-Struktur (Bussegment)**

In einer Bus-Struktur:

Abb. Darstellung einer Bus-Struktur

- · schließen Sie alle Geräte in Linie an.
- · besitzt jedes Gerät eine eigene Geräteadresse.
- · integrieren Sie bis zu 32 Geräte (Teilnehmer). Den Anfang und das Ende Ihres Bussegments terminieren Sie mit Abschlusswiderständen (Geräte intern oder mit Abschlusswiderstand 120 Ω/0,25 W).
- · verwenden Sie bei mehr als 32 Teilnehmern Repeater (Signalverstärker), um Bussegmente zu verbinden.

- · müssen Geräte mit eingeschaltetem Busabschluss unter Speisung stehen.
- · wird empfohlen den Master an das Ende eines Segmentes zu setzen. Wird der Master mit eingeschaltetem Busabschluss ausgetauscht, ist der Bus außer Betrieb.
- · kann der Bus instabil werden, wenn ein Slave mit eingeschaltetem Busabschluss ausgetauscht wird oder spannungslos ist.
- · können Geräte die nicht am Busabschluss beteiligt sind ausgetauscht werden, ohne dass der Bus instabil wird.

Т Busabschluss eingeschaltet / bus terminator on _

Master - z.B. UMG 801

Slave - z.B. UMG 96-S2

9.4 JanBus-Schnittstelle

Die JanBus-Schnittstelle

- · ist eine herstellergebundene (proprietäre) Schnittstelle, die der Verbindung des UMG 801 mit Modulen (z.B. dem Strommessmodul 800-CT8-A) dient.
- · befindet sich auf der Unterseite des Messgeräts und versorgt angeschlossene Module mit Spannung.

(i) INFORMATION

- · Die maximale Buslänge des JanBus beträgt 100 m.
- · Informationen zum Anschluss von Modulen finden Sie in den Informationsprodukten zu den Modulen.

9.5 Digitale Eingänge

Das Gerät besitzt 4 digitale Eingänge.

Das Gerät erkennt ein Eingangssignal am digitalen Eingang, wenn

- eine Spannung von mindestens 18 V und maximal 28 V DC (typisch bei 4 mA) anliegt.
- ein Strom von mindestens 0,5 mA und maximal 6 mA fließt.

Bei Spannungen von 0 bis 5 V und Strömen kleiner 0,5 mA liegt kein Eingangssignal an.

(i) INFORMATION

Beachten Sie die Polung der Versorgungsspannung!

ACHTUNG

Übertragungsfehler und Sachbeschädigung durch elektrische Störung.

Bei einer Leitungslänge von über 30 m besteht eine erhöhte Wahrscheinlichkeit von Übertragungsfehlern und Beschädigung des Geräts durch atmosphärische Entladung!

Verwenden Sie für den Anschluss an die digitalen Ein- und Ausgänge abgeschirmte Leitungen!

Abb. Beispiel für den Anschluss externer Schaltkontakte S1 - S4 an die digitalen Eingänge 1, 2, 3 und 4.

(i) INFORMATION

Näheres zur Konfiguration der digitalen Eingänge siehe Kap. "12. Digitale Ein- und Ausgänge" auf Seite 74.

Funktionen für die digitalen Eingänge konfigurieren Sie einfach und übersichtlich in der Software Grid-Vis[®] (siehe www.janitza.de).

S0 - Impulseingang

Jeder digitale Eingang ist für den Anschluss eines S0-Impulsgebers nach DIN EN 62053-31 ausgelegt. Sie benötigen eine externe Hilfsspannung mit einer Ausgangsspannung im Bereich 18 .. 28 V DC und einen Widerstand mit 1,5 kOhm.

Abb. Beispiel für den Anschluss eines S0 Impulsgebers am digitalen Eingang 1.

9.6 Digitale Ausgänge

Das Gerät besitzt 4 digitale Ausgänge, die

- · über Optokoppler galvanisch von der Auswerteelektronik getrennt sind.
- \cdot einen gemeinsamen Bezug haben.
- \cdot nicht kurzschlussfest sind.
- \cdot eine externe Hilfsspannung benötigen.
- · als Impulsausgänge zur Zählung des Energieverbrauchs verwendet werden können.
- · Gleich- und Wechselstromlasten über Relais oder Halbleiterelektronik schalten können.
- · über Modbus gesteuert werden können.

Digital Output

ACHTUNG

Anschlussfehler können das Gerät beschädigen und damit zum Sachschaden führen.

Die digitalen Ausgänge sind nicht kurzschlussfest! Anschlussfehler können daher zur Beschädigung der Anschlüsse führen.

Achten sie beim Anschließen der Ausgänge auf eine korrekte Verdrahtung.

(i) INFORMATION

- Näheres zur Konfiguration der digitalen Ausgänge siehe Kap. "12. Digitale Ein- und Ausgänge" auf Seite 74.
- Funktionen für die digitalen Ausgänge konfigurieren Sie einfach und übersichtlich in der Software GridVis[®] (siehe www.janitza.de).
- · Zur Verwendung der Software GridVis[®] benötigt Ihr Gerät eine Verbindung (Schnittstelle) zu einem PC.
- Bei der Verwendung der digitalen Ausgänge als Impulsausgänge können Messfehler durch Restwelligkeit entstehen. Verwenden Sie für die Versorgungsspannung (DC) der digitalen Ein- und Ausgänge Netzteile, deren Restwelligkeit unter 5% der Versorgungsspannung liegt.

Abb. Anschlussbeispiel von zwei Relais an die digitalen Ausgänge

ACHTUNG

Übertragungsfehler und Sachbeschädigung durch elektrische Störung.

Bei einer Leitungslänge von über 30 m besteht eine erhöhte Wahrscheinlichkeit von Übertragungsfehlern und Beschädigung des Geräts durch atmosphärische Entladung!

Verwenden Sie für den Anschluss an die digitalen Ein- und Ausgänge abgeschirmte Leitungen! Das Gerät besitzt einen passiven analogen Ausgang, der einen Strom von 0 - 20 mA oder 4 - 20 mA ausgeben kann. Für den Betrieb ist ein externes Netzteil (24 V DC) erforderlich.

Die anschließbare Bürde darf einen Widerstand von 300 Ohm nicht überschreiten. Bei größeren Widerständen beschränkt das Gerät den Ausgabebereich des analogen Ausgangs auf 20 mA.

Der dem analogen Ausgang zugeordnete Messwert, der Start-, Mittel- und Endwert sowie der Ausgangsbereich 0 - 20 mA oder 4 - 20 mA konfigurieren Sie einfach und übersichtlich in der Software GridVis[®] (Weitere Informationen zur Konfiguration des analogen Ausgangs, siehe Kap. 13 auf Seite 78).

Analog Output

Abb. Anschlussbeispiel für den analogen Ausgang

10. Bedienung und Tastenfunktionen

10.1 Bedienelemente

Für eine Installation, Inbetriebnahme und Konfiguration ohne PC, besitzt das Gerät eine Anzeige und 6 Funktionstasten. Die 6 Funktionstasten dienen der

- · Auswahl von Messwert-Anzeigen.
- · Navigation innerhalb der Menüs.
- · Geräte-Konfiguration.

An zui	zeige für l r Geräte-ł	Messw Konfigu	erte und ration	Funktionstasten
	ł	lome		Power Analyser
	Spannung	Strom	Leistung	
L1		1,45 A	0,333 kW	ESC
L2	234 V	2,77 A	0,649 kW	
L3	233 V	1,32 A	0,308 kW	4 5 6
Σ	50.00Hz	5,54 A	1,290 kW	
ESC				UMG 801 Janitza

Abb. Messwert-Anzeige UMG 801 "Home" und Funktionstasten.

10.2 Funktionstasten

Taste	Funktion
ESC 1	 Menü anzeigen. 1 Schritt zurück. Aktion abbrechen (<i>ESC)</i> Mehrmaliges Betätigen führt zum <i>Menü</i>.
▲ ²	 Menü oder Position wählen (nach oben, "▲"). Auswahl ändern (Ziffer +1).
4 ³	· Auswahl bestätigen (Enter).
 4 	· Position wählen (nach links, " ◀ ").
▼ ⁵	 Menü oder Position wählen (nach unten, "▼ "). Auswahl ändern (Ziffer -1).
▶ ⁶	 Position wählen (nach rechts, " ▶").

Tab.: Funktionstasten

Nach einer Netzwiederkehr startet das Gerät mit der Messwert-Anzeige Home.

Durch Betätigen der Funktionstaste 1 ESC erscheint das Menü.

10.3 Messwertanzeige

Nach einer Netzwiederkehr startet das Gerät mit der Messwert-Anzeige *Home.*

(i) INFORMATION

Beachten Sie das die Dauer des Systemstarts (Booting) des Geräts variieren kann (z. B. abhängig von der Anzahl der angeschlossenen Module). Während des Systemstarts erscheint die "Booting-Anzeige".

Home				
	Spannung	Strom	Leistung	
L1	230 V	1,45 A	0,333 kW	
L2	234 V	2,77 A	0,649 kW	
L3	233 V	1,32 A	0,308 kW	
Σ	50.00Hz	5,54 A	1,290 kW	
ESC				

Abb. Messwert-Anzeige "Home"

10.4 Menü

Durch Betätigen der Taste 1 *ESC* erscheint das Menü mit der Auswahl der einzustellenden Parameter und Messgrößen (Menü-Einträge).

Menü	
Home	
Zeigerdiagramm	
Spannung	\geq
Strom	>
Leistung	>
▲ ▼	-

Abb. Fenster "Menü"

10.5 PIN (Passwort)

Die "Konfiguration" des Gerätes erfordert die Eingabe einer PIN (Passwort). Standard-Einstellung (Werkseinstellung) der Geräte-PIN:

0000000

Die "PIN" dient dem Schutz vor unerlaubtem Zugriff oder vor versehentlichem Ändern der Konfigurationsdaten. Die PIN-Konfiguration erreichen Sie unter *Menü > Konfiguration > System > PIN*.

	System
PIN	00000000
Zeit	06:27:01
Datum	2019-06-27
ESC	⊾

Anzeige "System" > Eintrag "Passwort"

(i) INFORMATION

- Zur Konfiguration der PIN beachten Sie bitte Kap. 11.7.1 auf Seite 70.
- Für die Sicherheit und zum Schutz vor versehentlichem Ändern der Konfigurationsdaten des Geräts, ändern Sie Ihre PIN!
- · PIN notieren und sicher aufbewahren!
- Ohne PIN können Sie Ihr Gerät nicht konfigurieren! Benachrichtigen Sie bei Verlust der PIN den Support des Herstellers!

Menü-Eintrag wählen:

- · Betätigen Sie Taste 1 ESC.
- · Es erscheint das Fenster Menü.
- · Wählen Sie mit den Tasten 2 "▲" und 5 "◄" Ihren Menü-Eintrag.
- Bestätigen Sie Ihren Menü-Eintrag mit Taste 3 Enter.
- · Es erscheint das Fenster des gewählten Menü-Eintrags.
- Taste 1 ESC macht Ihren Schritt rückgängig oder Sie gelangen durch mehrmaliges Betätigen zurück zum Fenster *Menü*.

11. Konfiguration

11.1 Das Fenster Konfiguration

Das Menü Konfiguration des Geräts enthält alle Parameter in denen Sie Einstellungen vornehmen. Zur Konfiguration benötigt das Gerät die Versorgungsspannung. Vergleichen Sie dazu Kap. "14. Inbetriebnahme" auf Seite 80.

• Befinden Sie sich in der Messwert-Anzeige *Home*, gelangen Sie durch Betätigen der Taste 1 ESC in das Fenster *Menü*.

Menü			
Leistung	>		
Energie	>		
Multifunktionskanaele	>		
Konfiguration	>		
Diagnose	>		
▲ ▼	L,		

Abb. Fenster Menü -> Eintrag Konfiguration

- Wählen Sie mit den Tasten 2 (▲) und 5 (▼) den Menüeintrag Konfiguration und bestätigen Sie mit Taste 3 Enter.
- · Es erscheint das Fenster Konfiguration.

Abb. Fenster Konfiguration)

(i) INFORMATION

Passwortgeschützte Geräte verlangen vor der Konfiguration die Eingabe eines Passworts! Falls Ihr Gerät passwortgeschützt ist, geben Sie Ihr Passwort ein, um in das Fenster Konfiguration zu gelangen (vgl. Kap. "10.5 PIN (Passwort)" auf Seite 61.

11.2 Ethernet (TCP/IP) konfigurieren

(i) INFORMATION

- Informieren Sie sich bei Ihrem Netzwerkadministrator zu den Ethernet-Netzwerkeinstellungen für Ihr Gerät.
- Informationen zur Verbindung und Kommunikation Ihres Geräts mit der Software, finden Sie in der Online-Hilfe zur Software-GridVis[®].

Nach einer Netzwiederkehr startet das Gerät mit der Messwerte-Anzeige *Home*.

- Betätigen Sie die Funktionstaste 1 *ESC*, um das Menü zu öffnen.
- Wählen Sie mit den Tasten 2 (▲) und 5 (▼) den Menüeintrag Konfiguration und bestätigen Sie mit Taste 3 Enter.
- Es erscheint das Fenster *Konfiguration* mit dem Eintrag *Ethernet (TCP/IP)*.

Abb. Fenster Konfiguration -> Eintrag Ethernet (TCP/IP)

- Wählen Sie mit den Tasten 2 (\blacktriangle) und 5 (\checkmark) den Eintrag *Ethernet (TCP/IP*) und bestätigen Sie mit Taste 3 *Enter*.
- · Es erscheint das Fenster Ethernet (TCP/IP).

