Bedienungsanleitung

Signalwandler 7379.5021 u. 7379.5021/CO DMS Eingang → I0 – Link (V1.1)

Produkteigenschaften:

- 1x DMS Eingang für den Anschluss für einen DMS Vollbrückensensor
- Einfache Geräteparametrierung über IO Link mittels diverser Engineering Tools möglich
- Zahlreiche Anbindungsmöglichkeiten über Erweiterungsoption (7379.5021/C0) (drei zusätzliche Steuereingänge und zwei zusätzliche Steuerausgänge)
- Einstellbare Grenzwertüberwachung möglich
- Erzeugung von anstehenden Events (z.B. Berechneter Brückenwiderstand oberhalb bzw. unterhalb des eingestellten Sollwiderstandes, Brückenstrom > 50 mA, Unterspannung, ...) möglich
- Kompaktes Hutschienengehäuse nach EN60715

Verfügbare Optionen:

7379.5021:Grundgerät mit DMS Eingang für einen DMS Vollbrückensensor7379.5021/CO:Grundgerät mit DMS Eingang sowie
3x HTL PNP Steuereingängen und 2x PNP Controlausgängen

motrona GmbH, Zeppelinstraße 16, DE - 78244 Gottmadingen, Tel. +49 (0) 7731 9332-0, Fax +49 (0) 7731 9332-30, info@motrona.de, www.motrona.de

Inhaltsverzeichnis

1.	Sicherheit und Verantwortung	4
	1.1. Allgemeine Sicherheitshinweise	4
	1.2. Bestimmungsgemäße Verwendung	4
	1.3. Installation	
	1.4. Störsicherheit	
	1.5. Reinigungs-, Pflege- und Wartungshinweise	6
2.	Allgemeines	7
	2.1. Funktionsdiagramm	8
3.	Elektrische Anschlüsse	9
	3.1. DC-Spannungsversorgung	9
	3.2. DMS-Eingang	10
	3.3. Control-Eingänge (nur bei Option "CO")	11
	3.4. Control-Ausgänge (nur bei Option "CO")	12
	3.5. IO-Link Schnittstelle	13
	3.5.1. Verwendbare IO Link Master	13
	3.5.2. Kommunikationsdaten	13
	3.5.3. Features	13
	3.5.4. Frontseitige LED	
	3.5.5. Anschluss der IO Link Schnittstelle	
	3.5.6. Parameterdaten	
	3.5.7. System Kommandos	
	3.5.8. IO-Link Prozessdaten	
	3.5.9. Fehlertypen	
	3.5.10. Events	20
4.	Parameter / Menü Übersicht	21
	4.1. Sensor Menu	
	4.2. Digital Input Menu	
	4.3. Digital Output Menu	
	4.4. General Menu	
	4.5. Adjustment Menu	
F		
5.	Inbetriebnahme	JZ
	5.1. Grundeinstellung des DMS Sensors	32
	5.2. Einfachste Einstellung	33
	5.3. Umrechnung in Sensor Einheiten	34
	5.4. Digitaler Eingang	
	5.5. Digitaler Ausgang	
	5.6. Weitere optionale Einstellungen	
	5.6.1. Untersuchung der eingelesenen analogen Werte	
	5.7. Kalibrierung der MEA Rücklesung	
	5.8. Kalibrierung des analogen Eingangs BRI / DMS	
	5.8.1. Kalibrierung der Eingangsstufe	
	5.8.2. Kalibrierung der Eingangsstufe und dem DMS Sensor	
	5.8.3. Monitor Codestellen für die Kalibrierung	
6.	Anhang	

6.1.	Parameterliste / Serielle Codes	39
6.2.	Abmessungen	41
6.3.	Technische Daten	42

1. Sicherheit und Verantwortung

1.1. Allgemeine Sicherheitshinweise

Diese Beschreibung ist wesentlicher Bestandteil des Gerätes und enthält wichtige Hinweise bezüglich Installation, Funktion und Bedienung. Nichtbeachtung kann zur Beschädigung oder zur Beeinträchtigung der Sicherheit von Menschen und Anlagen führen!

Bitte lesen Sie vor der ersten Inbetriebnahme des Geräts diese Beschreibung sorgfältig durch und beachten Sie alle Sicherheits- und Warnhinweise! Bewahren Sie diese Beschreibung für eine spätere Verwendung auf.

Voraussetzung für die Verwendung dieser Gerätebeschreibung ist eine entsprechende Qualifikation des jeweiligen Personals. Das Gerät darf nur von einer geschulten Elektrofachkraft installiert, konfiguriert, in Betrieb genommen und gewartet werden.

Haftungsausschluss: Der Hersteller haftet nicht für eventuelle Personen- oder Sachschäden, die durch unsachgemäße Installation, Inbetriebnahme, Bedienung und Wartung sowie aufgrund von menschlichen Fehlinterpretationen oder Fehlern innerhalb dieser Gerätebeschreibung auftreten. Zudem behält sich der Hersteller das Recht vor, jederzeit - auch ohne vorherige Ankündigung - technische Änderungen am Gerät oder an der Beschreibung vorzunehmen. Mögliche Abweichungen zwischen Gerät und Beschreibung sind deshalb nicht auszuschließen.

Die Sicherheit der Anlage bzw. des Gesamtsystems, in welche(s) dieses Gerät integriert wird, obliegt der Verantwortung des Errichters der Anlage bzw. des Gesamtsystems.

Es müssen während der Installation, beim Betrieb sowie bei Wartungsarbeiten sämtliche allgemeinen sowie länderspezifischen und anwendungsspezifischen Sicherheitsbestimmungen und Standards beachtet und befolgt werden.

Wird das Gerät in Prozessen eingesetzt, bei denen ein eventuelles Versagen oder eine Fehlbedienung die Beschädigung der Anlage oder eine Verletzung von Personen zur Folge haben kann, dann müssen entsprechende Vorkehrungen zur sicheren Vermeidung solcher Folgen getroffen werden.

1.2. Bestimmungsgemäße Verwendung

Dieses Gerät dient ausschließlich zur Verwendung in industriellen Maschinen und Anlagen. Hiervon abweichende Verwendungszwecke entsprechen nicht den Bestimmungen und obliegen allein der Verantwortung des Nutzers. Der Hersteller haftet nicht für Schäden, die durch eine unsachgemäße Verwendung entstehen. Das Gerät darf nur ordnungsgemäß eingebaut und in technisch einwandfreiem Zustand - entsprechend der technischen Daten - eingesetzt und betrieben werden. Das Gerät ist nicht geeignet für den explosionsgeschützten Bereich sowie Einsatzbereiche, die in DIN EN 61010-1 ausgeschlossen sind.

1.3. Installation

Das Gerät darf nur in einer Umgebung installiert und betrieben werden, die dem zulässigen Temperaturbereich entspricht. Stellen Sie eine ausreichende Belüftung sicher und vermeiden Sie den direkten Kontakt des Gerätes mit heißen oder aggressiven Gasen oder Flüssigkeiten.

Vor der Installation sowie vor Wartungsarbeiten ist die Einheit von sämtlichen Spannungsquellen zu trennen. Auch ist sicherzustellen, dass von einer Berührung der getrennten Spannungsquellen keinerlei Gefahr mehr ausgehen kann.

Geräte, die mittels Wechselspannung versorgt werden, dürfen ausschließlich via Schalter bzw. Leistungsschalter mit dem Niederspannungsnetz verbunden werden. Dieser Schalter muss in Gerätenähe platziert werden und eine Kennzeichnung als Trennvorrichtung aufweisen.

Eingehende sowie ausgehende Leitungen für Kleinspannungen müssen durch eine doppelte bzw. verstärkte Isolation von gefährlichen, stromführenden Leitungen getrennt werden (SELV Kreise).

Sämtliche Leitungen und deren Isolationen sind so zu wählen, dass sie dem vorgesehenen Spannungs- und Temperaturbereich entsprechen. Zudem sind sowohl die geräte-, als auch länderspezifischen Standards einzuhalten, die in Aufbau, Form und Qualität für die Leitungen gelten. Angaben über zulässige Leitungsquerschnitte für die Schraubklemmverbindungen sind den technischen Daten zu entnehmen.

Vor der Inbetriebnahme sind sämtliche Anschlüsse. bzw. Leitungen auf einen soliden Sitz in den Schraubklemmen zu überprüfen. Alle (auch unbelegte) Schraubklemmen müssen bis zum Anschlag nach rechts gedreht und somit sicher befestigt werden, damit sie sich bei Erschütterungen und Vibrationen nicht lösen können.

Überspannungen an den Anschlüssen des Gerätes sind auf die Werte der Überspannungskategorie II zu begrenzen.

1.4. Störsicherheit

Alle Anschlüsse sind gegen elektromagnetische Störungen geschützt.

Es ist jedoch zu gewährleisten, dass am Einbauort des Gerätes möglichst geringe kapazitive oder induktive Störungen auf das Gerät und alle Anschlussleitungen einwirken.

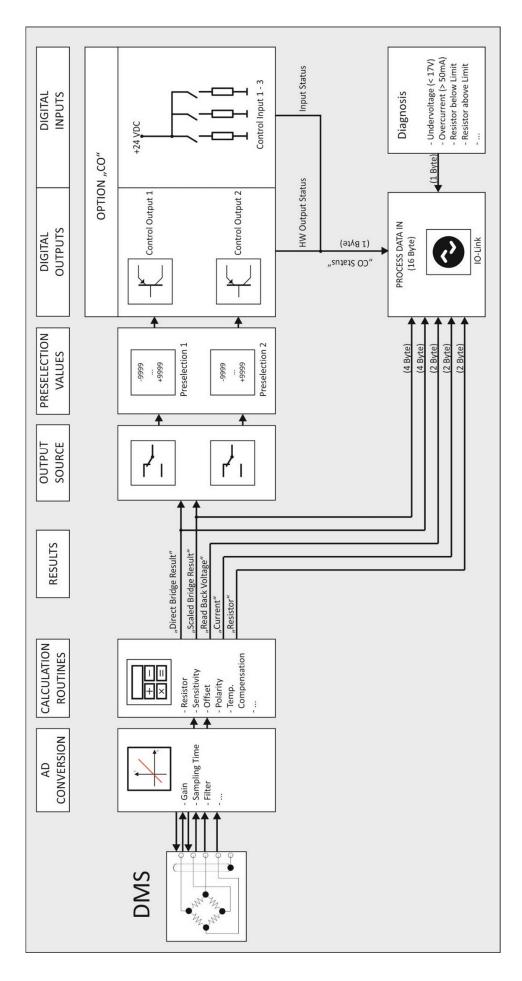
Hierzu sind folgende Maßnahmen notwendig:

- Für alle Ein und Ausgangssignale ist grundsätzlich geschirmtes Kabel zu verwenden
- Steuerleitungen (digitale Ein- und Ausgänge, Relaisausgänge) dürfen eine Länge von 30 m nicht überschreiten und das Gebäude nicht verlassen.
- Die Kabelschirme müssen über Schirmklemmen großflächig mit Erde verbunden werden
- Die Verdrahtung der Masse-Leitungen (GND bzw. 0 V) muss sternförmig erfolgen und darf nicht mehrfach mit Erde verbunden sein
- Das Gerät sollte in ein metallisches Gehäuse und möglichst entfernt von Störquellen eingebaut werden
- Die Leitungsführung darf nicht parallel zu Energieleitungen und anderen störungsbehafteten Leitungen erfolgen

