

HANDBUCH EA-ELR 10000 3U

Programmierbare elektronische DC-Lasten mit Netzrückspeisung

INHALTSVERZEICHNIS

1. Allgemeines

1.1	Zu diesem Dokument	5
1.1.1	Aufbewahrung und Verwendung	5
1.1.2	Urheberschutz (Copyright)	5
1.1.3	Geltungsbereich	5
1.1.4	Symbole und Hinweise in diesem Dokument	5
1.2	Gewährleistung und Garantie	5
1.3	Haftungsbeschränkungen	5
1.4	Entsorgung des Gerätes	6
1.5	Produktschlüssel	6
1.6	Bestimmungsgemäßer Gebrauch	7
1.6.1	Symbole und Hinweise auf dem Gerät	7
1.7	Sicherheit	8
1.7.1	Sicherheitshinweise	8
1.7.2	Pflichten des Betreibers	9
1.7.3	Anforderungen an das Bedienpersonal	9
1.7.4	Verantwortung des Bedieners	9
1.7.5	Alarmsignale	10
1.7.6	Überprüfung der korrekten Funktionalität	10
1.8	Technische Daten	11
1.8.1	Zulässige Betriebsbedingungen	11
1.8.2	Allgemeine technische Daten	11
1.8.3	Spezifische technische Daten	12
1.8.4	Ansichten	17
1.8.5	Bedienelemente	20
1.9	Aufbau und Funktion	21
1.9.1	Allgemeine Beschreibung	21
1.9.2	Blockdiagramm	21
1.9.3	Lieferumfang	22
1.9.4	Zubehör	22
1.9.5	Optionen	22
1.9.6	Die Bedieneinheit (HMI)	23
1.9.7	USB-Port (Rückseite)	26
1.9.8	Steckplatz für Schnittstellen-Module	26
1.9.9	Analogschnittstelle	27
1.9.10	Share BUS-Anschluß	27
1.9.11	Sense-Anschluß (Fernfühlung)	27
1.9.12	Master-Slave-Bus	28
1.9.13	Ethernet-Port	28

2. Installation und Inbetriebnahme

Transport und Lagerung	29
Transport	29
Verpackung	29
Lagerung	29
Auspacken und Sichtkontrolle	29
Installation	29
Sicherheitsmaßnahmen vor Installation und Gebrauch	29
	Transport und Lagerung Transport Verpackung Lagerung Auspacken und Sichtkontrolle Installation Sicherheitsmaßnahmen vor Installation und Gebrauch

2.3.2	Vorbereitung	30
2.3.3	Aufstellung des Gerätes	31
2.3.4	Anschließen an das Stromnetz (AC)	32
2.3.5	Anschließen von DC-Quellen	35
2.3.6	Erdung des DC-Anschlusses	36
2.3.7	Anschließen der Fernfühlung	37
2.3.8	Installation eines Schnittstellen-Moduls	38
2.3.9	Anschließen der analogen Schnittstelle	39
2.3.10	Anschließen des Share-Busses	39
2.3.11	Anschließen des USB-Ports (Rückseite)	39
2.3.12	Erstinbetriebnahme	39
2.3.13	Erneute Inbetriebnahme nach Firmwareupdar bzw. längerer Nichtbenutzung	tes 39

3. Bedienung und Verwendung

3.1	Wichtige Hinweise	40
3.1.1	Personenschutz	40
3.1.2	Allgemein	40
3.2	Regelungsarten	40
3.2.1	Spannungsregelung / Konstantspannung	40
3.2.2	Stromregelung / Konstantstrom / Strombegr zung	en- 41
3.2.3	Leistungsregelung / Konstantleistung / Lei- stungsbegrenzung	41
3.2.4	Widerstandsregelung/Konstantwiderstand	42
3.2.5	Regelverhalten und Stabilitätskriterium	42
3.3	Alarmzustände	43
3.3.1	Power Fail	43
3.3.2	Übertemperatur (Overtemperature)	43
3.3.3	Überspannung (Overvoltage)	43
3.3.4	Überstrom (Overcurrent)	43
3.3.5	Überleistung (Overpower)	43
3.3.6	Share-Bus-Fehler	44
3.4	Manuelle Bedienung	45
3.4.1	Einschalten des Gerätes	45
3.4.2	Ausschalten des Gerätes	45
3.4.3	Konfiguration im Menü	45
3.4.4	Einstellgrenzen (Limits)	54
3.4.5	Bedienart wechseln	54
3.4.6	Sollwerte manuell einstellen	55
3.4.7	DC-Eingang ein- oder ausschalten	56
3.4.8	Datenaufzeichnung auf USB-Stick (Logging)	56
3.4.9	Das Schnellmenü	57
3.4.10	Der Graph	58
3.5	Fernsteuerung	59
3.5.1	Allgemeines	59
3.5.2	Bedienorte	59

Fernsteuerung über eine digitale Schnittstelle	e 59
Fernsteuerung über Analogschnittstelle	61
Alarme und Überwachung	65
Begriffsdefinition	65
Gerätealarme und Events handhaben	65
Bedieneinheit (HMI) sperren	68
Einstellgrenzen (Limits) und Benutzerprofile sperren	68
Nutzerprofile laden und speichern	69
Der Funktionsgenerator	70
Einleitung	70
Allgemeines	70
Arbeitsweise	71
Manuelle Bedienung	71
Sinus-Funktion	72
Dreieck-Funktion	73
Rechteck-Funktion	73
Trapez-Funktion	74
DIN 40839-Funktion	74
Arbiträr-Funktion	75
Rampen-Funktion	79
IU-Tabellenfunktion (XY-Tabelle)	80
Batterietest-Funktion	81
MPP-Tracking-Funktion	84
Fernsteuerung des Funktionsgenerators	86
Weitere Anwendungen	87
Parallelschaltung als Master-Slave (MS)	87
Reihenschaltung	91
SEMI F47	91
	Fernsteuerung über eine digitale Schnittstelle Fernsteuerung über Analogschnittstelle Alarme und Überwachung Begriffsdefinition Gerätealarme und Events handhaben Bedieneinheit (HMI) sperren Einstellgrenzen (Limits) und Benutzerprofile sperren Nutzerprofile laden und speichern Der Funktionsgenerator Einleitung Allgemeines Arbeitsweise Manuelle Bedienung Sinus-Funktion Dreieck-Funktion Rechteck-Funktion Trapez-Funktion DIN 40839-Funktion Arbiträr-Funktion IU-Tabellenfunktion (XY-Tabelle) Batterietest-Funktion Fernsteuerung des Funktionsgenerators Weitere Anwendungen Parallelschaltung als Master-Slave (MS) Reihenschaltung SEMI F47

4. Instandhaltung und Wartung

5.	Service und Support	
4.2.3	Ersatzableitstrommessung	93
4.2.2	Vermeidung und Behandlung von Gerätefeh- lern	93
4.2.1	Firmware-Aktualisierungen	92
4.2	Fehlersuche / Fehlerdiagnose / Reparatur	92
4.1.1	Batterietausch	92
4.1	Wartung / Reinigung	92

5.1	Reparaturen	94
5.2	Kontaktmöglichkeiten	94

Achtung! Der Teil dieser Anleitung der sich mit der Bedienung am Bedienteil befaßt gilt nur für Geräte mit einer Firmware ab "KE: 3.02", "HMI: 3.02" und "DR: 1.0.2.20" oder höher.

© EA Elektro-Automatik in 2022, Irrtümer und Änderungen vorbehalten

1. Allgemeines

1.1 Zu diesem Dokument

1.1.1 Aufbewahrung und Verwendung

Dieses Dokument ist für den späteren Gebrauch und möglichst in der Nähe des Gerätes aufzubewahren. Es dient zur Erläuterung des Gebrauchs des Gerätes. Bei Standortveränderung und/oder Benutzerwechsel ist dieses Dokument mitzuführen.

Die jeweils aktuelle Version dieses Dokuments ist online auf unserer Webseite zu finden.

1.1.2 Urheberschutz (Copyright)

Nachdruck, Vervielfältigung oder auszugsweise, zweckentfremdete Verwendung dieser Bedienungsanleitung sind nicht gestattet und können bei Nichtbeachtung rechtliche Schritte nach sich ziehen.

1.1.3 Geltungsbereich

Diese Betriebsanleitung gilt für folgende Modelle und deren Varianten:

Modell	Modell	Modell	Modell
EA-ELR 10080-170 3U	EA-ELR 10200-140 3U	EA-ELR 10080-510 3U	EA-ELR 11500-30 3U
EA-ELR 10200-70 3U	EA-ELR 10360-80 3U	EA-ELR 10200-210 3U	EA-ELR 12000-20 3U
EA-ELR 10360-40 3U	EA-ELR 10500-60 3U	EA-ELR 10360-120 3U	
EA-ELR 10500-30 3U	EA-ELR 10750-40 3U	EA-ELR 10500-90 3U	
EA-ELR 10750-20 3U	EA-ELR 11000-30 3U	EA-ELR 10750-60 3U	
EA-ELR 10080-340 3U	EA-ELR 11500-20 3U	EA-ELR 11000-40 3U	

1.1.4 Symbole und Hinweise in diesem Dokument

Warn- und Sicherheitshinweise, sowie allgemeine Hinweise in diesem Dokument sind stets in einer umrandeten Box und mit einem Symbol versehen:

1.2 Gewährleistung und Garantie

Elektro-Automatik garantiert die Funktionsfähigkeit der angewandten Verfahrenstechnik und die ausgewiesenen Leistungsparameter. Die Gewährleistungsfrist beginnt mit der mängelfreien Übergabe. Die Garantiebestimmungen sind den allgemeinen Geschäftsbedingungen (AGB) der EA Elektro-Automatik GmbH zu entnehmen.

1.3 Haftungsbeschränkungen

Alle Angaben und Hinweise in dieser Anleitung wurden unter Berücksichtigung geltender Normen und Vorschriften, des Stands der Technik sowie unserer langjährigen Erkenntnisse und Erfahrungen zusammengestellt. Der Hersteller übernimmt keine Haftung für Schäden aufgrund:

- Nicht bestimmungsgemäßer Verwendung
- Einsatz von nicht ausgebildetem und nicht unterwiesenem Personal
- Eigenmächtiger Umbauten
- Technischer Veränderungen
- Verwendung nicht zugelassener Ersatzteile

Der tatsächliche Lieferumfang kann bei Sonderausführungen, der Inanspruchnahme zusätzlicher Bestelloptionen oder aufgrund neuester technischer Änderungen von den hier beschriebenen Erläuterungen und Darstellungen abweichen.

1.4 Entsorgung des Gerätes

Ein Gerät, das zur Entsorgung vorgesehen ist, muß laut europaweit geltenden Gesetzen und Verordnungen (ElektroG, WEEE) vom Hersteller zurückgenommen und entsorgt werden, sofern der Betreiber des Gerätes oder ein von ihm Beauftragter das nicht selbst erledigt. Unsere Geräte unterliegen diesen Verordnungen und sind dementsprechend mit diesem Symbol gekennzeichnet:

Das Gerät enthält eine Lithiumbatterie. Deren Entsorgung erfolgt gemäß der obigen Festlegungen bzw. gemäß gesonderter, lokaler Regularien.

1.5 Produktschlüssel

Aufschlüsselung der Produktbezeichnung auf dem Typenschild anhand eines Beispiels:

_ _ _

EA-ELR [^]	<u> 10 080</u> -	<u>510</u>	<u>3U</u>	
				Ausführung/Bauweise (nur auf Typenschild angegeben): 3U = 19" Bauform mit 3 Höheneinheiten (HE, engl. U)
				Maximalstrom des Gerätes in Ampere
				Maximalspannung des Gerätes in Volt ("10080" = 80 V)
				Serienkennzeichnung: 10 = Serie 10000
				Typkennzeichnung: ELR = Electronic Load Recovery (elektronische Last)

1.6 Bestimmungsgemäßer Gebrauch

Das Gerät ist ausschließlich für den Gebrauch als variable Spannungs- bzw. Stromquelle oder als variable Stromsenke bestimmt. Weiterhin ist es nur zum Betrieb als in entsprechende Vorrichtungen (19"-Schränke u. ä.) fest eingebautes Gerät bestimmt, zusammen mit einem Festanschluß an die AC-Versorgung.

Typisches Anwendungsgebiet für ein Netzgerät als Quelle ist die DC-Stromversorgung von entsprechenden Verbrauchern aller Art, für ein Batterieladegerät die Aufladung von diversen Batterietypen, sowie für elektronische Lasten der Ersatz eines ohmschen Widerstands in Form einer einstellbaren DC-Stromsenke zwecks Belastung von entsprechenden Spannungs- und Stromquellen aller Art.

- Ansprüche jeglicher Art wegen Schäden aus nicht bestimmungsgemäßer Verwendung sind ausgeschlossen
- Für alle Schäden durch nicht bestimmungsgemäße Verwendung haftet allein der Betreiber

1.6.1 Symbole und Hinweise auf dem Gerät

Aufkleber	Übersetzung	Erläuterung
A DANGER RISK OF ELECTRIC SHOCK Disconnect all sources of supply prior to servicing.	Gefahr Risiko eines elektrischen Schlags. AC-Versorgung trennen bevor am Gerät hantiert wird.	Bezieht sich auf das Anschließen bzw. Um- konfiguration am DC- und/oder AC-Anschluß. Es ist immer die AC-Versorgung zu trennen (Hauptschalter),damit die AC-Zuleitung span- nungsfrei wird.
A DANGER Capacitors on DC, storing voltage! Discharge for 10 sec then ground before working.	Gefahr Geladene Kondensatoren am DC! Mindesten zehn Sekunden lang entladen und danach erden, bevor am DC-Anschluß hantiert wird.	Selbst nach der Trennung des DC-Anschlus- ses von einer externen Quelle kann weiterhin Spannung zwischen den DC-Polen bzw. zum Gehäuse hin anliegen, für unbestimmte Zeit. Zur Sicherheit kurzschließen und erden.
A WARNING ELECTRICAL HAZARDS Authorized personnel only.	Warnung Elektrische Gefahren Nur autorisiertes Personal.	Grundsätzlich können an elektrischen Geräten mit metallischen, berührbaren Stellen Span- nungspotentiale bestehen, auch wenn sie nicht lebensgefährlich sind. Es besteht trotz- dem die Gefahr eines elektrischen Schlags oder Funkenbildung.
Read and understand the operat- ing guide before using this device. Non-adherence of the instructions in the operating guide can result in serious injury or death.	Warnung Lesen und verstehen Sie das Hand- buch bevor Sie das Gerät benutzen. Nichtbeachtung der Anweisungen im Handbuch kann zu schweren Verlet- zungen oder Tod führen.	Gilt für die Handbung des Gerätes in jeglicher Hinsicht.

1.7 Sicherheit

1.7.1

Sicherheitshinweise Lebensgefahr - Gefährliche Spannung Beim Betrieb elektrischer Geräte stehen zwangsweise bestimmte, am Gerät außen zugängliche Teile unter teils gefährlicher Spannung. Daher sind alle spannungsführenden Teile beim Betrieb abzudecken! • Der DC-Anschluß ist zum Versorgungsnetz hin isoliert und nicht im Gerät geerdet. Daher kann grundsätzlich gefährliches Potential zwischen den DC-Polen und PE bestehen, z.B. durch die Applikation. Aufgrund von geladenen, internen Kondensatoren auch dann noch, wenn der DC-Anschluß bzw. das Gerät bereits ausgeschaltet ist. • Führen Sie keine mechanischen Teile, insbesondere aus Metall, durch die Lüftungsschlitze in das Gerät ein. Für jede Art von Umkonfiguration an den AC- und DC-Anschlüssen, also alle an denen eine berührungsgefährliche Spannung anliegen könnte, muß das Gerät komplett spannungsfrei sein, d. h. es muß von der AC-Versorgung getrennt werden (Hauptschalter am anderen Ende der AC-Leitung); es reicht nicht aus, den Netzschalter zu betätigen • Beachten Sie stets die fünf Sicherheitsregeln beim An- und Abklemmen von elektrischen Geräten: Freischalten (phys. Trennung aller Spannungsguellen vom Gerät) Gegen Wiedereinschalten sichern Spannungsfreiheit feststellen Erden und kurzschließen Vermeiden Sie die Verwendung von Flüssigkeiten aller Art in der N\u00e4he des Ger\u00e4tes, diese k\u00f6nnten in das Gerät gelangen. Schützen Sie das Gerät vor Nässe, Feuchtigkeit und Kondensation. Keine externen Spannungsquellen mit umgekehrter Polarität am DC-Anschluß verbinden! Das Gerät wird dadurch beschädigt, auch im komplett ausgeschalteten Zustand. Keine externen Spannungsquellen am DC-Anschluß verbinden die eine höhere Spannung erzeugen können als die Nennspannung des Gerätes! • Niemals Netzwerkkabel, die mit dem Ethernethardware verbunden sind, in die mit "Master-Slave" gekennzeichneten Buchsen auf der Rückseite stecken! • Das Gerät ist ausschließlich seiner Bestimmung gemäß zu verwenden! • Das Gerät ist nur für den Betrieb innerhalb der auf dem Typenschild angegebenen Anschlußwerte und technischen Daten zugelassen. Um Schnittstellenkarten oder -module in dem dafür vorgesehenen Einschub (Slot) zu bestücken, müssen die einschlägigen ESD - Vorschriften beachtet werden. Nur im ausgeschalteten Zustand darf eine Schnittstellenkarte bzw. -modul aus dem Einschub herausgenommen oder bestückt werden. Eine Öffnung des Gerätes ist nicht erforderlich. • Konfigurieren Sie Schutzfunktionen gegen Überstrom, Überspannung usw., die das Gerät für die anzuschließende Quelle bietet, stets passend für die jeweilige Anwendung! Stellen Sie stets sicher, daß die Rückspeisefunktion die umgewandelte Energie immer sicher abführen kann und daß kein Inselbetrieb entsteht. Bei Inselbetrieb muß eine Überwachungseinrichtung (Netz- und Anlagenschutz) installiert werden. Sämtliche Arten von Generatoren oder AC-USV-Stromversorgungen sind nicht als AC-Anschlußguelle für dieses Gerät zulässig. Es darf nur direkt an einem Stromnetz betrieben werden! • Bei manueller Bedienung am HMI und sofern das Gerät über irgendeine digitale oder analoge Schnittstelle verbunden ist, könnte eine externe Steuerungseinheit (SPS, PC usw.) jederzeit die Fernsteuerung übernehmen und eine gefährliche Spannung setzen; es wird empfohlen bei Bedienung am HMI die Fernsteuerung zu sperren, indem der sog. Lokal-Modus aktiviert wird (siehe auch «3.4 Manuelle Bedienung»

und «3.4.3 Konfiguration im Menü»)

1.7.2 Pflichten des Betreibers

Betreiber ist jede natürliche oder juristische Person, die das Gerät nutzt oder Dritten zur Anwendung überläßt und während der Nutzung für die Sicherheit des Benutzers, des Personals oder Dritter verantwortlich ist.

Das Gerät wird im gewerblichen Bereich eingesetzt. Der Betreiber des Gerätes unterliegt daher den gesetzlichen Pflichten zur Arbeitssicherheit. Neben den Warn- und Sicherheitshinweisen in dieser Anleitung müssen die für den Einsatzbereich des Gerätes gültigen Sicherheits-, Unfallverhütungs- und Umweltschutzvorschriften eingehalten werden. Insbesondere muß der Betreiber:

- sich über die geltenden Arbeitsschutzbestimmungen informieren.
- durch eine Gefährdungsbeurteilung mögliche zusätzliche Gefahren ermitteln, die sich durch die speziellen Anwendungsbedingungen am Einsatzort des Gerätes ergeben.
- in Betriebsanweisungen die notwendigen Verhaltensanforderungen für den Betrieb des Gerätes am Einsatzort umsetzen.
- während der gesamten Einsatzzeit des Gerätes regelmäßig prüfen, ob die von ihm erstellten Betriebsanweisungen dem aktuellen Stand der Regelwerke entsprechen.
- die Betriebsanweisungen, sofern erforderlich, an neue Vorschriften, Standards und Einsatzbedingungen anpassen.
- die Zuständigkeiten für die Installation, Bedienung, Wartung und Reinigung des Gerätes eindeutig und unmißverständlich regeln.
- dafür sorgen, daß alle Mitarbeiter, die an dem Gerät beschäftigt sind, die Betriebsanleitung gelesen und verstanden haben. Darüber hinaus muß er das Personal in regelmäßigen Abständen im Umgang mit dem Gerät schulen und über die möglichen Gefahren informieren.
- dem mit Arbeiten an dem Gerät beauftragten Personal die vorgeschriebenen und empfohlenen Schutzausrüstungen bereitstellen.

Weiterhin ist der Betreiber dafür verantwortlich, daß das Gerät stets in einem technisch einwandfreien Zustand ist.

1.7.3 Anforderungen an das Bedienpersonal

Jegliche Tätigkeiten an Geräten dieser Art dürfen nur Personen ausüben, die ihre Arbeit ordnungsgemäß und zuverlässig ausführen können und den jeweils benannten Anforderungen entsprechen.

- Personen, deren Reaktionsfähigkeit beeinflußt ist, z. B. durch Drogen, Alkohol oder Medikamente, dürfen keine Arbeiten ausführen.
- Beim Personaleinsatz immer die am Einsatzort geltenden alters- und berufsspezifischen Vorschriften beachten.

Verletzungsgefahr bei unzureichender Qualifikation!

Unsachgemäßes Arbeiten kann zu Personen- und Sachschäden führen. Jegliche Tätigkeiten dürfen nur Personen ausführen, welche die erforderliche Ausbildung, das notwendige Wissen und die Erfahrung dafür besitzen.

Zusätzlich schränkt sich der zulässige Benutzerkreis auf zwei Personengruppen ein:

Unterwiesenes Personal: das sind Personen, die vom Betreiber über die ihnen übertragenen Aufgaben und möglichen Gefahren ausführlich und nachweislich unterrichtet wurden.

Fachpersonal: als ein solches gilt, wer aufgrund seiner beruflichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Bestimmungen in der Lage ist, die übertragenen Arbeiten ordnungsgemäß auszuführen, mögliche Gefahren selbständig zu erkennen und Personen- oder Sachschäden zu vermeiden.

1.7.4 Verantwortung des Bedieners

Das Gerät befindet sich im gewerblichen Einsatz. Das Personal unterliegt daher den gesetzlichen Pflichten zur Arbeitssicherheit. Neben den Warn- und Sicherheitshinweisen in dieser Anleitung müssen die für den Einsatzbereich gültigen Sicherheits-, Unfallverhütungs- und Umweltschutzvorschriften eingehalten werden. Insbesondere gilt, daß die das Gerät bedienenden Personen:

- sich über die geltenden Arbeitsschutzbestimmungen informieren.
- die zugewiesenen Zuständigkeiten für die Bedienung, Wartung und Reinigung des Gerätes ordnungsgemäß wahrnehmen.
- vor Arbeitsbeginn die Betriebsanleitung vollständig gelesen und verstanden haben

1.7.5 Alarmsignale

Das Gerät bietet diverse Möglichkeiten der Signalisierung von Alarmsituationen, jedoch nicht von Gefahrensituationen. Die Signalisierung kann optisch (auf der Anzeige als Text oder per LED), akustisch (Piezosummer) oder elektronisch (Pin/ Meldeausgang an einer analogen Schnittstelle) erfolgen. Alle diese Alarme bewirken die Abschaltung des DC-Eingangs. Für Einzelheiten zu den Alarmen siehe *«3.3 Alarmzustände»*.

Bedeutung der Alarmsignale:

Signal OT	Überhitzung des Gerätes
(OverTemperature)	DC-Eingang wird abgeschaltet
	• Unkritisch
Signal OVP / SOVP	• Überspannungsabschaltung des DC-Eingangs erfolgte wegen überhöhter Spannung, von außen
(OverVoltage)	auf das Gerät gelangend
	Kritisch! Das Gerät könnte beschädigt sein
Signal OCP	• Überstromabschaltung des DC-Eingangs erfolgte wegen Erreichen einer einstellbaren Schwelle
(OverCurrent)	• Unkritisch, dient zum Schutz der Quelle vor zu hoher Stromabgabe
Signal OPP	• Überlastabschaltung des DC-Eingangs erfolgte wegen Erreichen einer einstellbaren Schwelle
(OverPower)	• Unkritisch, dient zum Schutz der Quelle vor zu hoher Leistungsabgabe
Signal PF	Abschaltung des DC-Eingangs wegen Netzunterspannung oder Defekt im AC-Teil
(Power Fail)	Kritisch bei Überspannung! AC-Teil könnte beschädigt sein
Signal MCC	Abashaltung das DC Eingangs sings Master Slave Svetems aufgrund von Kommunikationenre
	Abschaltung des Do-Eingangs eines Master-Slave-Systems aufgrund von Kommunikationspro- blemen auf dem Master-Slave-Bus
(Master-Slave-Sl- cherheitsmodus)	Unkritisch
Signal SF	Abschaltung des DC-Eingangs aufgrund einer Signalstörung am Share-Bus
(Share-Bus-Fehler)	Unkritisch

1.7.6 Überprüfung der korrekten Funktionalität

Der Betreiber muß festlegen, ob das Gerät auf korrekte Funktion überprüft werden soll, sowie von wem, wann und wie häufig. Das kann z. B. vor jedem eigentlichen Gebrauch des Gerätes geschehen oder nach einer Umpositionierung bzw. Rekonfiguration am DC-Anschluß oder auch in regelmäßigen zeitlichen Abständen.

> Falls sich die Sollwerte nicht wie unten vorgegeben einstellen lassen könnte das an den sog. Einstellgrenzen liegen. Siehe «3.4.4 Einstellgrenzen (Limits)». Das Gerät zeigt das Erreichen einer Grenze an.

Die Vorgehensweise wäre dabei stets die folgende:

- 1. Gerät von allen externen Anschlüssen trennen (Sense, Sharebus, analoge Schnittstelle, USB), außer AC.
- 2. Externe DC-Spannungsquelle anschließen, die mindestens soviel Strom und Spannung liefern kann wie das zu prüfende Gerät als Nennstrom angegeben hat.
- 3. Geeignetes Strommeßgerät (Shunt, Stromwandler) an oder in der DC-Leitung anbringen.
- 4. Gerät einschalten und einen Strom von 10% I_{Nenn} einstellen, während die Spannung auf 0 und die Leistung auf Maximum steht. Dann den DC-Eingang einschalten und messen, ob der eingestellte Strom fließt ist, sowie korrekt als Istwert auf der Anzeige des Gerätes erscheint.
- 5. Dasselbe mit 100% I_{Nenn} wiederholen.
- 6. Sollte die angeschlossene DC-Quelle bereits strombegrenzt einstellbar sein, diese auf 102% Nennspannung und 90% Nennstrom des Prüflings einstellen. Ansonsten eine andere, geeignete verbinden. Außerdem ein passendes Spannungsmeßgerät am DC-Eingang anbringen.
- 7. Am Prüfling eine Spannung von 10% U_{Nenn} einstellen und am DC-Eingang messen, ob sich die gewünschte Spannung eingestellt hat, sowie korrekt als Istwert auf der Anzeige des Gerätes erscheint.
- 8. Das Gleiche mit 90% oder 100% $U_{\mbox{\tiny Nenn}}$ wiederholen.

Nur wenn Strom und Spannung im Bereich von 0-100% einstellbar sind und wie eingestellt am DC-Anschuß ausgeregelt werden, ist das Gerät korrekt funktionierend zu betrachten.

1.8 Technische Daten

1.8.1 Zulässige Betriebsbedingungen

1.8.1.1 Umgebung

Der zulässige Umgebungstemperaturbereich während des Betriebes reicht von 0 °C bis 50 °C. Während Lagerung oder Transport ist ein erweiterter Bereich von -20 °C bis 70 °C erlaubt. Hat sich während der Lagerung oder eines Transports Kondenswasser gebildet, muß das Gerät vor Gebrauch mindestens 2 Stunden akklimatisiert bzw. durch eine geeignete Luftzirkulation getrocknet werden.

Grundsätzlich ist das Gerät zum Betrieb in trockenen Räumen bestimmt. Es darf nicht bei besonders großem Staub- bzw. Feuchtigkeitsgehalt der Luft, bei Explosionsgefahr, sowie bei aggressiver chemischer Einwirkung betrieben werden. Die Betriebslage ist nicht beliebig (siehe «2.3.3 Aufstellung des Gerätes»), eine ausreichende Luftzirkulation ist jedoch zu gewährleisten. Das Gerät darf bis zu einer Höhenlage von 2000 m über Normalnull betrieben werden. Nenndaten mit Toleranz gelten nach einer Anwärmzeit von mind. 30 Minuten und bei einer Umgebungstemperatur von 23 °C. Werte ohne Toleranzangabe sind Richtwerte eines durchschnittlichen Gerätes.