Ethernet (TCP/IP)			
IP-Konfiguration	DHCP		
IP-Adresse	192. 168. 3. 177		
Netzmaske	255. 255. 255. 0		
Gateway	192. 168. 3. 4		
ESC	L		

Abb. Fenster Ethernet (TCP/IP)

11.2.1 Einstellungen zur Kommunikation

Das Gerät verfügt über 2 Arten der Adressvergabe für eine Ethernet-Verbindung (TCP/IP):

1. Statisch (feste IP-Adresse)

Der Anwender wählt IP-Adresse, Netmask und Gateway am Gerät. Verwenden Sie diesen Modus für einfache Netzwerke ohne DHCP-Server.

2. DHCP

Beim Start erhält das Gerät automatisch IP-Adresse, Netzmaske und Gateway vom DHCP-Server.

Standardeinstellung des Geräts ist DHCP!

Ethernet (TCP/IP)			
IP-Konfiguration	DHCP		
IP-Adresse	192. 168. 3. 177		
Netzmaske	255. 255. 255. 0		
Gateway	192. 168. 3. 4		
ESC	به 👻		

Abb. Fenster Ethernet (TCP/IP)

Konfigurieren Sie Ihre Ethernet (TCP/IP) Einstellungen über die Funktionstasten (vgl. Kap. 10.2 auf Seite 60) wie folgt:

- Wählen Sie den Eintrag *IP-Konfiguration* (Art der Adressvergabe) und betätigen Sie die Taste 3 *Enter*.
- · Der Eintrag *DHCP* (Standard-Einstellung) blinkt "gelb".
- Wechseln Sie ggf. zwischen den Arten der Adressvergabe über die Tasten 2 (▲) und 5 (▼).
- \cdot Bestätigen Sie Ihre Wahl mit Taste 3 Enter.
- Wechseln Sie zum Eintrag *IP-Adresse* (Taste 2 "▲" und 5 "▼") und betätigen Sie die Taste 3 *Enter*.
- · Der Eintrag der IP-Adresse blinkt "gelb".
- Mit den Tasten 4 (

) und 6 () ändern Sie die
 Position der einzustellende Ziffer und mit den
 Tasten 2 () und 5 () die Ziffer (-1/+1).

Tipp! Beginnen Sie jeweils mit der Einstellung der rechten Ziffer eines jeden Dreierblocks.

- · Bestätigen Sie abschließend Ihre Eingabe für die *IP-Adresse* mit Taste 3 *Enter*.
- Die Konfiguration der *Netzmaske* und des *Gate-ways* erfordern die gleiche Vorgehensweise.
- Nach Beendigung der Eingaben betätigen Sie die Taste 1 ESC, um zurück in das Fenster Menü zu gelangen.

11.2.2 Kommunikation über OPC UA

OPC UA ist Standard für einen plattformunabhängigen Datenaustausch. Der Datenaustausch über OPC UA erfolgt über die Ethernet-Schnittstellen Ihres Geräts.

Die Ethernet-Schnittstelle und der Datenaustausch über OPC UA konfigurieren Sie bequem in der Software GridVis[®].

(i) INFORMATION

- Informieren Sie sich bei Ihrem Netzwerkadministrator über die Ethernet-Netzwerkeinstellungen für Ihr Gerät.
- Informationen zur Verbindung und Kommunikation Ihres Geräts mit der Software finden Sie in der Online-Hilfe zur Software-GridVis®

11.3 Feldbus konfigurieren (RS485-Schnittstelle)

Nach einer Netzwiederkehr startet das Gerät mit der Standardanzeige *Home*.

- · Betätigen Sie die Funktionstaste 1 *ESC*, um das Menü zu öffnen.
- Wählen Sie mit den Tasten 2 "▲" und 5 "▼" den Menüeintrag Konfiguration und bestätigen Sie mit Taste 3 Enter.
- Es erscheint das Fenster *Konfiguration* mit dem Eintrag *Feldbus.*

Konfiguration			
Ethernet (TCP/IP)			
Feldbus			
Stromwandler			
Spannungswandler			
Anzeige			
ESC 🔺 🗸 🚽			

Abb. Fenster Konfiguration -> Eintrag Feldbus

- Wählen Sie mit den Tasten 2 "▲" und 5 "▼" den Eintrag *Feldbus* und bestätigen Sie mit Taste 3 *Enter*.
- · Es erscheint das Fenster *Feldbus* mit den Parametern:
- Geräte-Adresse.
- Baudrate.
- Datenrahmen.

Abb. Fenster Feldbus

- Konfigurieren die Parameter f
 ür den Feldbus (RS485-Schnittstelle) durch w
 ählen des jeweiligen Eintrags und Best
 ätigung mit Taste 3 Enter.
- · Je nach gewähltem Parameter erscheint der dazugehörige Eintrag "gelb".
- Mit den Tasten 4 (

) und 6 () ändern Sie die Position der einzustellende Ziffer und mit den Tasten 2 () und 5 () die Ziffer (-1/+1).
- Bestätigen Sie Ihre Eingaben mit Taste 3 *Enter* oder beenden Sie die Aktion mit Taste 1 *ESC*.

 Nach Beendigung der Eingaben betätigen Sie die Taste 1 ESC, um zurück in das Fenster Menü zu gelangen.

11.3.1 Einstellungen zur Kommunikation

· Geräte-Adresse:

Wählen Sie für das Gerät eine Geräteadresse, mit der das Gerät in der Bus-Struktur angesprochen wird. Jede Geräteadresse existiert in einer Bus-Struktur einmal! (Vgl. Kap. "9.3 RS485-Schnittstelle (serielle Schnittstelle)" auf Seite 53)

Einstellbereich: 1 - 247 (lt. Modbus-Standard) Standardeinstellung: 1

· Baudrate:

Wählen Sie für alle Geräte in der Busstruktur eine einheitliche Baudrate! Einstellbereich: *9600, 19200, 38400, 57600, 115200 kbps.* Standardeinstellung: *115200 kbps*

· Datenrahmen:

Wählen Sie für alle Geräte in der Busstruktur einen einheitlichen Datenrahmen. Einstellbereich:

- "1 stopbit, odd" (Parität odd bzw. ungerade, mit 1 stopbit)
- "1 stopbit, even" (Parität even bzw. gerade, mit 1 stopbit)
- "1 stopbit, none" (Parität none bzw. keine, mit 1 stopbit).
- "2 stopbits" (Parität none bzw. keine, mit 2 stopbits).
- Standardeinstellung: 1 stopbit, none (keine Parität).

ACHTUNG

Sachschaden durch falsche Netzwerkeinstellungen!

Falsche Netzwerkeinstellungen können Störungen im IT-Netzwerk verursachen.

Informieren Sie sich bei ihrem Netzwerkadministrator über die korrekten Netzwerkeinstellungen für Ihr Gerät.

11.4 Stromwandler konfigurieren

(i) INFORMATION

Beachten Sie vor der Konfiguration von Stromwandlerverhältnissen die Messwandler gemäß ihren Angaben auf dem Geräte-Typenschild und den technischen Daten anzuschließen!

- Betätigen Sie die Funktionstaste 1 *ESC*, um das Menü zu öffnen.
- Wählen Sie mit den Tasten 2 "▲" und 5 "▼" den Menüeintrag Konfiguration und bestätigen Sie mit Taste 3 Enter.
- · Es erscheint das Fenster Konfiguration.
- Wählen Sie im Fenster Konfiguration mit den Tasten 2 " ▲" und 5 " ▼" den Eintrag Stromwandler und bestätigen Sie mit Taste 3 Enter.

Konfiguration	
Ethernet (TCP/IP)	
Feldbus	
Stromwandler	
Spannungswandler	
Anzeige	
ESC 🔺 🔻 🚽	

Abb. Fenster Konfiguration -> Eintrag Stromwandler

· Es erscheint das Fenster Stromwandler.

Stromwandler				
Geraet	Basi	sgeraet		
	Primaer	Sekundaer		
Wandler 14	5 A	5 A		
Wandler 58	5 A	5 A		
ESC 4	• •	→ 4		

Abb. Fenster Stromwandler -> Eintrag Gerät

- Wählen Sie im Fenster *Stromwandler* den Eintrag *Gerät* und bestätigen Sie mit Taste 3 *Enter*.
- Der Eintrag Gerät erscheint "blau" markiert. Im Eintrag Gerät wählen Sie zwischen Basisgerät und eventuell angereihten Strommessmodulen (bis zu 10 Strommessmodule).
- Bestätigen Sie den Eintrag *Basisgerät* mit Taste 3 *Enter*.
- Wechseln Sie mit Taste 5 "•" zur Einstellung der Primärseite der Stromwandler (Strommesseingänge 11..14).

• Es erscheint der Eintrag für die Primärseite der Stromwandler I1..I4 "blau" markiert.

Abb. Fenster Stromwandler -> Eintrag Primär für Stromwandler 1..4.

· Betätigen Sie Taste 3 Enter.

- Der Eintrag für die Primärseite der Stromwandler I1..I4 "blinkt".
- Mit den Tasten 4 (◀) und 6 (▶) ändern Sie die Position der einzustellende Ziffer und mit den Tasten 2 (▲) und 5 (▼) die Ziffer (-1/+1).
- Bestätigen Sie Ihre Eingaben mit Taste 3 Enter oder beenden Sie die Aktion mit Taste 1 ESC.
- Mit Taste 6 () wechseln Sie zur Konfiguration der Sekundärseite der Stromwandler I1..I4.
- Konfigurieren Sie die Sekundärseite der Stromwandler I1..I4 auf die gleiche Weise.
- Bestätigen Sie Ihre Eingaben mit Taste 3 Enter oder beenden Sie die Aktion mit Taste 1 ESC.
- Nach Beendigung der Eingaben betätigen Sie die Taste 1 ESC, um zurück in das Fenster Menü zu gelangen.
- Konfigurieren Sie die Stromwandlerverhältnisse
 I5..I8 entsprechend der Stromwandlerverhältnisse
 se I1..I4!

i INFORMATION

Strom- und Spannungswandler-Verhältnisse konfigurieren Sie auch in der Geräte-Konfiguration der **Software GridVis**[®]. Eine Beschreibung der Konfiguration in der Software finden SIe in der dazugehörigen Online-Hilfe und den Tutorials.

Einstellungen Stromwandler (I1..I4 und I5..I8):

Stromwandler (primär): Einstellbereich 1 - 10000 A **Standardeinstellung:** 5 A

Stromwandler (sekundär): Einstellbereich 1 - 5 A **Standardeinstellung:** 5 A

11.5 Spannungswandler konfigurieren

(i) INFORMATION

Beachten Sie vor der Konfiguration von Spannungswandlerverhältnissen die Messwandler gemäß ihren Angaben auf dem Geräte-Typenschild und den technischen Daten anzuschließen!

- · Betätigen Sie die Funktionstaste 1 *ESC*, um das Fenster *Menü* zu öffnen.
- Wählen Sie mit den Tasten 2 "▲" und 5 "▼" den Menüeintrag Konfiguration und bestätigen Sie mit Taste 3 Enter.
- · Es erscheint das Fenster Konfiguration.
- Wählen Sie im Fenster Konfiguration mit den Tasten 2 "▲" und 5 "▼" den Eintrag Spannungswandler und bestätigen Sie mit Taste 3 Enter.

Konfiguration	
Ethernet (TCP/IP)]
Feldbus	
Stromwandler	
Spannungswandler	
Anzeige	
ESC 🔺 🗸 🚽	

Abb. Fenster Konfiguration -> Eintrag Spannungswandler

• Es erscheint das Fenster Spannungswandler mit "blau" markiertem Eintrag für die Primärseite1..4.

Spannungswandler		
	Primaer	Sekundaer
Wandler 14	400 V	400 V
ESC 4	-	<u>ب</u> (

Abb. Fenster Spannungswandler -> Eintrag Primär für Spannungswandler 1..4.

- · Betätigen Sie Taste 3 Enter.
- · Der Eintrag für die Primärseite der Spannungswandler 1..4 "blinkt".
- Bestätigen Sie Ihre Eingaben mit Taste 3 *Enter* oder beenden Sie die Aktion mit Taste 1 *ESC*.
- Mit Taste 6 () wechseln Sie zur Konfiguration der Sekundärseite der Spannungswandler 1..4.
- · Konfigurieren Sie die Sekundärseite der Spannungswandler 1..4 auf die gleiche Weise.
- Bestätigen Sie Ihre Eingaben mit Taste 3 *Enter* oder beenden Sie die Aktion mit Taste 1 *ESC*.
- Nach Beendigung der Eingaben betätigen Sie die Taste 1 ESC, um zurück in das Fenster Menü zu gelangen.

Einstellungen Spannungswandler (1..4):

Spannungswandler (primär): Einstellbereich 100 - 60000 V Standardeinstellung: 400 V

Spannungswandler (sekundär): Einstellbereich 100 - 400 V Standardeinstellung: 400 V

11.6 Anzeige konfigurieren

Über den Eintrag Anzeige des Messgeräts konfigurieren Sie folgende Einstellungen:

- 1. Sprache
- 2. Standby (nach)
- 3. Helligkeit

11.6.1 Sprache

Im Eintrag *Sprache* des Fensters *Anzeige* konfigurieren Sie die Sprache für die Benutzeroberfläche des Geräts:

- · Betätigen Sie die Funktionstaste 1 *ESC*, um das Fenster *Menü* zu öffnen.
- Wählen Sie mit den Tasten 2 "▲" und 5 "▼" den Menüeintrag Konfiguration und bestätigen Sie mit Taste 3 Enter.
- \cdot Es erscheint das Fenster Konfiguration.
- Wählen Sie im Fenster Konfiguration mit den Tasten 2 " ▲" und 5 " ▼" den Eintrag Anzeige und bestätigen Sie mit Taste 3 Enter.