Siehe hierzu auch das motrona Dokument "Allgemeine Regeln zu Verkabelung, Erdung und Schaltschrankaufbau". Dieses finden Sie auf unserer Homepage unter dem Link <u>https://www.motrona.com/de/support/allgemeine-zertifikate.html</u>

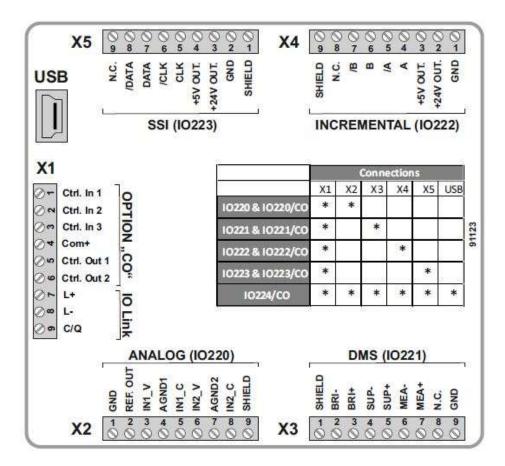
1.5. Reinigungs-, Pflege- und Wartungshinweise

Zur Reinigung der Frontseite verwenden Sie bitte ausschließlich ein weiches, leicht angefeuchtetes Tuch. Für die Geräte-Rückseite sind keinerlei Reinigungsarbeiten vorgesehen bzw. erforderlich. Eine außerplanmäßige Reinigung obliegt der Verantwortung des zuständigen Wartungspersonals, bzw. dem jeweiligen Monteur.


Im regulären Betrieb sind für das Gerät keinerlei Wartungsmaßnahmen erforderlich. Bei unerwarteten Problemen, Fehlern oder Funktionsausfällen muss das Gerät an die motrona GmbH geschickt und dort überprüft sowie ggfs. repariert werden. Ein unbefugtes Öffnen und Instandsetzen kann zur Beeinträchtigung oder gar zum Ausfall der vom Gerät unterstützten Schutzmaßnahmen führen.

2. Allgemeines

Das 7379.5021 bzw. das 7379.5021/CO sind Geräte zum Anschluss eines DMS Vollbrücken Sensors, dessen gewandeltes Messergebnis zyklisch über die Prozessdaten über IO Link übermittelt wird. Die Erweiterungsoption "CO" besitzt zusätzlich drei HTL PNP Steuereingänge und zwei PNP Schaltausgänge. Diese Schaltausgänge übermitteln das Überschreiten, das Unterschreiten von Schaltpunkten, sowie Bewegungen außerhalb eines Bereiches. Es kann auch ein DMS Fehler ausgegeben werden. Mit Hilfe von "System Commands" über IO Link oder über einen der drei zusätzlichen HTL Control Eingänge kann beispielsweise eine Nullsetzung des DMS Sensors ausgelöst oder die Selbsthaltung an den Ausgängen zurückgenommen werden. Der Status der Control Einsowie Ausgänge sowie relevante Diagnoseinformationen werden ebenfalls zyklisch mit den Prozessdaten übermittelt.


Außerdem können eventuell anstehende Events (z.B. Berechneter Brückenwiderstand oberhalb bzw. unterhalb des eingestellten Sollwiderstandes, Brückenstrom > 50 mA, Unterspannung, ...) erzeugt werden, sofern dies vom Anwender gewünscht ist. Die einzelnen Geräteparameter können mittels diverser Engineering Tools oder im laufenden Betrieb über IO – Link eingestellt und gespeichert werden. Durch den unterstützten "Data Storrage" Mechanismus ist ein unkomplizierter und problemloser Geräteaustausch jederzeit möglich.

2.1. Funktionsdiagramm

3. Elektrische Anschlüsse

Die Klemmen sollten mit einem Schlitz-Schraubendreher (Klingenbreite 2mm) angezogen werden.

3.1. DC-Spannungsversorgung

Über die Klemme X1 Pin 7 und 8 kann das Wandlermodul mit einer Gleichspannung zwischen 18 und 30 VDC versorgt werden. Die Stromaufnahme hängt u.a. von der Höhe der Versorgungsspannung ab und liegt bei ca. 75 mA (bei 24VDC).

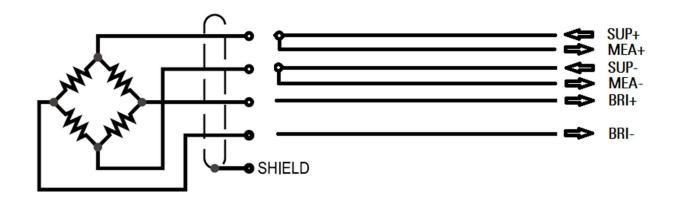
Alle GND Anschlüsse des Gerätes sind intern miteinander verbunden.

3.2. DMS-Eingang

DMS Vollbrücken Versorgung

An Klemme SUP+, SUP- bzw. X3 Pin 5 (+) und Pin 4 (-) kann die programmierbare Versorgungsspannung von 3V - 10VDC für die DMS Sensoren mit max. 50mA ausgegeben werden.

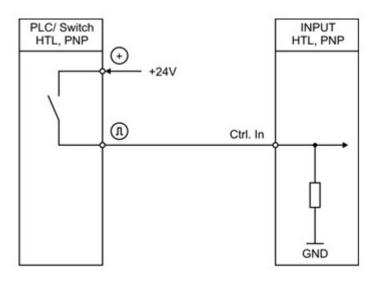
DMS Vollbrücken Rücklesung


An Klemme MEA+, MEA- bzw. X3 Pin 7 (+) und Pin 6 (-) stehen zwei Eingänge für die Rücklesung der DMS Sensoren Versorgungsspannung zur Verfügung. Diese muss auf jeden Fall mit der Vollbrückenversorgung verbunden werden, idealerweise direkt an der Vollbrücke, um Spannungsabfälle an der Zuleitung mit zu berücksichtigen.

DMS Vollbrücken Spannung

An Klemme BRI+, BRI- bzw. X3 Pin 3 (+) und Pin 2 (-) stehen zwei Eingänge für die Auswertung der Brückenspannung zur Verfügung.

Anschlussbeispiel DMS Sensor


Im Bild unten ist ein Beispiel für den Anschluss eines DMS Sensors dargestellt. (SUP = Supply = Versorgung, MEA = Measurement of Supply = Messung der Versorgung, BRI = Bridge Voltage = Brückenspannung)

3.3. Control-Eingänge (nur bei Option "CO")

An Klemme X1 Pin 1, 2 und 3 stehen drei Control-Eingänge mit HTL PNP Charakteristik zur Verfügung. Der aktuelle Zustand der Control-Eingänge wird zyklisch mit den Prozessdaten ausgetauscht und kann somit für die unterschiedlichsten Funktionen verwendet werden. (z.B. als Triggersignal zum Auslösen eines "System Commands" oder zum Auslesen von aktuellen Ist-Werten über die SPS). Über das "DIGITAL INPUT MENU" kann der jeweilige Eingang auch mit einer fixen Funktion ("INPUT x FUNCTION") parametriert werden. (z.B. "Tara" des Eingangs)

Anschluss der Control-Eingänge:

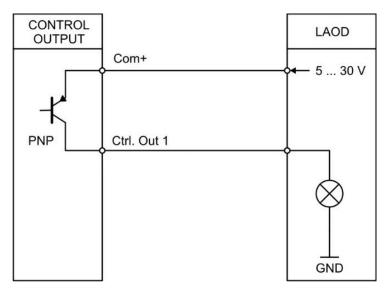
Hinweis für mechanische Schaltkontakte:

Grundsätzlich sind offene Control-Eingänge "LOW".

Die Eingangsstufen sind für elektronische Steuersignale ausgelegt.

Sollten ausnahmsweise mechanische Kontakte als Impulsquelle verwendet werden, muss an den Anschlussklemmen zwischen GND(-) und dem entsprechenden Eingang (+) ein handelsüblicher, externer Kondensator von ca. 10 μ F angebracht werden. Dadurch wird die maximale Eingangsfrequenz auf ca. 20 Hz gedämpft und ein Prellen unterdrückt.

3.4. Control-Ausgänge (nur bei Option "CO")


An Klemme X1 Pin 5 und 6 stehen zwei Control-Ausgänge zur Verfügung. Sie können je nach Parametrierung ("DIGITAL OUTPUT MENU") verschiedene Zustände übermitteln.

Die Ausgänge Ctrl. Out 1 und 2 sind als High Side Treiber ausgeführt. Der Status der Ausgänge wird zyklisch mit den IO Link Prozessdaten übermittelt.

Die Schaltspannung wird durch die an der Klemme X1 Pin 4 (COM+) zugeführte externe Spannung bestimmt.

Zum Schalten induktiver Lasten werden externe Dämpfungsmaßnahmen empfohlen.

Anschluss der Control-Ausgänge:

3.5. IO-Link Schnittstelle

Dieses Kapitel enthält wichtige Hinweise und Informationen bezüglich IO-Link Kommunikationsdaten. Neben allgemeinen Hinweisen zur IO-Link Verbindung wird auf die Parameterdaten des Devices, den ausgetauschten Prozessdaten, sowie den implementierten System Commands, Fehlercodes und Events eingegangen.

3.5.1. Verwendbare IO Link Master

Alle IO-Link-Master, welche IO-Link Standard V1.1 unterstützen.

3.5.2. Kommunikationsdaten

Parameter	Wert
Kommunikationsgeschwindigkeit	COM 3
Übertragungsrate	230,4 kbit/s
IO-Link Revision	V1.1
Zykluszeit	min. 2 ms
Portklasse	Class A

3.5.3. Features

Feature	Unterstützt
Blockparametrierung	Ja
Datenspeicherung	Ja
Events	Ja
SIO Mode	Nein

3.5.4. Frontseitige LED

Bei Geräten <u>ohne Option "CO"</u> dient die frontseitige grüne LED ausschließlich als Betriebsbereitschaftsanzeige. Sobald an das Gerät eine Versorgungsspannung angelegt wurde, leuchtet diese dauerhaft.

Bei Geräten <u>mit erweiterter Option "CO"</u> dient die frontseitige grüne LED als Betriebsbereitschaftsanzeige. Außerdem signalisiert sie den aktuellen IO Link Systemzustand.

LED leuchtet dauerhaft:

Gerät ist an Versorgungsspannung angeschlossen und es findet <u>keine</u> IO Link Kommunikation statt. Gerät befindet sich im "START UP MODE".

LED blinkt im 0,5 Hz Takt:

Gerät ist an Versorgungsspannung angeschlossen und IO Link Kommunikation befindet sich gerade im "PREOPERATE MODE" (kein zyklischer Datenaustausch findet statt).