1.8.1.2 Kühlung

Im Gerät erzeugte Verlustleistung erhitzt die durch das Gerät zirkulierende Luft. Bei den luftgekühlten Ausführungen sitzt ein Lüfter am Ende eines Lufkanals, in dem ein Kühlkörper sitzt, und zieht die Luft durch das Gerät. Eintritt vorn, Austritt hinten. Je nach Innentemperatur des Gerätes wird die Lüfterdrehzahl herauf- oder heruntergeregelt. Dabei ist eine gewisse Mindestdrehzahl erforderlich, da interne Komponenten sich auch dann erhitzen wenn das Gerät im Leerlauf ist.

Staub in der Luft setzt sich an allen Teilen im Luftweg ab und kann den Luftdurchfluß bis zu einem gewissen Grad beeinträchtigen. Daher ist es wichtig, zumindest außerhalb des Gerätes für ungehinderten Luftfluß zu sorgen, indem genügend Platz hinter dem Gerät gelassen wird bzw. bei Einbau in einem Schrank dessen Türen Maschen haben.

Die Umgebungstemperatur sollte gleichzeitig möglichst niedrig gehalten werden, falls nötig durch externe Maßnahmen wie eine Klimaanlage. Sollte sich das Gerät dennoch intern so erhitzen, daß die Kühlkörpertemperatur über 80 °C steigt, schützt es sich selbst, indem es die Leistungsstufe selbsttätig abschaltet und erst nach einer Abkühlung wieder einschalten kann.

1.8.2 Allgemeine technische Daten

Anzeige:Farbiger TFT-Touchscreen mit Gorillaglas, 5", 800 x 480 Punkte, kapazitivBedienelemente:2 Drehknöpfe mit Tastfunktion, 1 Drucktaste

1.8.3 Spezifische technische Daten

Allgemeine Spezifikationen	
AC-Eingang	
Spannung, Phasen	Bereich 1: 208 V, ±10%, 3ph AC (mit Reduzierung der DC-Eingangsleistung auf 3 / 6 / 9 kW) Bereich 2: 380 - 480 V, ±10%, 3ph AC
Frequenz	45 - 65 Hz
Leistungsfaktor	ca. 0,99
Ableitstrom	<5 mA
Einschaltstrom	@400 V: ca. 40 A pro Phase
Überspannungskategorie	2
DC-Eingang statisch	
Lastausregelung CV	\leq 0,05% FS (0 - 100% Last, konstante Eingangsspannung und konstante Temperatur)
Netzausregelung CV	≤0,01% FS (208 V - 480 V AC ±10% Eingangsspannung, konstante Last und konstante Temperatur)
Stabilität CV	≤0,02% FS (Über 8 Stunden nach 30 Minuten Aufwärmphase, konstante Eingangsspannung und konstante Temperatur)
Temperaturkoeffizient CV	≤30ppm/°C (Nach 30 Minuten Aufwärmphase)
Fernfühlung (Remote Sense)	≤5% U _{Nenn}
Lastausregelung CC	≤0,1% FS (0 - 100% Last, konstante Eingangsspannung und konstante Temperatur)
Netzausregelung CC	≤0,01% FS (208 V - 480 V AC ±10% Eingangsspannung, konstante Last und konstante Temperatur)
Stabilität CC	≤0,02% FS (Über 8 Stunden nach 30 Minuten Aufwärmphase, konstante Eingangsspannung und konstante Temperatur)
Temperaturkoeffizient CC	≤50ppm/°C (Nach 30 Minuten Aufwärmphase)
Lastausregelung CP	≤0,3% FS (0 - 100% Last, konstante Eingangsspannung und konstante Temperatur)
Lastausregelung CR	≤0,3% FS + 0,1% FS Strom (0 - 100% Last, konstante Eingangsspannung und konstante Temperatur)
Schutzfunktionen	
OVP	Überspannungschutz, einstellbar 0 - 110% U _{Nenn}
OCP	Überstromschutz, einstellbar 0 - 110% I _{Nenn}
OPP	Überleistungsschutz, einstellbar 0 - 110% P _{Nenn}
OT	Übertemperaturschutz (DC-Eingang schaltet ab bei unzureichender Kühlung)
DC-Eingang dynamisch	
Anstiegszeit 10 - 90% CC	≤2 ms
Abfallzeit 90 - 10% CC	≤2 ms
Anzeigegenauigkeit	
Spannung	≤0,05% FS
Strom	≤0,1% FS
Isolation	
AC-Eingang zum DC-Eingang	3750 Vrms (1 Minute, Kriechstrecke >8 mm) *1
AC-Eingang zum Gehäuse (PE)	2500 Vrms
DC-Eingang zum Gehäuse (PE)	Abhängig vom Modell, siehe Modeltabellen
DC-Eingang zu den Schnittstellen	1000 V DC (Modelle bis 360 V Nennspannung), 1500 V DC (Modelle ab 500 V Nennspannung)
Digitale Schnittstellen	
Eingebaut, galvanisch getrennt	USB, Ethernet (100 MBit) für Kommunikation, 1x USB Host zur Datenerfassung
Optional, galvanisch getrennt	CAN, CANopen, RS232, ModBus TCP, Profinet, Profibus, EtherCAT, Ethernet
Analoge Schnittstellen	
Eingebaut, galvanisch getrennt	15-polige D-Sub
Signalbereich	0 - 10 V oder 0 - 5 V (umschaltbar)
Eingänge	U, I, P, R, Fernsteuerung ein/aus, DC-Eingang ein/aus, Widerstandsmodus ein/aus
Ausgänge	Monitor U und I, Alarme, Referenzspannung, Status DC-Eingang, CV/CC Regelungsart
Genauigkeit U / I / P / R	0 - 10 V: ≤0,2%, 0 - 5 V: ≤0,4%
5	

*1 Modelle mit 80 V DC Nennspannung haben eine verstärkte Isolierung und alle Modlellle ab 200 V DC Nennspannung eine Basisisolierung

Allgemeine Spezifikationen			
Gerätekonfiguration			
Parallelbetrieb	Bis zu 64 Geräte aller Leistungsklasser	n der 10000 Serien, mit Master-Slave-Bu	is und Share-Bus
Sicherheit und EMV			
Sicherheit	EN 61010-1 IEC 61010-1 UL 61010-1 CSA C22.2 No 61010-1 BS EN 61010-1		
EMV	EN 55011, class B CISPR 11, class B FCC 47 CFR Part 15B, unintentional rad EN 61326-1 inklusive Tests nach: - EN 61000-4-2 - EN 61000-4-3 - EN 61000-4-5 - EN 61000-4-6	diator, class B	
Sicherheitsschutzklasse	1		
Schutzart	IP20		
Umweltbedingungen			
Betriebstemperatur	0 - 50 °C		
Lagertemperatur	-20 - 70 °C		
Feuchtigkeit	≤80% relativ, nicht kondensierend		
Höhe	≤2000 m		
Verschmutzungsgrad	2		
Mechanische Konstruktion			
Kühlung	Forcierte Luftkühlung von vorn nach hi	nten (temperaturgesteuerte Lüfter)	
Abmessungen (B x H x T)	Gehäuse: 19" x 3HE x 668 mm Über alles: 19" x 3HE x mind. 777 mm		
Gewicht	5 kW Gerät: 18 kg	10 kW Gerät: 25,4 kg	15 kW Gerät: 32,8 kg

Technische Spezifikationen	ELR 10080-170	ELR 10200-70	ELR 10360-40	ELR 10500-30	ELR 10750-20
DC-Eingang					· · · · · · · · · · · · · · · · · · ·
Nennspannungsbereich	0 - 80 V	0 -200 V	0 - 360 V	0 - 500 V	0 - 750 V
U _{Min} für I _{Max}	0,5 V	2,0 V	2,0 V	2,2 V	2,5 V
Nennstrombereich	0 - 170 A	0 - 70 A	0 - 40 A	0 - 30 A	0 - 20 A
Nennleistungsbereich	0 - 5000 W (0 - 3000 W) *2	0 - 5000 W (0 - 3000 W) *2	0 - 5000 W (0 - 3000 W) *2	0 - 5000 W (0 - 3000 W) *2	0 - 5000 W (0 - 3000 W) *2
Nennwiderstandsbereich	0,016 Ω - 26 Ω	0,1 Ω - 160 Ω	0,3 Ω - 520 Ω	0,6 Ω - 1000 Ω	1,2 Ω - 2200 Ω
Eingangskapazität	7790 µF	2520 µF	393 µF	180 µF	180 µF
Wirkungsgrad (bis zu)	94,5% *1	94,5% *1	95,5% *1	95,5% *1	95,5% *1
Isolation					
Negativer DC-Pol <-> PE	±600 V DC	±1000 V DC	±1000 V DC	±1500 V DC	±1500 V DC
Positiver DC-Pol <-> PE	+600 V DC	+1000 V DC	+1000 V DC	+2000 V DC	+2000 V DC
Artikelnummer	33200828	33200829	33200830	33200831	33200832

*1 Bei 100% Leistung und 100% Eingangsspannung *2 In der von der AC-Spannung abhängigen Leistungsreduktion (Derating)

Technische Spezifikationen	ELR 10080-340	ELR 10200-140	ELR 10360-80	ELR 10500-60	ELR 10750-40
DC-Eingang					
Nennspannungsbereich	0 - 80 V	0 -200 V	0 - 360 V	0 - 500 V	0 - 750 V
U _{Min} für I _{Max}	0,5 V	2 V	2 V	2,2 V	2,5 V
Nennstrombereich	0 - 340 A	0 - 140 A	0 - 80 A	0 - 60 A	0 - 40 A
Nennleistungsbereich	0 - 10000 W (0 - 6000 W) *2	0 - 10000 W (0 - 6000 W) *2	0 - 10000 W (0 - 6000 W) *2	0 - 10000 W (0 - 6000 W) *2	0 - 10000 W (0 - 6000 W) *2
Nennwiderstandsbereich	0,008 Ω - 13 Ω	0,05 Ω - 80 Ω	0,15 Ω - 260 Ω	0,3 Ω - 500 Ω	0,6 Ω - 1100 Ω
Eingangskapazität	15980 µF	5040 µF	786 µF	360 µF	360 µF
Wirkungsgrad (bis zu)	94,5% *1	94,5% *1	95,5% *1	95,5% *1	95,5% *1
Isolation					
Negativer DC-Pol <-> PE	±600 V DC	±1000 V DC	±1000 V DC	±1500 V DC	±1500 V DC
Positiver DC-Pol <-> PE	+600 V DC	+1000 V DC	+1000 V DC	+2000 V DC	+2000 V DC
Artikelnummer	33200833	33200834	33200835	33200836	33200837

*1 Bei 100% Leistung und 100% Eingangsspannung *2 In der von der AC-Spannung abhängigen Leistungsreduktion (Derating)

Technische Spezifikationen	ELR 11000-30	ELR 11500-20
DC-Eingang		
Nennspannungsbereich	0 - 1000 V	0 - 1500 V
Restwelligkeit in CV (rms)	≤200 mV (BW 300 kHz)	≤400 mV (BW 300 kHz)
Restwelligkeit in CV (pp)	≤1000 mV (BW 20 MHz)	≤2000 mV (BW 20 MHz)
U _{Min} für I _{Max}	4 V	5 V
Nennstrombereich	0 - 30 A	0 - 20 A
Nennleistungsbereich	0 - 10000 W (0 - 6000 W) *2	0 - 10000 W (0 - 6000 W) *2
Nennwiderstandsbereich	1,2 Ω - 2000 Ω	2,6 Ω - 4500 Ω
Eingangskapazität	90 µF	90 µF
Wirkungsgrad (bis zu)	95,5% *1	95,5% *1
Isolation		
Negativer DC-Pol <-> PE	±1500 V DC	±1500 V DC
Positiver DC-Pol <-> PE	+2000 V DC	+2000 V DC
Artikelnummer	33200838	33200839

*1 Bei 100% Leistung und 100% Eingangsspannung *2 In der von der AC-Spannung abhängigen Leistungsreduktion (Derating)

Technische Spezifikationen	ELR 10080-510	ELR 10200-210	ELR 10360-120	ELR 10500-90	ELR 10750-60
DC-Eingang					
Nennspannungsbereich	0 - 80 V	0 -200 V	0 - 360 V	0 - 500 V	0 - 750 V
U _{Min} für I _{Max}	0,5 V	2 V	2 V	2 V	2,2 V
Nennstrombereich	0 - 510 A	0 - 210 A	0 - 120 A	0 - 90 A	0 - 60 A
Nennleistungsbereich	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2
Nennwiderstandsbereich	0,006 Ω - 9 Ω	0,03 Ω - 50 Ω	0,1 Ω - 180 Ω	0,2 Ω - 330 Ω	0,4 Ω - 750 Ω
Eingangskapazität	23970 µF	7560 µF	1179 µF	540 µF	540 µF
Wirkungsgrad (bis zu)	94,5% *1	94,5% *1	95,5% *1	95,5% *1	95,5% *1
Isolation					
Negativer DC-Pol <-> PE	±600 V DC	±1000 V DC	±1000 V DC	±1500 V DC	±1500 V DC
Positiver DC-Pol <-> PE	+600 V DC	+1000 V DC	+1000 V DC	+2000 V DC	+2000 V DC
Artikelnummer	33200820	33200821	33200822	33200823	33200824

*1 Bei 100% Leistung und 100% Eingangsspannung *2 In der von der AC-Spannung abhängigen Leistungsreduktion (Derating)

Technische Spezifikationen	ELR 11000-40	ELR 11500-30	ELR 12000-20
DC-Eingang			
Nennspannungsbereich	0 - 1000 V	0 - 1500 V	0 - 2000 V
U _{Min} für I _{Max}	5,6 V	5,6 V	7,2 V
Nennstrombereich	0 - 40 A	0 - 30 A	0 - 20 A
Nennleistungsbereich	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2
Nennwiderstandsbereich	0,8 Ω - 1300 Ω	1,7 Ω - 3000 Ω	3,5 Ω - 5300 Ω
Eingangskapazität	131 µF	60 µF	60 µF
Wirkungsgrad (bis zu)	95,5% *1	95,5% *1	95,5% *1
Isolation			
Negativer DC-Pol <-> PE	±1500 V DC	±1500 V DC	±1500 V DC
Positiver DC-Pol <-> PE	+2000 V DC	+2000 V DC	+2000 V DC
Artikelnummer	33200825	33200826	33200827

*1 Bei 100% Leistung und 100% Eingangsspannung *2 In der von der AC-Spannung abhängigen Leistungsreduktion (Derating)

1.8.4 Ansichten

1.8.4.1 Technische Zeichnungen ELR 10000 $3U \le 200 V$

1.8.4.3 Beschreibung Frontplatte ELR 10000 3U

1. Netzschalter

- 2. TFT-Display, mit berührungsempfindlicher Oberfläche (Touchsreen)
- 3. Drehknopf mit Tastfunktion für Einstellungen
- 4. USB-Host, für USB-Sticks zum Daten mitschreiben und einlesen
- 5. Drehknopf mit Tastfunktion für Einstellungen
- 6. Ein/Aus-Taster mit LED Statusanzeige

1.8.4.4 Beschreibung Rückplatte ELR 10000 3U

1. Ethernet-Schnittstelle

- 2. Steckplatz für optionale Schnittstellen
- 3. Share-Bus-Anschlüsse zum Einrichten eines Systems für Parallelschaltung
- 4. Anschlüsse für Fernfühlung der Eingangsspannung (remote sense)
- 5. DC-Eingangsklemme mit Kupfer-Anschlußschwertern
- 6. Netzeingangsklemme
- 7. Anschlußschraube Erdverbindung (PE)
- 8. Anschlußstecker (DB15 weiblich) für isolierte Analogschnittstelle mit Programmierung, Auslesen und anderen Funktionen
- 9. USB-Schnittstelle
- 10. Master-Slave-Bus-Anschlüsse zum Einrichten eines Systems für Parallelschaltung

1.8.5 Bedienelemente

Bild 1- Bedienfeld

Übersicht der Bedienelemente am Bedienfeld

Für eine weiterführende Erläuterung siehe Abschnitt «1.9.6 Die Bedieneinheit (HMI)».

	Anzeige mit berührungsempfindlicher Oberfläche (Touchscreen)
(1)	Dient zur Auswahl bzw. Eingabe von Sollwerten, Aufruf von Menüs, sowie zur Anzeige der Istwerte und des Status'. Der Touchscreen kann mit den Fingern oder mit einem Stift (Stylus) bedient werden.
	Drehknöpfe mit Tastfunktion
	Linker Drehknopf (Drehen): Einstellen des Spannungssollwertes
(2)	Linker Drehknopf (Drücken): Dezimalstelle (Cursor) des Spannungsollwertes verschieben
	Rechter Drehknopf (Drehen): Einstellen des Strom-, Leistungs- oder Widerstandssollwertes
	Rechter Drehknopf (Drücken): Dezimalstelle (Cursor) des zugeordneten Wertes verschieben
	Taster für das Ein- und Ausschalten des DC-Eingangs
(3)	Dient zum Ein- oder Ausschalten des DC-Eingangs bei manueller Bedienung, sowie zum Starten bzw. Stoppen einer Funktion. Die beiden LEDs "On" und "Off" zeigen stets den Zustand des DC-Eingangs, bei manueller Bedienung oder Fernsteuerung
	Steckplatz für USB-Sticks
(4)	Dient zur Aufnahme handelsüblicher USB-Sticks. Siehe Abschnitt «1.9.6.5 USB-Port (Vorderseite)» für weitere Infor- mationen.

1.9 Aufbau und Funktion

1.9.1 Allgemeine Beschreibung

Die Geräte der Serie ELR 10000 3U sind rückspeisende, getaktete, elektronische Lasten. Das bedeutet, daß die aufgenommene DC-Energie umgewandelt und mit einem Wirkungsgrad von bis zu 95,5 % in das lokale Stromnetz zurückgespeist wird.

Über die gängigen Funktionen einer elektronischen Last hinaus können mit dem integrierten Funktionsgenerator sinus-, rechteck- oder dreieckförmige Sollwertkurven, sowie weitere Kurvenformen erzeugt werden. Die Kurve des sogenannten Arbiträrgenerators (99 Stützpunkte) kann auf USB-Stick gespeichert bzw. davon geladen werden. Ein integrierter Batterietest hilft bei automatisierten Batterie-Endprüfungen, so wie eine MPP-Tracking-Funktion bei Endtests vor Solarmodulen.

Für die Fernsteuerung verfügen die alle Modelle auf ihrer Rückseite serienmäßig über eine USB-, eine Ethernet-, sowie eine galvanisch getrennte Analogschnittstelle. Mittels optionalen, steck- und nachrüstbaren Schnittstellen-Modulen können weitere digitale Schnittstellen für RS232, Profibus, ProfiNet, ModBus TCP, CAN, CANopen oder EtherCAT hinzugefügt werden. Dies ermöglicht die Anbindung der Geräte an gängige industrielle Busse allein durch Wechsel oder Hinzufügen eines kleinen Moduls. Die Konfiguration ist einfach und wird am Gerät erledigt, sofern überhaupt nötig.

Die Geräte bieten außerdem standardmäßig die Möglichkeit der Parallelschaltung im Share-Bus-Betrieb zur gleichmäßigen Stromaufteilung, sowie eine echte Master-Slave-Verbindung mit Aufsummierung aller Istwerte. Über diese Betriebsart lassen sich bis zu 64 Geräte zu einem System verbinden, das eine erhöhte Gesamtleistung von bis zu 960 kW bietet.

1.9.2 Blockdiagramm

Das Blockdiagramm soll die einzelnen Hauptkomponenten und deren Zusammenspiel verdeutlichen. Es gibt drei digitale, microcontrollergesteuerte Elemente (KE, DR, HMI), die von Firmwareaktualisierungen betroffen sein können.

1.9.3 Lieferumfang

1 x Elektronische Last

2 x Stecker für Fernfühlung

1 x USB-Kabel 1,8 m

1 x Set DC-Klemmenabdeckung

1 x Sense Klemmenabdeckung

1 x USB-Stick mit Dokumentation und Software

1 x AC-Anschlußstecker (Klemmtyp)

1 x Set für AC-Kabel-Zugentlastung

1.9.4 Zubehör

Für alle Modelle in dieser Serie gibt es folgendes Hardware-Zubehör:

IF-AB	Steck- und nachrüstbare digitale Schnittstellenmodule für RS232, CANopen, Profibus,
Schnittstellen-Module	ProfiNet, ModBus TCP, EtherCAT oder CAN sind erhältlich. Details zu den Schnittstellen- modulen und der Programmierung des Gerätes über diese Schnittstellen sind in weiteren Handbüchern zu finden, die dem Gerät auf einem USB-Stick mitgeliefert werden bzw. als Download auf der Herstellerwebseite zur Verfügung stehen.

Für alle Modelle in dieser Serie gibt es folgendes Software-Zubehör:

LIZENZ	Das Gerät wird immer mit einer Standardversion der Fernsteuerungs-Software EA Power
Software-Lizenzen	Control ausgeliefert. Diese enthält neben frei nutzbaren Apps auch weitere wie Multi Con- trol, den Graph und den Funktionsgenerator, welche kostenpflichtig über eine Lizenz pro PC freigeschaltet werden können. Diese drei Apps werden unter der Lizenz "Multi Control" zusammengefaßt. Sie ist als Einzelplatzlizenz oder 5-fach-Lizenz verfügbar. Auf Anfrage ist eine Testlizenz erhältlich, um die Apps vor dem Kauf 14 Tage testen zu können. Mehr dazu im Handbuch der Software oder auf unserer Webseite.

1.9.5 Optionen

Diese Optionen können nicht nachgerüstet werden, denn sie werden ab Werk dauerhaft eingebaut bzw. vorkonfiguriert.

POWER RACKS	Schränke in diversen Konfigurationen bis 42 HE als Parallelschaltungssystem sind verfüg-
19"-Schränke	bar, auch gemischt mit elektronischen Lasten, um Testsysteme zu realisieren. Für weitere
	mormationen siehe i roduktkatalog, webseite oder auf Annage.

1.9.6 Die Bedieneinheit (HMI)

HMI steht für **H**uman **M**achine Interface, auf Deutsch Mensch-Maschine-Schnittstelle, und besteht hier aus einer Anzeige mit berührungsempfindlicher Oberfläche (Touchscreen), zwei Drehknöpfen, einem Taster und einem Anschluß für USB-Sticks.

1.9.6.1 Anzeige mit Touchscreen

Die grafische Anzeige mit Touchscreen ist in mehrere Bereiche aufgeteilt. Die gesamte Oberfläche ist berührungsempfindlich und kann mit dem Finger oder einem geeigneten Stift (Stylus) bedient werden, um das Gerät zu steuern.

Im Normalbetrieb werden im linken Teil Ist- und Sollwerte angezeigt und im rechten Teil Statusinformationen:

Das gilt für alle Bedienfelder. Manche können zusätzlich ein Schloßsymbol enthalten. Das Schloßsymbol bedeutet, daß die verbundene Funktion dauerhaft gesperrt ist, z. B. durch eine bestimmte Einstellung.

• Bereich Sollwerte/Istwerte (linker Teil)

Hier werden im Normalbetrieb die Istwerte (große Zahlen) und Sollwerte (kleine Zahlen) von Spannung, Strom, Leistung und Widerstand angezeigt, wie sie am DC-Eingang erfaßt werden. Soll- und Istwert des Widerstandes zeigt das Gerät nur bei aktivierten Widerstandsmodus an.

Neben den jeweiligen Istwerten wird bei eingeschaltetem DC-Eingang die aktuelle Regelungsart **CV**, **CC**, **CP** oder **CR** angezeigt, wie im Bild oben mit **CC** beispielhaft gezeigt.

Die Sollwerte sind mit den Drehknöpfen rechts neben der Anzeige oder per Direkteingabe über den Touchscreen verstellbar, wobei bei Einstellung über die Drehknöpfe die Dezimalstelle durch Druck auf den jeweiligen Drehknopf verschoben werden kann. Die Einstellwerte werden beim Drehen logisch herauf- oder heruntergezählt, also bei z. B. Rechtsdrehung und Erreichen der 9 springt die gewählte Dezimalstelle auf 0 und die nächste höherwertige Dezimalstelle wird um 1 erhöht, sofern nicht der Maximalwert erreicht wurde. Linksdrehung umgekehrt genauso.

Generelle Anzeige- und Einstellbereiche:

Anzeigewert	Einheit	Bereich	Beschreibung
Istwert Spannung	V	0,2-125% U _{Nenn}	Aktueller Wert der DC-Spannung
Sollwert Spannung	V	0-102% U _{Nenn}	Einstellwert für die Begrenzung der DC-Spannung
Istwert Strom	А	0,2-125% I _{Nenn}	Aktueller Wert des DC-Stroms
Sollwerte Strom	А	0-102% I _{Nenn}	Einstellwert für die Begrenzung des DC-Stroms
Istwert Leistung	W	0,2-125% P _{Nenn}	Aktueller Wert der DC-Leistung nach P = U * I
Sollwerte Leistung	W, kW	0-102% P _{Nenn}	Einstellwert für die Begrenzung der DC-Leistung
Istwert Widerstand	Ω	$x^{(1-99999)} / \infty$	Aktueller Wert des Innenwiderstandes
Sollwert Widerstand	Ω	x ⁽¹ -102% R _{Max}	Einstellwert für den Innenwiderstand
Einstellgrenzen	dito	0-102% Nenn	U-max, I-min usw., immer bezogen auf eine Einstellgröße
Schutzeinstellungen	dito	0-110% Nenn	OVP, OCP, OPP (bezogen auf U, I und P)

⁽¹ Untere Grenze für Widerstandssollwerte variiert. Siehe Tabelle in Abschnitt 1.8.3.

• Statusanzeigen (oben rechts)

Dieses Feld zeigt diverse Statustexte und -symbole an:

Anzeige	Beschreibung
8	Das HMI ist gesperrt
G	Das HMI ist nicht gesperrt
Fernsteuerung:	Das Gerät befindet sich in Fernsteuerung durch
Analog	die eingebaute Analogschnittstelle
ETH	die eingebaute Ethernetschnittstelle
USB & andere	die eingebaute USB-Schnittstelle oder ein steckbares Schnittstellen-Modul
Lokal	Das Gerät ist durch Benutzereingabe explizit gegen Fernsteuerung gesperrt worden
Alarm:	Ein Gerätealarm ist aufgetreten, der noch vorhanden ist oder noch nicht bestätigt wurde
Event:	Ein benutzerdefiniertes Ereignis (Event) ist ausgelöst worden
MS-Modus: Master (n SI)	Master-Slave ist aktiviert, Gerät ist Master von n Slaves
MS-Modus: Slave	Master-Slave ist aktiviert, Gerät ist Slave
FG:	Funktionsgenerator aktiviert, Funktion geladen (nur in Fernsteuerung)
	Datenaufzeichnung auf USB-Stick läuft oder fehlgeschlagen

• Feld für Zuordnung der Drehknöpfe und Status des DC-Eingangs

Die beiden neben der Anzeige befindlichen Drehknöpfe können unterschiedlichen Bedienfunktionen zugeordnet werden. Diese kann durch Antippen des Feldes geändert werden, wenn das Bedienteil nicht gesperrt ist.

Die physikalischen Größen auf den Knöpfen zeigen die Zuordnung an. Der linke Drehknopf ist unveränderlich der Spannung (U) zugewiesen. Der rechte Drehknopf kann durch Antippen der Grafik auf dem Touchscreen umgeschaltet werden. Weiterhin wird der Status des DC-Eingangs mittels der beiden LEDs angezeigt (grün leuchtet = ein).

Es gibt folgende mögliche Drehknopfzuordnungen:

UΡ

Linker Drehknopf: Spannung Rechter Drehknopf: Leistung Linker Drehknopf: Spannung Rechter Drehknopf: Widerstand (nur bei R-Modus aktiv)

UR

Da das Gerät zwei Strom, Leistungs- und Widerstandssollwerte hat, kann durch mehrmaliges Tippen zwischen den 4 bzw. 6 Sollwerten durchgeschaltet werden. Die momentan nicht selektierten Sollwerte sind vorerst nicht mehr über die Drehknöpfe einstellbar, bis die Zuordnung wieder geändert wird.

Man kann jedoch alternativ auf die Sollwerte für Spannung, Strom oder Leistung/Widerstand tippen, um die Zuordnung zu

ändern bzw. um Werte direkt über eine Zehnertastatur einzugeben. Dazu ist das kleine Zehnertastatur-Symbol () anzutippen. **Diese Eingabeform ermöglicht Sollwertsprünge**.