Konfiguration			
Ethernet (TC	P/IP)		
Feldbus			
Stromwandle	er		
Spannungsw	andler		
Anzeige			
ESC		-	ہے

Abb. Fenster Konfiguration -> Eintrag Anzeige

• Es erscheint das Fenster *Anzeige* mit "blau" markiertem Eintrag *Sprache*.

Abb. Fenster Anzeige -> Eintrag Sprache

- · Betätigen Sie Taste 3 Enter.
- · Der Eintrag Sprache erscheint "gelb".

- · Wählen Sie mit den Tasten 2 "▲" und 5 "▼" die Sprache (Deutsch oder Englisch) und bestätigen mit Taste 3 Enter.
- Die Einträge der Benutzeroberfläche wechseln in die gewählte Sprache.
- · Über Taste 1 ESC gelangen Sie zurück zum Menü.

11.6.2 Stand by (nach)

Zeit in Sekunden, nach der die Anzeigen-Helligkeit auf die eingestellte Helligkeit (Standby nach) umschaltet.

> Einstellbereich: 10 s - 3600 s Standardeinstellung: 600 s

- · Öffnen Sie das Fenster *Anzeige,* wie zuvor beschrieben..

Abb. Fenster Anzeige -> Eintrag Helligkeit

- Der Eintrag Standby (nach) erscheint "gelb".
 Mit den Tasten 4 (◀) und 6 (▶) ändern Sie die Position der einzustellende Ziffer und mit den
- Tasten 2 (\checkmark) und 5 (\checkmark) die Ziffer (-1/+1). • Bestätigen Sie Ihre Eingaben mit Taste 3 *Enter*
- oder beenden Sie die Aktion mit Taste 1 *ESC*. • Nach Beendigung der Eingaben betätigen Sie die Taste 1 *ESC*, um zurück in das Fenster *Menü* zu gelangen.

11.6.3 Helligkeit

Im Eintrag *Helligkeit* des Fensters *Anzeige* konfigurieren Sie die Helligkeit der Geräte-Anzeige.

> Einstellbereich: 10% - 100% Standardeinstellung: 60% mit 10% = dunkel 100% = sehr hell

- · Öffnen Sie das Fenster *Anzeige*, wie zuvor beschrieben.
- Wählen Sie im Fenster Anzeige mit Taste 5 "▼" den Eintrag Helligkeit.

Abb. Fenster Anzeige -> Eintrag Helligkeit

- · Betätigen Sie Taste 3 Enter.
- · Der Eintrag Helligkeit erscheint "gelb".
- Mit den Tasten 4 (

) und 6 () ändern Sie die Position der einzustellende Ziffer und mit den Tasten 2 () und 5 () die Ziffer (-1/+1).
- Bestätigen Sie Ihre Eingaben mit Taste 3 *Enter* oder beenden Sie die Aktion mit Taste 1 *ESC*.
- Nach Beendigung der Eingaben betätigen Sie die Taste 1 ESC, um zurück in das Fenster Menü zu gelangen.

11.7 System konfigurieren

Über den Eintrag System des Messgeräts konfigurieren Sie folgende Einstellungen:

- 1. PIN
- 2. Zeit
- 3. Datum

11.7.1 PIN

Um die Konfigurationsdaten des Geräts vor unerlaubtem Zugriff oder vor versehentlichem Ändern zu schützen, verfügt das Gerät über die Funktion "*PIN*". Die PIN besteht aus einer 8-stelligen Zahlenkombination. Die Standard-Einstellung der Geräte-PIN:

0000000

Beachten Sie bitte! Die PIN "00000000" erlaubt den offenen Zugang zur Geräte-Konfiguration (keine PIN-Abfrage)!

Für die Sicherheit und zum Schutz vor versehentlichem Ändern der Konfigurationsdaten des Geräts, ändern Sie Ihre PIN!

Neue PIN einstellen

- · Öffnen Sie das Fenster *Konfiguration*, wie zuvor beschrieben.
- Wählen Sie im Fenster Konfiguration mit den Tasten 2 "▲" und 5 "▼" den Eintrag System und bestätigen Sie mit Taste 3 Enter.
- Wählen Sie im Fenster System mit den Tasten 2 "▲" und 5 "▼" den Eintrag PIN ("blau" markiert) und bestätigen Sie mit Taste 3 Enter.

System		
PIN		00000000
Zeit		06:27:01
Datum		2019-06-27
ESC	•	ه.

Abb. Fenster System -> Eintrag Passwort

- · Der Eintrag PIN erscheint "gelb".
- Mit den Tasten 4 (
) und 6 (
) ändern Sie die Position der einzustellende Ziffer und mit den Tasten 2 (
) und 5 (
) die Ziffer (-1/+1).
- Bestätigen Sie Ihre Eingaben mit Taste 3 *Enter* oder beenden Sie die Aktion mit Taste 1 *ESC*.

- Die Konfigurationsdaten des Geräts sind nun mit einer **neuen PIN** geschützt.
- Nach Beendigung der Eingaben betätigen Sie die Taste 1 *ESC*, um zurück in das Fenster *Menü* zu gelangen.

(i) INFORMATION

- \cdot Das Messgerät besitzt ab Werk die PIN 0000000.
- Für die Sicherheit und zum Schutz vor versehentlichem Ändern der Konfigurationsdaten des Geräts, ändern Sie Ihre PIN!
- · PIN notieren und sicher aufbewahren!
- Ohne PIN können Sie Ihr Gerät nicht konfigurieren! Benachrichtigen Sie bei Verlust der PIN den Support des Herstellers!

11.7.2 Zeit

Einstellungen zur Zeit, der Zeitsynchronisation und der Zeitzonen ändern Sie über die **Software GridVis®**.

Die Zeit-Anzeige erreichen Sie unter Menü > Konfiguration > System > Zeit.

Abb. Fenster System -> Eintrag Zeit

11.7.3 Datum

Einstellungen zum Datum ändern Sie über die Software GridVis[®].

Die **Datums-Anzeige** erreichen Sie unter **Menü > Konfiguration > System > Datum.**

System			
PIN			00000000
Zeit			06:27:01
Datum			2019-06-27
ESC 4	`	•	یے

Abb. Fenster System -> Eintrag Datum

11.8 Reset (Zurücksetzen)

Mit dieser Funktion

- löschen Sie Ihre Gerät-Einstellungen (zurück auf Werkseinstellungen).
- · starten Sie das Gerät neu..
- · löschen Sie konfigurierte Min- und Max-Werte.

11.8.1 Werkseinstellungen

Mit dieser Funktion setzen Sie alle Einstellungen, wie Konfigurationen und aufgezeichnete Daten, auf die Werkseinstellungen zurück.

- · Öffnen Sie das Fenster Konfiguration, wie zuvor beschrieben.
- Wählen Sie im Fenster Konfiguration mit den Tasten 2 "▲" und 5 "▼" den Eintrag Zurücksetzen und bestätigen Sie mit Taste 3 Enter.
- · Es erscheint das Fenster Zurücksetzen.
- Wählen Sie im Fenster Zurücksetzen mit den Tasten 2 "▲" und 5 "▼" den Eintrag Werkseinstellungen ("blau" markiert) und bestätigen Sie mit Taste 3 Enter.

Zurücksetzen		
Werkseinstellungen	Nein	
Neustart	Nein	
Min/MaxWerte	Nein	
ESC	•	4

Abb. Fenster Zurücksetzen -> Eintrag Werkseinstellungen

- · Der Eintrag Werkseinstellungen erscheint "gelb".
- · Wählen Sie mit den Tasten 2 "▲" und 5 "▼" "Ja" oder "nein".
- Nach Bestätigung der Eingabe *"Ja"* mit Taste 3 *Enter* erscheint ein Warnhinweis.
- Bestätigen Sie den Warnhinweis mit Taste 3 *Enter* oder beenden Sie die Aktion mit Taste 1 *ESC*.
- Betätigen der Taste 3 Enter bootet das Gerät und setzt es auf Werkseinstellungen zurück (dauert ca. 1 Minute).
- · Es erscheint die Messwert-Anzeige "Home".

11.8.2 Neustart

Diese Funktion startet das Gerät neu.

- · Öffnen Sie das Fenster Konfiguration, wie zuvor beschrieben.
- Wählen Sie im Fenster Konfiguration mit den Tasten 2 "▲" und 5 "▼" den Eintrag Zurücksetzen und bestätigen Sie mit Taste 3 Enter.
- · Es erscheint das Fenster Zurücksetzen.
- Wählen Sie im Fenster Zurücksetzen mit den Tasten 2 "▲" und 5 "▼" den Eintrag Neustart ("blau" markiert) und bestätigen Sie mit Taste 3 Enter.

Zurücksetzen		
Werkseinstellungen	Nein	
Neustart	Nein	
Min/MaxWerte	Nein	
ESC	. -	

Abb. Fenster Zurücksetzen -> Eintrag Neustart

- · Der Eintrag Neustart erscheint "gelb".
- · Wählen Sie mit den Tasten 2 "▲" und 5 "▼" "Ja" oder "nein".
- Nach Bestätigung der Eingabe *"Ja"* mit Taste 3 *Enter* erscheint ein Warnhinweis.
- Bestätigen Sie den Warnhinweis mit Taste 3 *Enter* oder beenden Sie die Aktion mit Taste 1 *ESC*.
- Betätigen der Taste 3 *Enter* startet das Gerät neu (dauert ca. 1 Minute).
- · Es erscheint die Messwert-Anzeige "Home".
11.8.3 Minimal-, Maximal- und Mittelwerte zurücksetzen

Mit dieser Funktion löscht der Geräte-Nutzer alle Minimal-, Maximal- und Mittelwerte im Gerät gleichzeitig. Eine Auswahl bestimmter Energiezähler ist nicht möglich.

(i) INFORMATION

Löschen Sie vor der Inbetriebnahme mögliche produktionsbedingte Inhalte der Energiezähler, Minimal-, Maximal- und Mittelwerte und Aufzeichnungen!

- · Öffnen Sie das Fenster Konfiguration, wie zuvor beschrieben.
- Wählen Sie im Fenster Konfiguration mit den Tasten 2 " ▲ " und 5 " ▼ " den Eintrag Zurücksetzen und bestätigen Sie mit Taste 3 Enter.
- · Es erscheint das Fenster Zurücksetzen.
- Wählen Sie im Fenster Zurücksetzen mit den Tasten 2 "▲" und 5 "▼" den Eintrag Min.-/ Max.-Werte ("blau" markiert) und bestätigen Sie mit Taste 3 Enter.

Zurücksetzen			
Werkseinstellungen	Nein		
Neustart	Nein		
Min/MaxWerte	Nein		
ESC 🔺	ي 🗸 🗸		

Abb. Fenster Zurücksetzen -> Eintrag Min.-/Max.-Werte

- · Der Eintrag Min.-/Max.-Werte erscheint "gelb".
- Wählen Sie mit den Tasten 2 "▲" und 5 "▼" "Ja" oder "nein".
- Nach Bestätigung der Eingabe *"Ja"* mit Taste 3 *Enter* erscheint ein Warnhinweis.
- Bestätigen Sie den Warnhinweis mit Taste 3 *Enter* oder beenden Sie die Aktion mit Taste 1 *ESC*.
- Betätigen der Taste 3 Enter löscht die Minimal-, Maximal- und Mittelwerte des Geräts.
- · Betätigen Sie Taste 1 *ESC,* um zurück in das Fenster *Menü* zu gelangen.

11.9 Modul-Identifikation / Diagnose

(i) INFORMATION

Bevor Sie die Funktion Modul-Identifikation (Menüeintrag *Diagnose*) am Basisgerät starten, achten Sie bitte auf korrekt montierte und angeschlossene Module. Nur korrekt montierte und an das Basisgerät angeschlossene Module garantieren die Stromversorgung und Datenübertragung.

Das Basisgerät besitzt die Option, den Funktionsumfang durch Strommessmodule zu erweitern (um bis zu 10 Strommessmodule). Das Basisgerät erkennt das Modul automatisch. Über den Menüeintrag *Diagnose* konfigurieren Sie die Modul-Identifikation.

(i) INFORMATION

Ausführliche Informationen zu den Modulen, zum Menüeintrag *Diagnose* und zur Modul-Identifikation finden Sie im Benutzerhandbuch der Module.

12. Digitale Ein- und Ausgänge

Wie schon im Kapitel "9. Peripherie" auf Seite 52 beschrieben, besitzt das Gerät jeweils 4 digitale Ein- und Ausgänge.

Die digitalen Ein- und Ausgänge konfigurieren Sie einfach und übersichtlich in der Software GridVis[®]. Die Software GridVis[®] steht Ihnen auf unserer Website (www.janitza.de) als Download zur Verfügung.

12.1 4 Digitale Eingänge

Über die digitalen Eingänge senden Sie Informationen von anderen Geräten mit digitalem Ausgang, an Ihr Gerät (Impulszähler).

In der Rubrik "Peripherie" des Fensters "Konfiguration" der Software GridVis[®] leitet Sie ein Assistent durch die Konfiguration der 4 digitalen Eingänge mit folgenden Einstellungen und Funktionen:

- Auswahlliste Wertetyp (des ankommenden Signals, z.B. elektrische Energie, Gas-/Wasser-/ Öl-Verbrauch, CO2 u.a.)
- 2. Name des benutzerdefinierten Wertes -Abhängig vom Wertetyp. Optionale Namenseingabe für den Wertetyp "Benutzerdefinierte Werte".
- Einheit des benutzerdefinierten Wertes -Abhängig vom Wertetyp. Optionale Eingabe der Einheit für den Wertetyp "Benutzerdefinierte Werte".