LED blinkt im 1 Hz Takt:

Gerät ist an Versorgungsspannung angeschlossen und IO Link Kommunikation befindet sich gerade im "OPERATE MODE" (zyklischer Datenaustausch findet statt).

3.5.5. Anschluss der IO Link Schnittstelle

An Klemme X1 Pin 7 *(L-),* 8 *(L+)* und 9 *(C/Q)* steht eine Schnittstelle zur Anbindung an einen IO-Link Master Port zur Verfügung.

Abbildung 1 zeigt die Pinbelegung eines handelsüblichen M12 Anschlusssteckers.

Belegung								
175.0	Pin 1	Klemme L+						
10002	Pin 2	Nicht angeschlossen						
00/2	Pin 3	Klemme L-						
4 3	Pin 4	IO-Link Datenleitung, C/Q						

Abb. 1: Pinbelegung M12 Anschlussstecker

Pin	Aderfarbe
1 (L+)	braun
2 (n.c.)	weiß
3 (L-)	blau
4 (C/Q)	schwarz

3.5.6. Parameterdaten

ISDU Index	DPP1 Index	Parametername	Zugriff	Länge in Bytes	Default Wert	Wertebereich			
	Identification Menu								
	7 8	VendorID	R	2	980 / 0x 03D4	-			
	9 10 11	Device ID	R	3	2228481 / 0x220101	-			
16		Vendor Name	R	12	motrona GmbH	-			
17		Vendor Text	R	21	http://www.motrona.de	-			
18		Product Name	R	16	signal amplifier	-			
19		Product ID	R	8	7379.5021 oder 7379.5021/C0	-			
20		Product Text	R	36	DMS amplifier with IO- Link interface	-			
21		Serial Number	R	9	-	-			
22		Hardware Revision	R	7	z.B.: 224l011	-			
23		Firmware Revision	R	8	z.B.: 7379.502101A	-			
24		Application Specific Tag	R/W	Max. 32	***	-			
36		Device Status	R	1	0x00	0: Gerät arbeitet ordnungsgemäß 1: Wartung erforderlich 2: Außerhalb der Spezifikation 3: Funktionsprüfung 4: Fehler 5-255: Reserviert			
40		Prozess Data Input	R	16	-	-			

ISDU Index	DPP1 Index	Parametername	Zugriff	Länge in Bytes	Default Wert	Wertebereich		
SENSOR MENU								
258		SENSOR SUPPLY	R/W	4	5	310		
259		SENSOR GAIN	R/W	4	0	04		
260		SENSOR OSR	R/W	4	0	012		
261		SENSOR OFFSET	R/W	4	0	-1000010000		
262		SENSOR RESISTOR	R/W	4	350	010000		
263		SENSOR SENSITIVITY	R/W	4	1000	10020000		
264		SENSOR VOLTAGE	R/W	4	1000	199999		
265		SENSOR DIGIT	R/W	4	1000	199999		
266		SENSOR CORRECTION	R/W	4	1000	9001100		
267		SENSOR POLARITY	R/W	4	0	01		
			DIGITAL IN	PUT MENU				
272		INPUT 1 CONFIG	R/W	4	2	03		
273		INPUT 1 FUNCTION	R/W	4	0	06		
274		INPUT 2 CONFIG	R/W	4	2	03		
275		INPUT 2 FUNCTION	R/W	4	0	06		
276		INPUT 3 CONFIG	R/W	4	2	03		
277		INPUT 3 FUNCTION	R/W	4	0	06		
			DIGITAL OU	TPUT MENU		I		
281		OUTPUT POLARITY	R/W	4	0	03		
282		OUTPUT LOCK	R/W	4	0	03		
283		OUTPUT SOURCE 1	R/W	4	0	01		
284		OUTPUT FUNCTION 1	R/W	4	7	07		
285		OUTPUT HYSTERESIS 1	R/W	4	0	09999		
286		OUTPUT PRESELECTION 1	R/W	4	1000	-99999999		
287		OUTPUT SOURCE 2	R/W	4	0	01		
288		OUTPUT FUNCTION 2	R/W	4	7	07		
289		OUTPUT HYSTERESIS 2	R/W	4	0	09999		
290		OUTPUT PRESELECTION 2	R/W	4	1000	-99999999		
			GENERA	L MENU				
294		FILTER	R/W	4	0	09		
295		MIN MAX CHANNEL	R/W	4	0	02		
296		DIAGNOSIS SETUP	R/W	4	0 (0x00)	0x000x0F		
			ADJUSTMI	ENT MENU		I		
302		TCI BRIDGE OFFSET	R/W	4	10000	500015000		
303		TCI BRIDGE GAIN	R/W	4	100000	90000110000		
304		TEMP. COMP. (TCI)	R/W	4	0	03		
305		BRIDGE SUPPLY ADJUST	R/W	4	10000	800012000		
306		TCI OFFSET INVERSION	R/W	4	0	01		
307		TCI GAIN INVERSION	R/W	4	0	01		
308		TEMP. SIMULATION	R/W	4	0	01		
309		TEMP. SIM. VALUE	R/W	4	1140	8701412		
310		BRIDGE SUPPLY COMP.	R/W	4	0	01		
311		BRIDGE SUPPLY REF.	R/W	4	5000	011000		

ISDU Index	DPP1 Index	Parametername	Zugriff	Länge in Bytes	Default Wert	Wertebereich		
	Observation Menu (Read Out Variables)							
657		Read Back Voltage Value (Raw Value)	R	4	-	-		
658		Bridge Value (Raw Value)	R	4	-	-		
659		Maximum Value	R	4	-	-		
660		Minimum Value	R	4	-	-		
661		ADC Time	R	4	-	-		
662		Read Back Offsetcorrection	R	4	-	-		
663		Factor of the Gain Compensation	R	4	-	-		
664		Result with Offset, Offset- and Gain- Compensation	R	4	-	_		
665		Temperature	R	2	-	-		

Ein System Command ist ein "write-only" Parameter, der im Device eine Aktion hervorruft. Um die gewünschte Aktion hervorzurufen, muss der entsprechende Wert an Index 2, Subindex 0 geschrieben werden. Handelt es sich bei dem gewünschten Command um einen statischen Befehl (s), bleibt dieser Befehl solange aktiv, bis der entsprechende Wert nochmals an Index 2, Subindex 0 geschrieben wird. Durch das erneute Senden des Befehls, wird die Aktion beendet.

Vordefinierte Kommandos

Name	Index	Subindex	Wert	Beschreibung der Aktion	dynamisch (d) / statisch (s)
RESTORE FACTORY SETTINGS	2	0	130	Setzt alle Parameter auf Werkseinstellung zurück.	(d)
APPLICATION RESET	2	0	129	Setzt alle Geräteparameter auf "Default-Werte" zurück.	(d)

Applikationsspezifische Kommandos

Name	Index	Subindex	Wert	Beschreibung der Aktion	dynamisch (d) / statisch (s)
TARA	2	0	160	Tara für Brückenspannung (Nullsetzung).	(d)
LOCK RELEASE 1	2	0	161	Rücksetzung der Selbsthaltung für Ausgang 1.	(d)
LOCK RELEASE 2	2	0	162	Rücksetzung der Selbsthaltung für Ausgang 2.	(d)
LOCK RELEASE 1+2	2	0	163	Rücksetzung der Selbsthaltung für Ausgang 1+2.	(d)
CLEAR MIN/MAX VALUES	2	0	164	Reset der Min. / Max. Werte.	(d)
QUIT. OVERCURRENT	2	0	165	Quittierung nach Überstromfehlermeldung. (> 50 mA).	(d)
STORE EEPROM	2	0	168	Aktuelle Parametereinstellungen werden nichtflüchtig abgespeichert.	(d)

Bit	Byte	Subindex	Beschreibung
Bit O		1	Diagnose: Überstrom (> 50mA) erkannt.
Bit 1		2	Diagnose: Berechneter Widerstand ist oberhalb des eingestellten Bereiches.
Bit 2		3	Diagnose: Berechneter Widerstand ist unterhalb des eingestellten Bereiches.
Bit 3	Byte 15	4	Diagnose: Geräteversorgung Unterspannung (< 17 V)
Bit 4	Dyte 15	5	Diagnose: Reserve
Bit 5		6	Diagnose: Reserve
Bit 6		7	Diagnose: Device Test – Error (nur für Testzwecke!)
Bit 7		8	Diagnose: Device Test – Warnung (nur für Testzwecke!)
Bit 0		9	Input Status: Control Input 1 (0: OFF / 1: ON)
Bit 1		10	Input Status: Control Input 2 (0: OFF / 1: ON)
Bit 2		11	Input Status: Control Input 3 (0: OFF / 1: ON)
Bit 3	Dute 14	12	HW Output Status: Control Output 1 (0: OFF / 1: ON)
Bit 4	Byte 14	13	HW Output Status: Control Output 2 (0: OFF / 1: ON)
Bit 5		14	Reserve
Bit 6		15	Reserve
Bit 7		16	Reserve
-	Byte 1213	17	Prozesswert 5: Calculated Resistor (in Ohm) - (Datentyp: Int16)
-	Byte 1011	18	Prozesswert 4: Actual Current (in 1/10 mA) - (Datentyp: Int16)
-	Byte 89	19	Prozesswert 3: Read Back Voltage (in mV) - (Datentyp: Int16)
	Byte 47	20	Prozesswert 2: Scaled Bridge Result - (Datentyp: Int32)
_	Byte 03	21	Prozesswert 1: Direct Bridge Result - (Datentyp: Int32)

Die azyklische Anforderungsadresse der Prozesseingangsdaten ist **Index 40**. Der entsprechende **Subindex** des gewünschten Wertes sowie der entsprechende **Datentyp**, welcher ausgelesen werden soll, sind der oberen Tabelle zu entnehmen.

3.5.9. Fehlertypen

Fehlercode	Name	Beschreibung
32768 / 0x 8000	Anwendungsfehler im Gerät - keine Details	Zugriff wurde vom Gerät verweigert. Es steht keine Detailinformation zur Verfügung.
32785 / 0x 8011	Index nicht vorhanden	Zugriff auf einen nicht existierenden Index.
32786 / 0x 8012	Subindex nicht vorhanden	Zugriff auf einen nicht existierenden Subindex.
32800 / 0x 8020	Service zur Zeit nicht verfügbar	Auf den Parameter kann gerade nicht zugegriffen werden. Das Gerät erlaubt dies im aktuellen Zustand nicht.
32803 / 0x 8023	Zugriff verweigert	Schreibzugriff auf einen schreibgeschützten Parameter.
32816 / 0x 8030	Parameterwert außerhalb des gültigen Bereichs	Geschriebener Parameterwert liegt außerhalb des zulässigen Wertebereichs.
32817 / 0x 8031	Parameterwert größer als angegebener Bereich	Geschriebener Parameterwert ist größer als der angegebene Wertebereich.
32818 / 0x 8032	Parameterwert kleiner als angegebener Bereich	Geschriebener Parameterwert ist kleiner als der angegebene Wertebereich.
32819 / 0x 8033	Parameterlänge zu groß	Geschriebene Parameterlänge ist größer als erlaubt.
32820 / 0x 8034	Parameterlänge zu klein	Geschriebene Parameterlänge ist kleiner als erlaubt.
32821 / 0x 8035	Funktion nicht verfügbar	Geschriebenes Kommando wird vom Gerät nicht unterstützt.
32822 / 0x 8036	Funktion zur Zeit nicht verfügbar	Geschriebenes Kommando wird vom Gerät im aktuellen Zustand nicht unterstützt.
32832 / 0x 8040	Ungültiger Parametersatz	Geschriebener Einzelparameterwert kollidiert mit den anderen Parametereinstellungen.
32833 / 0x 8041	Inkonsistenter Parametersatz	Am Ende des Blockparametertransfers wurden Inkonsistenzen erkannt. Der Geräteplausibilitätscheck schlug fehl.
32898 / 0x 8082	Applikation nicht bereit	Zugriff wurde verweigert, da das Gerät zur Zeit nicht bereit ist.