1.9.6.2 Drehknöpfe

 \bigcirc

Solange das Gerät manuell bedient wird, dienen die beiden Drehknöpfe zur Einstellung der Sollwerte in der Hauptanzeige. Für eine genauere Erläuterung der einzelnen Funktionen siehe «3.4 Manuelle Bedienung».

1.9.6.3 Tastfunktion der Drehknöpfe

Die Drehknöpfe haben eine Tastfunktion, die bei manueller Einstellung von Werten zum Verschieben des Cursors von niederwertigen zu höherwertigen Dezimalpositionen (rotierend) dient:

$(EL) \quad 4\underline{7}.50A \rightarrow (EL) \quad \underline{4}7.50A \rightarrow (EL) \quad 47.5\underline{0}A$

1.9.6.4 Auflösung der Anzeigewerte

In der Anzeige können Sollwerte in festgelegten Schrittweiten eingestellt werden. Die Anzahl der Nachkommastellen hängt vom Gerätemodell ab. Die Werte haben 4 oder 5 Stellen. Ist- und Sollwerte haben die gleiche Stellenanzahl.

Einstellauflösung und Anzeigebreite der Sollwerte in der Anzeige:

Spannung, OVP, UVD, OVD, U-min, U-max		Stro OCP, UC I-min,	om, D, O I-ma	CD, ax	Leistung, OPP, OPD, P-max		Widerstand, R-max				
Nennwert	Stellen	Min. Schritt- weite	Nennwert*	Stellen	Min. Schritt- weite	Nennwert*	Stellen	Min. Schritt- weite	Nennwert	Stellen	Min. Schritt- weite
80 V	4	0,01 V	<100 A	4	0,01 A	5000 W	5	1 W	<10 Ω	5	0,0001 Ω
200 V	5	0,01 V	>100 A	4	0,1 A	10000 W	5	1 W	≥10 Ω <100 Ω	5	0,001 Ω
360 V	4	0,1 V	MS ≥3000 A	4	1 A	15000 W	5	1 W	≥100 Ω <1000 Ω	5	0,01 Ω
500 V	4	0,1 V	MS >10000 A	5	1 A	MS <100 kW	4	0,01 kW	>1000 Ω	5	0,1 Ω
750 V	4	0,1 V				MS >100 kW	4	0,1 kW			
≥1000 V	5	0,1 V									

* MS = Master-Slave

1.9.6.5 USB-Port (Vorderseite)

Der frontseitige USB-Port, der sich oberhalb der beiden Drehknöpfe befindet, dient zur Aufnahme von handelsüblichen USB-Sticks. Mit diesen kann man u. A. eigene Sequenzen für den arbiträren und den XY-Funktionsgenerator laden oder speichern, sowie im laufenden Betrieb Meßdaten aufzeichnen.

Akzeptiert werden Sticks nach USB 2.0 sowie USB 3.0 Standard, die in **FAT32** formatiert sein müssen. Alle unterstützten Dateien müssen sich in einem Ordner namens **HMI_FILES** im Hauptpfad des USB-Laufwerks befinden, so daß sich z. B. ein Pfad G:\HMI_FILES ergäbe, wenn der USB-Stick an einem PC angeschlossen wäre und den Laufwerksbuchstaben G: zugewiesen bekommen hätte. Unterordner sind zulässig. Sollten von einem bestimmten Dateityp, z. B. welche wie mit "wave" beginnen, in einem Ordner vorhanden sein, so listet das Gerät immer nur die ersten 20 auf, die es finden kann.

Die Bedieneinheit des Gerätes kann vom USB-Stick folgende Dateitypen und -benamungen lesen:

Dateiname	Beschreibung	Abschnitt
wave_u <beliebig>.csv wave_i<beliebig>.csv</beliebig></beliebig>	Funktionsgenerator-Arbiträr-Funktion für die Spannung U bzw. Strom I. Der Name muß am Anfang wave_u oder wave_i enthalten, der Rest ist beliebig.	
profile_ <beliebig>.csv</beliebig>	Vormals gespeichertes Benutzerprofil. Beim Laden werden max. 10 Profile zur Auswahl angezeigt.	3.9
mpp_curve_ <beliebig>.csv</beliebig>	Benutzerdefinierte MPP-Kurvendaten (100 Spannungswerte) für den Modus MPP4 der MPPT-Funktion.	3.10.14.5
iu <beliebig>.csv</beliebig>	IU-Tabelle für den XY-Funktionsgenerator. Der Name muß am Anfang iu enthalten, der Rest ist beliebig.	3.10.12

Die Bedieneinheit des Gerätes kann auf den USB-Stick folgende Dateitypen und -benamungen schreiben:

Dateiname	Beschreibung	Abschnitt
usb_log_ <nr>.csv</nr>	Aufzeichnungs-Datei (Log) für die normale USB-Datenaufzeichnung in allen Be- triebsarten. Der Aufbau der Logdatei ist identisch mit dem der Logging-Funktion in der Software EA Power Control. Das Feld <nr> im Dateinamen wird automa- tisch hochgezählt, wenn sich schon gleichnamige Dateien im Ordner befinden.</nr>	3.4.8
profile_ <nr>.csv</nr>	Gespeichertes Benutzerprofil. Die Nummer am Ende ist eine fortlaufende Num- mer (1-10) und nicht verknüpft mit der Nummer eines Benutzerprofils im HMI. Beim Laden werden max. 10 Profile zur Auswahl angezeigt.	3.9
wave_u <nr>.csv wave_i<nr>.csv</nr></nr>	Daten der 99 Stützpunkte (Sequenzen) der Arbiträr-Funktion für Spannung U oder Strom I.	3.10.10.1
battery_test_log_ <nr>.csv</nr>	Log-Datei mit Daten der Batterietest-Funktion. Hier werden andere bzw. zusätz- liche Werte aufgezeichnet als beim "normalen" USB-Logging.	3.10.13.5
mpp_result_ <nr>.csv</nr>	Ergebnisdaten des MPP-Tracking-Modus' 4 als Tabelle mit 100 Wertegruppen (Umpp, Impp, Pmpp)	3.10.14.6

1.9.7 USB-Port (Rückseite)

Der USB-Port auf der Rückseite des Gerätes dient zur Kommunikation mit dem Gerät, sowie zur Firmwareaktualisierung. Über das mitgelieferte USB-Kabel kann das Gerät mit einem PC verbunden werden (USB 2.0, USB 3.0). Der Treiber wird mitgeliefert und installiert einen virtuellen COM-Port. Details zur Fernsteuerung sind in weiterer Dokumentation auf dem mitgelieferten USB-Stick bzw. auf der Webseite des Geräteherstellers zu finden.

Das Gerät kann über diesen Port wahlweise über das international standardisierte ModBus RTU-Protokoll oder per SCPI-Sprache angesprochen werden. Es erkennt das in einer Nachricht verwendete Protokoll automatisch.

Die USB-Schnittstelle hat, wenn Fernsteuerung aktiviert werden soll, keinen Vorrang vor dem Schnittstellen-Modul (siehe unten) oder der Analogschnittstelle und kann daher nur abwechselnd zu diesem benutzt werden. Jedoch ist Überwachung (Monitoring) immer möglich.

Bild 2 - USB-Anschluß

1.9.8 Steckplatz für Schnittstellen-Module

Dieser Steckplatz auf der Rückseite des Gerätes dient zur Aufnahme diverser Schnittstellen-Module der Schnittstellen-Serie IF-AB. Es sind optional verfügbar:

Artikelnr.	Bezeichnung	Funktion
35400100	IF-AB-CANO	CANopen, 1x DB9, männlich
35400101	IF-AB-RS232	RS 232, 1x DB9, männlich (Nullmodem)
35400103	IF-AB-PBUS	Profibus DP-V1 Slave, 1x DB9, weiblich
35400104	IF-AB-ETH1P	Ethernet, 1x RJ45
35400105	IF-AB-PNET1P	ProfiNET IO, 1x RJ45
35400107	IF-AB-MBUS1P	ModBus TCP, 1x RJ45
35400108	IF-AB-ETH2P	Ethernet, 2x RJ45
35400109	IF-AB-MBUS2P	ModBus TCP, 2x RJ45
35400110	IF-AB-PNET2P	ProfiNET IO, 2x RJ45
35400111	IF-AB-CAN	CAN 2.0 A / 2.0 B, 1x DB9, männlich
35400112	IF-AB-ECT	EtherCAT, 1x RJ45

Die Module werden vom Anwender installiert und können problemlos nachgerüstet werden. Gegebenenfalls ist ein Firmwareupdate des Gerätes erforderlich, damit ein bestimmtes Modul erkannt und unterstützt werden kann.

Das bestückte Modul hat, wenn Fernsteuerung aktiviert werden soll, keinen Vorrang vor einer der anderen Schnittstellen und kann daher nur abwechselnd zu diesen benutzt werden. Jedoch ist Überwachung (Monitoring) immer möglich.

Stecken bzw. Abziehen des Moduls nur bei ausgeschaltetem Gerät!

1.9.9 Analogschnittstelle

Diese 15-polige Sub-D-Buchse auf der Rückseite dient zur Fernsteuerung des Gerätes mittels analogen Signalen bzw. Schaltzuständen.

Wenn ferngesteuert werden soll, kann diese analoge Schnittstelle nur abwechselnd zu einer der digitalen benutzt werden. Überwachung (Monitoring) ist jedoch jederzeit möglich.

Der Eingangsspannungsbereich der Sollwerte bzw. der Ausgangsspannungsbereich der Monitorwerte und der Referenzspannung kann im Einstellungsmenü des Gerätes zwischen 0...5 V und 0...10 V für jeweils 0...100% umgeschaltet werden.

Bild 4 - Analogschnittstelle

1.9.10 Share BUS-Anschluß

Auf der Rückseite des Gerätes befinden sich zwei BNC-Buchsen für den digitalen Share-Bus. Dieser Share-Bus ist bidirektional und verbindet den Master über "Share BUS Output" in der Parallelschaltung mit dem nächsten Slave an dessen "Share BUS Input" und dann zum nächsten usw. BNC-Kabel passender Länge können im Elektronikhandel erworben werden.

Grundsätzlich sind alle 10000er Serien untereinander kompatibel an diesem Share-Bus, wobei für Master-Slave-Betrieb immer nur gleiche Gerätetypen, also Netzgerät mit Netzgerät oder elektronische Last mit elektronischer Last verbunden werden können, weil etwas anderes von den Geräten nicht unterstützt wird.

Für eine ELR 10000 können nur andere oder identische Modelle aus den ELR 10000 Serien als Slave-Einheiten genutzt werden.

Bild 5 - Share-Bus

1.9.11 Sense-Anschluß (Fernfühlung)

Um den Spannungsabfall über die Leitungen von der Quelle zu kompensieren, kann der Eingang "Sense" mit zwei Zweifachsteckern, je einer für Plus und Minus, polrichtig mit der externen Quelle verbunden werden. Die max. mögliche Spannungskompensation ist in den technischen Daten aufgeführt.

In einem Master-Slave-System ist vorgesehen, daß nur der Master die Fernfühlung verbunden bekommt und die Kompensation an die Slaves über den Share BUS weitergibt.

Die Abdeckung für die Sense-Anschlüsse muß während des Betriebes aus Sicherheitsgründen immer montiert sein, weil die Fernfühlungsleitungen lebensgefährliche hohe Spannungen führen können! Umkonfiguration an der Sense-Klemme nur bei komplett von AC und auch DC-Quellen getrenntem Gerät!

1.9.12 Master-Slave-Bus

Auf der Rückseite des Gerätes ist eine weitere Schnittstelle vorhanden, die über zwei RJ45-Buchsen mehrere kompatible Geräte über einen digitalen Bus (RS485) zu einem Master-Slave-System verbinden kann. Die Verbindung erfolgt mit handelsüblichen CAT5-Kabeln.

Es wird empfohlen, immer möglichst kurze Kabel zu verwenden und den Bus nach Bedarf zu terminieren. Die Terminierung wird digital geschaltet und erfolgt in den Geräteeinstellungen in der Gruppe "Master-Slave"

1.9.13 Ethernet-Port

Der RJ45-Ethernet/LAN-Port auf der Rückseite des Gerätes dient ausschließlich zur Kommunikation mit dem Gerät im Sinne von Fernsteuerung oder Monitoring. Dabei hat der Anwender grundsätzlich zwei Möglichkeiten des Zugriffs:

1. Eine Webseite (HTTP, Port 80), die normal in einem Browser über die IP oder den Hostnamen aufgerufen wird und die Informationen über das Gerät anzeigt, die eine Konfigurationsmöglichkeit der Netzwerkparameter bietet und eine Eingabezeile für SCPI-Befehle. Das Gerät kann somit durch die manuelle Eingabe von Befehlen fernbedient werden.

2. TCP/IP-Zugriff über einen frei wählbaren Port (außer 80 und andere reservierte Ports). Standardport für dieses Gerät ist 5025. Über TCP/IP und den gewählten Port kann über diverse Tools sowie die meisten, gängigen Programmiersprachen mit dem Gerät kommuniziert werden.

Bild 7 - Master-Slave-Busanschlüsse

Bild 8 - LAN-Port

Das Gerät kann über diesen LAN-Port wahlweise über das international standardisierte ModBus RTU-Protokoll oder per SCPI-Sprache angesprochen werden. Es erkennt das in einer Nachricht verwendete Protokoll automatisch. ModBus TCP hingegen wird nur vom dedizierten ModBus TCP-Modul (optional erhältlich) unterstützt. Siehe «1.9.8 Steckplatz für Schnittstellen-Module».

Die Konfiguration des Netzwerkparameter kann manuell oder per DHCP geschehen. Übertragungsgeschwindigkeit und Duplexmodus werden automatisch gesetzt.

Die Ethernet-Schnittstelle hat, wenn Fernsteuerung aktiviert werden soll, keinen Vorrang vor einer der anderen Schnittstellen und kann daher nur abwechselnd zu diesen benutzt werden. Jedoch ist Überwachung (Monitoring) immer möglich.

2. Installation und Inbetriebnahme

2.1 Transport und Lagerung

2.1.1 Transport

	 Die Griffe an der Vorderseite und Rückseite des Gerätes dienen <u>nicht</u> zum Tragen!
	• Das Gerät sollte aufgrund seines hohen Gewichts möglichst nicht per Hand transportiert werden bzw. darf, falls Transport per Hand nicht vermeidbar ist, nur am Gehäuse und nicht an den Aufbauten (Griffe, DC-Anschlußklemme, Drehknöpfe) gehalten werden
	 Transport des Gerätes nicht im eingeschalteten oder angeschlossenen Zustand!
	• Bei Verlagerung des Gerätes an einen anderen Standort wird die Verwendung der originalen Transport- verpackung empfohlen
	 Das Gerät sollte stets waagerecht aufgestellt oder getragen werden
	• Benutzen Sie möglichst geeignete Schutzkleidung, vor allem Sicherheitsschuhe, beim Tragen des Gerätes, da bei einem Sturz durch das teils hohe Gewicht erhebliche Verletzungen entstehen können
212	Vernackung

verpackung

Es wird empfohlen, die komplette Transportverpackung (Lieferverpackung) für die Lebensdauer des Gerätes aufzubewahren, um sie für den späteren Transport des Gerätes an einen anderen Standort oder Einsendung des Gerätes an den Hersteller zwecks Reparatur wiederverwenden zu können. Im anderen Fall ist die Verpackung umweltgerecht zu entsorgen.

2.1.3 Lagerung

Für eine längere Lagerung des Gerätes bei Nichtgebrauch wird die Benutzung der Transportverpackung oder einer ähnlichen Verpackung empfohlen. Die Lagerung muß in trockenen Räumen und möglichst luftdicht verpackt erfolgen, um Korrosion durch Luftfeuchtigkeit, vor Allem im Inneren des Gerätes, zu vermeiden.

2.2 Auspacken und Sichtkontrolle

Nach jedem Transport mit oder ohne Transportverpackung oder vor der Erstinstallation ist das Gerät auf sichtbare Beschädigungen und Vollständigkeit der Lieferung hin zu untersuchen. Vergleichen Sie hierzu auch mit dem Lieferschein und dem Lieferumfang (siehe Abschnitt 1.9.3). Ein offensichtlich beschädigtes Gerät (z. B. lose Teile im Inneren, äußerer Schaden) darf unter keinen Umständen in Betrieb genommen werden.

2.3 Installation

2.3.1 Sicherheitsmaßnahmen vor Installation und Gebrauch

- Das Gerät hat ein beträchtliches Gewicht. Stellen Sie daher vor der Aufstellung sicher, daß der Aufstellungsort (Tisch, Schrank, Regal, 19"-Rack) das Gewicht des Gerätes ohne Einschränkungen tragen kann.
 - Bei Installation in einem 19"-Schrank sind Halteschienen zu montieren, die für die Gehäusebreite und das Gewicht (siehe «1.8 Technische Daten») geeignet sind.
 - Stellen Sie vor dem Anschließen des Gerätes an die AC-Stromzufuhr sicher, daß die auf dem Typenschild des Gerätes angegebenen Anschlußdaten eingehalten werden. Eine Überspannung am AC-Anschluß kann das Gerät beschädigen.
 - Das Gerät beinhaltet eine Energie-Rückgewinnungsfunktion, die ähnlich einer Solaranlage Energie in das lokale bzw. öffentliche Netz zurückspeist. Rückspeisung in das öffentliche Netz darf nicht ohne Beachtung geltender Richtlinien des örtlichen Energieversorgers erfolgen und es ist ggf. vor der Installation, spätestens aber vor der Inbetriebnahme zu prüfen, ob ein sogenannter Netz- und Anlagenschutz installiert werden muß!

2.3.2 Vorbereitung

2.3.2.1 Wahl der Anschlußkabel

Für alle Modelle dieser Serie ist nur Festanschluß vorgesehen, wofür auf der Geräterückseite ein 5-poliger Anschluß auf der Rückseite vorhanden ist. Ein passender Stecker ist im Lieferumfang enthalten. Für die Verkabelung des Steckers ist mindestens eine 4-polige (3x L, PE) Zuleitung mit entsprechendem Querschnitt und Länge vorzusehen. Volle Belegung mit zusätzlich N-Leiter ist zulässig.

Für Empfehlungen zum Querschnitt siehe «2.3.4 Anschließen an das Stromnetz (AC)». Bei der Dimensionierung der DC-Leitungen zur Quelle sind mehrere Dinge zu beachten:

- Der Querschnitt der Leitungen sollte immer mindestens f
 ür den Maximalstrom des Ger
 ätes ausgelegt sein
- - Bei dauerhafter Strombelastung der Leitungen am zulässigen Limit entsteht Wärme, die ggf. abgeführt werden muß, sowie ein Spannungsabfall, der von der Leitungslänge und der Erwärmung der Leitung abhängig ist. Um diesen zu kompensieren, muß der Querschnitt erhöht bzw. die Leitungslänge verringert werden.

2.3.2.2 Zusätzliche Maßnahmen für rückspeisende Geräte

Alle Modelle dieser Serie sind sogenannte rekuperierende Geräte. Dabei wird zwangsweise eine bestimmte Menge an Energie in das lokale oder öffentliche Stromversorgungsnetz gespeist. Ohne diese Funktionalität können die Geräte gar nicht arbeiten. Ziel ist es, die erzeugte Energie im lokalen Stromnetz einer Firma oder Anlage komplett zu verbrauchen. Kann es aber vorkommen, daß mehr eingespeist als verbraucht wird, gelangt die überschüssige Energie in das öffentliche Stromnetz, was ohne weitere Maßnahmen bzw. Klärung der örtlichen Situation unzulässig sein kann.

Der Betreiber des Gerätes muß daher u. U. mit seinem vor Ort zuständigen EVU abklären, ob Rückspeisung generell zulässig ist und ob ein sogenannter Netz- und Anlagenschutz (kurz: NA-Schutz) gemäß Anwendungsregel VDE-AR-N 4105 bzw. VDE-AR-N 4110 nötig wird. Das Gerät selbst beinhaltet eine Abschaltungsautomatik für den Fall, daß die Rückspeisung nicht erfolgen kann. Aber durch das Gerät womöglich erfolgenden Frequenzverschiebungen oder Spannungsabweichungen, wie sie nach Norm nur bis zu einem gewissen, sehr eingeschränkten Grad zulässig sind, können nur wirksam durch einen NA-Schutz überwacht und unterbunden werden. Der NA-Schutz verhindert auch den sogenannten Inselbetrieb.

Wir bieten NA-Schutzlösungen an. Sie erfüllen bereits die AR-N 4110, AR-N 4105 sowie weitere Standards wie den italienischen CEI 0-21.

Konzept eines NA-Schutzes:

Bild 9 - Prinzip eines NA-Schutznetzwerkes

Anlagenschutz bei Rückspeisung 2.3.2.3

Ein ELR 10000 speist die aufgenommene Energie normalerweise in das lokale Netz einer Firma oder elektrischen Großanlage zurück. Der dabei entstehende Strom addiert sich zu dem aus dem Stromversorgungsnetz eingespeisten (siehe Verdeutlichung unten) und das könnte die vorhandene Elektroinstallation überlasten. Zwischen zwei Anschlüssen für Geräte, gleich welcher Art, gibt es üblicherweise keine extra Absicherung. Im Falle eines Fehlers im AC-Eingang irgendeines verbrauchenden Gerätes, der zu einem Kurzschluß führt, oder mehreren Verbrauchern mit entsprechender Leistung kann der Gesamtstrom über dafür oft nicht ausgelegte Leitungen und Anschlüsse fließen und diese zerstören bzw. sogar zu Bränden führen.

Das Anschlußkonzept vor Ort muß daher zur Vermeidung von Schäden und Unfällen unbedingt entsprechend bedacht werden. Verdeutlichung mit 1 rückspeisenden Gerät und Verbrauchern:

Bei einer größeren Anzahl rückspeisender Geräte am selben Strang der Installation erhöht sich der Gesamtstrom pro Phase entsprechend.

2.3.3 Aufstellung des Gerätes

- Wählen Sie den Ort der Aufstellung so, daß die Zuleitungen zur Quelle so kurz wie möglich gehalten werden können
- Lassen Sie hinter dem Gerät ausreichend Platz, jedoch mindestens 30 cm, für die hinten austretende Abluft (Standardausführung, luftgekühlt)
- Das Gerät darf nicht ohne ausreichenden, doppelten Berührungsschutz für die AC-Seite betrieben werden, der entweder nur durch die Installation in einem durch Türen abschließbaren Schrank erreicht werden kann oder durch die Installation zusätzlicher, nicht mitgelieferter Schutzmaßnahmen (Abdeckungen o. ä.)

Bei allen Modellen dieser Serie sind Festeinbau in eine entsprechende Vorrichtung (Schrank usw.), sowie Festanschluß (AC) erforderlich. Offener Betrieb auf z. B. einem Tisch ist nicht zulässig.

Ein Gerät in 19" Bauform wird üblicherweise auf entsprechenden Halteschienen und in 19"-Einschüben oder -Schränken installiert. Dabei muß auf die Einbautiefe des Gerätes geachtet werden, sowie auf das Gewicht. Die Griffe an der Front dienen dabei zum Hineinschieben und Herausziehen aus dem Schrank. An der Frontplatte befindliche Langloch-Bohrungen dienen zur Befestigung im 19"-Schrank (Befestigungsschrauben im Lieferumfang nicht enthalten).

Die unten gezeigten unzulässigen Aufstellpositionen beziehen sich auch auf eine Montage an einer senkrechten Fläche, wie einer Wand (Raum oder in einem Schrank). Der nötige Luftfluß ist dann nicht gewährleistet.

Zulässige und unzulässige Aufstellpositionen:

Aufstellfläche

2.3.4 Anschließen an das Stromnetz (AC)

- Das Gerät muß fest an eine AC-Verteilung angeschlossen sein. Der Anschluß darf nur durch entsprechend geschultes Personal erfolgen!
- Das Gerät darf außerdem nur direkt an einem Stromnetz betrieben werden, jedoch nicht an Generatoren oder USV-Systemen!
- AC-Anschlußleitungen müssen entsprechend des maximalen AC-Stromes des Gerätes dimensioniert werden! Siehe Tabelle unten. Es sollte AC-seitig extern abgesichert werden, unter Beachtung des AC-Maximalstromes.
- Stellen Sie sicher, daß alle Vorschriften für den Betrieb und den Anschluß eines in ein (öffentliches) Stromnetz rückspeisenden Gerätes beachtet und alle erforderlichen Maßnahmen getroffen wurden!

Alle Modelle und Varianten dieser Serie, produziert ab ca. 01/2022, sind durch einen Weitbereichs-AC-Eingang für den Betrieb an typischen Netzspannungen wie 380 V, 400 V oder 480 V, sowie sogar für 208 V (USA- und Japan-Netz) geeignet. Wenn bei 208 V Netzspannung betrieben, aktiviert sich automatisch eine Leistungsreduzierung auf 3 kW (5 kW-Modelle), 6 kW (10 kW-Modelle) bzw. 9 kW (15 kW-Modell), um den AC-Strom in etwa demselben Maximalbereich wie bei 400 V Versorgungsspannung und Nennleistung zu halten.

2.3.4.1 AC-Anschluß

Egal, welche Variante oder Hardware-Revision vorhanden ist, die auf dem Typenschild angegebenen Nennspannungen entscheiden. Die Geräte benötigen einen dreiphasigen Drehstrom-Hauptanschluß, der ohne N-Leiter auskommt:

DC-Nennleistung	Pins am AC-Stecker	Anschlußtyp	Schaltung
5 kW	mind. L2, L3, (N), PE	Drehstrom (2P/3P)	Dreieck
10 kW	L1, L2, L3, (N), PE	Drehstrom (3P)	Dreieck
15 kW	L1, L2, L3, (N), PE	Drehstrom (3P)	Dreieck

PE ist zwingend erforderlich und muß immer am AC-Stecker angebunden werden!

2.3.4.2 Querschnitte

Für die Dimensionierung des Querschnittes der Anschlußleitungen sind der max. AC-Strom und die vorgesehene Länge der Anschlußleitung bestimmend. Ausgehend vom Anschluß eines **einzelnen Gerätes** gibt die Tabelle den maximalen Eingangsstrom des Gerätes auf jeder Phase an, sowie den empfohlenen Mindestguerschnitt pro Leiter vor:

	L1		L2		L3		PE ⁽¹
Verfügbare Nennleistung	ø	Imax	ø	ımax	ø	ımax	ø
5 kW (Nenn) bei 380/400/480 V	-	-	≥ 1,5 mm²	16 A	≥ 1,5 mm²	16 A	≥ 1,5 mm²
3 kW (reduziert) bei 208 V							
10 kW (Nenn) bei 380/400/480 V	≥4 mm²	28 A	≥4 mm²	16 A	≥4 mm²	28 A	≥4 mm²
6 kW (reduziert) bei 208 V							
15 kW (Nenn) bei 380/400/480 V	. 4	20.4	. 1	20 4	. 1	00 4	. 1
9 kW (reduziert) bei 208 V	24	20 A	24 111112	ZO A	24	20 A	24 [] [] [

2.3.4.3 Anschlußstecker & Anschlußleitung

Der mitgelieferte Anschlußstecker kann Kabelenden von 0,5 mm² bis 10 mm² aufnehmen. Je länger die Anschlußleitung, desto höher der Spannungsabfall aufgrund des Leitungswiderstandes. Daher sollte die Netzzuleitung immer so kurz wie möglich gehalten werden. Es sind 3-, 4- oder 5-adrige Leitungen zulässig. Bei einem Kabel mit N-Leiter kann dieser im freien Pin des AC-Steckers fixiert werden. Nenndaten des Anschlußsteckers:

- Max. Leiterquerschnitt ohne Aderendhülse: 10 mm²
- Max. Leiterquerschnitt mit Aderendhülse: 6 mm²
- Abisolierlänge ohne Aderendhülse: 18-20 mm

1 Gilt für beide Leitungen, den PE-Leiter im AC-Anschlußkabel und den separaten PE-Leiter für die Gehäuseerdung

Bild 10 - Beispiel für ein Netzanschlußkabel mit 4 Adern (nicht im Lieferumfang enthalten)

2.3.4.4 Zugentlastung anbringen

Alle Modelle und Varianten im Lieferumfang eine mechanischen Zugentlastung für die AC-Leitung, die vom Installateur des Gerätes montiert werden sollte, sofern keine anderen Maßnahmen zur Zugentlastung dieser Leitung am Installationsort vorgesehen sind. Installationsschritte:

- 1. Am AC-Filter die beiden rechten Schrauben lösen, wie im Bild 11 unten markiert.
- 2. Den Haltewinkel anbringen und mit den mitgelieferten, längeren Schrauben (M3x8) und den Spannscheiben befestigen. Siehe *Bild 12* unten.
- 3. Das AC-Kabel stecken und,von hinten gesehen, vor dem Haltewinkel vorbeiführen und mit mindestens einem, besser jedoch beiden mitgelieferten Kabelbindern fixieren.