Skalierungsfaktor für den Impuls/Einheit -Die Einheit ist abhängig vom konfigurierten Wertetyp. Die Auswahlliste Impuls/Einheit übernimmt bei eingestelltem Wertetyp "Benutzerdefinierte Werte", die unter "Einheit des benutzerdefinierten Wertes" eingegebene Einheit.

Web Konfigurations Fenster 🗙		
Gerätekonfigurator 👻 📮		
Dig Kanalname Digitaleingang 1	italeingang 1	2 1 1 2 3 4 1 1 4 3 2 1 4 3 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Allgemein Mes	ssung Aufzeichnung Periphe	rie System Q Suche Konfiguration
Digitaleingang Digital Output	Configure Digitaleingang 1 Digitaleingang 2 Digitaleingang 3 Digitaleingang 4	ethe functions of the digital inputs. Wertetyp Elektrische Energie [kWh] Name des benutzerdefinierten Wertes Elektrische Energie [kWh] Einheit des benutzerdefinierten Wertes KWh Skalierungsfaktor 0 Impuls/kWh *
		30.07.2019 10:10:07 MESZ (GMT+02:00)

Abb. Assistent zur Konfiguration der digitalen Eingänge in der Software GridVis[®].

(i) INFORMATION

Ausführliche Informationen zur Konfiguration der digitalen Eingänge Ihres Geräts, finden Sie in der Online-Hilfe zur Software-GridVis[®].

Konfiguration der digitalen Eingänge als Impulszähler

Alle digitalen Eingänge können mit einer Frequenz von 20 Hz betrieben werden. Hierbei muss die Pulsdauer (Pulsbreite) und die Pulspause größer als 20 ms sein. Die typische Pulsdauer für S0-Impulse beträgt 30 ms.

Pulsdauer (Pulsbreite)	Pulspause > 20ms	
> 20me		

Abb. Pulsdauer/Pulspause.

Aufgrund der Mindest-Impulsdauer und der Mindest-Impulspause ergibt sich die maximale Anzahl an Impulsen pro Stunde:

Pulsdauer (Pulsbreite)	Impulspause (Pulspause)	Max. Impulse/h
20 ms	20 ms	90000 Imp./h
30 ms	30 ms	60000 Imp./h
50 ms	50 ms	36000 Imp./h
100 ms	100 ms	18000 lmp./h
500 ms	500 ms	3600 lmp./h
1 s	1 s	1800 lmp./h
10 s	10 s	180 lmp./h

Abb. Beispiele für die maximale Impulse pro Stunde.

Die Impulszähler konfigurieren Sie mit gleichzeitiger Messwert- bzw. Leistungsberechnung. Die Zählung der Impulse erfolgt als 64 Bit-Zahl und zur Erfassung besitzt das Gerät ausreichend Speicherkapazität.

Impulswertigkeit

Die Impulswertigkeit gibt an, welcher Messwert bzw. Leistungswert (z. B. Energie) einem Impuls entsprechen soll. Jedem Digitaleingang kann eine Impulswertigkeit zugewiesen werden.

(i) INFORMATION

Der Impulsabstand ist innerhalb der gewählten Einstellungen proportional zur Leistung.

Messwert-Berechnung:

Messwert = Impuls x Impulswertigkeit

Leistungswert-Berechnung:

Leistungswert = <u>Impuls x Impulswertigkeit</u> Zeit [s] Da der Impulsabstand sehr groß werden kann, ist eine kontinuierliche Berechnung der Mess- bzw. Leistungswerte nicht möglich. Deshalb werden nur Mittelwerte berechnet. Die Berechnung der Mittelwerte ergibt sich für die Messwertberechnung aus der Anzahl der Impulse pro Periode multipliziert mit der Impulswertigkeit. Für die Berechnung der Leistungsmittelwerte ist dieser Wert durch eine einstellbare Zeitgröße zu dividieren.

Die Periode ist jeweils dem Digitaleingang zugeordnet und im Bereich 1 bis 60 Minuten einstellbar. Nach Ablauf der Periode erreichen Sie den Wert über Modbus.

Für jeden Digitaleingang kann eine externe Synchronisation aufgeschaltet werden, wobei ein Synchronimpuls eine Periode abschließt und eine neue Periode startet. Für die externe Synchronisation ist eine Fangzeit von 30 Sekunden eingestellt. Wenn nach Ablauf der Periode kein Synchronimpuls vorliegt, übernimmt nach 30 Sekunden die Software die Synchronisation, auch der weiteren Perioden.

Standardeinstellung für eine Periode = 15 Minuten

Das Berechnungsergebnis des S0-Leistungswerts steht am Periodenende zur Verfügung.

i INFORMATION

Die Programmierung in der Software GridVis[®] zeigt eine Auswahl von Energiewerten, die aus den Leistungswerten hervorgehen.

12.2 4 Digitale Ausgänge

Die 4 digitalen Ausgänge des Geräts dienen der Ausgabe von Impulsen zur Zählung des Energieverbrauchs. Hierbei werden die Strommesskanäle des Basisgeräts (oder des gewählten Moduls) in Form von Messgruppen als Bezug herangezogen (Messgruppe 1 - I1 bis I4, Messgruppe 2 - I5 bis I8, Messgruppe 3 - Multifunktionskanäle).

In der Rubrik "Peripherie" des Fensters "Konfiguration" der Software GridVis[®] leitet Sie ein Assistent durch die Konfiguration der 4 digitalen Ausgänge mit folgenden Einstellungen und Funktionen:

- 1. Auswahlliste Segment Wahl des Geräts (Basisgerät/Module).
- Auswahlliste Messgruppe -Wahl der Messgruppe des jeweiligen Geräts.
- Auswahlliste Messwert -Wahl des Messwerts, z.B. Wirkarbeit Gesamttarif, Scheinarbeit Gesamttarif, Blindarbeit Gesamttarif u.a.
- 4. **Phase/Kanal** Phase/Kanal dessen Impuls für die Ausgabe herangezogen wird.
- Impulswertigkeit -Siehe Beschreibung "Impulsausgang".
 Pulsbreite (Pulsdauer) -
- Siehe Beschreibung "Pulsdauer/Pulspause." auf Seite 75.

Gerätekonfigurator Image: Comment of the second of the	/eb Konfigurations Fenster 🗙					
Digital Output 1 Image: Stand Output 1<	Gerätekonfigurator 🝷 📑					
Allgemein Messung Aufzeichnung Peripherie System Q suche Konfiguration	Channel name Digital Output 1 Mode S0-Ausgang Polarity Stromfluss wenn	Digital Output 1	N L3 L2 L1 spannung Ethernet A Ethernet B ETENMANALE 1 2 3 94 50 2	4 5 6 7 7 3 2 4 4	1 1	0
Digitaleingang Digital Output Digital Output Digital Output Digital Output Digitalausgang 1 Digitalausgang 2 Digitalausgang 3 Unknown Digitalausgang 4 Digitalausgang 4 Digitalausgang 1 Digitalausgang 1 Digitalausgang 4 Digitalausgang 4 Digitalausgang 1 Digitalausgang 1 Digitalausgang 1 Digitalausgang 4 Digitalausgang 4 Digitalausgang 1 Digitalausgang 1 Digitalausgang 4 Digitalausgang 1 Digitalausgang 4 Digitalausgang 1 Digitalausgang 4 Digitalausgang 4 Digitalausgang 1 Digitalausgang 4 Digitalausgang 1 Digitalausgang 4 Digitalausgang 4 Digitalausgang 4 Digitalausgang 1 Digitalausgang 4 Digitala	Allgemein	Messung Aufzeichnung	Peripherie	System	Q Suche Konfiguration	\supset
	Digitaleingang Digital Output	Digitalausgang 1 Digitalausgang 2 Digitalausgang 3 Digitalausgang 4	Configure the d See G Me U Me B Phi Val 1 Pui 30	ital Output igital outputs' funciona gment erät-1 asure Group nknown asure Value ezogene Wirkarbeit Ges ase/ / Channel hase Eingang 1 ency Ise Width	iiity iamttarif kW Millis	v v v /h/Pulse v econds v

Abb. Assistent zur Konfiguration der digitalen Ausgänge (Software GridVis®)

(i) INFORMATION

Ausführliche Informationen zur Konfiguration der digitalen Ausgänge Ihres Geräts, finden Sie in der Online-Hilfe zur Software-GridVis[®].

Die Digitalausgänge können für die Ausgabe von Impulsen zur Zählung der Wirkenergie, Scheinenergie und Blindenergie genutzt werden. Dazu wird nach dem Erreichen einer bestimmten, einstellbaren Energiemenge ein Impuls am Ausgang hervorgerufen.

Um einen Digitalausgang als Impulsausgang zu verwenden, konfigurieren Sie entsprechende Einstellungen im Konfigurations-Assistenten der Software GridVis[®]:

- · Ausgangspolarität: Schließer, Öffner
- · Modus für den Digitalausgang: S0-Ausgang
- · Impulswertigkeit
- · Impulsbreite

Impulswertigkeit

Die Impulswertigkeit gibt an, wieviel Energie (Wh oder varh) einem Impuls entspricht.

Die Impulswertigkeit wird durch die maximale Anschlussleistung und die maximale Impulsanzahl pro Stunde bestimmt.

Wenn Sie die Impulswertigkeit mit einem:

- positiven Vorzeichen angeben, werden nur Impulse ausgegeben, wenn auch der Messwert ein positives Vorzeichen hat.
- negativen Vorzeichen angeben, werden nur Impulse ausgegeben, wenn auch der Messwert ein negatives Vorzeichen hat.

i INFORMATION

Da der **Wirkenergiezähler** mit Rücklaufsperre arbeitet, sendet das Gerät nur bei Bezug von elektrischer Energie Impulse.

Da der **Blindenergiezähler** mit Rücklaufsperre arbeitet, sendet das Gerät nur bei induktiver Last Impulse.

1. Impulswertigkeit ermitteln

Legen Sie die Impulslänge entsprechend den Anforderungen des angeschlossenen Impulsempfängers fest. Bei einer Impulsdauer von z.B. 30 ms, kann das Gerät eine maximale Anzahl von 60000 Impulsen pro Stunde abgeben (siehe Tabelle "maximale Impulse" auf Seite 75). 2. Maximale Anschlussleistung ermitteln

Beispiel:	
Stromwandler	= 150/5 A
Spannung L-N	= max. 300 V
Leistung pro Phase	= 150 A x 300 V = 45 kW
Leistung bei 3 Phasen	= 45 kW x 3
Max. Anschlussleistung	= 135 kW

3. Impulswertigkeit berechnen

Impulswortigkoit –	max. Anschlussleistung	[Wh/Impuls]
inipuiswei tigkeit –	max. Impulsanzahl/h	[wii/iiiipui3]

Impulswertigkeit = 135 kW / 60000 Imp/h Impulswertigkeit = 0,00225 kWh/Imp Impulswertigkeit = 2,25 Wh/Imp

Abb. Anschlussbeispiel für die Beschaltung als Impulsausgang.

(i) INFORMATION

Bei der Verwendung der digitalen Ausgänge als Impulsausgänge können Messfehler durch Restwelligkeit entstehen. Verwenden Sie für die Versorgungsspannung (DC) der digitalen Ein- und Ausgänge Netzteile, deren Restwelligkeit unter 5% der Versorgungsspannung liegt.

13. Analoger Ausgang

Das Gerät besitzt einen analogen Ausgang, der

- · einen Strom bis zu 20 mA liefert.
- · für den Betrieb ein externes 24 V DC Netzteil benötigt.

Nach Aktivierung des analogen Ausgangs, leitet Sie in der Rubrik "Peripherie" des Fensters "Konfiguration" der Software GridVis[®] ein Assistent durch die Konfiguration mit folgenden Einstellungen und Funktionen:

- 1. Auswahlliste Segment Wahl des Geräts (Basisgerät/Module).
- 2. Auswahlliste Messgruppe -Wahl der Messgruppe des jeweiligen Geräts.
- 3. Auswahlliste Messwert -Wahl des Messwerts.
- 4. **Phase/Kanal** -Phase/Kanal dessen Impuls für die Ausgabe herangezogen wird.
- 5. Art des Messwertes -Siehe Beschreibung "Impulsausgang".
- 6. Ausgangssignal -4 - 20 mA oder 0 - 20 mA.
- 7. Startwert -

Siehe "Prinzip Analog-Ausgang Beispiele".

8. Endwert -Siehe "Prinzip Analog-Ausgang Beispiele".

Prinzip Analog-Ausgang Beispiele:

Überwachung der **Spannung**

Zuordnung **Wirkleistung L1** (Ausgabebereich 4 - 20 mA):

 Bei der Wirkleistung 500 W beträgt der Strom am Analogausgang 4 mA, bei einer Wirkleistung von 1000 W --> 20 mA.

Die gemessene Wirkleistung ist proportional zum Strom am analogen Ausgang.

Zuordnung des berechneten **Wirkleistungsfak**tors cos (math.) (Ausgabebereich 4 - 20 mA):

 \cdot Überwachung des Wirkleistungsfaktors cos ϕ (math.) mit:

 $\cos \varphi$ (math.) > 0 Wirkleistung, bezogen. $\cos \varphi$ (math.) < 0 Wirkleistung, geliefert.