		Device	
Code	Тур	Status	Bedingung
0x1853	Error	0x04	Diagnose: Überstrom (> 50mA) erkannt.
		0x04	Diagnose: Berechneter Widerstand ist oberhalb des eingestellten
0x1854	Error		Bereiches.
		0x04	Diagnose: Berechneter Widerstand ist unterhalb des eingestellten
0x1855	Error		Bereiches.
0x180C	Warning	0x02	Diagnose: Geräteversorgung Unterspannung (< 17 V)
0x8D68	Error	0x00	Device Test: Error (nur für Testzwecke)
0x8D04	Warning	0x00	Device Test: Warning (nur für Testzwecke)

4. Parameter / Menü Übersicht

Die Parametrierung des Gerätes erfolgt über die IO Link Schnittstelle mit Hilfe eines geeigneten Engineering Tools, welches von den IO Link Master Herstellern üblicherweise zur Verfügung gestellt wird.

Dieser Abschnitt zeigt die Übersicht der einzelnen Menüs und deren Parameter. Der Menüname ist jeweils fett geschrieben, die zugehörigen Parameter sind direkt unter dem Menünamen angeordnet.

4.1. Sensor Menu

In diesem Menu werden die sensorspezifischen Parameter für diesen Signalwandler beschrieben.

	ig von ca. 5V.	die Versorgung des Sensors in V eingestellt. Die Einstellung 5 entspricht einer			
(Rückles	Rücklesung via Index "40", Subindex "19" möglich, Kalibrierung über Parameter Bridge Supply Adjust)				
	3 Entspricht einer Brückenversorgungsspannung von 3V				
	5	Entspricht einer Brückenversorgungsspannung von 5V (Default)			
	10	Entspricht einer Brückenversorgungsspannung von 10V			
Mit dies		erstärkung) die Verstärkung der Brückenspannung eingestellt. Eine Einstellung von Gain = 0, 1, 2 ng von 1, 2, 4, 8, 16.			
0	+/-80 mV	Entspricht einem Bereich von +/- 80mV (Default)			
1	+/-40 mV	Entspricht einem Bereich von +/- 40mV			
2	+/-20 mV	Entspricht einem Bereich von +/- 20mV			
3	+/-10 mV	Entspricht einem Bereich von +/- 10mV			
4	+/-5 mV	Entspricht einem Bereich von +/- 5mV			
•	auer wird beeinflus	Ser der Oversampling-Wert ist, umso genauer ist der eingelesene Wert. ann mit Index "661", Subindex "0" in ms ausgelesen werden. Die gesamte st durch den Parameter Sensor OSR und den Filter.			
•		ann mit Index "661" , Subindex "0" in ms ausgelesen werden. Die gesamte			
Einlesed SENSOI Mit diese Funktion	auer wird beeinflus 0 12 R OFFSET (Sensor- em Parameter wird der Eingänge bzw.	ann mit Index "661", Subindex "0" in ms ausgelesen werden. Die gesamte st durch den Parameter Sensor OSR und den Filter. Kleinster OSR -Wert (Default) Größter OSR -Wert			
Einlesed SENSOI Mit diese Funktion	auer wird beeinflus 0 12 R OFFSET (Sensor- em Parameter wird der Eingänge bzw. ichert. Durch einen -10000	ann mit Index "661" , Subindex "0" in ms ausgelesen werden. Die gesamte st durch den Parameter Sensor OSR und den Filter. Kleinster OSR -Wert (Default) Größter OSR -Wert Abstand) der Offset der Brückenspannung eingestellt. Dieser Parameter wird auch mit der Ta System Command verwendet und damit überschrieben aber nicht dauerhaft zusätzlichen "Store Eeprom" Befehl kann der Offset dauerhaft eingestellt werden. Kleinster Offset-Wert			
Einlesed SENSOI Mit diese Funktion abgespe SENSOI Mit diese kann dur Ohm und ("Index 4	auer wird beeinflus 0 12 R OFFSET (Sensor- em Parameter wird der Eingänge bzw. ichert. Durch einen -10000 0 +10000 R RESISTOR (Sens em Parameter wird ch das 7379.5021 ü I R > 700 Ohm ausg 40", "Subindex 17")	ann mit Index "661" , Subindex "0" in ms ausgelesen werden. Die gesamte st durch den Parameter Sensor OSR und den Filter. Kleinster OSR -Wert (Default) Größter OSR -Wert Abstand) der Offset der Brückenspannung eingestellt. Dieser Parameter wird auch mit der Ta System Command verwendet und damit überschrieben aber nicht dauerhaft zusätzlichen "Store Eeprom" Befehl kann der Offset dauerhaft eingestellt werden. Kleinster Offset-Wert Default-Wert Größter Offset-Wert cor-Widerstand) der Brückenwiderstand (Eingangs- Widerstand) des Sensors eingestellt. Dieser Wer berwacht werden. Wenn z.B. 350 Ohm eingestellt wird, wird ein Fehler bei R < 175 elöst. (/2 bzw. *2)			
Einlesed SENSOI Mit diese Funktion abgespe SENSOI Mit diese kann dur Ohm und ("Index 4	auer wird beeinflus 0 12 R OFFSET (Sensor- em Parameter wird der Eingänge bzw. ichert. Durch einen -10000 0 +10000 R RESISTOR (Sens em Parameter wird ch das 7379.5021 ü I R > 700 Ohm ausg 40", "Subindex 17")	ann mit Index "661" , Subindex "0" in ms ausgelesen werden. Die gesamte st durch den Parameter Sensor OSR und den Filter. Kleinster OSR -Wert (Default) Größter OSR -Wert Abstand) der Offset der Brückenspannung eingestellt. Dieser Parameter wird auch mit der Ta System Command verwendet und damit überschrieben aber nicht dauerhaft zusätzlichen "Store Eeprom" Befehl kann der Offset dauerhaft eingestellt werden. Kleinster Offset-Wert Default-Wert Größter Offset-Wert cor-Widerstand) der Brückenwiderstand (Eingangs- Widerstand) des Sensors eingestellt. Dieser Wer berwacht werden. Wenn z.B. 350 Ohm eingestellt wird, wird ein Fehler bei R < 175 elöst. (/2 bzw. *2)			
Einlesed SENSOI Mit diese Funktion abgespe SENSOI Mit diese kann dur Ohm und ("Index 4	auer wird beeinflus 0 12 R OFFSET (Sensor- em Parameter wird der Eingänge bzw. ichert. Durch einen -10000 0 +10000 R RESISTOR (Sens em Parameter wird ch das 7379.5021 ü d R > 700 Ohm ausg 40", "Subindex 17") er Wert auf 0 gesetz	ann mit Index "661" , Subindex "0" in ms ausgelesen werden. Die gesamte st durch den Parameter Sensor OSR und den Filter. Kleinster OSR -Wert (Default) Größter OSR -Wert Abstand) der Offset der Brückenspannung eingestellt. Dieser Parameter wird auch mit der Ta System Command verwendet und damit überschrieben aber nicht dauerhaft zusätzlichen "Store Eeprom" Befehl kann der Offset dauerhaft eingestellt werden. Kleinster Offset-Wert Default-Wert Größter Offset-Wert sor-Widerstand) der Brückenwiderstand (Eingangs- Widerstand) des Sensors eingestellt. Dieser Wer berwacht werden. Wenn z.B. 350 Ohm eingestellt wird, wird ein Fehler bei R < 175 elöst. (/2 bzw. *2)			

SENSO	R SENSITIVITY (Ser	nsor-Empfindlichkeit)	
		ie Sensitivität (mV/V) des Sensors eingestellt. Dieser Parameter wird nur bei	
bestimn	stimmten Verrechungsarten verwendet.		
	0.100	Kleinster Sensitivity-Wert	
	1.000	Default-Wert	
	20.000	Größter Sensitivity-Wert	
	R VOLTAGE (Sensor		
		ie Umrechnung zusammen mit dem Parameter Sensor Digit der Brückenspannung wird nur bei bestimmten Verrechungsarten verwendet.	
	1	Kleinster Voltage-Wert	
	1000	Default-Wert	
	99999	Größter Voltage-Wert	
Mit dies		ie Umrechnung zusammen mit dem Parameter Sensor Voltage der Brückenspannung wird nur bei bestimmten Verrechungsarten verwendet.	
	1	Kleinster Digit-Wert	
	1000	Default-Wert	
	99999	Größter Digit-Wert	
	R CORRECTION (Se		
	Ait diesem Parameter kann eine Korrektur eingestellt werden. Dieser Parameter wird nur bei bestimmten /errechungsarten verwendet.		
	0.990	Kleinster Correction-Wert	
	1.000	Default-Wert	
	1.100	Größter Correction-Wert	
Mit dies		r-Polarität) ine Invertierung eingestellt werden. Eine positiv gemessenen Brückenspannung eine negative verwandelt werden. (Zug und Druck mit entsprechendem Vorzeichen)	
0	NOT INVERTED	Druck (Default)	

1

INVERTED

Zug

4.2. Digital Input Menu

In diesem Menu werden die Parameter für die digitalen Eingänge beschrieben.