Der Haltewinkel und die Kabelbinder können dauerhaft verbunden bleiben. Der AC-Stecker hat Bewegungsspielraum, um bei Bedarf auch mal abgezogen zu werden. Sollte das Gerät einmal aus der Installation (Schrank) entfernt werden müssen, wird empfohlen, nur den AC-Stecker zu ziehen, sowie den Haltewinkel zu demontieren.

Bild 11 - Montageposition des Haltewinkels

Bild 12 - Fertig montierte Zugentlastung

2.3.4.5 Gehäuseerdung

Die Geräte verfügen über einen zusätzlichen Erdungspunkt an der Gehäuserückseite, wie rechts abgebildet und in Abschnitt «1.8.4 Ansichten» als "7" gekennzeichnet.

Das Gehäuse kann, hauptsächlich um den Ableitstrom zwecks Personenschutz so gering wie möglich zu halten, separat geerdet werden. Das bedeutet, bei Bedarf kann ein getrennt verlegter Schutzleiter (PE) an dem Erdungspunkt angebunden werden. Der Querschnitt sollte mindestens der gleiche sein wie in der AC-Anschlußleitung (siehe «2.3.4.2 Querschnitte»).

Bild 13 - Erdungspunkt

2.3.4.6 Anschlußvarianten

Je nach Nennleistung des Gerätes werden zwei oder drei Phasen eines Drehstromanschlusses benötigt. Das kann zu einer unerwünschten, ungleichmäßigen Stromverteilung auf dem Drehstromnetz führen und ist bei einem einzelnen Gerät u. U. nicht zu vermeiden. Werden mehrere Geräte mit 5kW oder 10 kW Nennleistung an denselben Hauptanschluß angebunden, kann eine gleichmäßige Lastverteilung der Netzphasen erreicht werden. Siehe auch die Tabelle in 2.3.4.2 zu den max. Phasenströmen.

Eine Ausnahme bilden dabei die 15 kW-Modelle, die auf allen drei Phasen eine annähernd symmetrische Stromaufnahme erreichen. Solange mehrere von diesen installiert werden, ist keine ungleiche Phasenbelastung zu erwarten. Bei Mischsystemen mit unterschiedlichen Nennleistungen ist das zunächst anders. Eine gleichmäßige Stromverteilung kann dann nur mit einer bestimmten Anzahl von Geräten realisiert werden. Vorschläge zur Verteilung der Phasen:

L3

2.3.5 Anschließen von DC-Quellen

Bei einem Gerät mit hohem DC-Nennstrom und demzufolge entsprechend dicken und schweren DC-Anschlußleitungen sind das Gewicht der Leitungen und die mechanische Belastung der DC-Anschlußklemme zu beachten und besonders bei Installation des Gerätes in einem 19"-Schrank oder ähnlich, wo die Leitungen eventuell am DC-Anschluß hängen, Zugentlastungen anzubringen.

Es ist neben dem passenden Querschnitt der DC-Leitungen auch auf passende Spannungsfestigkeit zu achten

Kein Verpolungsschutz vorhanden! Verpolt angeschlossene Quellen werden das Gerät beschädigen, auch wenn es nicht eingeschaltetet ist!

ſ

Eine externe Quelle lädt die intern am DC-Anschluß vorhandenen Kapazitäten auf, auch wenn das Gerät gar nicht eingeschaltet ist. Hier kann auch nach der Trennung von der externen Quelle noch berührungsgefährliche Spannung anliegen!

Der DC-Anschluß befindet sich auf der Rückseite des Gerätes und ist **nicht** über eine Sicherung **abgesichert**. Der Querschnitt der Zuleitungen richtet sich nach der Stromaufnahme, der Leitungslänge und der Umgebungstemperatur.

Bei Lastleitungen bis 5 m und durchschnittlichen Umgebungstemperaturen bis 30°C empfehlen wir:

bis 30 A :	6 mm²	bis 70 A :	16 mm²
bis 90 A :	25 mm²	bis 140 A :	50 mm²
bis 170 A :	70 mm²	bis 210 A :	95 mm²
bis 340 A :	2x 70 mm²	bis 510 A :	2x 120 mm²

pro Anschlußpol (mehradrig, isoliert, frei verlegt) mindestens zu verwenden. Einzelleitungen, wie z. B. 70 mm², können durch 2x 35 mm² ersetzt werden usw. Bei längeren Lastleitungen ist der Querschnitt entsprechend zu erhöhen, um Spannungsabfall über die Leitungen und unnötige Erhitzung zu vermeiden.

2.3.5.1 Anschlußklemmentypen

Die Tabelle unten enthält eine Übersicht über die unterschiedlichen DC-Anschlußklemmentypen. Zum Anschließen von Lastleitungen werden grundsätzlich flexible Leitungen mit Ringkabelschuhen empfohlen.

Typ 1: Modelle bis 200 V	Typ 2: Modelle ab 360 V			
Schraubverbindung M8 an Metallschiene	Schraubverbindung M6 an Metallschiene			
Empfehlung: Ringkabelschuhe mit 9er Loch	Empfehlung: Ringkabelschuhe mit 6,5er Loch			

2.3.5.2 Kabelzuführung und Plastikabdeckung

Für die DC-Anschlußklemme wird eine Plastikabdeckung als Berührungsschutz mitgeliefert. Diese muß für den Betrieb des Gerätes immer installiert sein. In den Abdeckungen sind Ausbrüche (oben, unten, vorn) vorhanden, die nach Bedarf ausgebrochen werden können, um Zuleitungen aus verschiedenen Richtungen zu verlegen.

Beispiele anhand des Anschlußklemmentyps 1:

- 90° nach oben oder unten
 - platzsparend in der Tiefe
 - kein Knickradius

- Horizontale Zuführung
- platzsparend in der Höhe
- großer Knickradius

2.3.6 Erdung des DC-Anschlusses

Der Erdungsanschlußpunkt, bezeichnet als "7" in 1.8.4.4 und auch rechts in der Abbildung gezeigt, dient neben der Erdung des Gehäuses (siehe «2.3.4.5 Gehäuseerdung») auch zur Erdung eines der beiden DC-Anschlußpole. Das ist grundsätzlich zulässig, dadurch entsteht jedoch immer eine Potentialverschiebung des anderen Pols gegenüber PE. Aus Isolationsgründen sind nur jedoch bestimmte, modellabhängige Potentialverschiebungen am DC-Minuspol erlaubt. Siehe «1.8.3 Spezifische technische Daten».

Beide Pole des DC-Anschlusses sind zudem potentialfrei, was in puncto Berührungssicherheit von Personen einen Basisschutz darstellt. Dieser hebt sich auf, sobald ein DC-Pol geerdet wird.

Im Fall, daß ein DC-Pol geerdet worden ist, muß der Anwender den Basisschutz für Berührungssicherheit für Personen selbst sicherstellen, z. B. durch Anbringung geeigneter Abdeckungen überall dort wo das Potential des DC-Anschlusses hinverbunden ist.
2.3.7 Anschließen der Fernfühlung

- Die Fernfühlung ist nur im Konstantspannungsbetrieb (CV) wirksam und der Fernfühlungsanschluß sollte möglichst nur solange angeschlossen bleiben, wie CV benutzt wird, weil die Schwingneigung eines getakteten Systems durch Verbinden der Fernfühlung generell erhöht wird
- Der Querschnitt von Fühlerleitungen ist unkritisch. Empfehlung für Leitungslängen bis 5 m: 0,5 mm²
- Fühlerleitungen sollten nicht miteinander verdrillt sein, aber dafür dicht an den DC-Leitungen verlegt werden, also (-) Sense dicht an der DC (-) Leitung zur Quelle, um Schwingneigung zu unterdrücken. Gegebenenfalls ist zur Unterdrückung der Schwingneigung noch ein zusätzlicher Kondensator an der Quelle anzubringen
- (+) Sense darf nur am (+) der Quelle und (-) Sense nur am (-) der Quelle angeschlossen werden. Ansonsten können beide Systeme beschädigt werden. Siehe Bild 14 unten.
- Es ist stets auf passende Spannungsfestigkeit der Fernfühlungsleitungen zu achten!

Bild 14 - Beispiel für eine Sense-Verdrahtung (DC- und Sense-Abdeckungen zu Zwecken der Veranschaulichung weggelassen)

Zulässige Anschlußformen:

- Bei Master-Slave-Betrieb muß die Fernfühlung nur am Master-Gerät erfolgen

2.3.8 Installation eines Schnittstellen-Moduls

Die optional erhältlichen Schnittstellen-Module können durch den Anwender nachgerüstet werden und sind durch andere Module austauschbar. Die Einstellungen zum momentan installierten Modul variieren und sollten nach der Erstinstallation bzw. nach Wechsel des Modultyps überprüft und ggf. neu eingestellt werden.

- Die üblichen ESD-Schutzmaßnahmen sind vor dem Einsetzen oder Tausch des Moduls zu treffen
- Das Modul ist stets nur im ausgeschalteten Zustand des Gerätes zu entnehmen bzw. zu bestücken!
- Niemals irgendeine andere Hardware als die Schnittstellen-Module in den Einschub einführen!
- Wenn kein Modul bestückt ist wird empfohlen, die Slotabdeckung zu montieren, um unnötige innere Verschmutzung des Gerätes zu vermeiden und den Luftdurchflußweg (Modelle mit Luftkühlung) nicht zu verändern

Installationsschritte:

Abdeckung des Schnittstellenslots entfernen. Eventuell einen Schraubendreher zu Hilfe nehmen.

Nehmen Sie das Modul und prüfen Sie, ob die Befestigungsschrauben so weit wie möglich herausgedreht sind. Falls nicht, drehen Sie sie heraus (Torx 8).

Schnittstellen-Modul paßgerecht in den Slot schieben. Es kann aufgrund der Bauform nicht falsch herum gesteckt werden.

Beim Einschieben darauf achten, daß es möglichst genau im Winkel von 90° zur Rückwand des Gerätes gehalten wird. Orientieren Sie sich an der grünen Platine, die Sie am offenen Slot erkennen können. Im hinteren Teil ist ein Steckverbinder, der das Modul aufnehmen soll.

Auf der Unterseite des Moduls befinden sich zwei Plastiknasen, die auf dem letzten Millimeter des Einschubweges auf der grünen Platine einrasten müssen, damit das Modul auf der Rückwand des Gerätes richtig aufliegt.

Die Schrauben (Typ: Torx 8) dienen zur Fixierung des Moduls und sollten komplett eingedreht werden. Nach der Installation ist das Modul betriebsbereit und Kabel können angeschlossen werden.

Ausbau erfolgt auf umgekehrte Weise. An den Schrauben der Frontplatte des Moduls kann es angepackt werden, um es herauszuziehen.

2.3.9 Anschließen der analogen Schnittstelle

Der 15-polige Anschluß (Typ: Sub-D, VGA) auf der Rückseite ist eine analoge Schnittstelle. Um diesen mit einer steuernden Hardware (PC, elektronische Schaltung) zu verbinden, ist ein handelsüblicher Sub-D/VGA-Stecker erforderlich (nicht im Lieferumfang enthalten). Generell ist es ratsam, vor Verbindung oder Trennung dieses Anschlusses das Gerät komplett auszuschalten, mindestens aber den DC-Eingang.

2.3.10 Anschließen des Share-Busses

Die rückseitig am Gerät befindlichen Klemmen "Share BUS" (Typ BNC, 2x vorhanden) dienen zur Verbindung mit dem Share-Bus-Anschluß weiterer Geräte, um bei Parallelbetrieb eine Stromsymmetrierung und schnelle Ausregelung der Geräte untereinander, besonders bei Funktionsgeneratorbetrieb (Sinus usw.) zu erreichen. Informationen zum Parallelbetrieb sind im Abschnitt «*3.11.1 Parallelschaltung als Master-Slave (MS)*» zu finden.

2.3.11 Anschließen des USB-Ports (Rückseite)

Um das Gerät über diesen Anschluß fernsteuern zu können, verbinden Sie Gerät und PC über das mitgelieferte USB-Kabel und schalten Sie das Gerät ein, falls noch ausgeschaltet.

2.3.11.1 Treiberinstallation (Windows)

Bei der allerersten Verbindung mit dem PC sollte das Betriebssystem das Gerät als neu erkennen und einen Treiber installieren wollen. Der Treiber ist vom Typ Communications Device Class (CDC) und ist bei aktuellen Betriebssystemen wie Windows 7 oder 10 normalerweise integriert. Es wird jedoch empfohlen, den auf USB-Stick mitgelieferten Treiber zu installieren, um bestmögliche Kompatibilität des Gerätes zu unseren Softwares zu erhalten.

2.3.11.2 Treiberinstallation (Linux, MacOS)

Für diese Betriebssysteme können wir keinen Treiber und keine Installationsbeschreibung zur Verfügung stellen. Ob und wie ein passender Treiber zur Verfügung steht, kann der Anwender durch Suche im Internet selbst herausfinden.

2.3.11.3 Treiberalternativen

Falls der oben beschriebene CDC-Treiber auf Ihrem System nicht vorhanden ist oder aus irgendeinem Grund nicht richtig funktionieren sollte, können kommerzielle Anbieter Abhilfe schaffen. Suchen und finden Sie dazu im Internet diverse Anbieter mit den Schlüsselwörtern "cdc driver windows" oder "cdc driver linux" oder "cdc driver macos".

2.3.12 Erstinbetriebnahme

Bei der allerersten Inbetriebnahme des Gerätes und der Erstinstallation sind zusätzliche Maßnahmen zu ergreifen:

- Überprüfen Sie die von Ihnen verwendeten Anschlußkabel für AC und DC auf ausreichenden Querschnitt!
- Überprüfen Sie die Einstellungen bezüglich Sollwerte, Sicherheits- und Überwachungsfunktionen sowie Kommunikation daraufhin, daß Sie für die geplante Anwendung passen und stellen Sie sie ggf. nach Anleitung ein!
- Lesen Sie, bei Fernsteuerung des Gerätes per PC, zusätzlich vorhandene Dokumentation zu Schnittstellen und Software!
- Lesen Sie, bei Fernsteuerung des Gerätes über die analoge Schnittstelle unbedingt den Abschnitt zur analogen Schnittstelle in diesem Dokument!

2.3.13 Erneute Inbetriebnahme nach Firmwareupdates bzw. längerer Nichtbenutzung

Bei der erneuten Inbetriebnahme nach einer Firmwareaktualisierung, Rückerhalt des Gerätes nach einer Reparatur oder nach Positions- bzw. Konfigurationsveränderungen der Umgebung des Gerätes sind ähnliche Maßnahmen zu ergreifen wie bei einer Erstinbetriebnahme. Siehe daher auch *«2.3.12 Erstinbetriebnahme».*

Erst nach erfolgreicher Überprüfung des Gerätes nach den gelisteten Punkten darf es wie gewohnt in Betrieb genommen werden.

3. Bedienung und Verwendung

3.1 Wichtige Hinweise

3.1.1 Personenschutz

- Um Sicherheit bei der Benutzung des Gerätes zu gewährleisten, darf das Gerät nur von Personen bedient werden, die über die erforderlichen Sicherheitsmaßnahmen im Umgang mit gefährlichen elektrischen Spannungen unterrichtet worden sind
- Bei Geräten, die eine berührungsgefährliche Spannung erzeugen können oder an diese angebunden werden, ist stets die mitgelieferte Abdeckung für den DC-Anschluß oder eine ähnliche, ausreichend sichere Abdeckung zu montieren
 - Sicherheitshinweise in Abschnitt 1.7.1 beachten!

3.1.2 Allgemein

- Leerlauf, also Betrieb des Gerätes im Quelle-Modus ohne jegliche Beastung, ist keine normale und zu betrachtende Betriebsart und kann zu falschen Meßergebnissen führen
- Der optimale Arbeitspunkt des Gerätes liegt zwischen 50% und 100% Spannung und Strom
 - Es wird empfohlen, das Gerät nicht unter 10% Spannung und Strom zu betreiben, damit die technischen Daten wie Ripple und Ausregelungszeiten eingehalten werden können

3.2 Regelungsarten

Ein Gerät wie dieses beinhaltet intern einen oder mehrere Regelkreise, die Spannung, Strom und Leistung durch Soll-Istwert-Vergleich auf die eingestellten Sollwerte regeln sollen. Die Regelkreise folgen dabei typischen Gesetzmäßigkeiten der Regelungstechnik. Jede Regelungsart hat ihre eigene Charakteristik, die nachfolgend grundlegend beschrieben wird.

3.2.1 Spannungsregelung / Konstantspannung

Spannungsregelung wird auch Konstantspannungsbetrieb (kurz: CV) genannt.

Die Spannung am DC-Eingang wird vom Gerät konstant auf dem eingestellten Wert gehalten, sofern der Strom nicht den eingestellten Strommaximalwert bzw. sofern die Leistung nach P = UDC * I nicht den eingestellten Leistungsmaximalwert erreicht. Sollte einer dieser Fälle eintreten, so wechselt das Gerät automatisch in die Strombegrenzung bzw. Leistungsbegrenzung, jenachdem was zuerst zutrifft. Dabei kann die Spannung nicht mehr konstant gehalten werden und steigt auf einen Wert, der sich durch das ohmsche Gesetz ergibt.

Solange die DC-Leistungsstufe eingeschaltet und Konstantspannungsbetrieb aktiv ist, wird der Zustand "CV-Betrieb aktiv" als Kürzel **CV** auf der grafischen Anzeige und auch als Signal auf der analogen Schnittstelle ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

3.2.1.1 Regelungsspitzen

Der Spannungsregler des Gerätes benötigt im CV-Modus und einem Sprung der Eingangsspannung etwas Zeit, um die Spannung wieder auf den eingestellten Wert auszuregeln. Technisch bedingt führt ein Sprung bzw. Wechsel von einer hohen Spannung zu einer niedrigen zu einem kurzzeitigen Unterlaufen des Sollwertes, sowie ein Sprung von einer hohen Spannung zu einer niedrigen zu einem kurzzeitigen Überschreiten des Sollwertes. Die Dauer der Ausregelung kann über eine Umschaltung der Spannungsreglergeschwindigkeit beeinflußt werden. Siehe dazu auch «*3.4.3.1 Untermenü "Einstellungen"*».

Gegenüber der Einstellung **Normal** (Standardwert), verringert **Schnell** die Dauer der Ausregelung und verkürzt das Unterschreiten bzw. Überschreiten. **Langsam** hingegen hat den gegenteiligen Effekt. Als Nebeneffekt der schnelleren Regelung mit **Fast** reagiert die Last auch eher auf HF-Einkopplungen bzw. hat eine höhere Schwingneigung, besonders wenn Fernfühlung benutzt wird. Die Wahl der Spannungsreglergeschwindigkeit ist demnach situationsbedingt zu treffen. Für Betrieb mit Fernfühlung wäre **Slow** eine typische Empfehlung bzw. wenn aus bestimmten Gründen **Fast** erforderlich ist, die Fernfühlungseingänge zumindest zeitweise nicht zu verbinden.

3.2.1.2 Minimale Eingangsspannung für maximalen Strom

Aufgrund technischer Gegebenheiten hat jedes Modell der Serie einen anderen minimalen Innenwiderstand (R_{MIN}), der bedingt, daß man eine bestimmte Eingangsspannung (U_{MIN}) mindestens anlegen muß, damit das Gerät den max. Strom (I_{NENN}) aufnehmen kann. Wird weniger Spannung an den Eingang angelegt, kann das Gerät entsprechend weniger Strom aufnehmen, auch weniger als eingestellt. Der Verlauf ist linear, somit kann der maximal aufnehmbare Strom bei jeder Eingangsspannung unterhalb U_{MIN} einfach berechnet werden. Rechts ist eine Prinzip-darstellung zu sehen.

3.2.2 Stromregelung / Konstantstrom / Strombegrenzung

Stromregelung wird auch Strombegrenzung oder Konstantstrombetrieb (kurz: CC) genannt.

Der DC-Eingangsstrom wird vom Gerät konstant auf dem eingestellten Wert gehalten, wenn er den eingestellten Stromsollwert erreicht. Ist der Strom unter dem eingestellten Wert, findet Spannungsregelung oder Leistungsregelung statt. Erreicht der Strom den eingestellten Wert, wechselt das Gerät automatisch in Konstantstrombetrieb. Wenn jedoch die vom Verbraucher entnommene Leistung bzw. die aus der Quelle aufgenommene Leistung die Maximalleistung des Gerätes oder den eingestellten Leistungssollwert erreicht, wechselt das Gerät automatisch in Leistungsbegrenzung und stellt Spannung und Strom nach P = U * I ein.

Solange die DC-Leistungsstufe eingeschaltet und Konstantstrombetrieb aktiv ist, wird der Zustand "CC-Betrieb aktiv" als Kürzel **CC** auf der grafischen Anzeige und auch als Signal auf der analogen Schnittstelle ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

3.2.3 Leistungsregelung / Konstantleistung / Leistungsbegrenzung

Leistungsregelung, auch Leistungsbegrenzung oder Konstantleistung (kurz: CP) genannt, hält die DC-Leistung konstant auf dem eingestellten Wert, wenn der DC-Eingangsstrom in Zusammenhang mit der Spannung am DC-Eingang nach P = U * I die Maximalleistung erreicht.

Die Leistungsbegrenzung arbeitet nach dem Auto-range-Prinzip, so daß bei geringer Spannung hoher Strom oder bei hoher Spannung geringer Strom fließen kann, um die Leistung im Bereich PN (siehe Grafik rechts) konstant zu halten.

Konstantleistungsbetrieb wirkt auf den internen Stromsollwert ein, so daß dieser unter Umständen nicht erreicht werden, wenn der Leistungssollwert nach I = P / U einen geringeren Stromsollwert ergibt. Der vom Anwender eingestellte und auf dem Display angezeigte Stromsollwert ist stets nur eine obere Grenze.

Solange die DC-Leistungsstufe eingeschaltet und Konstantleistungsbetrieb aktiv ist, wird der Zustand "CP-Betrieb aktiv" als Kürzel **CP** auf der grafischen Anzeige ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

3.2.3.1 Leistungsreduktion (Derating)

Die Modelle in dieser Serie sind in erster Linie für 400 V AC-Versorgung konzipiert, können aber auch an 208 V Drehspannung (USA, Japan) betrieben werden. Das bedingt jedoch eine automatische Reduktion der verfügbaren DC-Leistung, damit der AC-Strom bei niedriger Versorgungsspannung nicht zu hoch wird. Konkret reduziert ein 5 kW-Modell dann auf 3 kW, ein 10 kW-Modell auf 6 kW und ein 15 kW-Modell auf 9 kW.

Die Umschaltung in den "Derating-Modus" erfolgt einmal nach dem Einschalten und durch Erkennung der gegenwärtig anliegenden AC-Spannung. Das heißt, das Gerät bleibt danach so lange leistungsreduziert, wie es eingeschaltet ist, denn die Umschaltung erfolgt nicht dynamisch mitten im Betrieb. Die volle Nennleistung ist daher nur verfügbar bei Netzspannungen ab 380 V.

Sobald ein Gerät im Derating arbeitet, wird dauerhaft ein Hinweis in der Anzeige eingeblendet. Dann sind alle auf die Leistung bezogenen Einstellwerte angepaßt auf die reduzierte Leistung. Das gilt auch für Master-Slave-Betrieb von leistungsreduzierten Geräten.

Bild 15 - Leistungsfläche

3.2.4 Widerstandsregelung/Konstantwiderstand

Bei einer elektronischen Last, deren Wirkungsprinzip auf einem variablen Innenwiderstand beruht, ist Widerstandsregelung bzw. Konstantwiderstandbetrieb (kurz: CR) ein fast natürlicher Vorgang. Die Last versucht dabei, ihren eigenen tatsächlichen Innenwiderstand auf den vom Anwender eingestellten Wert zu bringen und den Eingangsstrom nach dem ohmschen Gesetz $I_{EIN} = U_{EIN} / R_{SOLL}$ und in Abhängigkeit von der Eingangsspannung einzustellen.

Dem Innenwiderstand sind gegen Null hin (Strombegrenzung oder Leistungsbegrenzung werden aktiv), sowie nach oben hin (Auflösung der Stromregelung zu ungenau) natürliche Grenzen gesetzt. Da der Innenwiderstand nicht 0 sein kann, ist der einstellbare Anfangswert auf das machbare Minimum begrenzt. Das soll auch sicherstellen, daß die elektronische Last bei einer sehr geringen Eingangsspannung, aus der sich bei einem geringen eingestellten Widerstand dann wiederum ein sehr hoher Eingangsstrom errechnet, diesen auch aus der Quelle entnehmen kann bis hin zum Maximalstrom der Last.

Solange der DC-Eingang eingeschaltet und Konstantwiderstandbetrieb aktiv ist, wird der Zustand "CR-Betrieb aktiv" als Kürzel **CR** auf der grafischen Anzeige ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

3.2.5 Regelverhalten und Stabilitätskriterium

Die elektronische Last arbeitet rein als Senke und zeichnet sich durch schnelle Stromanstiegs- und abfallzeiten aus, die durch eine hohe Bandbreite der internen Regelung erreicht werden.

Werden Quellen mit eigener Regelung, wie zum Beispiel Netzgeräte oder Batterielader, mit der elektronischen Last getestet, so kann unter bestimmten Bedingungen eine Regelschwingung auftreten. Diese Instabilität tritt auf, wenn das Gesamtsystem (speisende Quelle und elektronische Last) bei bestimmten Frequenzen zu wenig Phasen- und Amplitudenreserve aufweist. 180° Phasenverschiebung bei >0dB Verstärkung erfüllt die Schwingungsbedingung und führt zur Instabilität. Das Gleiche kann auch bei Quellen ohne eigene Regelung (z. B. Batterie) auftreten, wenn die Lastzuleitung stark induktiv oder induktiv-kapazitiv ist.

Tritt eine Regelungsschwingung auf, ist das nicht durch einen Mangel der elektronischen Last verursacht, sondern durch das Verhalten des gesamten Systems. Eine Verbesserung der Phasen- und Amplitudenreserve kann das wieder beheben. In der Praxis wird hierfür erst einmal versucht, die Dynamik des Spannungsreglers anzupassen, was durch einen Umschalter der Regelgeschwindigkeit (Langsam, Normal, Schnell) erfolgen kann, wo bei Normal die Standardeinstellung ist, bei der das Schwingen auftrat. Im Menü (siehe 3.4.3.1) bzw. im Schnellmenü (siehe 3.4.9).

Der Anwender kann nur durch Probieren herausfinden, welche der Einstellungen den gewünschten Effekt bringt. Sollte ein Effekt zu sehen sein, der aber nicht ausreichend ist, kann also zusätzliche Maßnahme ein Kondensator direkt am DC-Eingang angebracht werden, eventuell auch am Fernfühlungseingang, wenn dieser zur Quelle verbunden ist. Welcher Wert den gewünschten Effekt bringt, ist nicht festlegbar.

Wir empfehlen:

80 V-Modelle: 1000uF....4700uF 200/360 V-Modelle: 100uF...470uF 500 V-Modelle: 47uF...150uF 750/920/1000 V-Modelle: 22uF...100uF 1500/2000 V-Modelle: 4,7uF...22uF

3.3 Alarmzustände

Dieser Abschnitt gibt nur eine Übersicht über mögliche Alarmzustände. Was zu tun ist im Fall, daß Ihr Gerät Ihnen einen Alarm anzeigt, wird in Abschnitt «3.6 Alarme und Überwachung» erläutert.

Grundsätzlich werden alle Alarmzustände optisch (Text + Meldung in der Anzeige), akustisch (wenn Alarmton aktiviert) und als über digitale Schnittstelle auslesbarer Status, sowie Alarmzähler signalisiert. Die Alarmzustände OT und OVP werden zusätzlich über die analoge Schnittstelle signalisiert. Zwecks nachträglicher Erfassung der Alarme kann ein Alarmzähler im Display angezeigt oder per digitaler Schnittstelle ausgelesen werden.

3.3.1 Power Fail

Power Fail (kurz: PF) kennzeichnet einen Alarmzustand des Gerätes, der mehrere Ursachen haben kann:

- AC-Eingangsspannung zu niedrig (Netzunterspannung, Netzausfall)
- Interner Defekt in der AC-Eingangsstufe (PFC)

Bei einem Power Fail stoppt das Gerät die Leistungsabgabe bzw. -aufnahme und schaltet den DC-Eingang aus. War der PF-Alarm nur eine zeitweilige Netzunterspannung, kann das Gerät seine Arbeit weiterführen, sprich den DC-Eingang automatisch wieder einschalten. Das Verhalten wird über die Einstellung **DC-Eingang -> Zustand nach PF-Alarm** bestimmt, wobei die Standardeinstellung "aus" vorgibt.