Web Konfigurations Fenster 🗙						
Gerätekonfigurator 👻 🖬						
K	Analoger Ausgang 1 Kanal aktivieren		N L3 L2 L I 2 3 Spanning Chemit A Dithemet B Stricutououx 1 2 3 2 3 1 1 2 3	4 3 2 4 3 2 Dgtake Enginger 5/100	1 1	0
Allgem	nein Messung	Aufzeichnung	Peripherie	System	Q Suche Konfiguration	
Digitaleingan Digitalausga Analogausga	ng ing	Ko	Analo nfigurieren Sie die funkt Bas Mes Mes Wir Phas Sur Art d Akt Ausg 4-: Start 0	bygausgang ionsweise des analoger nent isigerät isigerat isigerat isigerat isigerat isigerat isigerat isigerat isigerat isigerat	Ausgangs	• • • •

Abb. Assistent Konfiguration des analogen Ausgangs (Software GridVis®)

(i) INFORMATION

Informationen zur Konfiguration des analogen Ausgangs Ihres Geräts, finden Sie in der Online-Hilfe zur Software-GridVis[®].

14. Inbetriebnahme

(i) INFORMATION

Löschen Sie vor der Inbetriebnahme mögliche produktionsbedingte Inhalte der Energiezähler, Minimum- und Maximum-Werte sowie Aufzeichnungen (Näheres siehe Kap. "11.8 Reset (Zurücksetzen)" auf Seite 72).

WARNUNG

Sachschaden durch Nichtbeachtung der Anschlussbedingungen.

Spannungen und Ströme außerhalb des zulässigen Messbereiches können das Gerät zerstören. Halten Sie die Messbereichsangaben aus den technischen Daten ein.

14.1 Versorgungsspannung

Gehen Sie beim Anlegen der Versorgungsspannung wie folgt vor:

- Schließen Sie die Versorgungsspannung an den Klemmen 46 und 47 des Geräts an. Die Höhe Versorgungsspannung entnehmen Sie dem Typenschild oder im Kap. Technischen Daten.
- 2. Es erscheint die Standardanzeige *Messwerte* auf dem Display.
- 3. Erscheint keine Anzeige, prüfen Sie
 - den Anschluss Ihres Geräts.
 - ob die Versorgungsspannung im Nennspannungsbereich liegt.

(i) INFORMATION

Zum Anschluss der Versorgungsspannung beachten Sie bitte alle Hinweise des Kap. "7.3 Versorgungsspannung" auf Seite 33.

14.2 Messspannung

Messspannung anschließen:

- Schließen Sie die Messspannung an den dafür vorgesehenen Klemmen an (vgl. Kap. "7.4 Spannungsmessung" auf Seite 34).
- Überprüfen Sie nach Anschluss der Messspannung die vom Messgerät angezeigten Messwerte für die Spannungen L-N und L-L (Berücksichtigen Sie gegebenenfalls eingestellte Spannungswandlerfaktoren).

(i) INFORMATION

- Beachten Sie in Netzen, die die angegebenen Nennspannungen überschreiten, die Spannungsmesseingänge über Spannungswandler anzuschließen (vgl. Kap. "7.1 Nennspannungen" auf Seite 32)!
- Das Gerät misst nur, wenn an mindestens einem Spannungsmesseingang eine Spannung L-N von > 10 V_{eff} oder eine Spannung L-L von > 18 V_{eff} anliegt.

Verletzungsgefahr durch elektrische Spannung! Wenn das Gerät Stoßspannungen oberhalb der zulässigen Überspannungskategorie ausgesetzt wird, können sicherheitsrelevante Isolierungen im Gerät beschädigt werden. Dadurch kann die Sicherheit des Produktes nicht mehr gewährleistet werden. Verwenden Sie das Gerät nur in Umgebungen, in denen die zulässige Überspannungskategorie nicht überschritten wird (vgl. Kap. "19. Technische Daten" auf Seite 102).

14.3 Messstrom

Das Gerät

- · misst Strom ausschließlich über Stromwandler.
- ist für den Anschluss von Stromwandlern mit Sekundärströmen von ../1 A und ../5 A ausgelegt.
- misst keine Gleichströme.
- besitzt Strommesseingänge, die für 1 Sekunde mit 120 A (sinusförmig) belastet werden können.

Das werksseitig eingestellte Stromwandlerverhältnis liegt bei 5/5 A und muss gegebenenfalls an die verwendeten Stromwandler angepasst werden. Die Stromwandler benötigen eine Basisisolierung gemäß IEC 61010-1:2010 für die Nennspannung des Stromkreises.

- 1. Schließen Sie alle Stromwandlerausgänge außer einem kurz.
- 2. Vergleichen Sie den am Gerät angezeigten Strom mit dem angelegten Eingangsstrom.
 - Die Ströme müssen unter Berücksichtigung des Stromwandler-Übersetzungsverhältnisses übereinstimmen.
 - In den kurzgeschlossenen Strommesseingängen muss das Gerät ca. 0 Ampere anzeigen.

Abb. Zeigerdiagramm

Vorzeichen Phasenverschiebungswinkel (U/I):

- \cdot positiv (+) bei kapazitiver Last.
- · negativ (-) bei induktiver Last.

(i) INFORMATION

Erklärungen zum Zeigerdiagramm siehe Kap. "14.6 Grundlagen Zeigerdiagramm" auf Seite 83.

14.4 Frequenzmessung

Für die Messung und die Berechnung von Messwerten benötigt das Gerät die Nenn- bzw. Netzfrequenz. Die Netzfrequenz kann entweder vom Anwender angegeben oder vom Gerät automatisch ermittelt werden.

- Für die Ermittlung der Netzfrequenz muss am Spannungsmesseingang V1 eine Spannung von größer 10 V_{eff} (4-Leitermessung) oder eine Spannung L1-L2 von größer 18 V_{eff} (3-Leitermessung) anliegen.
- Die Netzfrequenz muss im Bereich von 40 Hz bis 70 Hz liegen.
- Liegt keine ausreichend hohe Messspannung an, so kann das Gerät die Netzfrequenz nicht ermitteln und damit auch keine Messung durchführen.

14.5 Drehfeldrichtung

Um die Richtung des Spannungsdrehfeldes zu bestimmen, beachten Sie die Anzeige "Zeigerdiagramm":

Abb. Zeigerdiagramm mit der Darstellung der Phasenreihenfolge entsprechend der Drehfeldrichtung

- Betätigen Sie die Funktionstaste 1 *ESC*, um das Menü zu öffnen.
- Wählen Sie mit den Tasten 2 "▲" oder 5 "▼" den Menüeintrag Zeigerdiagramm und bestätigen Sie mit Taste 3 Enter.
- Es erscheint ein Untermenü mit den Einträgen Zeigerdiagramm 1-4 und Zeigerdiagramm 5-8.

Abb. Untermenüeintrag Zeigerdiagramm 1-4

- Wählen Sie mit den Tasten 2 "▲" und 5 "▼" z.B. den Menüeintrag Zeigerdiagramm 1-4 und bestätigen Sie mit Taste 3 Enter.
- · Es erscheint das Fenster Zeigerdiagramm 1-4.

Abb. Fenster Zeigerdiagramm 1-4

14.6 Grundlagen Zeigerdiagramm

Das Zeigerdiagramm beschreibt grafisch die Phasenverschiebung bzw. den Phasenwinkel zwischen Spannung und Strom. Die Zeiger rotieren mit konstanter Winkelgeschwindigkeit - proportional zur Frequenz von Spannung und Strom - um einen Ursprung. Das Zeigerdiagramm zeigt somit den aktuellen Zustand der Größen in einem Wechselstromkreis.

Darstellung ohmscher Widerstand:

· Spannung und Strom sind gleichphasig

Darstellung Induktivität:

- · Die Spannung eilt dem Strom voraus
- Die Phasenverschiebung beträgt bei einer "idealen Spule" 90°

Bei einer Kombination der Zustände kann der Phasenwinkel "Strom zu Spannung" Werte zwischen -90° und +90° annehmen.

Beispiel Zeigerdiagramm (3-Phasen)

Strom und Spannung sind gegeneinander verschoben. Der Strom eilt der Spannung voraus, d.h. das Netz wird kapazitiv belastet.

Darstellung Kapazität:

- · Der Strom eilt der Spannung voraus
- \cdot Die Phasenverschiebung beträgt bei einem "idealen Kondensator" 90°

14.7 Kontrolle der Spannungs- und Stromeingänge mittels Zeigerdiagramm

Das Zeigerdiagramm kann zur Kontrolle falscher Anschlüsse an den Spannungs- und Stromeingängen eingesetzt werden.

Beispiel 1

Überwiegend ohmsche Belastung.

Spannung und Strom haben nur eine geringe Abweichung in der Phasenlage.

· Der Strommesseingang ist dem richtigen Spannungsmesseingang zugeordnet

Beispiel 2

Überwiegend ohmsche Belastung.

Spannung und Strom haben eine Abweichung von etwa 180° in der Phasenlage.

- · Der Messstromeingang ist dem richtigen Spannungsmesseingang zugeordnet.
- In der betrachteten Strommessung sind die Anschlüsse k und I vertauscht oder es liegt eine Rückeinspeisung in das Versorgernetz vor.

14.8 Phasenzuordnung prüfen

Die Zuordnung Außenleiter (Phase) zu Stromwandler ist richtig, wenn man einen Stromwandler sekundärseitig kurzschließt und der vom Gerät angezeigte Strom im dazugehörigen Außenleiter auf 0 A sinkt.

14.9 Leistungsmessung prüfen

- Schließen Sie all Stromwandlerausgänge außer einem kurz und prüfen Sie die angezeigten Leistungen.
- 2. Das Gerät darf nur im Außenleiter (Phase) mit dem nicht kurzgeschlossenen Stromwandlerausgang eine Leistung anzeigen.
- 3. Trifft dies nicht zu, prüfen Sie die Anschlüsse der Messspannung und des Messstroms.

Stimmt der Betrag der gemessenen Wirkleistung, aber das Vorzeichen ist negativ, kann das 2 Ursachen haben:

- 1. Vertauschte Anschlüsse S1(k) und S2(l) am Stromwandler oder
- 2. Wirkenergie wird zurück ins Netz geliefert.

14.10 Messung prüfen

Richtig angeschlossene Spannungs- und Strommesseingänge ergeben korrekt berechnete und angezeigte Einzel- und Summenleistungen.

14.11 Einzelleistungen prüfen

Ist ein Stromwandler dem falschen Außenleiter (Phase) zugeordnet, wird die dazugehörige Leistung falsch gemessen und angezeigt.

Außenleiter und Stromwandler sind am Gerät korrekt zugeordnet, wenn keine Spannung zwischen Außenleiter und dem dazugehörigen Stromwandler (primär) anliegt.

Um sicherzustellen, dass ein Außenleiter am Spannungsmesseingang für die Leistungsmessung dem richtigen Stromwandler zugeordnet ist, kann man den jeweiligen Stromwandler sekundärseitig kurzschließen. Die vom Gerät angezeigte Scheinleistung muss dann in diesem Außenleiter (Phase) Null sein.

Wird die Scheinleistung korrekt angezeigt aber die Wirkleistung mit negativem ("-") Vorzeichen, dann sind die Stromwandlerklemmen vertauscht oder es wird Leistung an das Energieversorgungsunternehmen geliefert.

14.12 Summenleistungen prüfen

Werden alle Spannungen, Ströme und Leistungen für die jeweiligen Außenleiter richtig angezeigt, stimmen auch die vom Gerät gemessenen Summenleistungen. Zur Bestätigung vergleichen Sie die vom Gerät gemessenen Summenleistungen mit den Arbeiten der in der Einspeisung sitzenden Wirk- und Blindleistungszähler.

15. Übersicht Messwert- und Geräteanzeigen

(i) INFORMATION

Die folgenden Messwert- und Geräteanzeigen zeigen keinen konkreten Anwendungsfall und können je nach Anschluss Ihres Messgeräts und der Messumgebung abweichen, z.B. bei Messungen in 3- oder 4-Leiter-Netzen (TN-, TT- und IT-Netzen) oder bei angereihten Strommessmodulen, etc.

Netzanalyse (Startbildschirm)					
	Home				
	Spannung	Strom	Leistung		
L1	230 V	1,45 A	0,333 kW		
L2	234 V	2,77 A	0,649 kW		
L3	233 V	1,32 A	0,308 kW		
Σ	50.00Hz	5,54 A	1,290 kW		
ESC					
Anzeige von Spannung L1, L2, L3; Strom L1, L2, L3; Leistung L1, L2, L3; Power-Faktor; Wirk- und Blindenergie L1-L3					

Menü (Zeigerdiagramm)

Menü	
Home	
Zeigerdiagramm	
Spannung	
Strom	
Leistung	
ESC 🔺 🔽 🛁	

(i) INFORMATION

Je nach Messung (4-Leiter- oder 3-Leitermessung) unterscheiden sich die Darstellungen der Zeigerdiagramme (TN-/TT-Netz und TT-Netz)!

Abb. "Zeigerdiagramm" der 4-Leitermessung (z.B. TN- oder TT-Netz)

Abb. "Zeigerdiagramm" der 3-Leitermessung (IT-Netz - ungeerdetes System)

Menü (Spannung)

Menü	
Home	
Zeigerdiagramm	>
Spannung	>
Strom	>
Leistung	>
ESC 🔺 🔻	la,

(i) INFORMATION

Die Total Harmonic Distortion (THD - gesamte harmonische Verzerrung) zeigt den Anteil von nichtlinearen Verzerrungen an einem elektrischen Signal in % (Vergleich des Effektivwertes aller Oberschwingungen zum Effektivwert der Grundschwingung). Dabei bedeutet THD-U die Verzerrung der Spannung und THD-I die Verzerrung des Stroms.