INPUT 1 CONFIG (Charakteristik Eingang 1) Dieser Parameter legt das Schaltverhalten für "Ctrl. In 1" fest.		
0	ACTIVE LOW	Aktivierung bei "LOW" (statisch)
1	ACTIVE HIGH	Aktivierung bei "HIGH" (statisch)
2	RISING EDGE	Aktivierung bei ansteigende Flanke (dynamisch)
3	FALLING EDGE	Aktivierung bei abfallende Flanke (dynamisch)

INPUT 1 ACTION (Funktion Eingang 1)

Dieser Parameter legt die Steuerfunktion des Eingangs "Ctrl. In 1" fest

0	NO	Keine Funktion.	
1	TARA	Tara für Brückenspannung (Nullsetzung).	(d) (s)
2	LOCK RELEASE 1	Rücksetzung der Selbsthaltung für Ausgang 1.	(d) (s)
3	LOCK RELEASE 2	Rücksetzung der Selbsthaltung für Ausgang 2.	(d) (s)
4	LOCK RELEASE 1+2	Rücksetzung der Selbsthaltung für Ausgang 1+2.	(d) (s)
5	CLEAR MIN/MAX VALUES	Reset der Min. / Max. Werte.	(d) (s)
6	QUIT. OVERCURRENT	Quittierung nach Überstromfehlermeldung. (> 50 mA).	(d) (s)

(s) = statisches Schaltverhalten (Pegelauswertung) INPUT CONFIG muss auf ACTIV LOW/HIGH gesetzt werden

(d) = dynamisches Schaltverhalten (Flankenauswertung) INPUT CONFIG muss auf RISING/FALLING EDGE gesetzt werden

INPUT 2 CONFIG(Charakteristik Eingang 2) Dieser Parameter legt das Schaltverhalten für "Ctrl. In 2" fest. Siehe Aktivierungszuordnung Parameter INPUT 1 CONFIG

INPUT 2 ACTION (Funktion Eingang 2)

Dieser Parameter legt die Steuerfunktion des Eingangs Ctrl. In 2 fest Siehe Funktionszuordnung Parameter INPUT 1 ACTION

INPUT 3 CONFIG(Charakteristik Eingang 3) Dieser Parameter legt das Schaltverhalten für "Ctrl. In 3" fest. Siehe Aktivierungszuordnung Parameter INPUT 1 CONFIG

INPUT 3 ACTION_(Funktion Eingang 3) Dieser Parameter legt die Steuerfunktion des Eingangs Ctrl. In 3 fest Siehe Funktionszuordnung Parameter INPUT 1 ACTION

4.3. Digital Output Menu

In diesem Menu werden die Parameter für die digitalen Ausgänge beschrieben.

C	OUTPUT POLARITY (Umschaltung der Ausgangspolarität beider Ausgänge)				
D	Dieser Parameter definiert den Schaltzustand für beide Ausgänge.				
	0	Keine Invertierung beider Augänge. (Ausgang = HIGH, wenn Bedingung erfüllt)			
	1	Schaltausgang 1 ist invertiert. (Ausgang = LOW, wenn Bedingung erfüllt)			
	2	Schaltausgang 2 ist invertiert. (Ausgang = LOW, wenn Bedingung erfüllt)			
	3	Schaltausgang 1 und 2 sind invertiert. (Ausgang = LOW, wenn Bedingung erfüllt)			

OUTPUT LOCK (Aktivierung der "Selbsthaltung" beider Schaltausgänge)

Dieser Parameter definiert, ob für die Schaltausgänge eine Selbsthaltung aktiviert werden soll.

- **0** Keine Selbsthaltung beider Augänge.
- 1 Selbsthaltung für Schaltausgang 1 ist aktiviert.
- 2 Selbsthaltung für Schaltausgang 2 ist aktiviert.
- **3** Selbsthaltung für Schaltausgang 1 und 2 ist aktiviert.

OUTPUT SOURCE 1 (Bezugsquelle für Schaltausgang 1)
Dieser Parameter definiert die Bezugsquelle für Schaltausgang 1

0	DIRECT BRIDGE RESULT	Bezugsquelle ist das direkt gewandelte Messergebnis.
1	SCALED BRIDGE RESULT	Bezugsquelle ist das umgerechnete Messergebnis.

OUTPUT FUNCTION 1 (Schaltbedingung für Schaltausgang 1) Schaltbedingung für Ausgang 1. Ausgang schaltet nach folgender Bedingung: Betrag von eingestellter Bezugsguelle größer oder gleich Betrag von PRESELECTION 1. 0 |RESULT|>=|PRES| Mit HYSTERESIS 1 ungleich 0 ergibt sich folgende Schaltbedingung: Bezugsquelle >= PRESELECTION 1 \rightarrow ON. Bezugsquelle < PRESELECTION 1 – HYSTERESIS 1 \rightarrow OFF Betrag von eingestellter Bezugsguelle kleiner oder gleich Betrag von PRESELECTION 1. Mit HYSTERESIS 1 ungleich 0 ergibt sich folgende Schaltbedingung: |RESULT|<=|PRES| 1 Bezugsquelle \leq PRESELECTION 1 \rightarrow ON, Bezugsquelle > PRESELECTION 1 + HYSTERESIS 1 \rightarrow OFF Betrag von eingestellter Bezugsquelle gleich Betrag von PRESELECTION 1. In Verbindung mit Hysteresis kann ein Band (Preselection 1 +/- ½ Hysteresis 1) definiert und überwacht werden. |RESULT|=|PRES| 2 Mit HYSTERESIS 1 ungleich 0 ergibt sich folgende Schaltbedingung: Bezugsquelle > PRESELECTION 1 + $\frac{1}{2}$ HYSTERESIS 1 \rightarrow OFF, Bezugsquelle < PRESELECTION 1 – $\frac{1}{2}$ HYSTERESIS 1 \rightarrow OFF Eingestellte Bezugsguelle größer oder gleich Preselection 1. Mit HYSTERESIS 1 ungleich 0 ergibt sich folgende Schaltbedingung: 3 RESULT>=PRES Bezugsquelle >= PRESELECTION 1 \rightarrow ON, Bezugsquelle < PRESELECTION 1 – HYSTERESIS 1 → OFF Eingestellte Bezugsquelle kleiner oder gleich Preselection 1. Mit HYSTERESIS 1 ungleich 0 ergibt sich folgende Schaltbedingung: RESULT<=PRES 4 Bezugsquelle \leq PRESELECTION 1 \rightarrow ON, Bezugsquelle > PRESELECTION 1 + HYSTERESIS 1 \rightarrow OFF Bezugsguelle gleich PRESELECTION 1. In Verbindung mit HYSTERESIS 1 kann ein Band (Preselection 1 +/- ½ Hysteresis 1) definiert und überwacht werden. RESULT=PRES Mit HYSTERESIS 1 ungleich 0 ergibt sich folgende Schaltbedingung: 5 Bezugsquelle > PRESELECTION 1 + $\frac{1}{2}$ HYSTERESIS 1 \rightarrow OFF, Bezugsquelle < PRESELECTION $1 - \frac{1}{2}$ HYSTERESIS $1 \rightarrow OFF$ Sammelfehlermeldung. Schaltausgang schaltet, sobald ein "Error" oder ERROR 6 "Warnung" ansteht. (Mindestens ein Bit im Diagnose Byte ist gesetzt.) OFF 7 Schaltausgang 1 ist dauerhaft deaktiviert.

OUTPUT	HYSTERESIS 1 (Hysterese 1)	
Hysteres	se zur Definition des Abschaltpunktes für die Schaltbedingung von Schaltausgang 1.	
	0 Keine Schalthysterese	
	9999 Schalthysterese von 9999	

OUTPU	OUTPUT PRESELECTION 1 (Vorwahl 1 / Schaltpunkt für Schaltausgang 1)		
	-9999 Kleinster Vorwahlwert		
	1000 Default Wert		
	+9999 Größter Vorwahlwert		

OL	OUTPUT SOURCE 2 (Bezugsquelle für Schaltausgang 2)					
Die	Dieser Parameter definiert die Bezugsquelle für Schaltausgang 2					
	0	DIRECT BRIDGE RESULT Bezugsquelle ist das direkt gewandelte Messergebnis.				
	1	SCALED BRIDGE RESULT	Bezugsquelle ist das umgerechnete Messergebnis.			

001	OUTPUT FUNCTION 2 (Schaltbedingung für Schaltausgang 2)				
Scha	Schaltbedingung für Ausgang 2. Ausgang schaltet nach folgender Bedingung:				
	0	result >= pres	Betrag von eingestellter Bezugsquelle größer oder gleich Betrag von PRESELECTION 2. Mit HYSTERESIS 2 ungleich 0 ergibt sich folgende Schaltbedingung: Bezugsquelle >= PRESELECTION 2 \rightarrow ON, Bezugsquelle < PRESELECTION 2 – HYSTERESIS 2 \rightarrow OFF		
	1	result <= pres	Betrag von eingestellter Bezugsquelle kleiner oder gleich Betrag von PRESELECTION 2. Mit HYSTERESIS 2 ungleich 0 ergibt sich folgende Schaltbedingung: Bezugsquelle <= PRESELECTION 2 \rightarrow ON, Bezugsquelle > PRESELECTION 2 + HYSTERESIS 2 \rightarrow OFF		
	2	result = pres	Betrag von eingestellter Bezugsquelle gleich Betrag von PRESELECTION 2. In Verbindung mit Hysteresis kann ein Band (Preselection 2 +/- ½ Hysteresis 2) definiert und überwacht werden. Mit HYSTERESIS 2 ungleich 0 ergibt sich folgende Schaltbedingung: Bezugsquelle > PRESELECTION 2 + ½ HYSTERESIS 2 \rightarrow OFF, Bezugsquelle < PRESELECTION 2 – ½ HYSTERESIS 2 \rightarrow OFF		
	3	RESULT>=PRES	Eingestellte Bezugsquelle größer oder gleich Preselection 2. Mit HYSTERESIS 2 ungleich 0 ergibt sich folgende Schaltbedingung: Bezugsquelle \geq PRESELECTION 2 \rightarrow ON, Bezugsquelle < PRESELECTION 2 – HYSTERESIS 2 \rightarrow OFF		
	4 RESULT<=PRES Ein Bez		Eingestellte Bezugsquelle kleiner oder gleich Preselection 2. Mit HYSTERESIS 2 ungleich 0 ergibt sich folgende Schaltbedingung: Bezugsquelle \leq PRESELECTION 2 \rightarrow ON, Bezugsquelle > PRESELECTION 2 + HYSTERESIS 2 \rightarrow OFF		
	5	RESULT=PRES	Bezugsquelle gleich PRESELECTION 2. In Verbindung mit HYSTERESIS 2 kann ein Band (Preselection 2 +/- ½ Hysteresis 2) definiert und überwacht werden. Mit HYSTERESIS 2 ungleich 0 ergibt sich folgende Schaltbedingung: Bezugsquelle > PRESELECTION 2 + ½ HYSTERESIS 2 \rightarrow OFF, Bezugsquelle < PRESELECTION 2 - ½ HYSTERESIS 2 \rightarrow OFF		
	6	ERROR	Sammelfehlermeldung. Schaltausgang schaltet, sobald ein "Error" oder "Warnung" ansteht. (→ Mindestens ein Bit im Diagnose Byte ist gesetzt.)		
	7	OFF	Schaltausgang 2 ist dauerhaft deaktiviert.		

OUTPUT	T HYSTERESIS 2 (Hysterese 2)		
Hysteres	Hysterese zur Definition des Abschaltpunktes für die Schaltbedingung von Schaltausgang 2.		
	0 Keine Schalthysterese		
	9999	Schalthysterese von 9999	

Fortsetzung "Digital Output Menu":

OUTPUT PRESELECTION 2 (Vorwahl 2 / Schaltpunkt für Schaltausgang 2)		
	-9999 Kleinster Vorwahlwert	
	1000 Default Wert	
	+9999 Größter Vorwahlwert	

4.4. General Menu

In diesem Menu werden die allgemeinen Parameter für diesen Signalwandler beschrieben.