Das Trennen des Gerätes von der Stromversorgung wird wie ein Netzausfall interpretiert. Daher tritt beim Ausschalten jedesmal ein "Alarm: PF" auf, der in dem Fall ignoriert werden kann.

3.3.2 Übertemperatur (Overtemperature)

Ein Übertemperaturalarm (kurz: OT) tritt auf, wenn ein Gerät durch zu hohe Innentemperatur selbständig die Leistungsstufen abschaltet. Das kann normalerweise nur passieren, wenn die Umgebungstemperatur höher als die zulässige Betriebstemperatur des Gerätes ist. Nach dem Abkühlen kann das Gerät die Leistungsstufen automatisch wieder einschalten, jenachdem was im Setup bei **DC-Eingang -> Zustand nach OT-Alarm** gewählt wurde. Mehr dazu in *3.4.3.1.* Der Alarm bleibt zwecks Kenntnisnahme in der Anzeige stehen, bis er bestätigt wird.

3.3.3 Überspannung (Overvoltage)

Ein Überspannungsalarm (kurz: OVP) führt zur Abschaltung der DC-Leistungsstufen und kann auftreten, wenn

• die angeschlossene Spannungsquelle eine höhere Spannung auf den DC-Eingang bringt, als mit der einstellbaren Überspannungsalarmschwelle (OVP, 0...110% UNenn) festgelegt

Diese Funktion dient dazu, dem Betreiber des Gerätes akustisch oder optisch mitzuteilen, daß es möglicherweise eine überhöhte Spannung von außen erfahren hat und ein Defekt des Gerätes resultieren könnte.

Das Gerät ist nicht mit Schutzmaßnahmen gegen Überspannung von außen ausgestattet

3.3.4 Überstrom (Overcurrent)

Ein Überstromalarm (kurz: OCP) führt zur Abschaltung der DC-Leistungsstufen und kann auftreten, wenn

• der im DC-Eingang fließende Strom die eingestellte OCP-Schwelle erreicht

Diese Schutzfunktion dient nicht dem Schutz des Gerätes, sondern dem Schutz der angeschlossenen Quelle, damit diese nicht durch zu hohen Strom beschädigt oder bei einem Defekt, der überhöhten Strom zur Folge hat, nicht irreparabel zerstört wird.

3.3.5 Überleistung (Overpower)

Ein Überleistungsalarm (kurz: OPP) führt zur Abschaltung der DC-Leistungsstufen und kann auftreten, wenn

• das Produkt aus am DC-Eingang vorhandener Spannung und Strom die eingestellte OPP-Schwelle erreicht

Diese Schutzfunktion dient nicht dem Schutz des Gerätes, sondern dem Schutz der angeschlossenen Quelle, falls diese durch zu hohe Leistungsaufnahme beschädigt werden könnte.

3.3.6 Share-Bus-Fehler

Ein Share-Bus-Fehler (kurz: SF) führt zur Abschaltung der DC-Leistungsstufen und kann auftreten, wenn

- der Share-Bus von mindestens zwei Geräten bereits verbunden ist, während wenigstens eins davon noch nicht in den Master-Slave-Betriebsmodus versetzt wurde
- ein Kurzschluß am Share-Bus durch z. B. ein defektes BNC-Kabel entstanden ist.

Diese Schutzfunktion soll verhindern, daß Slave-Einheiten irreguläre Stellwerte über den Share-Bus erhalten bzw. sich unterschiedlich verhalten. Der Alarm muß quittiert werden, nachdem die Fehlerursache beseitigt wurde.

Sollte das Gerät weder Master noch Slave sein, sollte das Share-Bus-Kabel für ungestörten Betrieb entfernt werden.

3.4 Manuelle Bedienung

3.4.1 Einschalten des Gerätes

Das Gerät sollte möglichst immer am Netzschalter (Drehschalter, Vorderseite) eingeschaltet werden, indem dieser auf Position 1 gesetzt wird. Alternativ kann es über eine externe Trennvorrichtung (Hauptschalter, Schütz) mit entsprechender Strombelastbarkeit netzseitig geschaltet werden.

Nach dem Einschalten zeigt das Gerät für einige Sekunden in der Anzeige einige gerätespezifische Informationen (Modell, Firmwareversion(en) usw.), dann für 3 Sekunden eine Sprachauswahl und ist danach betriebsbereit.

Im Einstellmenü (siehe Abschnitt «*3.4.3 Konfiguration im Menü»*) befindet sich im Untermenü **Einstellungen** bei **DC-Eingangs** eine Option **Zustand nach Power ON**, mit welcher der Anwender bestimmen kann, wie der Zustand des DC-Eingangs nach dem Einschalten des Gerätes ist. **Wiederherstellen** merkt sich den letzten Zustand beim Ausschalten und stellt ihn wieder her, im Gegensatz zu **Aus**. Daher muß diese Einstellung mit Bedacht gesetzt werden.

Sämtliche Sollwerte, sowie ein vorher aktivierter Master-Slave-Betriebsmodus, werden immer wiederhergestellt.

Für die Dauer der Startphase können die Meldesignale an der analogen Schnittstelle unbestimmte Zustände anzeigen, die bis zum Ende der Startphase und Erreichen der Betriebsbereitschaft ignoriert werden müssen.

Bei manueller Bedienung und falls das Gerät über mindesten eine der vorhandenen Schnittstellen zu einer steuernden Einheit (z. B. PC) verbunden ist, könnte jederzeit ohne Vorwarnung oder eine Bestätigungsabfrage die steuernde Einheit die Kontrolle übernehmen. Aus Sicherheitsgründen wird empfohlen die Fernsteuerung zu sperren, indem Modus "Lokal" aktiviert wird, zumindest für die Dauer der manuellen Bedienung.

3.4.2 Ausschalten des Gerätes

Das Gerät wird ausgeschaltet, indem der Netzschalter auf Position 0 gedreht wird. Das löst zwei Aktionen aus: a) der Zustand des DC-Ausgangs und die zuletzt eingestellten Sollwerte werden gespeichert und b) es wird ein **Alarm: PF** gemeldet, welcher in dieser Situation ignoriert werden kann. Der DC-Ausgang wird außerdem sofort ausgeschaltet und nach einer gewissen Nachlaufzeit (bis zu 30 Sekunden) stoppen die Lüfter und die Anzeige. Das Gerät ist danach komplett aus.

Der frontseitige Netzschalter trennt in Stellung 0 das Gerät physikalisch vom Netz. Er qualifiziert sich damit als Trennvorrichtung. Stellung 1 bedeutet, das Gerät ist eingeschaltet.

3.4.3 Konfiguration im Menü

Das Menü dient zur Konfiguration aller Betriebsparameter, die nicht ständig benötigt werden. Es kann per Fingerberührung auf die Bedienfeld **Menü** erreicht werden, aber nur, wenn der DC-Eingang **ausgeschaltet** ist. Siehe Grafiken.

Ist der DC-Eingang hingegen eingeschaltet, werden statt einem Einstellmenü nur Statusinformationen angezeigt.

Die Navigation erfolgt in den Untermenüs mittels Fingerberührung, Werte werden mit einer eingeblendeten Zehnertastatur eingestellt.

Einige Einstellparameter sind selbsterklärend, andere nicht. Diese werden auf den nachfolgenden Seiten im Einzelnen erläutert.

3.4.3.1 Untermenü "Einstellungen"

Das Untermenü kann man auch direkt erreichen, wenn man in der Hauptanzeige "Einstell." antippt.

Gruppe	Einstellung & Beschreibung
Sollwerte	U, I, P, R
	Einstellung aller Sollwerte über Zehnertastatur
Schutz	OVP, OCP, OPP
	Schutzgrenzen setzen
Limits	U-min, U-max usw.
	Einstellgrenzen setzen (mehr dazu in «3.4.4 Einstellgrenzen (Limits)»)
Nutzer-Events	UVD, OVD usw.
	Überwachungsgrenzen setzen, die benutzerdefinierte Ereignisse auslösen (mehr dazu in «3.6.2.1 Benutzerdefinierbare Ereignisse (Nutzer-Events)»)
Allgemein	Fernsteuerung erlauben
	Ist die Fernsteuerung nicht erlaubt kann das Gerät weder über eine der digitalen, noch über die analoge Schnittstelle fernbedient werden. Der Status, daß die Fernsteuerung gesperrt ist, wird im Statusfeld der Hauptanzeige mit " Lokal " angezeigt. Siehe auch Abschnitt <i>1.9.6.1</i> .
	R-Modus aktivieren
	Aktiviert bzw. deaktiviert die Innenwiderstandsregelung. Bei aktiviertem R-Modus wird der Innenwi- derstandswert in der Normalanzeige eingeblendet. Mehr dazu siehe «3.2.4 Widerstandsregelung/ Konstantwiderstand» und «3.4.6 Sollwerte manuell einstellen».
	Spannungsreglergeschwindigkeit
	(Funktioniert nur mit Geräten, die bereits mit Firmware KE/HMI 3.02 oder höher ausgeliefert wurden) Kann den internen Spannungsregler zwischen drei Geschwindigkeiten umschalten, welche die Ausr- gelung der Spannung beeinflußen. Siehe auch «3.2.5 Regelverhalten und Stabilitätskriterium».
	 Langsam = der Spannungsregler wird etwas langsamer, die Schwingneigung sinkt Normal = der Spannungsregler ist normal schnell (Standardeinstellung) Schnell = der Spannungsregler wird etwas schneller, die Schwingneigung steigt
	SEMI F47
	(Wird nur angezeigt, wenn das Gerät bereits mit Firmware KE 3.02 oder höher ausgeliefert wurde)
	Aktiviert bzw. deaktiviert eine Funktionalität namens SEMI F47, nach dem gleichnamigen Standrard. Siehe <i>«3.11.3 SEMI F47»</i> für mehr Informationen.
Analogschnittstelle	Bereich
	Wählt den Spannungsbereich für die analogen Sollwerteingänge, Istwertausgänge und den Referenz- spannungsausgang.
	 05 V = Bereich entspricht 0100% Sollwert/Istwert, Referenzspannung 5 V 010 V = Bereich entspricht 0100% Sollwert/Istwert, Referenzspannung 10 V Siehe auch Abschnitt «3.5.4 Fernsteuerung über Analogschnittstelle».
	REM-SB Pegel
	Legt fest, wie der Eingang REM-SB an der eingebauten Analogschnittstelle logisch funktionieren soll, gemäß der in «3.5.4.3 Spezifikation der Analogschnittstelle» angegebenen Pegel. Siehe auch «3.5.4.7 Anwendungsbeispiele».
	 Normal = Pegel und Funktion wie in der Tabelle in 3.5.4.3 gelistet Invertiert = Pegel und Funktion invertiert

Gruppe	Einstellung & Beschreibung
Analogschnittstelle	REM-SB Verhalten
	Legt fest, wie der Eingang REM-SB an der eingebauten Analogschnittstelle außerhalb einer analogen Fernsteuerung auf den Zustand des DC-Eingangs wirken soll:
	• DC Aus = Der DC-Eingang kann über den Pin nur ausgeschaltet werden
	• DC Ein/Aus = Der DC-Eingang kann über den Pin aus- und wieder eingeschaltet werden
	Pin 6
	Pin 6 der Analogschnittstelle (siehe Abschnitt <i>3.5.4.3</i>) signalisiert standardmäßig die Gerätealarme OT oder PF. Dieser Parameter erlaubt es, auch nur einen von beiden auf dem Pin auszugeben (3 mögliche Auswahlmöglichkeiten):
	• Alarm OT = Pin 6 signalisiert ausschließlich OT
	Alarm PF = Pin 6 signalisiert ausschließlich PF
	 Alarm OT+PF = Standardeinstellung, Pin 6 signalisiert PF oder OT
	Pin 14
	Pin 14 der Analogschnittstelle (siehe Abschnitt <i>3.5.4.3)</i> signalisiert standardmäßig nur den Gerätealarm OVP. Dieser Parameter erlaubt es, auch die Gerätealarme OCP und OPP auf dem Pin auszugeben (7 mögliche Kombinationen):
	Alarm OVP = Pin 14 signalisiert ausschließlich OVP
	Alarm OCP = Pin 14 signalisiert ausschließlich OCP
	Alarm OPP = Pin 14 signalisiert ausschließlich OPP
	Alarm OVP+OCP = Pin 14 signalisiert OVP oder OCP
	Alarm OVP+OPP = Pin 14 signalisiert OVP oder OPP
	Alarm OCP+OPP = Pin 14 signalisiert OCP oder OPP
	Pin 15
	Pin 15 der Analogschnittstelle (siehe Abschnitt <i>3.5.4.3</i>) signalisiert standardmäßig nur die Regelungsart CV. Dieser Parameter erlaubt es, einen anderen Gerätestatus auf dem Pin 15 auszugeben (2 Optionen):
	 Regelungsart = Pin 15 signalisiert die Regelungsart CV
	 DC-Status = Pin 15 signalisiert des Zustand des DC-Eingangs

Gruppe	Einstellung & Beschreibung
DC-Eingang	Zustand nach Power ON
	Bestimmt, wie der Zustand des DC-Eingangs nach dem Einschalten des Gerätes sein soll.
	 Aus = DC-Eingang ist nach dem Einschalten des Gerätes immer aus Wiederherstellen = Zustand des DC-Eingangs wird wiederhergestellt, so wie er beim letzten Ausschalten des Gerätes war
	Diese Option ist gemäß Werkszustand oder nach Rücksetzen des Gerätes auf "Aus". Aktivierung auf eigene Gefahr und Risiko. Das Gerät schaltet den DC-Eingang nach dem Hochfahren ggf. automatisch ein!
	Zustand nach PF-Alarm
	Bestimmt, wie der Zustand des DC-Eingangs nach einem Power fail-Alarm verhalten soll:
	 Aus = DC-Eingang bleibt aus Auto = DC-Eingang schaltet automatisch wieder ein, wenn er vor dem Auftreten des Alarm auch eingeschaltet war
	Zustand nach Remote
	Bestimmt, wie der Zustand des DC-Eingangs nach manuellem oder per Befehl veranlaßtem Beenden der Fernsteuerung sein soll.
	 Aus = Nach dem Verlassen der Fernsteuerung immer aus Auto = Zustand wird beibehalten
DC-Eingang	Zustand nach OT-Alarm
	Bestimmt, wie der Zustand des DC-Eingangs nach einem Übertemperatur-Alarm und erfolgter Abküh- lung sein soll:
	 Aus = DC-Eingang bleibt aus Auto = DC-Eingang schaltet automatisch wieder ein, wenn er vor dem Auftreten des Alarm auch eingeschaltet war
Master-Slave	Modus
	Mit Option Master oder Slave wird der Master-Slave-Modus (kurz: MS) aktiviert und gleichzeitig die Funktion des Gerätes im MS-Verbund festgelegt. Näheres zum MS-Modus siehe Abschnitt <i>«3.11.1 Parallelschaltung als Master-Slave (MS)»</i> .
	Abschlusswiderstand
	Aktiviert/deaktiviert den sog. Busabschluß (Terminierung) des digitalen Master-Slave-Busses über einen schaltbaren Widerstand. Terminierung sollte auf Bedarf erfolgen, z. b. wenn Probleme mit dem Bus auftreten.
	Biaswiderstände
	Zusätzlich zum Abschlußwiderstand (TERM) können noch Biaswiderstände eingeschaltet werden, die helfen den Bus zusätzlich zu stabilisieren, falls nötig. Tippen Sie auf das Informationssymbol auf dem Bildschirm für eine grafische Darstellung.
	Beleuchtung aus nach 60s
	Wenn aktiviert, schaltet sich die Hintergrundbeleuchtung aus, wenn 60 Sekunden lang keine Berüh- rung des Bildschirms oder Tastenbetätigung oder Drehknopfbetätigung erfolgte. Diese Einstellung ist hauptsächlich für Slave-Einheiten gedacht, wenn deren Bildschirm nicht ständig an sein soll. Sie ist identisch zu der im Menü "HMI-Einstellungen"
	System initialisieren
	Das Bedienfeld initialisiert das Master-Slave-System erneut, auch für den Fall, daß die automatische Erkennung aller Slave-Einheiten durch den Master einmal nicht funktionieren sollte und somit weniger Gesamtleistung zur Verfügung stehen würde.

Gruppe	Einstellung & Beschreibung
USB-Logging	Trennzeichen-Format
	Legt das Trennzeichen-Format der CSV-Datei beim USB-Logging (siehe auch <i>1.9.6.5</i> und <i>3.4.8</i>) bzw. für das Einlesen bzw. Speichern von CSV-Dateien fest
	• US = Trennzeichen ist Komma (US-Format)
	• Standard = Trennzeichen ist Semikolon (deutsches bzw. europäisches Format)
	Logging mit Einheit (V,A,W)
	Beim USB-Logging werden standardmäßig alle Werte in der CSV-Datei mit Einheit aufgezeichnet. Dies kann hier mit deaktiviert werden.
	USB-Logging
	Aktiviert/deaktiviert die Datenaufzeichnung (Logging) auf USB-Stick. Mehr siehe «3.4.8 Datenauf- zeichnung auf USB-Stick (Logging)».
	Logging-Intervall
	Legt den zeitlichen Abstand zwischen zwei aufgezeichneten Datensätzen fest.
	Auswahl: 500 ms , 1 s , 2 s , 5 s
USB-Logging	Start/Stopp
	Definiert, wann das Logging starten bzw. stoppen soll.
	Manuell = Logging wird manuell über Bedienfeld
	• Bei DC ein/aus = Logging startet und stoppt bei jedem Zustandswechsel am DC-Eingang, egal wo- durch verursacht und solange Logging aktiviert ist. Achtung: Es wird bei jedem Logging-Start eine neue Logdatei auf dem Stick erzeugt.
Reset / Neustart	Gerät zurücksetzen
	Setzt alle Einstellungen (HMI, Profile usw.) auf Standardwerte, sowie alle Sollwerte auf 0 zurück.
	Gerät neustarten
	Bewirkt einen Warmstart des Gerätes

3.4.3.2 Untermenü "Profile"

Siehe «3.9 Nutzerprofile laden und speichern».

3.4.3.3 Untermenü "Übersicht"

Dieses Untermenü zeigt eine Übersicht der aktuellen Sollwerte (U, I, P bzw. U, I, P, R), Gerätealarmschwellen, Event-Einstellungen, Einstellgrenzen, sowie eine Alarmhistorie (Anzahl aufgetretener Gerätealarme seit Einschalten des Gerätes) an.

3.4.3.4 Untermenü "Info HW, SW, …"

Dieses Untermenü zeigt eine Übersicht gerätebezogener Daten wie Seriennummer, Artikelnummer usw.

3.4.3.5 Untermenü "Funktionsgenerator"

Siehe «3.10 Der Funktionsgenerator».

3.4.3.6 Untermenü "Kommunikation"

Hier werden Einstellungen zur digitalen Kommunikation über die eingebauten digitalen Schnittstellen (USB, Ethernet) bzw. die diversen, optional erhältlichen Schnittstellen-Module (Interfaces, kurz: IF) der IF-AB-Serie getroffen. Außerdem können sog. "Kommunikations-Timeouts" angepaßt werden. Mehr dazu in der externen Dokumentation "Programmieranleitung ModBus & SCPI". Der USB-Port benötigt keine Einstellungen.

Einstellungen zur internen Ethernetschnittstelle

IF	Einstellung	Beschreibung
	DHCP	Das IF läßt sich von einem DHCP-Server eine IP und ggf. eine Subnetzmaske, sowie Gateway zuwei- sen. Falls kein DHCP-Server im Netzwerk ist, werden die aufgelisteten Netzwerkparameter gesetzt.
	IP-Adresse	Hier kann die IP-Adresse des Gerätes manuell festgelegt werden.
<u> </u>	Subnetzmake	Hier kann eine Subnetzmaske manuell festgelegt werden.
nter	Gateway	Hier kann eine Gateway-Adresse manuell festgelegt werden, falls benötigt.
et (ir	DNS-Adresse	Hier kann die Adresse eines Domain Name Servers festgelegt werden, falls benötigt.
ern	Port	Port im Bereich 065535 wählen. Standardport: 5025
EtP		Reserviert Ports: 502, 537
	Hostname	Beliebig wählbarer Hostname
	Domäne	Beliebig wählbare Domäne
	MAC-Adresse	des internen Ethernetports

Einstellungen zu den optionalen Schnittstellenmodulen (IF-AB-xxx)

IF	Einstellung	Beschreibung
	Baudrate	Einstellung der Busgeschwindigkeit für die CANopen-Schnittstelle.
		Auto = Automatische Erkennung der Busgeschwindigkeit
CANope		LSS = Setzt die Bus-Baudrate und die Knotenadresse automatisch
		Feste Baudraten: 10 kbps, 20 kbps, 50 kbps, 100 kbps, 125 kbps, 250 kbps, 500 kbps, 800 kbps, 1Mbps
	Knoten-Adresse	Einstellung der CANopen-Knotenadresse im Bereich von 1127

IF	Einstellung	Beschreibung
	Knoten-Adresse	Einstellung der Profibus- oder Knotenadresse im Bereich von 1125 per Direkteingabe des Wertes
	Funktions-Be- schreibung	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profibus-Tag "Funktionsbeschreibung" (Function tag) . Max. Länge: 32 Zeichen
snq	Standort-Be- schreib.	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profibus-Tag "Standortbeschreibung" (Location tag). Max. Länge: 22 Zeichen
Profi	Datum der Instal- lation	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profibus-Tag "Installationdatum" (Instal- lation date). Max. Länge: 40 Zeichen
	Beschreib.	Texteingabefeld zur Eingabe eines beliebigen Textes zur Beschreibung des Profibus-Slaves. Max. Länge: 54 Zeichen
	Hersteller-ID	Bei der internationalen Profibus-Organisation registrierte Herstellernummer
	Produkt-ID	Produkt-Kennnummer, wie z. B. auch in der GSD-Datei zu finden

IF	Einstellung	Beschreibung
	Hostname	Beliebig wählbarer Hostname (Standard: Client)
	Domäne	Beliebig wählbare Domäne (Standard: Workgroup)
Port)	Funktionsbe- schreibung	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profinet-Tag "Funktionsbeschreibung" (Function tag) . Max. Länge: 32 Zeichen
(1 & 2	Standortbeschrei- bung	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profinet-Tag "Standortbeschreibung" (Location tag). Max. Länge: 22 Zeichen
et/IO	Datum der Instal- lation	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profibus-Tag "Installationdatum" (Instal- lation date). Max. Länge: 40 Zeichen
Profin	Beschreibung	Texteingabefeld zur Eingabe eines beliebigen Textes zur Beschreibung des Profibus-Slaves. Max. Länge: 54 Zeichen
	Stationsname	Texteingabefeld zur Eingabe eines beliebigen Textes zur Beschreibung des Profinet-Stationsnamens. Max. Länge: 200 Zeichen

IF	Einstellung	Beschreibung
(DHCP	Das IF läßt sich von einem DHCP-Server eine IP und ggf. eine Subnetzmaske, sowie Gateway zuwei- sen. Falls kein DHCP-Server im Netzwerk ist, werden die aufgelisteten Netzwerkparameter gesetzt.
2 Port	IP-Adresse	Diese Option ist standardmäßig aktiviert. Hier kann die IP-Adresse des Gerätes manuell festgelegt werden.
õ	Subnetzmake	Hier kann eine Subnetzmaske festgelegt werden, falls die Standardsubnetzmaske nicht paßt
P (1	Gateway	Hier kann eine Gateway-Adresse festgelegt werden, falls benötigt.
TCI	DNS-Adresse	Hier kann die Adresse eines Domain Name Servers festgelegt werden, falls benötigt.
-sn	Port	Einstellbereich: 065535, Standardport: 5025 = Modbus RTU
odB		Reservierte Ports: 502, 537
/ Mc	Hostname	Beliebig wählbarer Hostname (Standard: Client)
rnet	Domäne	Beliebig wählbare Domäne (Standard: Workgroup)
Slot Ether	Geschwindigkeit / Duplex Port 1	Manuelle Wahl der Übertragungsgeschwindigkeit (10MBit o. 100MBit) und Duplexmodus. Es wird empfohlen, Option Auto zu belassen und nur im Problemfall eine andere Einstellung zu wählen.
	Geschwindigkeit / Duplex Port 2	Unterschiedliche Einstellungen bei 2-Port-Modulen sind möglich, da diese einen Switch beinhalten.

IF	Einstellung	Beschreibung
	Baudrate	Einstellung der CAN-Busgeschwindigkeit in den typischen Werten zwischen 10 kbps und 1Mbps. Standardwert: 500 kbps
	ID-Format	Wahl des CAN-ID-Formates zwischen Standard (11 Bit IDs, 0h7ffh) oder Extended (29 Bit IDs, 0h1fffffffh)
	Busabschluß	Ein- oder Ausschalten des elektronisch geschalteten, im Modul befindlichen Busabschluß-Widerstandes. Standardeinstellung: aus
	Datenlänge	Festlegung der Nachrichtenlänge aller v <u>om Gerät gesendeten</u> Nachrichten (Antwor- ten).
		Auto = Länge variiert je nach Objekt zwischen 3 und 8 Bytes
		Immer 8 Bytes = Länge ist immer 8 Bytes, mit Nullen aufgefüllt
	Basis-ID	Einstellung der CAN-Basis-ID (11 Bit oder 29 Bit, Hexadezimalformat). Standardwert: Oh
	Broadcast ID	Einstellung der CAN-Broadcast-ID (11 Bit oder 29 Bit, Hexadezimalformat). Stan- dardwert: 7ffh
_	Basis-ID Zyklisches Lesen	Einstellung der CAN-Basis-ID (11 Bit oder 29 Bit, Hexadezimalformat) für das zykli- sche Lesen mehrerer Objektgrupen. Das Gerät sendet über diese IDs die Inhalte der Objektgruppen automatisch in dem festgelegten Intervall, solange aktiviert. Mehr dazu in der Programmieranleitung. Standardwert: 100h
CAN	Basis-ID Zyklisches Senden	Einstellung der CAN-Basis-ID (11 Bit oder 29 Bit, Hexadezimalformat) für das zy- klische Senden von Status und Sollwerten. Das Gerät empfängt über diese IDs die Inhalte zweier bestimmter Objektgruppen im kompakteren Format. Mehr dazu in der Programmieranleitung. Standardwert: 200h
	Lese-Timing: Status	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen des Sta- tus' über die eingestellte Basis-ID Zyklisches Lesen . Einstellbereich: 205000 ms. Standardwert: 0 ms (deaktiviert).
	Lese-Timing: Sollwerte	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen der Sollwerte über die eingestellte Basis-ID Lesen + 2 . Einstellbereich: 205000 ms. Standardwert: 0 ms (deaktiviert).
	Lese-Timing: Limits 1	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen der "Limits 1" (U, I) über die eingestellte Basis-ID Zyklisches Lesen + 3 . Einstellbereich: 205000 ms. Standardwert: 0 ms (deaktiviert)
	Lese-Timing: Limits 2	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen der "Limits 2" (P, R) über die eingestellte Basis-ID Zyklisches Lesen + 4 . Einstellbereich: 205000 ms. Standardwert: 0 ms (deaktiviert)
	Lese-Timing: Istwerte	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen der Istwerte über die eingestellte Basis-ID Zylisches Lesen + 1 . Einstellbereich: 205000 ms. Standardwert: 0 ms (deaktiviert).
	Modulfirmware	Anzeige der Firmware des CAN-Moduls
IF	Einstellung	Beschreibung

IF .	Einsteilung	beschreibung
S232	Baudrate	Die Baudrate ist einstellbar, weitere serielle Einstellungen sind wie folgt festgelegt: 8 Datenbits, 1 Stopbit, Parität = keine
č		Baudrateneinstellungen: 2400, 4800, 9600, 19200, 38400, 57600, 115200

Weitere, allgemeine Kommunikations-Einstellungen

Gruppe	Einstellung & Beschreibung
Timeouts	TCP Keep-Alive (intern) / TCP Keep-Alive (Slot)
	Aktiviert/deaktiviert die Netzwerkfunktionalität TCP keep-alive für den eingebauten Ethernet-Port und/oder einem im Slot installierten Ethernetmodul (IF-AB-ETHxx) und nutzt diese zur Aufrecht- erhaltung der Socketverbindung. Sofern keep-alive im Netzwerk unterstützt wird, deaktiviert das Gerät das einstellbare Ethernet-Timeout (siehe unten Timeout ETH).
	Timeout USB/RS232
	Stellt die Zeit (in Millisekunden) ein, die max. bei zwischen der Übertragung von zwei Bytes oder Blöcken von Bytes ablaufen darf. Mehr dazu in der externen Dokumentation "Programming ModBus & SCPI". Standardwert: 5 ms , Bereich: 565535 ms
	Timeout ETH (intern) / Timeout ETH (Slot)
	Findet während der eingestellten Zeit (in Sekunden) keine Befehls-Kommunikation mit dem Gerät statt, schließt sich die Socketverbindung von seitens des Gerätes. Das Timeout wird unwirksam, solange die zur jeweiligen Schnittstelle gehörige Option TCP Keep-Alive aktiviert ist und vom Netzwerk aktiv unterstützt wird. Einstellwert 0 deaktiviert das Timeout dauerhaft. Standardwert: 5 s, Bereich: 0 / 565535 (0 = Timeout deaktiviert)
	Schnittstellenüberwachung / Timeout Schnittstellenüberwachung
	Aktiviert/deaktiviert die Schnittstellenüberwachung (siehe Abschnitt <i>«3.5.3.3 Schnittstellenüber-wachung»</i>). Standardwerte: aus, 5 s / Bereich: 565535 s
Protokolle	Kommunikationsprotokolle
	Aktivieren / Deaktivieren der Kommunikationsprotokolle SCPI oder ModBus. Jeweils eins von beiden kann deaktiviert werden, wenn nicht benötigt.
	Einhaltung der ModBus Spezifikation
	Kann von Limitiert (Standardeinstellung) auf Voll umgeschaltet werden, damit das Gerät Nach- richten im ModBus RTU- oder ModBus TCP-Format sendet, die zu auf dem Markt erhältlichen Softwarebibliotheken kompatibel sind. Bei Limitiert wird das frühere, teils nicht kompatible Nach- richtenformat verwendet (siehe auch Programmieranleitung).