Menü (Strom)

Menü				
Home				
Zeigerdiagramm		>		
Spannung				
Strom		\rightarrow		
Leistung		\rightarrow		
ESC 🔺	•	لم		

Untermenü (THD-I) Strom THD-1 ESC

THD-I 1-4					
	Wert	t Mittelv	v. N	lax.	
L1	166.3	% 166.39	% 16	6.3%	
L2	166.4	% 166.49	% 16	6.4%	
L3	166.4	% 166.49	% 16	6.4%	
L4	201.19	% 207.0%	% 22	22.2%	
ES	C	• •	•		
Anze Harm Verze	ige "THD-I (1 nonic Distortio errung des Sti	-4)" - L1, L2, L on - gesamte l roms in %) mit	_3, L4 (Το narmonis ! Mittel- ι	ital che ind Ma-	
Anze Harm Verze ximal	ige "THD-I (1 oonic Distortic mung des Sti werten.	-4)" - L1, L2, L on - gesamte l roms in %) mit	-3, L4 (To harmonis t Mittel- u	ital che ınd Ma-	
Anzel Harm Verze ximal	ige "THD-I (1 ionic Distortic mung des Sti werten. Wert	-4)" - L1, L2, L on - gesamte l roms in %) mit THD-I 5-8 t Mittelv	.3, L4 (To harmonis t Mittel- u v. N	ntal che ind Ma-	
Anzea Harm Verze ximal	ige "THD-I (1 ionic Distortic mung des Sti werten. Wert Wert	-4)" - L1, L2, L on - gesamte I roms in %) mit THD-I 5-8 t Mittelv % 166.3'	-3, L4 (To harmonis t Mittel- L v. N % 16	ntal che und Ma- lax. 66.3%	
Anze. Harm Verze ximal	ige "THD-I (1 ionic Distortic mrung des Sti werten. Wert 166.3 166.4	-4)* - LT, L2, L on - gesamte l roms in %) mit THD-I 5-8 t Mittelv % 166.3' % 166.4'	-3, L4 (To harmonis t Mittel- L v. M % 16	tal che ind Ma- lax. 66.3%	
Anze Harri Verze ximal	ige "THD-I (1 ionic Distortio mung des Str werten. Wert 166.3 166.4	-4)" - L1, L2, L on - gesamte I roms in %) min THD-I 5-8 t Mittelv % 166.3" % 166.4" % 166.4	.3, L4 (To harmonis t Mittel- L v. M % 16 % 16	tal che ind Ma- 1ax. 66.3% 66.4%	
Anze Harm Verze ximal L5 L6 L7 L8	ige "THD-I (1 ionic Distortio mung des Str werten. Wert 166.3 166.4 209.3	-4)** - L1, L2, L on - gesamte I roms in %) min THD-I 5-8 t Mittelv % 166.4' % 166.4' % 212.3'		tal che ind Ma- lax. 66.3% 66.4% 66.4% 27.6%	

Anzeige "THD-I (5-8)" - L5, L6, L7, L8 mit Mittelund Maximalwerten.

Menü (Leistung)

Ме	nü	
Home		
Zeigerdiagramm		\rightarrow
Spannung		>
Strom		\rightarrow
Leistung		\rightarrow
ESC 🔺	-	

Untermenü (Leistungsübersicht)

Leistung	
Leistungsuebersicht	>
Wirkleistung	\geq
Blindleistung	\geq
Scheinleistung	\geq
Leistungsfaktor	\geq
ESC 🔺 🔻	ي.

Untermenü (Wirkleistung)	
Leistung	
Leistungsuebersicht	
Wirkleistung	
Blindleistung	1
Scheinleistung	
Leistungsfaktor	
ESC 🔺 🔫 🚽	

Wirkleistung			Wirklei	stung 1-4
Wirkleistung 1-4			Wert	Mittelw.
Wirkleistung 5-8		L1	0.10kW	0.10kW
	ш	L2	0.10kW	0.10kW
		L3	0.10kW	0.10kW
		Σ	0.31kW	0.31kW
ESC 🔺 🕶 🚽		ES	c 🔺	~ •
		Anze werte	ige "Wirkleistung 1 en und Summen.	-4" für L1, L2, L3 mit Mitte
Wirkleistung			Wirklei	stung 5-8
Wirkleistung 1-4			Wert	Mittelw.
Wirkleistung 5-8		L5	0.11kW	0.11kW
	ш	L6	0.11kW	0.11kW
		L7	0.11kW	0.11kW
		Σ	0.34kW	0.34kW
ESC 🔺 🗸		ES	c (🔺	

Anzeige "Wirkleistung 5-8" für L5, L6, L7 mit Mittelwerten und Summen.

Untermenü (Scheinleistung)

	Leistung	
	Leistungsuebersicht	
	Wirkleistung	
	Blindleistung	
I	Scheinleistung	-
	Leistungsfaktor	
	ESC 🔺 🗸	

	Scheinleistung 1-4				
		Wert	Mittelw.		
L1		0.19kVA	0.16kVA		
ШĽ	2	0.19kVA	0.16kVA		
L	3	0.19kVA	0.16kVA		
Σ		0.58kVA	0.48kVA		
E	SC	▲ ▼	•		
An tek	verten un	a summen.			
An tek	werten un	Scheinleistung 5-	-8		
An tek	werten un	Scheinleistung 5- Wert	-8 Mittelw.		
An tek	verten un	Scheinleistung 5- Wert 0.20kVA	-8 Mittelw. 0.17kVA		
An tek	verten un 5	Scheinleistung 5- Wert 0.20kVA 0.20kVA	-8 Mittelw. 0.17kVA 0.17kVA		
An tek	5 5	Scheinleistung 5- Wert 0.20kVA 0.20kVA 0.20kVA	-8 Mittelw. 0.17kVA 0.17kVA 0.17kVA		
An tek	5 5 7	Scheinleistung 5- Wert 0.20kVA 0.20kVA 0.20kVA 0.20kVA	-8 Mittelw. 0.17kVA 0.17kVA 0.17kVA 0.50kVA		
An teh	5 5 7 2 2 3 3 3 3 5 5 7 5 5 7 5 7 5 7 5 7 5 7 7 5 7 7 5 7	Scheinleistung 5- Wert 0.20kVA 0.20kVA 0.20kVA 0.61kVA	8 Mittelw. 0.17kVA 0.17kVA 0.17kVA 0.50kVA		

Untermenü (Leistungsfaktor)	
Leistung	
Leistungsuebersicht $>$	
Wirkleistung	
Blindleistung	
Scheinleistung	
Leistungsfaktor	
ESC 🔺 🕶 🚽	ľ

Leistungsfaktor		Leistung	jsfaktor 1-4
Leistungsfaktor 1-4		cos(phi)	Leistungsfaktor
Leistungsfaktor 5-8	L1	0.984	0.513
	1111 L2	0.985	0.513
	L3	0.985	0.513
	Σ	0.985	0.981
ESC 🔺 🗸 🚽	ES	c 🔺	→ →
	Anz cos	eige "Leistungsfakt phi) und Summen.	or 1-4" für L1, L2, L3 mit
=			=
Loiotungofoktor		Loiotupo	ofoktor E 9
Leistungsfaktor		Leistung	sfaktor 5-8
Leistungsfaktor Leistungsfaktor 1-4		Leistung cos(phi)	gsfaktor 5-8 Leistungsfaktor
Leistungsfaktor 1-4 Leistungsfaktor 5-8	L5	Leistung cos(phi) 0.985	jsfaktor 5-8 Leistungsfaktor 0.513
Leistungsfaktor Leistungsfaktor 1-4 Leistungsfaktor 5-8	L5	Leistung cos(phi) 0.985 0.985	gsfaktor 5-8 Leistungsfaktor 0.513 0.513
Leistungsfaktor Leistungsfaktor 1-4 Leistungsfaktor 5-8	L5	Leistung cos(phi) 0.985 0.985 0.985	ysfaktor 5-8 Leistungsfaktor 0.513 0.513 0.513
Leistungsfaktor Leistungsfaktor 1-4 Leistungsfaktor 5-8	L5 1111 L6 L7 Σ	Leistung cos(phi) 0.985 0.985 0.985 0.985	ysfaktor 5-8 Leistungsfaktor 0.513 0.513 0.513 0.981
Leistungsfaktor 1-4 Leistungsfaktor 5-8	L5 L6 L7 Σ	Leistung cos(phi) 0.985 0.985 0.985 0.985 C ◀ ▲	gsfaktor 5-8 Leistungsfaktor 0.513 0.513 0.513 0.981

Menü (Energie)

Menü			
Leistung			
Energie		\rightarrow	
Multifunktionskanael	е	\rightarrow	
Konfiguration		\rightarrow	
Diagnose		\rightarrow	
^	-		

Untermenü (Wirkenergie)

	Ene	rgie		
Wirkenergie			>	-
Blindenergie			>	
Scheinenergie			>	
ESC	^	-	ч	

Menü (Multifunktionskanäle)

Menü	
Leistung	>
Energie	>
Multifunktionskanaele	>
Konfiguration	>
Diagnose	>
▲ ▼ .	

Multifunktionskanaele				Stromm	lessung	
Strommessung				Wert		Max.
Temperatur		Ch1		0.56mA		0.65mA
	ш	Ch2		0.55mA		0.63mA
		Ch3		0.57mA		0.66mA
		Ch4		0.59mA		0.68mA
ESC 🔺 🗸 🚽		ESC				•
		kanäle	1-4 mit	Strom- un	d Maxima	ilwert
Multifunktionskanaele				Temp	eratur	
Strommessung				Wert		Max.
Temperatur		Ch1		24.3°C		253.4°C
	ш	Ch2				
		Ch3				
		Ch4				
ESC 🔺 🗸 🚽		ESC	•			
		Anzeig Tempe	e "Temp eratur- ui	peratur" de nd Maxima	s Multifur Iwert (Kai	nktionskanals näle 2-4 ohne

Menü (Konfiguration)

Menü	
Leistung	\geq
Energie	>
Multifunktionskanaele	\geq
Konfiguration	
Diagnose	>
▲ ▼	-

(i) INFORMATION

Beschreibungen zu den Konfigurationsanzeigen des Geräts, finden Sie im Kap. "11. Konfiguration" auf Seite 64.

Menü Menü Energie Multifunktionskanaele Konfiguration Diagnose

System-Informationen

Menü (System-Informationen)

Menü	
Energie	
Multifunktionskanaele	
Konfiguration	
Diagnose	
System-Informationen]—
ESC 🔺 🕶 🛁	Γ

System Information	Basi	sgeraet-Info 1/2
Basisgerät		
	Serien-Nr.	47000027
	MAC	00:0e:6b:0f:00:36
	IP-Adresse	192.168.3.199
	Datum	2019-08-01 13:00:52
ESC 🔺 🔻	ESC ESC	▲ ▼
	Anzeige "Basisger	ät-Info 1/2"
		=
	Bas	isgeraet-into 2/2
	Hvv-version	3
	SW-Version	1.0.5
	SW-Build	b44c2628.
		190917133020.b520
	ESC	<u> </u>

16. Anschlussbeispiel

17. Service und Wartung

Das Gerät wird vor der Auslieferung verschiedenen Sicherheitsprüfungen unterzogen und mit einem Siegel gekennzeichnet.

(i) INFORMATION

Für geöffnete Geräte (beschädigtes oder entferntes Siegel)

- · sind für den sicheren Betrieb erneute Sicher-
- heitsüberprüfungen erforderlich!
- erlischt die Gewährleistung!

Gewährleistung wird nur für ungeöffnete Geräte übernommen!

17.1 Instandsetzung und Kalibrierung

Instandsetzung und Kalibrierung des Geräts nur vom Hersteller oder einem akkreditierten Labor durchführen lassen!

Der Hersteller empfiehlt alle 5 Jahre eine Kalibrierung des Geräts!

WARNUNG

Warnung vor unerlaubten Manipulationen oder unsachgemäße Verwendung des Geräts.

Das Öffnen, Zerlegen oder unerlaubtes Manipulieren des Geräts, das über die angegebenen mechanischen, elektrischen oder anderweitigen Betriebsgrenzen hinausgeht, kann zu Sachschaden oder Verletzungen bis hin zum Tod führen.

 Nur elektrotechnisch qualifiziertes Personal darf an Geräten und deren Komponenten, Baugruppen, Systemen und Stromkreisen arbeiten!

· Verwenden Sie Ihr Gerät oder Komponente stets so, wie in der zugehörigen Dokumentation beschrieben.

Senden Sie bei erkennbaren Beschädigungen, auch zur Instandsetzung und zur Kalibrierung, das Gerät zurück an den Hersteller!

17.2 Frontfolie und Display

Bitte beachten Sie bei der Pflege und Reinigung der Frontfolie und des Displays:

ACHTUNG

Sachschaden durch falsche Pflege und Reinigung des Geräts.

Die Verwendung von Wasser oder anderen Lösungsmitteln, wie z.B. denaturiertem Alkohol, Säuren, säurehaltigen Mitteln für die Frontfolie oder das Display, können das Gerät beim Reinigen beschädigen oder zerstören. Wasser kann z.B. in Geräte-Gehäuse eindringen und das Gerät zerstören.

- Reinigen Sie das Gerät, die Frontfolie oder das Display mit einem weichen Tuch.
- Benutzen Sie bei starker Verschmutzung ein mit klarem Wasser angefeuchtetes Tuch.
- Reinigen Sie die Frontfolie und das Display, z.B. Fingerabdrücke, mit einem speziellen LCD-Reiniger und einem fusselfreien Tuch.
 Verwenden Sie keine Säuren oder säurehaltigen Mittel zum Reinigen der Geräte.

17.3 Service

Für Fragen, die in diesem Handbuch nicht beantwortet oder beschrieben werden, wenden Sie sich an den Hersteller. Für die Bearbeitung von Fragen unbedingt folgende Angaben bereit halten:

- · Gerätebezeichnung (siehe Typenschild).
- · Seriennummer (siehe Typenschild).
- · Software Release (siehe Systemanzeige).
- · Messspannung und Versorgungsspannung.
- · Genaue Fehlerbeschreibung.