FILTER					
Dieser P	Dieser Parameter sorgt für eine bessere Glättung der DMS Sensor Versorgungsrücklesung.				
		sich mit jeder Werterhöhung. Je länger die Filterzeit ist, umso genauer ist der			
0	eingelesene Wert.				
	Die gesamte Einlesezeitdauer kann durch Index "661", Subindex "0" (ADC Time) in ms ausgelesen werden. Die				
gesamte	e Einlesedauer w	rird beeinflusst durch den Parameter Sensor OSR und den Parameter Filter.			
	0 Kleinster Filter-Wert (Default)				
	9 Größter Filter-Wert				

MIN MAX CHANNEL

Auswahl des analogen Eingangs für die Min/Maxwert Überwachung.

Mit der Min/Max Wertüberwachung lässt sich die Schwankungsbreite des Signals ermitteln, eine Erhöhung der OSR oder des Filters kann die Schwankungen vermindern.

0	READ BACK VOLTAGE SUPPLY	Rückgelesene Versorgungsspannung Sensor (Rohwert)
1	BRIDGE RESULT	Brückenspannung Sensor (Rohwert)
2	CURRENT RESULT	Strommessung Sensor (Rohwert)

DIAGNOSIS SETUP

Mit diesem Parameter kann festgelegt werden, welche "Events" vom Gerät erzeugt werden sollen.

Entsprechendes Bit = 1 \rightarrow zugehöriges Event wird erzeugt, sobald Ereignis ansteht (appears) bzw. nicht mehr ansteht (disappears).

Entsprechendes Bit = $0 \rightarrow$ zugehöriges Event wird <u>nicht</u> erzeugt.

Μ	in:	0x00		
De	efault:	0x00		
Max:		0x0F		
	Bit 0	0)	Überstrom (> 50mA) erkannt.
	Bit 1	0)	Berechneter Widerstand ist oberhalb des eingestellten Bereiches.
	Bit 2	0)	Berechneter Widerstand ist unterhalb des eingestellten Bereiches
	Bit 3	it 3 0 Geräteversorgung Unterspannung (< 17 V)		Geräteversorgung Unterspannung (< 17 V)
	Bit 4	0)	Reserviert
	Bit 5	0)	Reserviert
	Bit 6	0)	Reserviert
	Bit 7	0)	Reserviert

Hinweis:

Im "Diagnose Byte" in den zyklischen Prozessdaten (Byte 15) stehen <u>immer</u>, welche Ereignisse gerade anstehen. Lediglich die zugehörigen Events können bei entsprechender Einstellung dieses Parameters gegebenenfalls ein- bzw. ausgeschalten werden.

4.5. Adjustment Menu

In diesem Menu werden die spezifischen Parameter für die Feineinstellungen des Signalwandlers beschrieben.

TCI BRIDGE OFFSET (Feineinstellung der Offset Temperaturdifferenz)				
Die Temperaturdifferenz kann über Index "662", Subindex "0" ausgelesen werden.				
	Durch den Parameter TCI OFFSET INVERSION kann bestimmt werden, ob der Wert addiert oder subtrahiert wird.			
	0.5000	Kleinster TCI Bridge Offset-Wert		
	1.0000	Default		
	1.5000	Größter TCI Bridge Offset-Wert		
		ellung der Gain Temperaturverstärkung)		
Die Temp	eraturverstärkung kan	nn über Index "663", Subindex "0" ausgelesen werden.		
	n Parameter TCI GAIN	INVERSION kann bestimmt werden, ob der Wert verstärkend oder abgeschwächt		
wirkt.	0.90000	Kleinster TCI Bridge Gain-Wert		
	1.00000	Default		
	1.10000	Größter TCI Bridge Gain-Wert		
TEMP. C	OMP. (TCI) (Tempera	aturkompensation)		
		en analogen Eingang (Brückenspannung).		
	0 Kompensation von Offset und Gain (TCI Bridge Offset / Gain aktiv) (Default)			
	1	Nur Offset Kompensation (TCI Bridge Offset aktiv)		
	2	Nur Gain Kompensation (TCI Bridge Gain aktiv)		
	3	Keine Kompensation		
BRIDGE	SUPPLY ADJUST (V	erstärkungseinstellung für die Messung des MEA.)		
	Die Einstellung wirkt sich auf die Widerstandsberechnung aus. Wird die Brückenspannung umgerechnet			
		echnete Wert bei Abgleich genauer.		
Der Abgle		sen von Index "40", Subindex "19" durchgeführt werden.		
	0.8000	Kleinster Bridge Supply Adjust-Wert		
	1.0000	Default		
	1.2000	Größter Bridge Supply Adjust-Wert		

TCI OFFSET INVERSION				
Siehe Par	e Parameter TCI Bridge Offset			
	0	abschwächend (Default)		
	1	verstärkend		
TCI GAIN	N INVERSION			
Siehe Par	ameter TCI Bridge Ga	in		
	0	abschwächend (Default)		
	1	verstärkend		
TEMP. S	IMULATION			
Paramete	r auf "1" gesetzt, wird	MULATION = 0 gesetzt ist, wird der interne Temperatursensor verwendet. Ist der d anstatt des internen Temperatursensors der Parameter TEMP. SIM. VALUE nperatur simuliert und die Berechnung der Temperaturkompensation überprüft		
	0	OFF: Interner Temperatursensor (Default)		
	1	ON: Parameter TEMP. SIM. VALUE		
	•	der Wert 1140 entspricht +20° und der Wert 1412 entspricht -20°. Die aktuelle 65" , Subindex "0" ausgelesen werden. +60°		
	1140	+20° (Default)		
	1412	-20°		
Wenn Sou	urce = direkt gewählt	ückenversorgungskompensation) wird, kann die Kompensation = 2 gewählt werden. rählt wird, kann die Kompensation = 0 gewählt werden. Keine Kompensation der Brückenspannung (Default) Kompensation (Vergrößerung von Supply Voltage nicht verstärkend) Kompensation (Vergrößerung von Supply Voltage nicht abschwächend)		
BRIDGE	SI IPPI Y RFF (Brück			
BRIDGE SUPPLY REF. (Brückenversorgungsreferenz) Die Einstellung dieses Parameters entspricht dem Spannungswert der Brückenversorgung in mV.				
	2000	Kleinster Bridge Supply RefWert		
	5000	Default		
	11000	Größter Bridge Supply RefWert		
	1.000			

5. Inbetriebnahme

5.1. Grundeinstellung des DMS Sensors

Zum Anschluss bzw. Verdrahtung siehe Anschlussbeispiel für DMS Sensor. Nach dem Anschluss kann der Parameter "Sensor Supply", "Sensor Gain", "Sensor OSR", "Sensor Resistor" und "Filter" eingestellt werden.

Der Parameter "Sensor Supply" entspricht der Versorgungsspannung des DMS Sensors, dieser ist in der Bedienungsanleitung des Sensors zu finden. Für den Parameter "Sensor Supply" können Werte von 3 (3V) bis 10 (10V) eingestellt werden. **Index "40", Subindex "19"** dient zur Rücklesung der Versorgungsspannung in mV, die Messung kann über den Parameter "Bridge Supply Adjust" kalibriert werden.

Ebenfalls in der Bedienungsanleitung des Sensors findet sich auch der Wert des

Eingangswiderstandes. Dieser kann für den Parameter "Sensor Resistor" übernommen werden. Eine Überprüfung des Widerstandswertes in Ohm kann über **Index "40", Subindex "17"** erfolgen. Eine Fehlkalibrierung von "Bridge Supply Adjust" führt zu einer Fehlberechnung.

Der "Sensor Gain" sollte so gewählt werden, dass bei maximaler Belastung der

Eingangsspannungsbereich nicht überschritten wird. Bei Gain = 0 sind dies +/-80mV. Dies kann z.B. über ein Referenzgewicht näherungsweise kalkuliert werden.

Der Parameter "Sensor OSR" sollte in Abhängigkeit von "Sensor Gain" gewählt werden, so dass die Eingangsschwankung möglichst gering und der Eingang aber noch dynamisch genug ist. Dies gilt auch für den Parameter "Filter". Die daraus folgende Einlesezykluszeit kann über Index "661", Subindex "0" in ms ausgelesen werden.

Mit dem Parameter "Sensor Polarity" kann ein negativer Ausschlag in einen positiven verändert werden. Somit kann der Benutzer Zug und Druck mit dem entsprechenden Vorzeichen versehen. Verdrahtungsfehler, offene Verbindungen und Kurzschlüsse am Sensor können durch das entsprechende Bit im Diagnose Byte der zyklischen Prozessdaten erkannt oder durch einen Ausgang signalisiert werden. (Rückgelesene Versorgungsspannung und berechneter Widerstandswert)

Achtung:

Überprüfen Sie ob der Sensor für die programmierte Versorgungsspannung ausgelegt ist. (Datenblatt Sensor: Versorgungsspannung) Überprüfen Sie ob der Eingangsspannungsbereich innerhalb der maximalen Belastung des Sensors liegt. (Datenblatt Sensor: Nennkennwert [mV/V] x Versorgungsspannung)

5.2. Einfachste Einstellung

Die einfachste Einstellung für die digitalen Ausgänge bzw. für die weitere Verarbeitung mit einer übergeordneten Steuerung besteht darin, die direkt gewandelte Brückenspannung ("DIRECT BRIDGE RESULT") zu verwenden. (Entspricht **"Index 40", Subindex "21"** bzw. **Byte 0..3** der zyklischen Prozessdaten). Dazu sind für die digitalen Ausgänge der Parameter "Output Source 1" bzw. "Output Source 2" auf 0 zu setzen.

Für den DMS Sensor müssen folgende Parameter angepasst werden:

Datenblatt Sensor -> Zulässige Versorgungsspannung des Sensor
Datenblatt Sensor -> Arbeitsbereich des Sensors
Schwankung der Messung und Dynamik der Änderung
Datenblatt Sensor -> Eingangswiderstand

Einstellung mit Nullung:

Eine Nullung ist nötig, wenn Kräfte in <u>beide</u> Richtungen wirken und der Übergang von z.B. Zug und Druck der Eingangsgröße in Form des Vorzeichens festgestellt werden soll.

Für die Nullung ist der Parameter "Sensor Offset" entscheidend. Der unbelastete DMS Sensor kann mit Hilfe der "Tara Funktion" (über einen digitalen Eingang oder durch Ausführung eines "System Commands" über IO Link) genullt werden. Es kann auch direkt der über Index "40", Subindex "21" bzw. über Byte 0..3 der zyklischen Prozessdaten ausgelesene Wert ins "Sensor Offset" Register übernommen werden. Dann zeigt das Register Null. Bei der "Tara Funktion" mit Hilfe eines Eingangs wird der Wert nur zwischengespeichert, nach einem erneuten Power-up muss erneut genullt werden. Wird die "Tara Funktion" über einen "System Command" (Index "2", Subindex "0", Wert:"160") über IO Link durchgeführt, kann der Wert auch durch einen weiteren nachfolgenden "Store Eeprom" System Command (Index "2", Subindex "0", Wert:"168") nichtflüchtig abgespeichert werden. Danach wird der DMS Sensor mit einem Referenzgewicht belastet, es wird ein neuer Wert angezeigt, der dem Referenzgewicht entspricht. Dieser Wert kann nun in Einheiten für die digitalen Ausgänge oder zur weiteren Verarbeitung in einer übergeordneten Steuerung umgerechnet werden. Anhand des übermittelten Wertes kann man die Auflösung bezogen auf das Referenzgewicht bestimmen und danach auch den Parameter "Sensor Gain" optimieren. Mit einer Veränderung des Parameter "Sensor Gain" muss auch der Parameter "Sensor Offset" angepasst werden.