3.4.3.7 Menü "HMI-Einstellungen"

Diese Einstellungen beziehen sich ausschließlich auf die Bedieneinheit (HMI).

Gruppe	Einstellung & Beschreibung							
Sprache	Umschaltung der Sprache in der Anzeige (Standard: Englisch)							
Ton	Tastenton							
	Aktiviert bzw. deaktiviert die Tonausgabe bei Betätigung einer Taste oder eines Bedienfeldes in der Anzeige.							
	Alarmton							
	Aktiviert bzw. deaktiviert die zusätzliche akustische Signalisierung eines Gerätealarms oder be- nutzerdefinierten Ereignisses (Event), das auf Aktion = Alarm eingestellt wurde. Siehe auch «3.6 Alarme und Überwachung».							
Uhrzeit	Einstellen des Datums und Uhrzeit der internen, batteriegepufferten Uhr							
Beleuchtung	Beleuchtung aus nach 60s							
	Definiert, ob sich die Hintergrundbeleuchtung abschalten soll, wenn 60 s lange keine Eingabe über Touchscreen oder Drehknopf erfolgte. Sobald dann eine erfolgt, schaltet sich die Beleuchtung au- tomatisch wieder ein. Weiterhin kann die Helligkeit der Hintergrundbeleuchtung eingestellt werden.							
Sperre	Siehe «3.7 Bedieneinheit (HMI) sperren» und «3.8 Einstellgrenzen (Limits) und Benutzerprofile sperren»							

3.4.4 Einstellgrenzen (Limits)

Die Einstellgrenzen gelten nur für die zugehörigen Sollwerte, gleichermaßen bei manueller Bedienung wie bei Fernsteuerung.

Standardmäßig sind alle Sollwerte (U, I, P, R) von 0...102% einstellbar, mit Ausnahme der Spannung bei dem 60 V-Modell, die bis 100% einzustellen geht.

Dieser Bereich kann, besonders zum Schutz gegen versehentliches Verstellen auf einen viel zu hohen Wert, eingeschränkt werden. Es können jeweils für Spannung (U) und, Strom (I) untere und obere Einstellgrenzen festgelegt werden.

Für die Leistung (P) und den Widerstand (R) können nur obere Einstellgrenzen festgelegt werden.

► So konfigurieren Sie die Einstellgrenzen

1. Bei ausgeschaltetem DC-Eingang auf

- 2. Tippen Sie links auf die Gruppe Limits. Zusammengehörige Werte sind hier gruppiert und farblich getrennt. Diese werden durch Antippen eines Wertes zum Einstellen ausgewählt. Weiter unten noch versteckte Werte sind durch vertikales Wischen mit dem Finger zu erreichen.
- 3. Einstellen über die eingeblendete Zehnertastatur und Übernahme mit

Die Einstellgrenzen sind an die Sollwerte gekoppelt. Das bedeutet, daß die obere Einstellgrenze (-max) des Sollwertes nicht kleiner bzw. die untere Einstellgrenze (-min) nicht höher eingestellt werden kann als der Sollwert momentan ist.

Beispiel: Wenn man die Einstellgrenze der Leistung (P-max) auf 6000 W einstellen möchte und der Leistungssollwert ist noch auf 8000 W eingestellt, dann müßte man den Leistungssollwert zuerst auf 6000 W oder geringer einstellen, um P-max auf 6000 W setzen zu können.

3.4.5 Bedienart wechseln

Generell wird bei manueller Bedienung des Gerätes zwischen drei Bedienarten (U/P, U/I, U/R) unterschieden, die an die Sollwerteingabe per Drehknopf oder Zehnertastatur gebunden sind. Diese Zuordnung kann bzw. muß gewechselt werden, wenn einer der vier Sollwerte verstellt werden soll, der momentan keinem Drehknopf zugewiesen ist.

So wechseln Sie die Bedienart (zwei Möglichkeiten)

- Sofern das Gerät nicht in Fernsteuerung oder das Bedienfeld gesperrt ist, tippen Sie auf die Abbildung des rechten Drehknopfes (siehe Abbildung rechts), dann wechselt dessen Zuordnung zwischen I, P und R (wenn Widerstandsmodus aktiviert) und der jeweilige Sollwert wird invertiert dargestellt.
- Sie tippen auf die farblich hinterlegten Felder mit den Soll-/Istwerten, wie rechts gezeigt. Wenn das Feld des gewählten Sollwertes invertiert dargestellt wird, ist der Wert dem Drehknopf zugeordnet. Im Beispiel rechts sind U und I (Senke) gewählt.

Je nach getroffener Wahl wird dem rechten Drehknopf ein anderer Sollwert zum Einstellen zugeordnet, während der linke Drehknopf immer die Spannung stellt.

Um den ständigen Wechsel der Zuordnung zu umgehen, können Sie, bei z. B. Zuordnung U/I gewählt, auch die Leistung durch Direkteingabe stellen. Siehe dazu 3.4.6.

Was das Gerät bei eingeschaltetem DC-Eingang dann tatsächlich als aktuelle Regelungsart bzw. Betriebsart einstellt, hängt nur von den Sollwerten ab. Mehr Informationen dazu finden Sie in «3.2 Regelungsarten».

3.4.6 Sollwerte manuell einstellen

Die Einstellung der Sollwerte von Spannung, Strom und Leistung ist die grundlegende Bedienmöglichkeit eines Stromversorgungsgerätes und daher sind die beiden Drehknöpfe auf der Vorderseite des Gerätes bei manueller Bedienung stets zwei von diesen drei Sollwerten zugewiesen.

Der Widerstandswert ist an den sogenannten R-Modus gekoppelt, der separat aktiviert werden muß, z. B. im Schnellmenü. Siehe dazu «3.4.3 Konfiguration im Menü» und «3.2.4 Widerstandsregelung/Konstantwiderstand».

Die Sollwerte können auf zwei Arten manuell gesetzt werden, per **Drehknopf** oder **Direkteingabe**. Bei Benutzung der Drehknöpfe werden Werte kontinuierlich verstellt, die Direkteingabe erzeugt Sprünge.

Die Eingabe von Sollwerten, ob per Knopf oder Touchscreen, setzt den Sollwert immer sofort, egal ob die DC-Leistungsstufen ein- oder ausgeschaltet sind.

Die Einstellung der Sollwerte kann nach oben oder unten hin begrenzt sein durch die Einstellgrenzen. Siehe auch «3.4.4 Einstellgrenzen (Limits)». Bei Erreichen einer der Grenzen wird in der Anzeige, in der Nähe des Werter, für kurze Zeit ein Hinweis "Limit: U-max" usw. eingeblendet.

So können Sie manuell Sollwerte mit den Drehknöpfen einstellen

- 1. Prüfen Sie zunächst, ob der Sollwert (U, I, P, R), den Sie einstellen wollen, bereits einem der Drehknöpfe zugeordnet ist. Die Hauptbildschirm zeigt die Zuordnung wie rechts im Bild dargestellt.
- **2.** Falls, wie rechts im Beispiel gezeigt, für den linken Drehknopf die Spannung (U) und den rechten Drehknopf der Strom (I) zugewiesen ist, Sie möchten aber die Leistung einstellen,

können Sie die Zuordnung ändern, indem Sie so oft auf die Abbildung des rechten Drehknopfes tippen, bis ein "P" (Leistung) auf ihm angezeigt wird. Im linken Bereich der Anzeige ist dann der Leistungssollwert ausgewählt.

3. Nach erfolgter Auswahl kann der gewünschte Sollwert innerhalb der festgelegten Grenzen eingestellt werden. Zum Wechsel der Stelle drücken Sie auf den jeweiligen Drehknopf. Das verschiebt den Cursor (unterstrichene Stelle) im Uhrzeigersinn:

$(\mathsf{EL}) \quad 4\underline{7}.50\mathsf{A} \rightarrow (\mathsf{EL}) \quad \underline{4}7.50\mathsf{A} \rightarrow (\mathsf{EL}) \quad 47.5\underline{0}\mathsf{A}$

So können Sie manuell Sollwerte per Direkteingabe einstellen

- In der Hauptanzeige, abhängig von der Zuordnung der Drehknöpfe, können Sie die Sollwerte von Spannung (U), Strom (I), Leistung (P) oder Widerstand (R) per Direkteingabe einstellen, indem Sie auf die kleinen Zehnertastatur-Symbole tippen. Also z. B. auf das Symbol im blauen Feld, um die Spannung einzustellen usw.
- 2. Geben Sie den gewünschten Wert per Zehnertastatur ein. Ähnlich wie bei einem

Taschenrechner, löscht Bedienfeld ^C die Eingabe.

Nachkommastellen können durch Antippen des Komma-Bedienfeldes eingege-

ben werden. Wenn Sie also z. B. 54,3 V eingeben wollten, dann tippen Sie

3. Sofern der neue Wert nicht aus irgendeinem Grund abgelehnt wird, würde die Anzeige zurück auf die Hauptseite springen und der Sollwert wird auf den DC-Eingang übernommen.

Wird ein Wert eingeben, der höher als die jeweilige Einstellgrenze ist, erscheint ein Hinweis und der eingegebene Wert wird auf 0 zurückgesetzt und nicht übernommen.

5

3.4.7 DC-Eingang ein- oder ausschalten

Der DC-Eingang des Gerätes kann manuell oder ferngesteuert aus- oder eingeschaltet werden.

Das manuelle oder ferngesteuerte (digital) Einschalten des DC-Eingangs kann durch den Eingangspin REM-SB der eingebauten Analogschnittstelle gesperrt sein. Siehe dazu auch 3.4.3.1 und Beispiel a) in 3.5.4.7.

So schalten Sie den DC-Eingang manuell ein oder aus

- 1. Sofern das Bedienfeld nicht komplett gesperrt ist, betätigen Sie Taste **On/Off**. Anderenfalls werden Sie zunächst gefragt, die Sperre aufzuheben.
- 2. Jenachdem, ob der DC-Eingang vor der Betätigung der Taste ein- oder ausgeschaltet war, wird der entgegengesetzte Zustand aktiviert, sofern nicht durch einen Alarm oder den Zustand Fernsteuerung: verhindert.

So schalten Sie den DC-Eingang über die analoge Schnittstelle ein oder aus

Siehe Abschnitt «3.5.4 Fernsteuerung über Analogschnittstelle».

So schalten Sie den DC-Eingang über eine digitale Schnittstelle ferngesteuert ein oder aus

1. Siehe externe Dokumentation "Programmieranleitung ModBus & SCPI", falls Sie eigene Software verwenden, bzw. siehe externe Dokumentation der LabView VIs oder der vom Hersteller zur Verfügung gestellten Software.

3.4.8 Datenaufzeichnung auf USB-Stick (Logging)

Mittels eines handelsüblichen USB-Sticks (USB 3.0 geht, aber nicht alle Speichergrößen) können Daten vom Gerät aufgezeichnet werden. Für nähere Spezifikationen zum Stick und zu den Dateien lesen Sie bitte Abschnitt «1.9.6.5 USB-Port (Vorderseite)».

Durch das Logging erzeugte CSV-Dateien haben das gleiche Format wie jene, die von der App "Logging" in der Software EA Power Control erstellt werden, wo dann am PC geloggt wird. Der Vorteil beim Logging auf Stick ist, daß das Gerät nicht mit dem PC verbunden sein muß. Die Funktion muß lediglich im Einstellungsmenü konfiguriert und aktiviert werden.

3.4.8.1 Einschränkungen

Das Logging in dieser Form ist nicht verfügbar bzw. wird automatisch deaktiviert, wenn im Batterietest das Logging aktiviert wird.

3.4.8.2 Konfiguration

Siehe auch Abschnitt 3.4.3.6. Nach der Aktivierung der Funktion USB-Logging und Setzen des Logging-Intervall sowie des Start/Stopp-Verhaltens kann das Logging nach Verlassen des Einstellungsmenüs gestartet werden.

Weiterhin siehe auch Abschnitt 3.4.3.1. Für die durch das Logging erzeugte CSV-Dateien kann festgelegt werden, welches Trennzeichen-Format (deutsch/europäisch bzw. US) verwendet werden soll und ob Werte in den einzelnen Spalten mit oder ohne phys. Einheit aufgezeichnet werden. Letzteres zu deaktivieren vereinfacht die Verarbeitung der Log-Dateien in z. B. MS Excel.

3.4.8.3 Bedienung (Start/Stopp)

Wenn Einstellung Start/Stopp auf Bei DC ein/aus gesetzt ist startet das Logging beim Einschalten des DC-Eingangs, was entweder durch manuelles Betätigen der Taste "On/Off" auf der Vorderseite des Gerätes oder Steuerung derselben Funktion über digitale oder analoge Schnittstelle erfolgen kann. Bei Einstellung Manuell kann das Logging nur im Schnellmenü (siehe Bild rechts) gestartet und gestoppt werden.

Das Bedienfeld () startet die Aufzeichnung und wird dann zu (), womit die Aufzeichnung wieder gestoppt werden kann.

Nach dem Start der Aufzeichnung erscheint in der Anzeige das Symbol 🂾. Sollte es während des Log-Vorgangs zu einem Fehler kommen (Stick voll, Stick abgezogen), erscheint ein entsprechendes Symbol 🔜. Mit jedem manuellen Stopp oder Ausschalten des DC-Eingangs wird das Logging beendet und die aufgezeichnete Log-Datei geschlossen.

3.4.8.4 Das Dateiformat beim USB-Logging

Typ: Textdatei im europäischen bzw. US-amerikanischem CSV-Format (je nach Einstellung)

Aufbau:

	А	В	С	D	Е	F	G	н	Ι	J	К	L	М
1	U set	U actual	l set	I actual	P set	P actual	R set	R actual	R mode	Output/Input	Device mode	Error	Time
2	2,00V	11,92V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:00,942
3	2,00V	11,90V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:01,942
4	2,00V	11,89V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:02,942
5	2,00V	11,87V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:03,942

Legende:

U set / I set / P set / R set: Sollwert U, I, P und R

U actual / I actual / P actual / R actual: Istwerte U, I, P und R

Output/Input: Status DC-Eingang

Device mode: Aktuelle Regelungsart (siehe auch «3.2 Regelungsarten»)

Error: Gerätealarme

Time: Zeit ab Start des Logging

Hinweise:

- R set und R actual werden nur aufgezeichnet, wenn der "R-Modus" aktiv ist (siehe dazu Abschnitt 3.4.5)
- Im Unterschied zum Logging am PC erzeugt jeder neue Log-Vorgang beim USB-Logging eine weitere Datei, die am Ende des Dateinamens eine hochgezählte Nummer erhält; dabei werden bereits existierende Logdateien berücksichtigt

3.4.8.5 Besondere Hinweise und Einschränkungen

- Max. Dateigröße einer Aufzeichnungsdatei, bedingt durch FAT32: 4 GB
- Max. Anzahl von Aufzeichnungs-Dateien im Ordner HMI_FILES: 1024
- Wenn in den Einstellungen **Start/Stopp** auf **Bei DC ein/aus** gesetzt wurde, stoppt das Logging auch bei Alarmen oder Events mit Aktion **Alarm**, weil diese den DC-Eingang ausschalten
- Bei Einstellung **Start/Stopp** auf **Manuell** zeichnet das Gerät bei Alarmen weiter auf, damit so z. B. die Dauer von temporären Alarmen wie OT und PF ermittelt werden kann

3.4.9 Das Schnellmenü

Das Gerät bietet ein Schnellmenü für den direkten Zugriff zu den wichtigsten Einstellungen. Es ist in der Hauptanzeige jederzeit durch Fingerwischen vom unteren Bildschirmrand nach oben oder Antippen der Leiste erreichbar:

Übersicht:

Durch Antippen wird die zugehörige Funktion aktiviert oder deaktiviert. Symbole mit Schwarz auf Weiß zeigen eine momentan aktivierte Funktion an:

Symbol	Gehört zu	Bedeutung
٩	USB-Logging	USB-Logging läuft (Symbol ist nur verfügbar, wenn USB-Logging im Menü "Einstellungen" aktiviert wurde)
M	Master-Slave	Master-Slave aktiviert, Gerät ist Master
S	Master-Slave	Master-Slave aktiviert, Gerät ist Slave
Aus	Master-Slave	Master-Slave nicht aktiviert
Ω	Widerstandsmodus	Widerstandsmodus = ein
	НМІ	Alarmton = ein
	HMI	Tastenton = ein
	НМІ	Öffnet den Graphen
	Betriebsarten	Umschaltung der Spannungsreglergeschwindigkeit zwischen Lang- sam, Normal (Standard) und Schnell (siehe 3.2.5)
*	НМІ	Helligkeit der Hintergrundbeleuchtung einstellen
Menü	HMI	Öffnet das Hauptmenü

3.4.10 Der Graph

Das Gerät verfügt über eine nur bei Bedienung am HMI aufrufbare, visuelle Darstellung des Verlaufs von Spannung, Strom und Leistung, genannt Graph. Dieser stellt keine Aufzeichnungsfunktion dar. Zur Datenaufzeichnung im Hintergrund dient weiterhin das "USB-Logging" (siehe *3.4.8*). Der Graph kann im Normalbetrieb (keine Funktion läuft) per Schnellmenü gestartet werden, im Funktionsgeneratorbetrieb über einen das gleiche Bedienfeld. Nach dem Aufruf wird der Graph vollflächig dargestellt.

Nur eingeschränkter Status und Bedienmöglichkeiten im Graph-Bildschirm! Aus Sicherheitsgründen ist es jedoch jederzeit möglich, den DC-Eingang per Taste "On/Off" auszuschalten.

Übersicht:

Bedienmöglichkeiten:

- Tippen auf die Graphfläche pausiert den Graphen bzw. erneutes Tippen startet ihn wieder
- Tippen auf die Mitte der drei rot/grün/blauen Bedienflächen deaktiviert bzw. aktiviert den zugehörigen Plot
- Tippen auf die Seiten (Pfeile link/rechts) der drei rot/grün/blauen Bedienflächen ändert die vertikale Auflösung
- Tippen auf die Seiten (Pfeile link/rechts) der schwarzen Bedienfläche ändert die zeitliche Auflösung
- Wischen auf den drei Skalen (Y-Achse) verschiebt diese
- Tippen auf das Menüsymbol (🚍) verläßt den Graphen jederzeit

3.5 Fernsteuerung

3.5.1 Allgemeines

Fernsteuerung ist grundsätzlich über eine der eingebauten Schnittstellen (analog, USB, Ethernet) oder über eins der optional erhältlichen digitalen Schnittstellen-Module möglich. Zu den digitalen zählt auch der Master-Slave-Bus. Das heißt für Slave-Modelle, daß sie dafür gedacht sind, immer von einem Master über den Master-Slave-Bus gesteuert zu werden. Fernsteuerung eines Slave-Gerätes über seine rückseitige USB-Buchse ist eher die Ausnahme.

Wichtig ist dabei, daß entweder nur die analoge oder eine der digitalen im Eingriff sein kann. Das bedeutet, wenn man zum Beispiel versuchen würde bei aktiver analoger Fernsteuerung (Pin REMOTE = LOW) auf Fernsteuerung per digitaler Schnittstelle umzuschalten, würde das Gerät auf der digitalen Schnittstelle einen Fehler zurückmelden. Im umgekehrten Fall würde die Umschaltung per Pin REMOTE einfach ignoriert. In beiden Fällen ist jedoch Monitoring, also das Überwachen des Status' bzw. das Auslesen von Werten, immer möglich.

3.5.2 Bedienorte

Bedienorte sind die Orte, von wo aus ein Gerät bedient wird. Grundsätzlich gibt es da zwei: am Gerät (manuelle Bedienung) und außerhalb (Fernsteuerung). *Folgende Bedienorte sind definiert:*

Bedienort laut Anzeige	Erläuterung
Fernsteuerung: Keine	Wird keiner der anderen Bedienorte im Statusfeld angezeigt, ist manuelle Bedienung aktiv und der Zugriff von der analogen bzw. digitalen Schnittstelle ist freigegeben.
Fernsteuerung: <schnittstellenname></schnittstellenname>	Fernsteuerung über eine der Schnittstellen ist aktiv
Lokal	Fernsteuerung ist gesperrt, Gerät kann nur manuell bedient werden

Fernsteuerung kann über die Einstellung Fernsteuerung erlauben (siehe «3.4.3.1 Untermenü "Einstellungen"») erlaubt oder gesperrt werden. Im gesperrten Zustand ist im Statusfeld in der Anzeige oben rechts der Status **Lokal** zu lesen. Die Aktivierung der Sperre kann dienlich sein, wenn normalerweise eine Software oder eine Elektronik das Gerät ständig fernsteuert, man aber zwecks Einstellung oder auch im Notfall daran hantieren muß, was bei Fernsteuerung sonst nicht möglich wäre.

Die Aktivierung der Sperre bzw. des Zustandes Lokal bewirkt folgendes:

- Falls Fernsteuerung über digitale Schnittstelle aktiv ist (z. B. **Fernsteuerung: USB**), wird die Fernsteuerung sofort beendet und muß später auf der PC-Seite, sobald **Lokal** nicht mehr aktiv ist, erneut übernommen werden, sofern nötig
- Falls Fernsteuerung über analoge Schnittstelle aktiv ist (**Fernsteuerung: Analog**), wird die Fernsteuerung nur solange unterbrochen bis **Lokal** wieder beendet, sprich die Fernsteuerung wieder erlaubt wird, weil der Pin REMOTE an der Analog-schnittstelle weiterhin das Signal "Fernsteuerung = ein" vorgibt, es sei denn dies wird während der Phase mit **Lokal** geändert

3.5.3 Fernsteuerung über eine digitale Schnittstelle

3.5.3.1 Schnittstellenwahl

Zusätzlich zur serienmäßig eingebauten USB- und Ethernetschnittstelle unterstützen alle Modelle dieser Serie folgende optional erhältliche Schnittstellen-Module:

Kurzbezeichnung	Тур	Ports	Beschreibung*
IF-AB-CANO	CANopen	1	CANopen Slave mit Generic EDS
IF-AB-RS232	RS232	1	Standard RS232, seriell
IF-AB-PBUS	Profibus	1	Profibus DP-V1 Slave
IF-AB-PNET1P	Profinet/IO	1	Profinet DP-V1 Slave
IF-AB-PNET2P	Profinet/IO	2	Profinet DP-V1 Slave, mit Switch
IF-AB-CAN	CAN	1	CAN 2.0 A / 2.0 B
IF-AB-ECT	EtherCAT	2	Standard EtherCAT-Slave mit CoE
IF-AB-MBUS1P	ModBus TCP	1	ModBus TCP Protokoll über Ethernet
IF-AB-MBUS2P	ModBus TCP	2	ModBus TCP Protokoll über Ethernet

* Für technische Details zu den einzelnen Modulen siehe separate Dokumentation "Programmieranleitung Modbus & SCPI"

3.5.3.2 Programmierung

Details zur Programmierung der hinteren Schnittstellen, die Kommunikationsprotokolle usw. sind in der externen Dokumentation "Programmieranleitung ModBus & SCPI" zu finden, die mit dem Gerät auf einem USB-Stick mitgeliefert wird bzw. als Download auf der Webseite des Geräteherstellers verfügbar ist.

3.5.3.3 Schnittstellenüberwachung

Die ab Firmware KE 2.06 verfügbare und ab Firmware HMI 2.08 auch am Bedienteil konfigurierbare Funktionalität "Schnittstellenüberwachung" dient zur Überwachung der Kommunikationsverbindung zwischen einer steuernden Einheit (PC, SPS usw.) und dem Gerät. Ziel der Überwachung ist es sicherzustellen, daß das Gerät bei einem Abbruch der Kommunikationsverbindung nicht undefiniert weiterarbeitet. Ein Abbruch kann entstehen, wenn eine Datenleitung physikalisch getrennt wird (Defekt, schlechter Kontakt, Kabel entfernt) oder die Schnittstelle im Gerät nicht mehr erwartungsgemäß funktioniert.

Überwacht wird dabei immer nur die digitale Schnittstelle, über die das Gerät gesteuert wird. Das bedeutet auch, daß diese Überwachung inaktiv wird, solange ein Gerät sich nicht in Fernsteuerung befindet. Die Überwachung kann nur funktionieren, wenn innerhalb einer definierbaren Zeitspanne mindestens einmal mit dem Gerät kommuniziert wird. Dazu wird vom Anwender ein Timeout eingestellt, das vom Gerät jedesmal zurückgesetzt wird, wenn eine Nachricht eingeht. Läuft das Zeitfenster jedoch ab, ist als Reaktion des Gerätes folgendes definiert:

- Die Fernsteuerung wird beendet
- Der DC-Eingang, sofern eingeschaltet, wird entweder ausgeschaltet oder bleibt eingeschaltet, wie mit der Einstellung **DCinput -> Zustand nach Remote** festgelegt (siehe 3.4.3.1)

Hinweise zur Benutzung:

- Das Timeout der Schnittstellenüberwachung kann jederzeit geändert werden; der geänderte Wert wird erst wirksam, nachdem die Zeit des aktuellen Timeouts abgelaufen ist
- Die Schnittstellenüberwachung deaktiviert <u>nicht</u> das Ethernet-Timeout (siehe 3.4.3.6), somit können sich beide Timeouts überschneiden

3.5.4 Fernsteuerung über Analogschnittstelle

3.5.4.1 Allgemeines

Die galvanische getrennte, 15-polige analoge Schnittstelle, ist fest eingebaut wird unten kurz als **AS** referenziert, befindet sich auf der Rückseite des Gerätes und bietet folgende Möglichkeiten:

- Fernsteuerung von Strom, Spannung, Leistung und Widerstand
- Fernüberwachung Status (CV, DC-Eingang)
- Fernüberwachung Alarme (OT, OVP, PF, OCP, OPP)
- Fernüberwachung der Istwerte
- Ferngesteuertes Ein-/Ausschalten des DC-Eingangs

Das Stellen der **drei** Sollwerte (U, I, P) über analoge Schnittstelle geschieht immer **zusammen**. Das heißt, man kann nicht z. B. die Spannung über die AS vorgeben und gleichzeitig Strom und Leistung am Gerät mittels Drehknopf einstellen oder umgekehrt.

Die analogen Sollwerte können über eine externe Spannung eingespeist oder durch am Pin 3 ausgegebene Referenzspannung erzeugt werden. Sobald die Fernsteuerung über analoge Schnittstelle aktiviert wurde, zeigt die Anzeige vorn am Gerät die Sollwerte an, die hinten über die analoge Schnittstelle vorgegeben werden. Die AS kann mit den gängigen Spannungsbereichen 0...5 V oder 0...10 V betrieben werden. Die Wahl des Spannungsbereiches findet im Geräte-Setup statt, siehe Abschnitt «*3.4.3 Konfiguration im Menü*». Die am Pin 3 (VREF) herausgegebene Referenzspannung wird mit angepaßt. Es gilt somit folgendes:

0-5 V: Referenzspannung = 5 V, 0...5 V Sollwert (VSEL, CSEL, PSEL, RSEL) entsprechen 0...100% Nennwert (beim Widerstand dann $R_{Min}...R_{Max}$), 0...100% Istwert entsprechen 0...5 V an den Istwertausgängen (CMON, VMON), zumindest solange VMON/ CMON nicht anders konfiguriert wurden (siehe *«3.4.3 Konfiguration im Menü»*).