17.4 Gerätejustierung

Vor der Auslieferung justiert der Hersteller die Geräte. Eine Nachjustierung ist bei Einhaltung der Umgebungsbedingungen nicht notwendig.

17.5 Firmware-Update

Für ein Firmware-Update, verbinden sie Ihr Gerät mit einem Computer und greifen Sie über die Software GridVis[®] darauf zu:

- Öffnen Sie den Firmware-Update-Assistenten über einen Klick auf "Gerät aktualisieren" im Menü "Extras".
- · Wählen Sie Ihre Update-Datei und führen Sie das Update durch.

Abb. Geräte-Firmware aktualisieren in der Software Grid Vis®

17.6 Uhr/Batterie

Die Versorgungsspannung versorgt die interne Uhr des Messgeräts. Fällt die Versorgungsspannung aus, übernimmt die Batterie die Spannungsversorgung der Uhr. Die Uhr liefert Datum und Zeitinformationen für z.B. Aufzeichnungen, Minimum-/ Maximum-Werte und Ereignisse.

Die Lebenserwartung der Batterie beträgt bei einer Lagertemperatur von +45°C (113 °F) mindestens 5 Jahre. Die typische Lebenserwartung der Batterie beträgt 8 bis 10 Jahre.

17.7 Batteriewechsel

Lassen Sie einen Batteriewechsel von elektrotechnisch qualifiziertem Personal durchführen und beachten Sie folgende Warnhinweise:

Verletzungsgefahr durch elektrische Spannung! Schwere Körperverletzungen oder Tod können erfolgen durch:

· Berühren von blanken oder abisolierten Adern, die unter Spannung stehen.

· Berührungsgefährliche Eingänge des Geräts. Beachten Sie ebenfalls im Umgang mit Ihrem Gerät und beim Wechseln der Batterie, vor Arbeitsbeginn:

- · Die Anlage/das Gerät spannungsfrei schalten!
- · Gegen Wiedereinschalten sichern!
- · Spannungsfreiheit feststellen!
- Erden und Kurzschließen!
- · Benachbarte, unter Spannung stehende Teile abdecken oder abschranken!

Verletzungsgefahr durch Feuer oder Verätzungen!

Die im Gerät verwendete Batterie kann bei unsachgemäßem Gebrauch zu Brand oder Verätzungen führen.

- · Die Batterie nur durch Gleiche oder von Janitza empfohlene Typen ersetzen!
- · Beim Einbau der Batterie die Polarität beachten!
- Batterien nur mit nicht leitenden Werkzeugen (z.B. Pinzetten aus Kunststoff) entnehmen!
- Batterien nicht wieder aufladen, nicht zerlegen, nicht über 100 °C (212 °F) aufheizen oder verbrennen!
- Batterien nicht mit dem Hausmüll entsorgen! Entsorgungsvorschriften in der jeweiligen Geräte-Dokumentation beachten!
- Batterien von Kindern und Tieren fernhalten!
 Senden Sie Geräte mit eingelöteter Batterie bei Beschädigungen, unter Beachtung der Transportbedingungen, zurück an den Hersteller!

(i) INFORMATION

Fett oder Schmutz auf den Kontaktflächen bildet einen Übergangswiderstand, der die Lebensdauer der Batterie verkürzt. Fassen Sie die Batterie nur an den Rändern an oder mit nicht leitenden Werkzeugen.

18. Fehlermeldungen

18.1 Messbereichsüberschreitung

Eine Messbereichsüberschreitung erfolgt, wenn mindestens einer der Spannungs- oder Strommesseingänge außerhalb seines Messbereiches liegt.

ACHTUNG

Sachschaden durch Nichtbeachtung der Anschlussbedingungen.

Spannungen und Ströme außerhalb des zulässigen Messbereiches können das Gerät zerstören.

 Befolgen Sie die Messbereichsangaben aus Kap. "19. Technische Daten" auf Seite 102!
 Kontrollieren Sie bei einer Messbereichsüberschreitung Ihre Installation und Anschlüsse!

Bei einer Messbereichsüberschreitung erscheint in der Geräteanzeige, z.B. für die Spannung, der Warnhinweis *"Messbereichsüberschreitung"* mit der Angabe des Spannungspfades.

Messbereichsueberschreitung!					
Ba	isisg	era	et	Modul 1	Modul 6
U1	U2	U3		Modul 2	Modul 7
				Modul 3	Modul 8
				Modul 4	Modul 9
	110		112	Modul 5	Modul 10

Abb. Beispiel-Warnhinweis: Überspannung U1

(i) INFORMATION

Das Gerät zeigt die Messbereichsüberschreitung, bis sie behoben wurde! Nach Beendigung der Messbereichsüberschreitung erscheint die entsprechende Messwertanzeige.

Grenzwerte für Messbereichsüberschreitungen (200 ms Effektivwerte):

 $I = 6 A_{eff}$ $U_{L-N} = 720 V_{eff}$

18.2 Vorgehen im Fehlerfall

Fehlermöglichkeit	Ursache	Abhilfe
Keine Anzeige	Externe Sicherung für die Versorgungsspan- nung hat ausgelöst.	Sicherung ersetzen.
Kaina Otunnananian	Messspannung nicht angeschlossen.	Messspannung anschließen.
Keine Stromanzeige	Messstrom nicht angeschlossen.	Messstrom anschließen.
	Strommessung in der falschen Phase.	Anschluss überprüfen und ggf. korrigieren.
Angezeigter Strom ist	Stromwandlerfaktor falsch programmiert.	Stromwandler-Übersetzungsverhältnis am Stromwandler ablesen und programmieren.
zu groß oder zu klein.	Stromoberschwingung überschreitet den Stromscheitelwert am Messeingang	Stromwandler mit größeren Stromwandler- Übersetzungsverhältnis einbauen.
	Der Strom am Messeingang wurde unterschrit- ten.	Stromwandler mit kleinerem Stromwandler- Übersetzungsverhältnis einbauen.
	Messung in der falschen Phase.	Anschluss überprüfen und ggf. korrigieren.
Angezeigte Spannung ist zu groß oder zu klein.	Spannungswandler falsch programmiert.	Spannungswandler-Übersetzungsverhältnis am Spannungswandler ablesen und program- mieren.
Angezeigte Spennung	Messbereichsüberschreitung.	Spannungswandler verwenden.
ist zu klein.	Der Spannungsscheitelwert am Messeingang wurde durch Oberschwingungen überschritten.	Achtung! Stellen Sie sicher, dass die Mess- eingänge nicht überlastet werden.
Falsche Anzeige "Phasenver- schiebung induktiv/kapazitiv"	Strompfad dem falschen Spannungspfad zu- geordnet.	Anschluss überprüfen und ggf. korrigieren.
Wirkleistung Bezug/Lieferung	Mindestens ein Stromwandleranschluss ist vertauscht.	Anschluss überprüfen und ggf. korrigieren.
ist vertauscht.	Ein Strompfad dem falschen Spannungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.
	Falsch programmiertes Stromwandler-Überset- zungsverhältnis.	Stromwandler-Übersetzungsverhältnis am Stromwandler ablesen und programmieren.
Wirkleistung zu klein oder zu groß.	Strompfad dem falschen Spannungspfad zu- geordnet.	Anschluss überprüfen und ggf. korrigieren.
	Falsch programmiertes Spannungswandler- Übersetzungsverhältnis.	Spannungswandler-Übersetzungsverhältnis am Spannungswandler ablesen und program- mieren.
Ein Ein-/Ausgang reagiert	Falsch programmierter Ein-/Ausgang.	Programmierung überprüfen und ggf. korri- gieren.
	Falsch angeschlossener Ein-/Ausgang.	Anschluss überprüfen und ggf. korrigieren.
Anzeige "Messbereichsüberschreitung"	Es besteht eine Überschreitung des Messbe- reiches.	Anschluss überprüfen und ggf. korrigieren. Strom-/Spannungswandler-Übersetzungsver- hältnis korrigieren.
	OPC UA: - Falsche IP-Adresse/Port	- IP-Adresse/Port korrigieren.
Keine Verbindung zum Gerät	RS485: - Falsche Geräteadresse - Unterschiedliche Bus-Geschwindigkeiten (Baudrate) und/oder Datenrahmen. - Falsches Protokoll. - Terminierung fehlt.	 Geräteadresse korrigieren. Geschwindigkeit (Baudrate) korrigieren. Daten- rahmen korrigieren. Protokoll korrigieren. Bus mit Abschlusswiderstand abschließen.
Trotz obiger Maßnahmen funktioniert das Gerät nicht.	Gerät defekt.	Gerät und Fehlerbeschreibung zur Überprü- fung an den Hersteller senden.

ACHTUNG

Sachschaden durch überlastete Messeingänge! Zu hohe Strom- und Spannungswerte überlasten die Messeingänge und können das Gerät beschädigen. • Befolgen Sie die angegebenen Grenzwerte auf dem Typenschild und in den technischen Daten ab Seite 102!

Kontrollieren Sie Ihre Installation und Anschlüsse!

19. Technische Daten

19.1 Technische Daten

Allgemein	
Nettogewicht	420 g (0.93 lb)
Geräteabmessungen	ca. B = 144 mm (5.67 in), H = 90 mm (3.54 in), T = 76 mm (2.99 in)
Batterie	Typ Lithium CR2032, 3 V (UL1642-Zulassung)
Integrierter Speicher	4 GB
Lebensdauer der Hintergrundbeleuchtung	40000 h (50% der Starthelligkeit)
Einbaulage	beliebig
Befestigung/Montage - geeignete Hutschienen - 35 mm (1.38 in)	 TS 35/7,5 nach EN 60715 TS 35/10 TS 35/15 x 1,5
Schlagfestigkeit	IK07 nach IEC 62262

	Transport und Lagerung Die folgenden Angaben gelten für in der Originalverpackung transportierte und gelagerte Geräte.			
Freier Fall		1 m (39.37 in)		
	Temperatur	-25° C (-13 °F) bis +70° C (158 °F)		
	Relative Luftfeuchtigkeit	5 bis 95% RH bei 25°C (77 °F), ohne Kondensation		

Umgebungsbedingungen im Betrieb		
 Das Gerät wettergeschützt und ortsfest einsetzen. erfüllt Einsatzbedingungen nach DIN IEC 60721-3-3. besitzt Schutzklasse II nach IEC 60536 (VDE 0106, Teil 1), ein Schutzleiteranschluss ist nicht erforderlich! 		
Bemessungstemperaturbereich	-10 °C (14 °F) bis +55 °C (131 °F)	
Relative Luftfeuchtigkeit	5 bis 95% bei 25 °C (77 °F), ohne Kondensation	
Patriabahäha/Ülharapanpungakatagaria	2000 m (1.24 mi) über NN Spannungsmessung: 1000 V CATIII; 600 V CATIV Strommessung: 300 V CATII	
Betriebsnone/Oberspannungskategone	4000 m (2.49 mi) über NN Spannungsmessung: 600 V CATIII; Strommessung: 300 V CATII	
Verschmutzungsgrad	2	
Lüftung	keine Fremdbelüftung erforderlich.	
Fremdkörper- und Wasserschutz	IP20 nach EN60529	

Versorgungsspannung			
Nennbereich	DC: 24 V - 48 V, PELV		
Arbeitsbereich	+/-10% vom Nennbereich		
Leistungsaufnahme	max. 4 W		
Maximale Leistungsaufnahme mit 10 Modulen	12 W (UMG 801 mit 4 W plus 10 Module mit je 0,8 W)		
Empfohlene Überstromschutzeinrichtung für den Leitungsschutz	2-6 A, (Char. B), IEC-/UL-Zulassung		

Spannungsmessung	
3-Phasen-4-Leitersysteme mit Nennspannungen bis	480 V _{LN} / 830 V _{LL} (+/-10%) nach IEC 347 V _{LN} / 600 V _{LL} (+/-10%) nach UL
3-Phasen-3-Leitersysteme (geerdet) mit Nennspannungen bis	830 V _{L-L} (+/-10%) nach IEC 600 V _{L-L} (+/-10%) nach UL
3-Phasen-3-Leitersysteme (ungeerdet) mit Nennspannungen bis	690 V _{L-L} (+/-10%) nach IEC 600 V _{L-L} (+/-10%) nach UL
Überspannungskategorie	 1000 V CAT III nach IEC 600 V CAT III nach UL
Bemessungsstoßspannung	8 kV
Absicherung der Spannungsmessung	1 - 10 A Auslösecharakteristik B (mit IEC-/UL-Zulassung)
Messbereich L-N	$0^{\scriptscriptstyle 1)}720V_{\mbox{eff}}(\mbox{max}.\mbox{Uberspannung}1000V_{\mbox{eff}})$
Messbereich L-L	0^{ij} 1000 V _{eff} (max. Überspannung 1000 V _{eff})
Messbereich N-PE	bis 100 V
Auflösung	16 Bit
Crest-Faktor	1,6 (bez. auf Messbereich 600 V L-N)
Impedanz	4 MΩ/Phase
Leistungsaufnahme	ca. 0,1 VA
Abtastfrequenz	51,2 kHz
Frequenz der Grundschwingung - Auflösung	40 Hz 70 Hz 0,01 Hz
Harmonische	1 127.

1) ... Das Gerät misst nur, wenn an mindestens einem Spannungsmesseingang eine Spannung L-N von >10 V_{eff} oder eine Spannung L-L von >18 V_{eff} anliegt.