<u>Beispiel:</u>

Index "40", Subindex "21":25bei "Sensor Offset" = 0, DMS unbelastet.Index "40", Subindex "21":0bei "Sensor Offset" = 25, DMS unbelastet und genullt.Index "40", Subindex "21":1000bei 5kg Referenzgewicht.

Daraus folgt bei 50kg muss der Wert 10000 betragen. Wenn der digitale Ausgang bei größer als 40kg schalten soll, muss der "Output Preselection" auf 8000 gesetzt werden.

Einstellung ohne Nullung:

Eine Nullung ist nicht nötig, wenn die Eingangsgröße nicht als Referenz für die Kräfte benötigt wird, d.h. die wirkenden Kräfte sind nicht direkt an der Eingangsgröße ablesbar. (z.B Wert 531 -> 400g) Danach wird der DMS Sensor mit einem Referenzgewicht belastet, es wird ein neuer Wert angezeigt, der dem Referenzgewicht entspricht. Dieser Wert kann nun in Einheiten für die digitalen Ausgänge umgerechnet werden. Anhand des übermittelten Wertes kann man die Auflösung bezogen auf das Referenzgewicht bestimmen und danach auch den Parameter "Sensor Gain" optimieren.

<u>Beispiel:</u>

Index "40", Subindex "21": 25 bei "Sensor Offset" = 0, DMS unbelastet Index "40", Subindex "21": 1025 bei 5kg Referenzgewicht

Daraus folgt bei 50kg muss der Wert 10025 betragen. (1025 – 25 = 1000 entspricht 5kg -> 50kg = 10000, -> übermittelter Wert bei 50kg = 10025)

Wenn der digitale Ausgang bei größer als 40kg schalten soll, muss der "Output Preselection" auf 8025 gesetzt werden.

5.3. Umrechnung in Sensor Einheiten

Eine Umrechnung in Sensoreinheiten ist notwendig, wenn auf eine externe Umrechnung in einer übergeordneten Steuerung verzichtet werden soll. Ferner ist diese Art von Umrechnung nötig, wenn auf eine Referenzbelastung oder Referenzgewicht zur Normierung verzichtet werden soll. Mit Hilfe des Parameters "Sensor Sensitivity", "Sensor Voltage", "Sensor Digits" und "Sensor Correction" lässt sich der eingelesene Sensorwert in Einheiten wie beispielsweise N oder kg umrechnen. Für den Parameter "Sensor Correction" benötigt man eine Referenzbelastung oder ein Referenzgewicht, mit dem sich der angezeigte Wert korrigieren lässt.

Es sind für die digitalen Ausgänge der Parameter "Output Source X" auf 1 zu setzen.

Für die Nullung ist der Parameter "Sensor Offset" entscheidend. Der unbelastete DMS Sensor kann mit Hilfe der "Tara Funktion" genullt werden. Es kann auch direkt der angezeigte Wert ins "Sensor Offset" Register übernommen werden. Dann zeigt der übermittelte Wert Null. Bei der "Tara Funktion" mit Hilfe eines Eingangs wird der Wert nur zwischengespeichert, nach einem erneuten Power-up muss erneut genullt werden.

Wird die "Tara Funktion" über einen "System Command" (Index "2", Subindex "0", Wert:"160") über IO Link durchgeführt, kann der Wert auch durch einen weiteren nachfolgenden "Store Eeprom" System Command (Index "2", Subindex "0", Wert:"168") nichtflüchtig abgespeichert werden. Der Parameter Sensitivity entspricht der Empfindlichkeit (mV/V) des DMS Sensors, dieser ist in der Bedienungsanleitung des Sensors zu finden. Hier findet sich auch die Normbelastung oder Normkraft. (z.B. 2mV/V @ 100N oder 10.194kg)

Parameter "Sensor Sensitivity" = 2,000 Parameter "Output Source X" = 1 Parameter "Sensor Voltage" = 1000 Parameter "Sensor Digits" = 10194 siehe Datenblatt umgerechnetes Brückenergebnis Gain = 1 Umrechnung in kg, Stellenzahl in g

Parameter "Sensor Correction" = 1000	Keine Korrektur
Parameter "Sensor Offset" = 133	-> 0
Mit einem Referenzgewicht von 200g	-> Eingangsgröße 54
Umrechnung	-> 197201

<u>Achtung:</u> Hier findet eine Multiplikation mit dem Faktor 4 statt, es wäre besser den Gain auf 4 anzuheben, wenn man eine Genauigkeit auf 1g wünscht.

Um die Umrechnung noch in kleinem Maße anzupassen kann der Parameter "Sensor Correction" verwendet werden. Eine 1% Anpassung erfolgt durch 990 bzw. 1010.

Eine Überprüfung der Berechnung kann über Index "40", Subindex "20" bzw. Byte 4..7 der zyklischen Prozessdaten erfolgen.

Anhand des übermittelten Wertes kann man die Auflösung bezogen auf das Referenzgewicht bestimmen und danach auch den Parameter "Sensor Gain" optimieren. Mit einer Veränderung der Parameter "Sensor Gain", muss auch der Parameter "Sensor Offset" angepasst werden.

5.4. Digitaler Eingang

Die digitalen Eingänge können zur Auslösung von Befehlen verwendet werden. Hier kann beispielsweise die Nullung über einen Eingang erfolgen. Eine Rücksetzung der Selbsthaltung eines Ausgangs, die Quittierung nach einem Kurzschluss, sowie das Bereinigen der Min / Max Wertüberwachung ist ebenfalls möglich.

5.5. Digitaler Ausgang

Die digitalen Ausgänge werden zur Detektion von Zuständen verwendet. Wenn z.B. die Kraft einen gewissen Wert überschreitet, wird der Ausgang gesetzt. Es können auch Unterschreitung detektiert werden. Die Funktionen können verwendet werden für Kräfte in eine Richtung, oder auch in beide. Eine Hysterese kann ebenfalls programmiert werden, sowie auch eine Selbsthaltung deren Rücknahme erst wieder durch einen Eingang bzw. "System Command" ausgelöst wird.

5.6. Weitere optionale Einstellungen

5.6.1. Untersuchung der eingelesenen analogen Werte

Mit Hilfe des Parameters "Min Max Channel" können verschiedene eingelesene Werte auf ihre Streuung hin untersucht werden. Durch Auslösen des entsprechenden "System Commands" oder über einen digitalen Eingang können Minimum und Maximum Werte zurückgesetzt werden. Die Abweichungen können über Index "659", Subindex "0" (Maximum) sowie über Index "660", Subindex "0" (Minimum) sichtbar gemacht werden. Wenn die Werte zu stark schwanken, muss Parameter "Sensor OSR" oder der "Filter" erhöht werden.

5.7. Kalibrierung der MEA Rücklesung

Beide analogen Rücklesungen der Brückenspannung können kalibriert werden. Dazu muss ein externes Multimeter angeschlossen werden und dann in Bezug auf die Rücklesung (über Index "40", Subindex "19") verglichen werden. Eine Kalibrierung ist über den Parameter "Bridge Supply Adjust" möglich. Ein

Abgleich ist nötig, um die Genauigkeit des berechneten Widerstandswertes zu erhöhen und bei der Verwendung der Umrechnung in Sensoreinheit. Die Einstellung muss <u>nach der Wahl</u> des Parameters "Sensor Supply" erfolgen.

5.8. Kalibrierung des analogen Eingangs BRI / DMS

Beide analogen Eingänge können nur in Bezug auf die Temperatureigenschaften kalibriert werden. Diese Einstellungen korrigieren linear den "Offset" und den "Gain" in Abhängigkeit der Temperatur.

5.8.1. Kalibrierung der Eingangsstufe

Mit Hilfe verschiedener Parameter kann die Eingangsstufe in Bezug auf die Temperatur optimiert werden. Durch den Parameter "Temp. Simulation" kann die Temperatur für das Gerät simuliert werden. Dadurch kann man einfach die Einflüsse einzelner Größen feststellen. Zuerst muss die Offsetkorrektur stattfinden und dann erst die Gainkorrektur.

Beispiel Offsetkorrektur:

Spannung an Eingang:	0 mV
Parameter "Temp. Comp. (TCI)" = 1	Temperaturkompensation von Offset
Parameter "Temp. Simulation" = 1	Simulation aktiv
Parameter "Temp. Sim. Value" = 1412	Simulation mit -20°
Index "665", Subindex "0"	-20 (Rückgelesene Temperatur)
Parameter "Sensor Gain" = 0	Gain = 0 gewählt
Parameter "TCI Bridge Offset 1" = 1.0000	Standard
Parameter "TCI Offset Inversion" = 0	Invertierung
Index "662", Subindex "0"	-8 (Rückgelesene Korrektur bei 40K)
Index "658", Subindex "0"	Offset ändert sich z.B. von 21 auf 29 bei In Temp.C = 1/3

Durch Index "658", Subindex "0" kann man direkt den Einfluss mit und ohne Temperatur Offset Kompensation durch Umschaltung sehen. Die Korrektur beträgt bei 20° null und ist der Bezugspunkt. Der Offset wird bei -20° um 8 Inkremente verringert. Bei 40K wird der Offset um 8 Inkremente korrigiert. Durch die Änderung des Parameters "TCI Offset Inversion" = 1, ändert sich nicht Index "662", Subindex "0", aber Index "658", Subindex "0". Hier wird dann der Offset um 8 Inkremente vergrößert. Der Parameter "Sensor Gain" greift ebenfalls in die Berechnung mit ein, bei Gain = 4 werden statt -8 -132 Inkremente ausgeglichen. Durch den Parameter "TCI Bridge Offset" können die 8 Inkremente erhöht bzw. erniedrigt werden.

Es gilt folgender Zusammenhang:

Korrektur = (Temperatur -20) x (Gain + 1) x (Gain + 1) x 2063 / TCI Bridge Offset Korrektur (Temperatur = -20° , Gain = 0, TCI Bridge Offset = 1.0000) = -40×2063 / 10000= -8

Mit den Standard Einstellungen ist für die Eingangsstufe eine hinreichende Optimierung vorhanden.

Beispiel Gainkorrektur:

Spannung an Eingang:	5 mV
Parameter "Temp. Comp. (TCI)" = 0	Temperaturkompensation von Offset und Gain
Parameter "Temp. Simulation" = 1	Simulation aktiv
Parameter "Temp. Sim. Value" = 1412	Simulation mit -20°
Index "665", Subindex "0"	-20 (Rückgelesene Temperatur)
Parameter "Sensor Gain" = 0	Gain = 0 gewählt
Parameter "TCI Bridge Gain" = 1.00000	Standard
Parameter "TCI Gain Inversion" = 0	Invertierung
Index "663", Subindex "0"	(Rückgelesene Korrektur bei 40K)
Index "664", Subindex "0"	Gain ändert sich um Faktor bei In Temp.C = 0/3

Es gilt folgender Zusammenhang:

Korrekturfaktor = ((Temperatur -20) x (Gain + 1) + 100000) / TCI Bridge Gain Korrektur (Temperatur = -20° , Gain = 0, TCI Bridge Gain = 1.00000) = -40 + 100000 / 100000 = 0,9996

Mit den Standard Einstellungen ist für die Eingangsstufe eine hinreichende Optimierung vorhanden.