0-10 V: Referenzspannung = 10 V, 0...10 V Sollwert (VSEL, CSEL, PSEL, RSEL) entsprechen 0...100% Nennwert (beim Widerstand dann $R_{Min...}R_{Max}$), 0...100% Istwert entsprechen 0...10 V an den Istwertausgängen (CMON, VMON), zumindest solange VMON/CMON nicht anders konfiguriert wurden (siehe *«3.4.3 Konfiguration im Menü»*)..

Die Vorgabe von Sollwerten wird außerdem stets auf die jeweilig zugehörige Einstellgrenze (Limit) U-max, I-max usw. begrenzt, was die Vorgabe von zu hohen Stellwerten an den DC-Eingang verhindern soll. Siehe dazu auch «*3.4.4 Einstellgrenzen (Limits)*».

Bevor Sie beginnen: Unbedingt lesen, wichtig!

Nach dem Einschalten des Gerätes, während der Startphase, zeigt die AS unbestimmte Zustände an den digitalen Ausgängen, die bis zum Erreichen der Betriebsbereitschaft ignoriert werden müssen.

- Fernsteuerung des Gerätes erfordert die Umschaltung auf Fernsteuerbetrieb mit Pin REMOTE (5). Einzige Ausnahme ist der Pin REM-SB, der auch einzeln betrieben werden kann
- Bevor die Steuerung verbunden wird, welche die analoge Schnittstelle bedienen soll, ist zu prüfen, daß die Steuerung keine höheren Spannungen als spezifiziert auf die Pins geben kann
- Die Sollwerteingänge VSEL, CSEL, PSEL bzw. RSEL (falls R-Modus aktiviert) dürfen bei Fernsteuerung über die analoge Schnittstelle nicht unbeschaltet bleiben, da sonst schwebend (floating). Sollwerte, die nicht gestellt werden sollen, können auf einen festen Wert oder auf 100% gelegt werden (Brücke nach VREF oder anders)

3.5.4.2 Quittieren von Alarmmeldungen

Tritt während der Fernsteuerung über analoge Schnittstelle ein Gerätealarm auf, schaltet der DC-Eingang genauso aus wie bei manueller Bedienung. Daraufhin vom Gerät ausgegebene Alarmmeldungen (siehe *3.6.2*) erscheinen immer in der Anzeige, die meisten davon können aber auch als Signal auf der analogen Schnittstelle ausgegeben werden (siehe Tabelle unten). Welche genau, das ist im Setup-Menü (siehe *«3.4.3.1 Untermenü "Einstellungen"»*) konfigurierbar.

Die meisten Gerätealarme müssen quittiert werden (siehe auch *«3.6.2 Gerätealarme und Events handhaben»*). Das kann nur durch Aus- und Wiedereinschalten des DC-Eingangs per Pin REM-SB erfolgen, also eine HIGH-LOW-HIGH-Flanke (mind. 50ms für LOW) bei gewählter Standardeinstellung für den logischen Pegel des Pins.

Pin	Name	Typ ⁽¹	Bezeichnung	Standardpegel	Elektrische Eigenschaften		
1	VSEL	AI	Sollwert Spannung	010 V bzw. 05 V entspre-	Genauigkeit 0-5 V Bereich: < 0,4% ⁽⁵		
2	CSEL	AI	Sollwert Strom	010 V bzw. 05 V entspre- chen 0100% von I _{Nenn}	Genauigkeit 0-10 V Bereich: < 0,2% ⁽⁵ Eingangsimpedanz R ₁ >40 k100 k		
3	VREF	AO	Referenzspannung	10 V oder 5 V	Genauigkeit < 0,2% bei I _{max} = +5 mA Kurzschlussfest gegen AGND		
4	DGND	POT	Bezugspotential für alle digitalen Signale		Für Steuer- und Meldesignale		
5	REMOTE	DI	Umschaltung zwischen manueller und externer Steuerung	Extern = LOW, U _{Low} <1 V Manuell = HIGH, U _{High} >4 V Manuell, wenn Pin unbeschaltet	Spannungsbereich = 030 V I _{Max} = -1 mA bei 5 V U _{LOW nach HIGH typ.} = 3 V Empf. Sender: Open collector gegen DGND		
6	ALARMS 1	DO	Übertemperaturalarm / Power fail	Alarm = HIGH, U _{High} > 4 V Kein Alarm = LOW, U _{Low} <1 V	Quasi-Open-Collector mit Pull-up gegen Vcc ⁽²⁾ Bei 5 V am Pin fließen max. +1 mA I_{Max} = -10 mA bei U _{CE} = 0,3 V U _{Max} = 30 V Kurzschlussfest gegen DGND		
7	RSEL	AI	Sollwert Widerstand (Quelle & Senke)	010 V bzw. 05 V entspre- chen R _{Min} R _{Max}	Genauigkeit 0-5 V Bereich: < 0,4% ⁽⁵		
8	PSEL	AI	Sollwert Leistung (Quelle & Senke)	010 V bzw. 05 V entspre- chen 0100% von P _{Nenn}	Eingangsimpedanz R _i >40 k100 k		
9	VMON	AO	Istwert Spannung	010 V bzw. 05 V entspre- chen 0100% von U _{Nenn}	Genauigkeit 0-5 V Bereich: < 0,4% ⁽⁵ Genauigkeit 0-10 V Bereich: < 0.2% ⁽⁵		
10	CMON	AO	Istwert Strom	010 V bzw. 05 V entspre- chen 0100% von I _{Nenn}	I _{Max} = +2 mA Kurzschlussfest gegen AGND		
11	AGND	POT	Bezugspotential für alle analogen Signale		Für xSEL, xMON, VREF		
12	R-ACTIVE	DI	Widerstandsregelung ein / aus	Aus = LOW, U _{Low} <1 V Ein = HIGH, U _{High} >4 V Ein, wenn Pin unbeschaltet	Spannungsbereich = 030 V I _{Max} = -1 mA bei 5 V U _{LOW nach HIGH typ.} = 3 V Empf. Sender: Open collector gegen DGND		
13	REM-SB	DI	DC-Eingang aus (DC-Eingang ein) (Alarm quittieren ⁽⁴)	Aus = LOW, U _{Low} <1 V Ein = HIGH, U _{High} >4 V Ein, wenn Pin unbeschaltet	Spannungsbereich = 030 V I _{Max} = +1 mA bei 5 V Empf. Sender: Open-Collector gegen DGND		
14	ALARMS 2	DO	Überspannung Überstrom Überleistung	Alarm = HIGH, U _{High} > 4 V Kein Alarm = LOW, U _{Low} <1 V	Quasi-Open-Collector mit Pull-up gegen Vcc (2 Bei 5 V am Pin fließen max +1 mA		
15			Spannungsregelung aktiv	CV = LOW, U _{Low} <1 V CC/CP/CR = HIGH, U _{High} >4 V	$I_{max} = -10 \text{ mA bei } U_{ce} = 0,3 \text{ V}, U_{max} = 030 \text{ V}$ Kurzschlussfest gegen DGND		
15 STATUS ⁽³		DU	DC-Eingang	Aus = LOW, $U_{Low} < 1 V$ Ein = HIGH, $U_{Hinb} > 4 V$			

3.5.4.3 Spezifikation der Analogschnittstelle

(1 AI = Analoger Eingang, AO = Analoger Ausgang, DI = Digitaler Eingang, DO = Digitaler Ausgang, POT = Potential

(2 Interne Vcc ca. 10 V

(3 Nur eins von beiden Signalen möglich, siehe 3.4.3.1

(4 Nur während Fernsteuerung

(5 Der Fehler eines Sollwerteinganges addiert sich zum allgemeinen Fehler des zugehörigen Wertes am DC-Eingang des Gerätes

3.5.4.4 Auflösung

Intern wird die analoge Schnittstelle digital verarbeitet. Das bedingt eine bestimmte, maximal stellbare Auflösung. Diese ist für alle Sollwerte (VSEL usw.) und Istwerte (VMON/CMON) gleich und beträgt 26214, bei Verwendung des 10 V-Bereiches. Bei gewähltem 5 V-Bereich halbiert sich die Auflösung. Durch Toleranzen am analogen Eingang kann sich die resultierende Auflösung zusätzlich leicht verringern.

3.5.4.5 Übersicht Sub-D-Buchse

3.5.4.6 Prinzipschaltbilder der Pins

	Digitaler Eingang (DI)
	Es ist ein möglichst niederohmiger Schalter zu verwenden (Relaiskontakt, Schalter, Schütz o.ä.), um das Signal sauber nach DGND zu schalten.
	Ein digitaler Ausgang einer Schaltung oder SPS könnte nicht ausreichend sein, wenn nicht vom Typ, open collector"
+10V 12V	Digitaler Ausgang (DO)

 Analoger Eingang (Al)
Hochohmiger Eingang (Impedanz: >40 kΩ) einer OP-Schaltung.
Analoger Ausgang (AO)
 Ausgang einer OP-Schaltung, nicht oder nur sehr gering belastbar. Siehe Tabelle oben.

3.5.4.7 Anwendungsbeispiele

a) DC-Eingang ein- oder ausschalten über Pin REM-SB

Ein digitaler Ausgang, z. B. von einer SPS, kann diesen Eingang unter Umständen nicht sauber ansteuern, da eventuell nicht niederohmig genug. Prüfen Sie die Spezifikation der steuernden Applikation. Siehe auch die Prinzipschaltbilder oben.

Pin REM-SB wird bei analoger Fernsteuerung zum Ein- und Ausschalten des DC-Eingangs des Gerätes genutzt. Er funktioniert aber auch ohne aktivierte analoge Fernsteuerung. Dann kann er zum Einen das manuelle oder digital ferngesteuerte Einschalten des DC-Eingangs blockieren und zum Anderen ein- oder ausschalten, jedoch nicht ohne Weiteres. Siehe unten bei "Fernsteuerung wurde nicht aktiviert".

Pin REM-SB kann nicht im Sinne eines Not-Aus' verwendet werden, um im Gefahrenfall den DC-Eingang sicher abzuschalten! Dafür wäre ein externes Not-Aus-System erforderlich.

Es wird empfohlen, einen niederohmigen Kontakt wie einen Schalter, ein Relais oder Transistor zum Schalten des Pins gegen Masse (DGND) zu benutzen.

Folgende Situationen können auftreten:

Fernsteuerung wurde aktiviert

Nachdem die Fernsteuerung über Pin REMOTE aktiviert wurde, gibt nur Pin REM-SB den Zustand des DC-Eingangs des Gerätes gemäß der Tabelle in *3.5.4.3* vor. Die logische Funktion des Eingangspegels kann durch eine Einstellung im Setup-Menü des Gerät invertiert werden. Siehe *3.4.3.1*.

Wird der Pin nicht beschaltet bzw. der angeschlossene Kontakt ist offen, ist der Pin auf HIGH. Bei Einstellung "Analogschnittstelle" -> "REM-SB Pegel" auf "Normal" entspricht das der Vorgabe "DC-Eingang einschalten". Das heißt, sobald mit Pin REMOTE auf Fernsteuerung umgeschaltet wird, schaltet auch der DC-Eingang ein!

Fernsteuerung wurde nicht aktiviert

In diesem Modus stellt Pin REM-SB eine Art **Freigabe** der Taste "On/Off" am Bedienfeld des Gerätes bzw. des Befehls "DC-Eingang ein/aus" (bei digitaler Fernsteuerung) dar. Daraus ergeben sich folgende mögliche Situationen:

DC- Eingang	÷	Pegel an Pin REM- SB	÷	Parameter "REM-SB Pegel"	→	Verhalten
		HIGH	+	Normal		Der DC-Eingang ist nicht gesperrt. Er kann mit Taste On/Off oder Befehl (dig. Fernsteuerung) eingeschaltet werden
ist aus	+	LOW	+	Invertiert	7	(dig. remotedel dhg) engeschattet werden.
		HIGH	+	Invertiert		Der DC-Eingang ist gesperrt. Er kann nicht mit Taste On/Off oder Befeh (dig. Fernsteuerung) eingeschaltet werden. Bei Versuch wird eine Feh- lermeldung (Schnittstelle oder Anzeige) ausgegeben.
	T	LOW	+	Normal		

Ist der DC-Eingang bereits eingeschaltet, bewirkt der Pin dessen Abschaltung bzw. später erneutes Einschalten, ähnlich wie bei aktivierter Fernsteuerung:

DC- Eingang	÷	Pegel an Pin REM- SB	÷	Parameter "REM-SB Pegel"	→	Verhalten
ist ein	+	HIGH	+	Normal		Der DC-Eingang bleibt eingeschaltet. Er kann mit der Taste On/Off am
		LOW	+	Invertiert	7	
		HIGH	+	Invertiert		Der DC-Eingang wird ausgeschaltet und bleibt gesperrt, solange der Pin den Zustand behält, Erneuten Einschalten durch Weshaal des Zustandes
	T	LOW	+	Normal	7	des Pins.

b) Fernsteuerung von Strom und Leistung

Erfordert aktivierte Fernsteuerung (Pin REMOTE = LOW).

Über je ein Potentiometer werden die Sollwerte PSEL und CSEL aus beispielsweise der Referenzspannung VREF erzeugt. Das Gerät kann somit wahlweise in Strombegrenzung oder Leistungsbegrenzung arbeiten. Gemäß der Vorgabe von max. 5 mA Belastung für den Ausgang VREF sollten hier Potentiometer von mindestens 10 kOhm benutzt werden.

Der Spannungssollwert wird hier fest auf VREF (Δ 100%) gelegt und beeinflußt somit Konstantstrom- oder Konstantleistungsbetrieb nicht. Das bedeutet zudem, daß das Gerät nur als Quelle arbeiten kann. Bei Einspeisung der Steuerspannungen von einer externen Spannungsquelle wäre die Wahl des Eingangsspannungsbereiches für Sollwerte (0...5 V oder 0...10 V) zu beachten.

Beispiel mit ext. Spannungsquelle

Beispiel mit Potis

Bei Benutzung des 0...5 V Bereiches für 0...100% Sollwert halbiert sich die effektive Auflösung.

c) Istwerte erfassen

Über die AS werden die Ausgangswerte von Strom und Spannung mittels 0...10 V oder 0...5 V abgebildet. Zur Erfassung dienen handelsübliche Multimeter o.ä.

3.6 Alarme und Überwachung

3.6.1 Begriffsdefinition

Grundsätzlich wird zwischen Gerätealarmen (siehe «*3.3 Alarmzustände»*), wie Überspannung (**OVP**) oder Übertemperatur (**OT**), und benutzerdefinierten Ereignissen wie z. B. **OVD** (Überspannungsüberwachung) unterschieden. Während Gerätealarme, bei denen immer der DC-Eingang zunächst ausgeschaltet wird, zum Schutz des Gerätes und der angeschlossenen Quelle dienen, können benutzerdefinierte Ereignisse den DC-Eingang abschalten (bei **Aktion = Alarm**), aber auch nur als akustisches Signal ausgegeben werden, das den Anwender auf etwas aufmerksam macht.

Bei **benutzerdefinierten Ereignissen** kann die Aktion ausgewählt werden:

Aktion	Verhalten	Beispiel
Keine	Benutzerereignis ist deaktiviert	
Signal	Bei Erreichen der Bedingung, die ein Ereignis mit Aktion Signal auslöst, wird nur in der Anzeige (Statusfeld) des Gerätes ein Text ausgegeben.	Event: UVD
Warnung	Bei Erreichen der Bedingung, die ein Ereignis mit Aktion Warnung auslöst, werden in der Anzeige (Statusfeld) des Gerätes ein Text und eine zusätzlich eingeblendete Meldung ausgegeben, die von größerer Entfernung aus wahr- nehmbar ist.	Warnung A Ereignis erkannt Event: OCD Im Fall einer Warnung wird der DC-Anschluss nicht augeschaltet, aber die Warnung ist zu bestätigen. Bestätigen
Alarm	Bei Erreichen der Bedingung, die ein Ereignis mit Aktion Alarm oder einen Alarm auslöst, werden nur in der Anzeige (Statusfeld) des Gerätes ein Text und zusätzlich eine Meldung eingeblendet, sowie ein akustisches Signal ausgegeben (falls der Alarmton aktiviert ist). Weiterhin wird der DC-Eingang ausgeschaltet. Die meisten Gerätealarme werden zusätzlich über die analoge Schnittstelle signalisiert, außerdem können alle auch über die digitalen Schnitt- stellen abgefragt werden.	Alarm A Ereignis erkannt Event: OCD Im Fall eines Alarms wird der DC-Anschluss ausgeschaltet und Sie müssen den Alarm bestätigen. Bestätigen

3.6.2 Gerätealarme und Events handhaben

Bei Auftreten eines Gerätealarms wird üblicherweise zunächst der DC-Eingang ausgeschaltet, eine Meldung in der Mitte der Anzeige ausgegeben und, falls aktiviert, ein akustisches Signal erzeugt, um den Anwender auf den Alarm aufmerksam zu machen. Der Alarm muß zur Kenntnisnahme bestätigt werden.

So bestätigen Sie einen Alarm in der Anzeige (während manueller Bedienung)

- 1. Wenn in der Anzeige ein Alarm als überlagernde Meldung angezeigt wird: mit Bestätigen.
- 2. Wenn der Alarm bereits einmal mit OK bestätigt wurde, aber noch angezeigt wird im Statusfeld, dann zuerst auf das Statusfeld tippen, damit die überlagernde Meldung erneut eingeblendet wird und dann mit **Bestätigen**.

Zum Bestätigen von Alarmen während analoger Fernsteuerung siehe «3.5.4.2 Quittieren von Alarmmeldungen» bzw. bei digitaler Fernsteuerung siehe externe Dokumentation "Programmieranleitung ModBus & SCPI".

Manche Gerätealarme können konfiguriert werden:

Kurz	Lang	Beschreibung	Einstellbereich	Meldeorte
OVP	OverVoltage Protection	Überspannungsschutz. Löst einen Alarm aus, wenn die Spannung am DC-Eingang die eingestellte Schwelle erreicht. Außerdem wird der DC-Eingang ausgeschaltet.	0 V1,1*U _{Nenn}	Anzeige, analoge & digitale Schnitt- stellen
OCP	OverCurrent Protection	Überstromschutz. Löst einen Alarm aus, wenn der Strom im DC-Eingang die eingestellte Schwelle erreicht. Außerdem wird der DC-Eingang ausgeschaltet.	0 A1,1*I _{Nenn}	Anzeige, analoge & digitale Schnitt- stellen
OPP	OverPower Protection	Überleistungsschutz. Löst einen Alarm aus, wenn die abgege- bene oder aufgenommene Leistung die eingestellte Schwelle erreicht. Außerdem wird der DC-Eingang ausgeschaltet.	0 W1,1*P _{Nenn}	Anzeige, analoge & digitale Schnitt- stellen

Diese Gerätealarme können nicht konfiguriert werden, da hardwaremäßig bedingt:

Kurz	Lang	Beschreibung	Meldeorte
PF Power Fail		Netzfehler. Löst einen Alarm aus, wenn die AC-Versorgung außerhalb der Spezi- fikationen des Gerätes arbeiten sollte (Unterspannung) oder wenn das Gerät von der AC-Versorgung getrennt wird, z. B. durch Ausschalten am Netzdrehschalter. Außerdem wird der DC-Eingang ausgeschaltet. Der Zustand des DC-Eingangs nach Verschwinden eines zeitweiligen PF-Alarms kann mit der Einstellung DC- Eingang -> Zustand nach PF-Alarm festgelegt werden.	Anzeige, analoge & digitale Schnitt- stellen
		Die Bestätigung und somit Löschung eines PF-Alarms zur Laufzei Sekunden nach Abklingen der Alarmursache erfolgen, sowie das er des DC-Eingangs nach weiteren 5 Sekunden.	t kann erst ca. 15 meute Einschalten
от	O ver T empe- rature	Übertemperatur. Löst einen Alarm aus, wenn die Innentemperatur des Gerätes eine bestimmte Schwelle erreicht. Außerdem wird der DC-Eingang ausgeschaltet. Der Zustand des DC-Eingangs nach Abkühlung kann mit der Einstellung DC- Eingang -> Zustand nach OT-Alarm festgelegt werden.	
MSS	Master-Slave Sicherheits- modus	Wird ausgelöst, wenn der Master in einem initialisierten Master-Slave-Verbund den Kontakt zu einem oder mehreren Slaves verliert bzw. ein Slave noch nicht initialisiert wurde. Außerdem wird der DC-Eingang aller Geräte ausgeschaltet. Der Alarm kann durch erneute Initialisierung des MS-System oder Deaktivierung von MS gelöscht werden.	Anzeige, digitale Schnittstellen
SF	S hare Bus F ail	Share-Bus-Fehler. Tritt auf, wenn das Signal am Share-Bus durch Kurzschluß oder zu starke Dämpfung gestört ist oder wenn einer der Share-Bus-Anschlüsse zu einem anderen Gerät verbunden ist, während das betroffene nicht für Master- Slave konfiguriert wurde. In dem Fall sollte das Kabel entfernt werden. Der Alarm führt zum Ausschalten der DC-Eingänge aller Einheiten in einem Master-Slave- System. Für Details siehe Abschnitt <i>3.3.6</i> .	Anzeige, digitale Schnittstellen

► So konfigurieren Sie die Schwellen der einstellbaren Gerätealarme

1. Bei ausgeschaltetem DC-Eingang tippen Sie in der Hauptseite auf das Bedienfeld

- 2. Tippen Sie auf der linken Seite auf das Feld **Schutz**. Auf der rechten Seite werden alle einstellbaren Gerätealarme und deren Schwellwerte eingeblendet. Diese Schwellen vergleicht das Gerät ständig mit den Istwerten von Strom, Spannung und Leistung am DC-Eingang.
- **3.** Stellen Sie hier die Schwellenwerte für die Gerätealarme gemäß Ihrer Anwendung ein, falls die Standardwerte von 110% nicht passen.

Der Anwender kann außerdem wählen, ob er zusätzliche eine akustische Meldung bekommen möchte, wenn ein Alarm oder benutzerdefiniertes Ereignis (Nutzer-Event) auftritt.

► So konfigurieren Sie den "Alarmton" (siehe auch «3.4.3 Konfiguration im Menü»)

- 1. Wischen Sie in der Hauptseite mit dem Finger vom unteren Rand nach oben oder tippen Sie auf
- 2. Es öffnet sich ein Schnellmenü. Dort auf das Feld auszuschalten.

um den Alarmton einzuschalten bzw. auf (

3. Schnellmenü verlassen.

3.6.2.1 Benutzerdefinierbare Ereignisse (Nutzer-Events)

Die Überwachungsfunktion des Gerätes kann über benutzerdefinierbare Ereignisse, nachfolgend kurz "Events" genannt, konfiguriert werden. Standardmäßig sind die Events deaktiviert (**Aktion** gesetzt auf **Keine**) und funktionieren im Gegensatz zu Gerätealarmen nur solange der DC-Eingang eingeschaltet ist. Das bedeutet zum Beispiel, daß keine Unterspannung mehr erfaßt würde, auch wenn die Quelle diese senkt.

Kurz	Lang	Beschreibung	Einstellbereich
UVD	UnderVoltage Detection	Unterspannungserkennung. Löst das Ereignis aus, wenn die Spannung am DC-Eingang die eingestellte Schwelle unterschreitet.	0 VU _{Nenn}
OVD	OverVoltage Detection	Überspannungserkennung. Löst das Ereignis aus, wenn die Span- nung am DC-Eingang die eingestellte Schwelle überschreitet.	0 VU _{Nenn}
UCD	UnderCurrent Detection	Unterstromerkennung. Löst das Ereignis aus, wenn der Strom im DC-Eingang die eingestellte Schwelle unterschreitet.	0 AI _{Nenn}
OCD	OverCurrent Detection	Überstromerkennung. Löst das Ereignis aus, wenn der Strom im DC-Eingang die eingestellte Schwelle überschreitet.	0 AI _{Nenn}
OPD	OverPower Detection	Überleistungserkennung. Löst das Ereignis aus, wenn die Leistung am DC-Eingang die eingestellte Schwelle überschreitet.	0 WP _{Nenn}

Folgende Events können unabhängig voneinander konfiguriert werden:

Diese Ereignisse sind nicht zu verwechseln mit Alarmen wie OT und OVP, die zum Schutz des Gerätes dienen. Events können, wenn auf Aktion "Alarm" gestellt, aber auch den DC-Eingang ausschalten und somit die externe Quelle schützen.

So konfigurieren Sie die Nutzer-Events

1. Bei ausgeschaltetem DC-Eingang tippen Sie in der Hauptseite auf das Bedienfeld

- 2. Tippen Sie auf der linken Seite auf das Feld **Nutzer-Events**. Auf der rechten Seite werden alle einstellbaren Werte und Aktionen eingeblendet. Die Werte stellen Überwachungsschwellen dar, die ständig mit den Istwerten von Strom, Spannung und Leistung am DC-Eingang verglichen werden.
- **3.** Tippen Sie auf die Werte, um diese mittels einer daraufhin angezeigten Zehnertastatur zu verändern. Der Einstellbereich dieser Werte ist nicht durch die Einstellgrenzen begrenzt. Die jedem Event zugehörige **Aktion** ist über eine Rollauswahl einzustellen. Für die Bedeutung der auswählbaren Aktionen siehe *3.6.1*.

Die Events sind Bestandteil des momentan gewählten Benutzerprofils. Wenn also ein anderes Benutzerprofil oder das Standardprofil geladen wird, sind die Events entweder anders oder gar nicht konfiguriert.

3.7 Bedieneinheit (HMI) sperren

Um bei manueller Bedienung die versehentliche Verstellung eines Wertes zu verhindern, können die Drehknöpfe sowie der Touchscreen gesperrt werden, so daß keine Verstellung eines Wertes per Drehknopf oder Bedienung per Touchscreen angenommen wird, ohne die Sperre vorher wieder aufzuheben.

So sperren Sie das HMI

- 1. Tippen Sie auf der Hauptseite auf das Schloßsymbol . Sofern der DC-Eingang dabei eingeschaltet ist, wird die Sperre sofort aktiv.
- 2. Ansonsten erscheint die Menüseite Sperre, wo Sie festlegen können, ob Sie das HMI komplett oder mit Ausnahme des Tasters "On/Off" (Ein/ Aus zulassen während HIM-Sperre) sperren möchten bzw. ob die Sperre zusätzlich mit einer PIN belegt werden soll (PIN für HMI-Sperre). Diese PIN muß später beim Entsperren immer wieder eingegeben werden, solange sie aktiviert ist.
- **3.** Aktivieren Sie die Sperre mit **Start**. Das Gerät spring in den Hauptbildschirm und dimmt diesen.

Sobald bei gesperrtem HMI der Versuch unternommen wird etwas zu verändern, erscheint in der Anzeige eine Abfrage, ob man entsperren möchte.

► So entsperren Sie das HMI

- 1. Tippen Sie in irgendeinen Bereich des Touchscreens des gesperrten HMI oder betätigen Sie einen der Drehknöpfe oder betätigen Sie den Taster "On/Off" (nur bei kompletter Sperre).
- 2. Es erscheint eine Abfrage:

8	HMI gesperrt	a
_	Entsperren	

3. Entsperren Sie das HMI mittels des Bedienfeldes Entsperren. Erfolgt innerhalb von 5 Sekunden keine Eingabe, wird die Abfrage wieder ausgeblendet und das HMI bleibt weiterhin gesperrt. Sollte die zusätzliche PIN-Sperre (siehe Gruppe Sperre) aktiviert worden sein, erscheint eine weitere Abfrage zur Eingabe der PIN. Sofern diese richtig eingegeben wurde, wird das HMI entsperrt werden.

3.8 Einstellgrenzen (Limits) und Benutzerprofile sperren

Um zu verhindern, daß die mit dem Gerät arbeitende Person durch versehentliches oder absichtliches Verstellen falsche Sollwerte setzt, können Einstellgrenzen definiert (siehe auch *"3.4.4 Einstellgrenzen (Limits)" auf Seite 54*) und mittels einer PIN gegen Veränderung gesperrt werden. Dadurch wird die Gruppe **Limits** im Menü **Einstellungen**, sowie das Menü **Profile** gesperrt. Die Sperre läßt sich nur durch Eingabe der korrekten PIN oder Zurücksetzen des Gerätes wieder entfernen.