Strommessung (/1 A) (/5 A)				
Nennstrom	5 A			
Kanäle	8 · 2 Systeme - L1, L2, L3, N (optional) · Einzelkanäle			
Messbereich	0,005 6 A _{eff}			
Crest-Faktor (bezogen auf d. Nennstrom)	1,98			
Überlast für 1 Sek.	120 A (sinusförmig)			
Auflösung	0,1 mA (Farbgrafik-Display 0,01A)			
Überspannungskategorie	300 V CATII			
Bemessungsstoßspannung	2,5 kV			
Leistungsaufnahme	ca. 0,2 VA (R _i = 5 mΩ)			
Abtastfrequenz	25,6 kHz			
Harmonische	1 63.			

Das Gerät besitzt wahlweise 4 Multifunktionskanäle, für die Verwendung als

· Differenzstrom-Messeingänge und/oder Temperatur-Messeingänge (gemischt),

· zusätzliche Systemeingänge (L1, L2, L3; N)

Differenzstrom-Messung (RCM)	
Nennstrom	30 mA _{eff}
Messbereich	0 40 mA _{eff}
Ansprechstrom	50 μA
Auflösung	1 _µ A (Farbgrafik-Display 0,01 A)
Crest-Faktor	1,414 (bezogen auf 40 mA)
Bürde	4 Ω
Überlast für 20 ms	50 A
Überlast für 1 s	5 A
Überlast dauerhaft	1 A
Norm	IEC/TR 60755 (2008-01), Typ A, Typ B und B+ (über entsprechende Stromwandler)

Temperatur-Messung	
Update-Zeit	1 s
Gesamtbürde (Fühler u. Leitung)	max. 4 kΩ
Leitung	bis 30 m (32.81 yd) nicht abgeschirmt größer 30 m (32.81 yd) abgeschirmt
Geeignete Fühlertypen	KTY83, KTY84, PT100, PT1000

Digitale Eingänge 4 digitale Eingänge, Halbleiterrelais, nicht kurzschlussfest.	
Maximale Zählerfrequenz	20 Hz
Eingangssignal liegt an	18 28 V DC (typisch 4 mA)
Eingangssignal liegt nicht an	0 5 V DC, Strom kleiner 0,5 mA

Digitale Ausgänge 4 digitale Ausgänge, Halbleiterrelais, nicht kurzschlussfest.	
Schaltspannung	max. 60 V DC
Schaltstrom	max. 50 mA _{eff} DC
Reaktionszeit	ca. 500 ms
Impulsausgang (Energie-Impulse)	max. 20 Hz

Leitungslänge (digitale Ein-/Ausgänge)	
bis 30 m (32.81 yd)	nicht abgeschirmt
größer 30 m (32.81 yd)	abgeschirmt

Analoger Ausgang 1 Kanal	
Externe Versorgung	max. 33 V DC
Strom	0/420 mA DC
Update-Zeit	0,2 s
Bürde	max. 300 Ω
Auflösung	10 Bit

RS485-Schnittstelle	
3-Draht-Anschluss mit A, B, GND	
Protokoll	Modbus RTU/Slave Modbus RTU/Gateway
Übertragungsrate	9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps
Terminierung	DIP-Schalter

Ethernet-Schnittstellen	
Anschluss	2 x RJ45
Funktion	Modbus Gateway
Protokolle, Dienste	OPC UA, DHCP, Modbus/TCP, NTP
Zeitsynchronisation	NTP

Anschlussvermögen der Klemmstellen (Versorgungsspannung) Anschließbare Leiter. Pro Klemmstelle nur einen Leiter anschließen!	
Eindrähtige, mehrdrähtige, feindrähtige	0,2 - 2,5 mm², AWG 26-12
Aderendhülsen (nicht isoliert) - empfohlene Abisolierlänge	0,2 - 2,5 mm², AWG 26-12 10 mm (0.3937 in)
Aderendhülsen (isoliert) - empfohlene Abisolierlänge	0,2 - 2,5 mm², AWG 26-12 13 mm (0.5118 in)
Aderendhülsen: Länge der Kontakthülse	10 mm (0.3937 in)

Anschlussvermögen der Klemmstellen (Strommessung) Anschließbare Leiter. Pro Klemmstelle nur einen Leiter anschließen!	
Eindrähtige, mehrdrähtige, feindrähtige	0,2 - 2,5 mm², AWG 26-12
Aderendhülsen (nicht isoliert) - empfohlene Abisolierlänge	0,2 - 2,5 mm², AWG 26-12 10 mm (0.3937 in)
Aderendhülsen (isoliert) - empfohlene Abisolierlänge	0,2 - 2,5 mm², AWG 26-12 13 mm (0.5118 in)
Anzugsdrehmoment Schraubflansch	0,2 Nm (1.77 lbf in)
Aderendhülsen: Länge der Kontakthülse	10 mm (0.3937 in)

Anschlussvermögen der Klemmstellen (Spannungsmessung) Anschließbare Leiter. Pro Klemmstelle nur einen Leiter anschließen!	
Eindrähtige, mehrdrähtige, feindrähtige	0,08 - 4 mm², AWG 28-12
Aderendhülsen (isoliert/nicht isoliert)	0,25 - 2,5 mm², AWG 24-14
Abisolierlänge	8-9 mm (0.3150 - 0.3543 in)

Anschlussvermögen der Klemmstellen (Funktionserde A/D)
Anschließbare Leiter. Pro Klemmstelle nur einen Leiter anschließen!Eindrähtige, mehrdrähtige, feindrähtige0,2 - 4 mm², AWG 24-12Aderendhülsen (nicht isoliert)0,2 - 4 mm², AWG 24-12Aderendhülsen (isoliert)0,2 - 2,5 mm², AWG 26-14Anzugsdrehmoment0,4 - 0,5 Nm (3.54 - 4.43 lbf in)Abisolierlänge7 mm (0.2756 in)

Anschlussvermögen der Klemmstellen - Multifunktionskanäle (RCM, Temp.) Anschließbare Leiter. Pro Klemmstelle nur einen Leiter anschließen!

Anschliebbale Leiter. I to Merrinistelle nur einen Leiter anschlieben:	
Eindrähtige, mehrdrähtige, feindrähtige	0,2 - 1,5 mm², AWG 24-16
Aderendhülsen (nicht isoliert)	0,2 - 1,5 mm², AWG 26-16
Aderendhülsen (isoliert)	0,2 - 1 mm², AWG 26-18
Anzugsdrehmoment	0,2 - 0,25 Nm (1.77 - 2.21 lbf in)
Abisolierlänge	7 mm (0.2756 in)

Anschlussvermögen der Klemmstellen (digitale Ein-/Ausgänge, analoger Ausgang)			
Eindrähtige, mehrdrähtige, feindrähtige	0,2 - 1,5 mm², AWG 24-16		
Aderendhülsen (nicht isoliert)	0,2 - 1,5 mm², AWG 26-16		
Aderendhülsen (isoliert)	0,2 - 1 mm², AWG 26-18		
Anzugsdrehmoment	0,2 - 0,25 Nm (1.77 - 2.21 lbf in)		
Abisolierlänge	7 mm (0.2756 in)		

Anschlussvermögen der Klemmstellen (RS485)			
Eindrähtige, mehrdrähtige, feindrähtige	0,2 - 1,5 mm², AWG 24-16		
Aderendhülsen (nicht isoliert)	0,2 - 1,5 mm², AWG 26-16		
Aderendhülsen (isoliert)	0,2 - 1 mm², AWG 26-18		
Anzugsdrehmoment	0,2 - 0,25 Nm (1.77 - 2.21 lbf in)		
Abisolierlänge	7 mm (0.2756 in)		

Potentialtrennung und elektrische Sicherheit der Schnittstellen

Die Schnittstellen (RS485, Ethernet) besitzen

- eine doppelte Isolierung zu den Eingängen der Spannungs- und Strommessung.
- eine Funktionsisolierung gegeneinander, zur Versorgungsspannung, zu den Messeingängen Differenzstrom und Temperatur, zu den digitalen Ein-/Ausgängen und zum analogen Ausgang.

Die Schnittstellen der angeschlossenen Geräte benötigen eine doppelte oder verstärkte Isolierung gegen Netzspannungen (gemäß IEC 61010-1: 2010).

Potentialtrennung und elektrische Sicherheit der Multifunktionskanäle (RCM, Temp.)

Die Eingänge der Multifunktionskanäle besitzen

- · eine doppelte Isolierung zu den Eingängen der Spannungs- und Strommessung.
- · keine Isolierung untereinander und zur Versorgungsspannung.
- eine Funktionsisolierung zu den Schnittstellen Ethernet, RS485, zu den digitalen Ein-/Ausgängen und zum analogen Ausgang.

Externe Sensoren und/oder Messwandler benötigen eine doppelte Isolierung zu Anlagenteilen mit gefährlicher Berührungsspannung (gemäß IEC61010-1:2010).

Potentialtrennung und elektrische Sicherheit der digitalen Ein- und Ausgänge (I/Os) und des analogen Ausgangs

Die digitalen Ein- und Ausgänge und der analoge Ausgang besitzen

- eine doppelte Isolierung zu den Eingängen der Spannungs- und Strommessung.
- eine Funktionsisolierung gegeneinander, zur Versorgungsspannung, zu den Schnittstellen Ethernet, RS485 und zu den Multifunktionskanälen.

19.2 Kenngrößen von Funktionen

Funktion	Symbol	Genauigkeitsklasse	Messbereich	Anzeigebereich
Frequenz	f	0,05 (IEC61557-12)	40 70 Hz	40,00 70,00 Hz
Spannung	U _{L-N}	0,2 (IEC61557-12)	10 720 V _{eff}	0 999 kV
Spannung	U L-L	0,2 (IEC61557-12)	18 1000 V _{eff}	0 999 kV
Spannung-Oberschwingungen	Uh	KI. 1 (IEC61000-4-7)	1 127	0 999 kV
THD der Spannung	THDu	1,0 (IEC61557-12)	0999%	0999%

Funktion	Symbol	Genauigkeitsklasse - 5 A Nennstrom	Messbereich	Anzeigebereich
Gesamt-Wirkleistung	Р	0,2 (IEC61557-12)	0 12,6 kW	0 999 GW
Gesamt-Blindleistung	QA, Qv	1 (IEC61557-12)	016,6 kvar	0 999 Gvar
Gesamt-Scheinleistung	SA, Sv	0,5 (IEC61557-12)	0 12,6 kVA	0 999 GVA
Gesamt-Wirkenergie	Ea	0,2 (IEC61557-12) 0,2S (IEC62053-22)	0 999 GWh	0 999 GWh
Gesamt-Blindenergie	ErA, ErV	1 (IEC61557-12)	0 999 Gvarh	0 999 Gvarh
Gesamt-Scheinenergie	EapA, EapV	0,5 (IEC61557-12)	0 999 GVAh	0 999 GVAh
Phasenstrom	I	0,2 (IEC61557-12)	0,005 6 A _{eff}	0 999 kA
Neutralleiterstrom berechnet	INc	1,0 (IEC61557-12)	0,03 25 A	0,03 999 kA
Leistungsfaktor	PFA, PFV	0,5 (IEC61557-12)	0,00 1.00	0,00 1.00
Strom-Oberschwingungen	lh	Kl. 1 (IEC61000-4-7)	1 63	0 999 kA
THD des Stromes	THDi	1,0 (IEC61557-12)	0999%	0999%

Funktion	Symbol	Genauigkeitsklasse - 1 A Nennstrom	Messbereich	Anzeigebereich
Gesamt-Wirkleistung	Р	0,5 (IEC61557-12)	0 12,6 kW	0 999 GW
Gesamt-Blindleistung	QA, Qv	1 (IEC61557-12)	0 16,6 kvar	0 999 Gvar
Gesamt-Scheinleistung	SA, Sv	0,5 (IEC61557-12)	0 12,6 kVA	0 999 GVA
Gesamt-Wirkenergie	Ea	0,5 (IEC61557-12) 0,5S (IEC62053-22)	0 999 GWh	0 999 GWh
Gesamt-Blindenergie	ErA, ErV	1 (IEC61557-12)	0 999 Gvarh	0 999 Gvarh
Gesamt-Scheinenergie	EapA, EapV	0,5 (IEC61557-12)	0 999 GVAh	0 999 GVAh
Phasenstrom	Ι	0,5 (IEC61557-12)	0,005 6 A _{eff}	0 999 kA
Neutralleiterstrom berechnet	INc	1,0 (IEC61557-12)	0,03 25 A	0,03 999 kA
Leistungsfaktor	PFA, PFV	1 (IEC61557-12)	0,00 1.00	0,00 1.00
Strom-Oberschwingungen	lh	Kl. 1 (IEC61000-4-7)	1 63	0 999 kA
THD des Stromes	THDi	1,0 (IEC61557-12)	0 999%	0999%
19.3 Parameter- und Modbus-Adressenliste

(i) INFORMATION

Eine Standard-Modbus-Adressenliste mit Erläuterungen zu Messwerten und einer Formelsammlung finden Sie im Download-Bereich auf www.janitza. de.

19.4 Information zum Speichern von Messwerten und Konfigurationsdaten

(i) INFORMATION

Das Gerät speichert folgende Messwerte spätestens alle 5 Minuten: • S0-Zählerstände • Min.- / Max.- / Mittelwerte • Energiewerte (Arbeitswerte) Konfigurationsdaten speichert das Gerät sofort (1-2 s)!

20. Maßbilder

- \cdot Die Abbildungen dienen der Veranschaulichung und sind nicht maßstabsgetreu.
- \cdot Alle Maßangaben in mm (in).

Busverbinder Stecker für den Einschub in die Geräte-Rückseite Under Buchsen für den Einschub eines Moduls

Ansicht von oben

Ansicht von links

Janitza electronics GmbH Vor dem Polstück 6 D-35633 Lahnau

Support Tel. +49 6441 9642-22 E-Mail: info@janitza.de info@janitza.de | www.janitza.de