5.8.2. Kalibrierung der Eingangsstufe und dem DMS Sensor

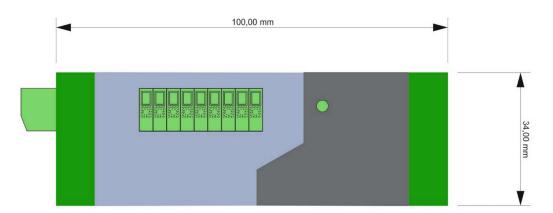
Mit Hilfe verschiedener Parameter kann die Eingangsstufe und der angeschlossene DMS in Bezug auf die Temperatur optimiert werden. Bedingung ist, dass der DMS und das Gerät ungefähr den gleichen Temperaturen ausgesetzt ist. Hier kann z.B. der temperaturabhängige Offset des DMS neben der Eingangstufe mitberücksichtigt werden. Zuerst muss die Offsetkorrektur stattfinden und dann erst die Gainkorrektur.

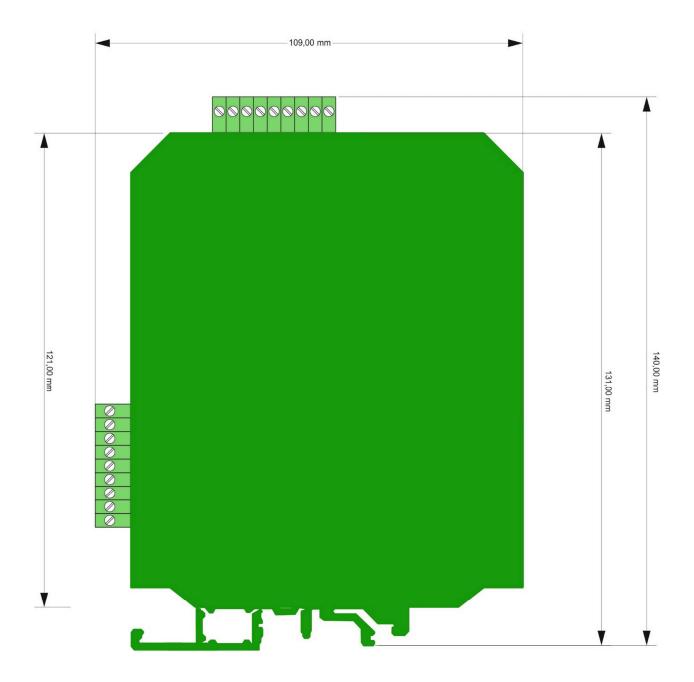
5.8.3. Monitor Codestellen für die Kalibrierung

Mit Hilfe verschiedener Registerwerte kann die Kalibrierung vereinfacht werden.

Index "658", Subindex "0":	Eingang mit Offsetkompensation
	(Bridge Value (Raw Value))
Index "662", Subindex "0":	Rückgelesene Offsetkorrektur Eingang
	(Read Back Offsetcorrection)
Index "663", Subindex "0":	Faktor der Gain Kompensation des Eingang
	(Factor of the Gain Compensation)
Index "664", Subindex "0":	Eingang mit Offset, Offset- und Gain-Kompensation
	(Result with Offset, Offset- and Gain Compensation)
Index "665", Subindex "0":	Rückgelesene Temperatur
	(Temperature)

6. Anhang


6.1. Parameterliste / Serielle Codes


#	Menu	Name	Ser.Code	Min	Max	Default
1	SENSOR MENU	SENSOR SUPPLY	00	3	10	5
2	SENSOR MENU	SENSOR GAIN	01	0	4	0
3	SENSOR MENU	SENSOR OSR	02	0	12	0
4	SENSOR MENU	SENSOR OFFSET	03	-10000	10000	0
5	SENSOR MENU	SENSOR RESISTOR	04	0	10000	350
6	SENSOR MENU	SENSOR SENSITIVITY	05	100	20000	1000
7	SENSOR MENU	SENSOR VOLTAGE	06	1	99999	1000
8	SENSOR MENU	SENSOR DIGIT	07	1	99999	1000
9	SENSOR MENU	SENSOR CORRECTION	08	900	1100	1000
10	SENSOR MENU	SENSOR POLARITY	09	0	1	0
11	DIGITAL INPUT MENU	INPUT 1 CONFIG	A0	0	3	2
12	DIGITAL INPUT MENU	INPUT 1 FUNCTION	A1	0	6	0
13	DIGITAL INPUT MENU	INPUT 2 CONFIG	A2	0	3	2
14	DIGITAL INPUT MENU	INPUT 2 FUNCTION	A3	0	6	0
15	DIGITAL INPUT MENU	INPUT 3 CONFIG	A4	0	3	2
16	DIGITAL INPUT MENU	INPUT 3 FUNCTION	A5	0	6	0
17	DIGITAL OUTPUT MENU	OUTPUT POLARITY	BO	0	3	0
18	DIGITAL OUTPUT MENU	OUTPUT LOCK	B1	0	3	0
19	DIGITAL OUTPUT MENU	OUTPUT SOURCE 1	B2	0	1	0
20	DIGITAL OUTPUT MENU	OUTPUT FUNCTION 1	B3	0	7	7
		OUTPUT HYSTERESIS				
21	DIGITAL OUTPUT MENU	1	B4	0	9999	0
		OUTPUT				
22	DIGITAL OUTPUT MENU	PRESELECTION 1	B5	-9999	9999	1000
23	DIGITAL OUTPUT MENU	OUTPUT SOURCE 2	B6	0	1	0
24	DIGITAL OUTPUT MENU	OUTPUT FUNCTION 2	B7	0	7	7
		OUTPUT HYSTERESIS				
25	DIGITAL OUTPUT MENU	2	B8	0	9999	0
		OUTPUT				
26	DIGITAL OUTPUT MENU	PRESELECTION 2	B9	-9999	9999	1000
27	GENERAL MENU	FILTER	DO	0	9	0
28	GENERAL MENU	MIN MAX CHANEL	D1	0	2	0
29	GENERAL MENU	DIAGNOSIS SETUP	D2	0	15	0
30	GENERAL MENU	FACTORY SETTINGS	D3	0	1	0
31	ADJUSTMENT MENU	TCI BRIDGE OFFSET	EO	5000	15000	10000
32	ADJUSTMENT MENU	TCI BRIDGE GAIN	E1	90000	110000	100000
33	ADJUSTMENT MENU	TEMP. COMP. (TCI)	E2	0	3	0
		BRIDGE SUPPLY				
34	ADJUSTMENT MENU	ADJUST	E3	8000	12000	10000
		TCI OFFSET				
35	ADJUSTMENT MENU	INVERSION	E4	0	1	0

lo221_01a_oi_d / Jul-23

36	ADJUSTMENT MENU	TCI GAIN INVERSION	E5	0	1	0
37 ADJUSTMENT MENU TEMP. SIMULATION		E6	0	1	0	
38	ADJUSTMENT MENU	TEMP. SIM. VALUE	E7	870	1412	1140
		BRIDGE SUPPLY				
39	ADJUSTMENT MENU	COMP.	E8	0	1	0
40	ADJUSTMENT MENU	BRIDGE SUPPLY REF.	E9	0	11000	5000

6.2. Abmessungen

6.3. Technische Daten

Technische Daten:		
Anschlüsse:	Anschlussart:	Schraubklemmen, 1,5 mm ² / AWG 16
Spannungsversorgung:	Eingangsspannung:	24VDC (18 30 VDC - über IO-Link Masterport)
	Schutzschaltung:	Verpolungsschutz
	Stromaufnahme:	ca. 75 mA (unbelastet)
DMS	Anzahl:	1 mit Rücklesung
Eingang:	Konfiguration:	Spannung
	Empfindlichkeit:	+/- 5mV, +/-10mV, +/-20mV, +/-40mV, +/-80mV
	Auflösung:	16 Bit
	Genauigkeit:	+/- 0.01% / 10K
	DMS Versorgungsspannung:	3-10 VDC
A	Ausgangsstrom:	max. 50 mA
Control-Eingänge:	Anzahl:	
(nur mit Option "CO")	Format:	HTL, PNP (Low 0 3 V, High 9 30 V)
	Frequenz:	max. 1 kHz
	Ansprechzeit:	ca. 1ms
	Übertragungszeit (IO Link):	alle ca. 2 ms - (IO Link Zykluszeit)
0	Belastung:	max. 2 mA bei 24VDC
Control-Ausgänge:	Anzahl:	2
(nur mit Option "CO")	Format:	5 30 V (je nach Spannung an Com+), PNP
	Ausgangsstrom:	max. 100 mA je Ausgang (bei externer Com+ Versorgung!)
	Ansprechzeit:	min. 1 ms
		(Je nach "Sampling Time" u. "Filter" Einstellung)
	Übertragungszeit (IO Link)):	alle ca. 2 ms - (IO Link Zykluszeit)
IO-Link:	Baugruppe / Specification:	Device / IO Link V1.1
	Bitrate:	COM 3 (230,4 kBit / s)
	Port Class:	Тур А
	Zykluszeit:	min. 2 ms
	Datenbreite:	
		(14 Byte (Eingangsdaten) + 1Byte ("CO" Status) + 1 Byte
A		(Diagnosedaten))
Anzeigeelemente:	Anzahl:	1 LED
	Funktion:	1 x grün für Betriebsbereitschaft
		bzw. IO Link Status (bei Option "CO")
Gehäuse:	Material:	Kunststoff
	Montage:	auf 35 mm Hutschiene (nach EN 60715)
	Abmessungen (B x H x T):	34 x 100 x 131 mm
	(ohne Anschlüsse)	
	Abmessungen (B x H x T):	34 x 109 x 140 mm
	(mit Anschlüsse)	400
	Gewicht:	ca. 160 g
	Abmessungen (B x H x T):	
Umgebungstemperatur:	Betrieb:	-20 °C +60 °C nicht betauend
l les estas estas d'a sur sons	Lagerung:	-25 °C +70°C
Umgebungsbedingungen:	Höhenlage:	max. 2000 m ü.NN
	Luftfeuchtigkeit:	max. 80% relative Feuchte bis 30°C
Ausfallrata	Verschmutzungsgrad:	2
Ausfallrate:	MTBF in Jahren:	7379.5021: 92,9 a
17 6 1414 151	(Dauerbetrieb bei 60 °C)	7379.5021/CO: 84,9 a
Konformität und Normen:	EMV 2014/30/EU:	EN 61326-1: 2013 for industrial location
		EN 55011: 2016 + A1: 2017 + A11: 2020 Class A
	RoHS (II) 2011/65/EU	
	RoHS (III) 2015/863:	EN IEC 63000: 2018