So sperren Sie die Limits und Profile

2. Aktivieren Sie den Schalter neben Limits/Profile mit Benutzer-PIN sperren. Die Sperre wird sofort aktiv.

3. Verlassen Sie Seite **Sperre**.

Für die Limits- und Profile-Sperre wird dieselbe Benutzer-PIN wie für die HMI-Sperre verwendet. Siehe dazu «3.7 Bedieneinheit (HMI) sperren»

Vorsicht! Aktivieren Sie die Sperre nicht, wenn Sie sich nicht sicher sind, welche die aktuell gesetzte PIN ist bzw. ändern Sie diese vorher! Die PIN kann im Menü **Sperre** gesetzt werden.

So entsperren Sie die Limits und Profile

1. Bei ausgeschaltetem DC-Eingang tippen Sie auf der Hauptseite auf das Bedienfeld

- 2. Tippen Sie im Menü auf HMI-Einstellungen, danach auf Gruppe Sperre.
- **3.** In der Gruppe tippen Sie rechts auf **Limits u. Profile entsperren**. Sie werden dann aufgefordert, die vierstellige PIN einzugeben.
- 4. Deaktivieren Sie die Sperre nach der Eingabe der korrekten PIN.

3.9 Nutzerprofile laden und speichern

Das Menü **Profile** dient zur Auswahl eines Profils zum Laden bzw. zum Wechsel zwischen einem Standard-Profil und 5 Nutzer-Profilen. Ein Profil ist eine Sammlung aller Einstellungen und aller Sollwerte. Bei Auslieferung des Gerätes bzw. nach einem Zurücksetzungsvorgang haben alle sechs Profile dieselben Einstellungen und die meisten Sollwerte sind auf 0. Werden vom Anwender dann Einstellungen getroffen und Werte verändert, so geschieht das in einem Arbeitsprofil, das auch über das Ausschalten hinweg gespeichert wird. Dieses Arbeitsprofil kann in eins der fünf Nutzerprofile gespeichert bzw. aus diesen fünf Nutzerprofilen oder aus dem Standardprofil heraus geladen werden. Das Standardprofil selbst kann nur geladen werden.

Der Sinn von Profilen ist es, z. B. einen Satz von Sollwerten, Einstellgrenzen und Überwachungsgrenzen schnell zu laden, ohne diese alle jeweils immer neu einstellen zu müssen. Da sämtliche Einstellungen zum HMI mit im Profil gespeichert werden, also auch die Sprache, wäre beim Wechsel von einem Profil zum anderen auch ein Wechsel der Sprache des HMI möglich.

Bei Aufruf der Menüseite **Profile** und Auswahl eines Profils können dessen wichtigsten Einstellungen, wie Sollwerte, Einstellgrenzen usw. betrachtet und auch verstellt werden.

So speichern Sie die aktuellen Einstellungen (Arbeitsprofil) in ein Nutzerprofil

1. Bei ausgeschaltetem DC-Eingang tippen Sie in der Hauptseite

auf das Bedienfeld

- 2. In der Hauptmenüseite tippen Sie auf Profile.
- **3.** In der nun erscheinenden Auswahl (Beispiel siehe rechts) wählen Sie zwischen Nutzer-Profil 1-5 aus, in welches Sie speichern wollen. Das gewählte Nutzerprofil wird daraufhin angezeigt. Sie können hier die Einstellungen und Werte noch einmal überprüfen.
- 4. Betätigen Sie Bedienfeld Sichern/Laden und speichern Sie in der darauf folgenden Abfrage Profil sichern? mit Sichern.

Wird in einem Nutzer-Profil irgendeine Änderung vorgenommen, wird kann das Profil zunächst nicht geladen oder gesichert. Der Anwender muß die Änderung entweder mit "Änderungen sichern" übernehmen oder verwerfen mit "Abbrechen".

Das Laden eines Nutzer-Profils geht auf demselben Weg, nur daß man am Ende auf Laden unter Profil laden? tippen muß.

Die Nutzer-Profile können auch auf einem USB-Stick gespeichert bzw. vom diesem geladen werden. Das geschieht über **USB Import/Export**.

3.10 Der Funktionsgenerator

3.10.1 Einleitung

Der eingebaute **Funktionsgenerator** (kurz: **FG**) ist in der Lage, verschiedenförmige Kurven zu erzeugen und diese auf entweder die Spannung (U) oder den Strom (I) anzuwenden.

Die Standard-Funktionen basieren auf einem variablen **Arbiträrgenerator.** Bei manueller Bedienung können die Funktionen einzeln ausgewählt, konfiguriert und bedient werden. Bei Fernsteuerung können diese nur indirekt über mehrere Sequenzpunkte mit jeweils 8 Parametern konfiguriert und umgesetzt.

Andere Funktionen, wie Photovoltaiksimulation, basieren auf einem **XY-Generator**, der mit einer in das Gerät geladenen oder durch das Gerät berechneten Tabelle (4096 Werte) arbeitet.

Es sind folgende Funktionen manuell aufruf-, konfigurier- und steuerbar:

Funktion	Kurzerläuterung	
Sinus	Sinus-Signalgenerierung mit einstellbarer Amplitude, Offset und Frequenz	
Dreieck	Dreieck-Signalgenerierung mit einstellbarer Amplitude, Offset, Anstiegs- und Abfallzeit	
Rechteck	eck Rechteck-Signalgenerierung mit einstellbarer Amplitude, Offset und Puls-Pausen-Verhältnis	
Trapez	Trapez-Signalgenerierung mit einstellbarer Amplitude, Offset, Anstiegszeit, Pulszeit, Abfallzeit, Pausenzeit	
DIN 40839	Emulierte KFZ-Motorstartkurve nach DIN 40839 / EN ISO 7637, unterteilt in 5 Kurvensegmente (Sequenz- punkte) mit jeweils Startspannung, Endspannung und Zeit	
Arbiträr	r Generierung eines Ablaufs von bis zu 99 beliebig konfigurierbaren Kurvenpunkten mit jeweils Startwert (AC/DC), Endwert (AC/DC), Startfrequenz, Endfrequenz, Phasenwinkel und Dauer	
Rampe	Generierung einer linear ansteigenden oder abfallenden Rampe mit Startwert, Endwert, Zeit vor und nach der Rampe	
XY-Tabelle	XY-Generator, von USB-Stick ladbare Stromkurve (Tabelle, CSV)	
Batterietest	Batterieladung und -entladung mit konstantem oder gepulstem Strom, sowie Zeit-, Ah- und Wh-Messung	
MPP-Tracking	Simulation des Lastverhaltens eines Solarwechselrichters an einer typischen Quelle (z. B. Solarpaneel) und dessen sog. Tracking-Funktion beim Finden des Maximum Power Point (MPP)	

3.10.2 Allgemeines

3.10.2.1 Einschränkungen

Der Funktionsgenerator, egal ob manuelle Bedienung oder Fernsteuerung, ist nicht verfügbar, wenn der Widerstandsmodus (auch "R-Modus" genannt bzw. in der Fernsteuerung "UIR") aktiviert wurde.

3.10.2.2 Auflösung

Bei den Funktionen, die vom Arbiträrgenerator erzeugt werden, kann das Gerät zwischen 0...100% Sollwert max. 52428 Schritte berechnen und setzen. Bei sehr geringen Amplituden und langen Zeiten werden während eines Werteanstiegs oder -abfalls u. U. nur wenige oder gar keine sich ändernden Werte berechnet und deshalb nacheinander mehrere gleiche Werte gesetzt, was zu einem gewissen Treppeneffekt führen kann. Es sind auch nicht alle möglichen Kombinationen von Zeit und einer veränderlichen Amplitude (Steigung) machbar.

3.10.2.3 Minimale Steigung / Max. Zeit für Rampen

Mit der Release der Firmwares KE 3.02 und DR 1.0.2.20 (neue Geräte ab 03/2022) bzw. DR 1.0.9 (ältere Geräte vor 01/2022) sind diese beiden Einschränkungen hinfällig.

Rampen oder gemischte AC/DC-Funktionen mit einem sich ändernden DC-Offset können nun den vollen Zeitbereich von 36000 Sekunden pro Sequenzpunkt nutzen.

3.10.3 Arbeitsweise

Zum Verständnis, wie der Funktionsgenerator arbeitet und wie die eingestellten Werte aufeinander einwirken, muß folgendes beachtet werden:

Das Gerät arbeitet auch im Funktionsgeneratormodus stets mit den drei Sollwerten U, I und P.

Auf <u>einen</u> der Sollwerte U und I kann die gewählte Funktion angewendet werden, die anderen beiden Sollwerte sind dann konstant und wirken begrenzend. Das bedeutet, wenn man beispielsweise eine Spannung von 40 V am DC-Eingang anlegt und die Sinus-Funktion auf den Strom anwenden will und als Amplitude 200 A festgelegt hat mit Offset 200 A, so daß der Funktionsgenerator einen Sinusverlauf der Stromes zwischen 0 A (min.) und 400 A (max.) erzeugt, daß das eine Eingangsleistung zwischen 0 W(min.) und 16000 W(max.) zur Folge hätte. Die Leistung wird aber stets auf den eingestellten Wert begrenzt. Würde sie nun auf 12000 W begrenzt sein, würde der Strom rechnerisch auf 300 A begrenzt werden und würde man ihn über eine Stromzange auf einem Oszilloskop darstellen, würde er bei 300 A gekappt erscheinen und nie die gewollten 400 A erreichen.

Ein anderer Fall ist, wenn man mit Funktionen arbeitet, die auf die Eingangsspannung angewendet werden. Stellt man hier die allgemeine Spannung U höher als Amplitude plus möglicher Offset zusammen ergeben, ergibt sich beim Starten der Funktion kein Reaktion, weil die Spannungseinstellung nach unten hin begrenzt, nicht nach oben hin wie beim Strom oder bei der Leistung. Die richtige Einstellung der jeweils anderen Sollwerte ist daher sehr wichtig.

Master-Slave-Systeme haben zusätzliche Gegebenheiten:

Am Ende der Konfiguration einer Funktion, wenn diese bereits geladen wurde und der Bildschirm nun die Hauptanzeige des Funktionsgenerators zeigt, können in dieser Anzeige Sollwerte, die sogenannten "U/I/P Limits" eingestellt werden. Diese Werte werden in Master-Slave-Systemen als globale Sollwerte an alle Slaves übertragen. Es wird empfohlen, diese sorgfältig und passend einzustellen, so daß die Slaves den Kurvenablauf nicht negativ beeinträchtigen können.

3.10.4 Manuelle Bedienung

3.10.4.1 Auswahl und Steuerung einer Funktion

Über den Touchscreen kann eine der in *3.10.1* genannten Funktionen aufgerufen werden, konfiguriert und gesteuert werden. Auswahl und Konfiguration sind nur bei ausgeschaltetem DC-Eingang möglich.

► So konfigurieren Sie eine Funktion

1. Bei ausgeschaltetem DC-Eingang tippen Sie auf das Bedienfeld

Funk-Gen. Hinweis: Dieses Bedienfeld ist bei aktiviertem R-Modus gesperrt.

- 2. Im Menü wählen Sie links die gewünschte Funktion.
- 3. Zuerst muß gewählt werden, auf welche Sollwert man die Funktion anwenden möchte: Spannung oder Strom.
- 4. Stellen Sie nun die Werte wie gewünscht ein und gehen Sie
- 5. Als nächster Schritt ist es noch erforderlich, die sogenannten statischen Sollwerte für Spannung und Leistung bzw. Strom und Leistung einzustellen. Das ist <u>besonders für den Master-Slave-Betrieb wichtig, weil die Slaves diese Grenzwerte</u> <u>übermittelt bekommen.</u> Diese Werte sind vor dem Start und nach dem Stopp der Funktion wirksam.

Die Grenzwerte für U, I und P wirken nach dem Erreichen des Hauptbildschirms sofort auf die externe Quelle, weil der DC-Eingang automatisch eingeschaltet wird, um die Startsituation herzustellen. Das ist hilfreich, wenn eine Funktion nicht bei 0 V bzw. 0 A starten soll. Ist jedoch gewünscht, daß die Funktion bei 0 startet, so muß der statische Sollwert auf 0 gesetzt werden.

6. Verlassen der Konfiguration und Wechsel in den Funktionsgenerator-Bildschirm mit

Die einzelnen Parameter der Funktionen sind weiter unten beschrieben. Nachdem die Einstellungen getroffen sind wird die Funktion geladen, der DC-Eingang eingeschaltet und dann kann gestartet werden. Bevor und während die Funktion läuft, sind die globalen Grenzwerte sowie funktionsbezogene Werte einstellbar.

1. Sie können die Funktion <u>starten</u>, indem Sie entweder auf das

Bedienfeld vippen oder, sofern der DC-Eingang momentan aus ist, die Taste "On/Off" betätigen.

2. <u>Stoppen</u> können Sie den Funktion entweder mit dem Bedienfeld oder der Taste "On/Off", jedoch gibt es hier unterschiedliches Verhalten:

- a) Bedienfeld ____: Funktion stoppt lediglich, der DC-Eingang <u>bleibt an,</u> mit statischen Werten.
- b) Taste "On/Off": Funktion stoppt und der DC-Eingang wird ausgeschaltet.

Bei Gerätealarmen (Power fail, Übertemperatur usw.), Schutzfunktionen (OPP, OCP) oder Events mit Aktion= Alarm stoppt der Funktionsablauf automatisch, der DC-Eingang wird ausgeschaltet und der Alarm gemeldet.

3.10.5 Sinus-Funktion

Folgende Parameter können für die Sinus-Funktion konfiguriert werden:

Parameter	Einstellbereich	Erläuterung
Frequenz (f)	110000 Hz	Statische Frequenz des zu generierenden Sinussignals
Amplitude (A)	0(Nennwert von U oder I - Offset)	Amplitude des zu generierenden Signals
Offset (0)	0 (U _{Nenn} - Amplitude) oder 0(I _{Nenn} - Amplitude)	Offset, bezogen auf den Nulldurchgang der mathematischen Sinuskurve

Anwendung und Resultat:

Es wird ein normal sinusförmiges Signal erzeugt und auf den gewählten Sollwert, zum Beispiel Strom (I), angewendet. Bei konstanter Eingangsspannung würde der Eingangsstrom der Last dann sinusförmig verlaufen.

Für die Berechnung der sich aus dem Verlauf maximal ergebenden Leistung muß die eingestellte Stromamplitude zunächst mit dem Offset addiert werden.

Beispiel: Sie stellen bei einer Eingangsspannung von 100 V und sin(I) die Amplitude auf 30 A ein, bei einem Offset von 50 A. Die sich ergebende max. Leistung bei Erreichen des höchsten Punktes der Sinuskurve wäre dann (30 A + 50 A) * 100 V = 8000 W.
3.10.6 Dreieck-Funktion

Folgende Parameter können für die Dreieck-Funktion konfiguriert werden:

Parameter	Einstellbereich	Erläuterung	
Amplitude (A)	0(Nennwert von U oder I - [Offset])	Amplitude des zu generierenden Signals	
Offset (0)	0 (U _{Nenn} - Amplitude) oder 0(I _{Nenn} - Amplitude)	Offset, bezogen auf den Fußpunkt des Dreiecks	
Zeit t1	0.1 ms36.000.000 ms	Zeit Δt der ansteigenden Flanke des Dreiecksignals	
Zeit t2	0.1 ms36.000.000 ms	Zeit ∆t der abfallenden Flanke des Dreiecksignals	

Anwendung und Resultat: Es wird ein dreieckförmiges Signal für die Anwendung auf den Strom oder die Spannung erzeugt. Die Zeiten der ansteigenden und abfallenden Flanke sind getrennt einstellbar. Der Offset verschiebt das Signal auf der Y-Achse.

Die Summe der Zeiten t1 und t2 ergibt die Periodendauer und deren Kehrwert eine Frequenz.

Wollte man beispielsweise eine Frequenz von 10 Hz erreichen, ergäbe sich bei T = 1/f eine Periode von 100 ms. Diese 100 ms kann man nun beliebig auf t1 und t2 aufteilen. Z. B. mit 50 ms:50 ms (gleichschenkliges Dreieck) oder 99,9 ms:0,1 ms (Dreieck mit rechtem Winkel, auch Sägezahn genannt).

3.10.7 Rechteck-Funktion

Folgende Parameter können für die Rechteck-Funktion konfiguriert werden:

Parameter	Einstellbereich	Erläuterung		
Amplitude (A)	0(Nennwert von U oder I - [Offset])	Amplitude des zu generierenden Signals		
Offset (0)	0 (UNenn - Amplitude) oder	Offact bezogen auf den Eußpunkt des Dechtacke		
	0(INenn - Amplitude)	Utfset, bezogen auf den Fulspunkt des Rechtecks		
Zeit t1	0.1 ms36.000.000 ms	Zeit (Puls) des oberen Wertes (=Amplitude + Offset) des Recht- ecksignals		
Zeit t2	0.1 ms36.000.000 ms	Zeit (Pause) des unteren Wertes (=Offset) des Rechtecksignals		

3.10.8 Trapez-Funktion

Folgende Parameter können für die Trapez-Funktion konfiguriert werden:

Parameter	Einstellbereich	Erläuterung	
Amplitude (A)	0(Nennwert von U oder I - [Offset])	Amplitude des zu generierenden Signals	
Offset (0)	0 (U _{Nenn} - Amplitude) oder 0(I _{Nenn} - Amplitude)	Offset, bezogen auf den Fußpunkt des Trapezes	
Zeit t1	0.1 ms36.000.000 ms	Zeit der ansteigenden Flanke des Trapezsignals	
Zeit t2	0.1 ms36.000.000 ms	Zeit des High-Wertes (Haltezeit) des Trapezsignals	
Zeit t3	0.1 ms36.000.000 ms	Zeit der abfallenden Flanke des Trapezsignals	
Zeit t4	0.1 ms36.000.000 ms	Zeit des Low-Wertes (=Offset) des Trapezsignals	

3.10.9 DIN 40839-Funktion

Diese Funktion ist an den durch DIN 40839 / EN ISO 7637 definierten Kurvenverlauf (Prüfimpuls 4) angelehnt und wird nur auf die Spannung angewandt. Sie soll den Verlauf der Autobatteriespannung beim Start eines Automotors nachbilden. Die Kurve ist in 5 Abschnitte eingeteilt (siehe Abbildung unten), die jeweils die gleichen Parameter haben. Die Standardwerte aus der Norm sind für die fünf Sequenzpunkte bereits als Standardwert eingetragen.

Folgende Parameter können für die einzelnen Sequenzpunkte bzw. global konfiguriert werden:

Parameter	Einstellbereich	Seq.	Erläuterung	
Start	0U _{Nenn}	1-5	Anfangsspannungswert des Teilabschnitts (Sequenzpunkt) der Kurve	
Ende	0U _{Nenn}	1-5	Endspannungswert des Teilabschnitts (Sequenzpunkt)	
Zeit	0,1 ms36.000.000 ms	1-5	Zeit für die abfallende oder ansteigende Rampe	
Sequenzzyklen	0 / 1999	-	Anzahl der Abläufe der gesamten Kurve (0 = unendl. Abläufe)	
Zeit t1	0,1 ms36.000.000 ms	-	Zeit nach Ablauf der Kurve, bevor wiederholt wird (Zyklen <> 1)	
U(Start/Ende)	0U _{Nenn}	-	Spannungswert am DC-Terminal bevor die Kurve gestartet wird und dan	
I/P	0I _{Nenn} /P _{Nenn}	-	Globale Sollwerte für Strom und Leistung	

3.10.10 Arbiträr-Funktion

Die Arbiträr-Funktion (arbiträr = beliebig) bietet dem Anwender einen erweiterten Spielraum. Es sind je 99 Kurvenabschnitte (hier: Sequenzpunkte) für die Zuordnung zum Strom oder zur Spannung verfügbar, die alle dieselben Parameter haben, aber beliebig konfiguriert werden können, um komplexe Funktionsabläufe "zusammenzubauen". Diese Punkte bilden als Teilabschnitte einer Kurve. Von den 99 verfügbaren Sequenzpunkten kann eine beliebige Anzahl nacheinander ablaufen. Das ergibt einen Sequenzpunktblock. Der Block kann dann noch 1...999 mal oder unendlich oft wiederholt werden. Das der Ablauf der Funktion entweder die Spannung oder dem Strom zugewiesen wird, ist eine gemischte Zuordnung zu beiden nicht möglich.

Die Arbiträrkurve kann einen linearen Verlauf (DC) mit einer Sinuskurve (AC) überlagern, deren Amplitude und Frequenz zwischen Anfangswert und Endwert ausgebildet werden. Wenn Startfrequenz und Endfrequenz auf 0 Hz gesetzt sind, wird der AC-Anteil unwirksam und nur der DC-Anteil wird generiert. Für jeden Sequenzpunkt ist eine Zeit definierbar, innerhalb welcher der Kurvenabschnitt (Sequenzpunkt) von Start bis Ende generiert wird.

		· · · · · ·			A 1	_ I.I.	I C · I	1
Foldondo	Daramatar	Vonnon tur	Indon Sor	110070101/1	dor Arbitro	r_{-} LINVTION	Vontiauriort	wordon.
I UIUEIIUE	гаганнеген	KUTHET TUL	IEUEII SEL	JUEHZDUHKL			KUIIIIUUIIEII	werden.

Parameter	Einstellbereich	Erläuterung	
AC-Start	-50%+50% I _{Nenn} oder	Start- bzw. Endamplitude des sinusförmigen Anteils	
AC-Ende	050% U _{Nenn}		
DC-Start	±(AC-Start(Nennwert - AC-Start))		
DC-Ende	±(AC-Ende(Nennwert - AC-Ende))	Endwert des DC-Anteils der Kurve	
Startfrequenz Endfrequenz	0 Hz10000 Hz	Anfangs- bzw. Endfrequenz des sinusförmigen Anteils	
Winkel	0°359°	Anfangswinkel des sinusförmigen Anteils	
Zeit	0.1 ms36.000.000 ms	Zeit für den gewählte Sequenzpunkt	

Die Sequenzpunktzeit ("Zeit") und die Startfrequenz/Endfrequenz stehen in einem Zusammenhang. Es besteht ein minimum Δ f/s von 9,3. Also würde z. B. eine Einstellung mit Startfrequenz = 1 Hz, Endfrequenz = 11 Hz und Zeit = 5 s nicht akzeptiert, weil das Δ f/s dann nur 2 wäre. Bei Zeit = 1 s paßt es wieder oder man müßte bei Zeit = 5 s mindestens eine Endfrequenz = 51 Hz einstellen.

Die Amplitudenänderung zwischen Start und Ende steht im Zusammenhang mit der Sequenzpunktzeit. Man kann nicht eine beliebig kleine Änderung über eine beliebig große Zeit hinweg erzeugen. In so einem Fall lehnt das Gerät unpassende Einstellungen mit einer Meldung ab.

Wenn diese Einstellungen für den gerade gewählten Sequenzpunkt gesetzt wurden, können noch weitere konfiguriert werden. Weiter unten sind noch globale Einstellungen für den Gesamt-Ablauf der Arbiträr-Funktion:

Parameter	Einstellbereich	Erläuterung
Sequenzzyklen	0 / 1999	Anzahl der Abläufe des Sequenzpunktblocks (0 = unendlich)
Startsequenz	1Endsequenz	Erster Sequenzpunkt des Sequenzpunktblocks
Endsequenz	Startsequenz99	Letzter Sequenzpunkt des Sequenzpunktblocks

Nach Betätigung von 🗼 Weiter müssen noch globale Sollwerte (U/I/P-Limits) für den Funktionsablauf definiert werden.

Durch Aneinanderreihung mehrerer unterschiedlich konfigurierter Sequenzpunkte können komplexe Abläufe erzeugt werden. Dabei kann durch geschickte Konfiguration der Arbiträrgenerator die anderen Funktionen wie Dreieck, Sinus, Rechteck oder Trapez nachbilden und somit z. B. eine Sequenz aus Rechteck-Funktionen mit unterschiedlichen Amplituden bzw. Duty Cycles pro Sequenz erzeugen.

3.10.10.1 Laden und Speichern von Arbiträr-Funktionen

Die manuell am Gerät konfigurierbaren 99 Sequenzpunkte der Arbiträrfunktion, die auf Spannung U oder Strom I anwendbar sind, können über die USB-Schnittstelle auf der Vorderseite des Gerätes auf einen USB-Stick (FAT32-formatiert) gespeichert oder von diesem geladen werden. Dabei gilt, daß immer alle 99 Punkte in eine Textdatei vom Typ CSV gespeichert oder daraus geladen werden. Die Anzahl wird beim Laden überprüft.

Für das Laden einer Sequenzpunkt-Tabelle gelten folgende Anforderungen

- Die Tabelle muß genau 99 Zeilen mit jeweils 8 aufeinanderfolgenden Werten (8 Spalten) enthalten und darf keine Lücken aufweisen
- Das zu verwendende Spaltentrennzeichen (Semikolon, Komma) wird über die Einstellung **USB-Logging -> Trennzeichenformat** im Menü des Gerätes festgelegt und bestimmt auch das Dezimalzeichen (Komma, Punkt)
- Die Datei muß im Ordner HMI_FILES liegen, der im Wurzelverzeichnis (root) des USB-Sticks sein muß
- Der Dateiname muß immer mit WAVE_U oder WAVE_I beginnen (Groß-/Kleinschreibung egal)
- Alle Werte in jeder Spalte und Zeile müssen den Vorgaben entsprechen (siehe unten)
- Die Spalten der Tabelle haben eine bestimmte Reihenfolge, die nicht geändert werden darf

Für die Tabelle mit den 99 Zeilen ist, in Anlehnung an die Einstellparameter die bei der manuellen Bedienung für den Arbiträrgenerator festgelegt werden können, folgender Aufbau vorgegeben (Spaltenbenamung wie bei Excel):

Spalte	Entspricht HMI-Parameter	Wertebereich
А	AC-Start	Siehe Tabelle in «3.10.10 Arbiträr-Funktion»
В	AC-Ende	Siehe Tabelle in «3.10.10 Arbiträr-Funktion»
С	Startfrequenz	010000 Hz
D	Endfrequenz	010000 Hz
E	Winkel	0359°
F	DC-Start	Siehe Tabelle in «3.10.10 Arbiträr-Funktion»
G	DC-Ende	Siehe Tabelle in «3.10.10 Arbiträr-Funktion»
Н	Zeit	10036.000.000.000 μs (36 Mrd.)

Für eine genauere Beschreibung der Parameter und der Arbiträrfunktion siehe *«3.10.10 Arbiträr-Funktion».* Beispiel-CSV:

	А	В	С	D	E	F	G	Н
1	20,00	30,00	5	5	90	50,00	50,00	50000000
2	30,00	20,00	5	5	90	50,00	50,00	3000000
3	0,00	0,00	0	0	0	0,00	0,00	1000
4	0,00	0,00	0	0	0	0,00	0,00	1000
5	0,00	0,00	0	0	0	0,00	0,00	1000
6	0,00	0,00	0	0	0	0,00	0,00	1000

In dem Beispiel sind nur die ersten zwei Sequenzpunkte konfiguriert, die anderen stehen alle auf Standardwerten. Die Tabelle könnte für z. B. das Modell ELR 10080-1000 4U über eine WAVE_U für die Spannung oder eine WAVE_I für den Strom geladen werden, weil sie für beide paßt. Die Benamung ist jedoch durch einen Filter eindeutig gemacht, das heißt man kann nicht **Arbiträr** --> **U** im Funktionsgeneratormenü wählen und dann eine WAVE_I laden. Diese würde gar nicht erst aufgelistet.

► So laden Sie eine Sequenzpunkttabelle von einem USB-Stick:

- 1. Stecken Sie den USB-Stick noch nicht ein bzw. ziehen Sie ihn zunächst heraus.
- 2. Bei ausgeschaltetem DC-Eingang öffnen Sie das Menü des Funktionsgenerators aus der Hauptanzeige heraus

mit **Funk-Gen** und wählen Sie Gruppe **Arbiträr**. Es erscheint die Anzeige wie rechts abgebildet.

3. Wischen Sie herunter bis zu **Sequenzkonfiguration** und tippen Sie auf **Import/Export**, dann auf **Laden** und folgen Sie den Anweisungen. Sofern für den aktuellen Vorgang mindestens eine gültige Datei gefunden wurde, wird eine Liste zur Auswahl angezeigt, aus der die zu ladende Datei ausgewählt werden muß.

< Hauptmenü	≡	
Arbiträr	Sequenzkonfiguration	
	Sequenzpunkt	1
Sinus	AC-Start:	0.00V
	AC-Ende:	0.00V
Dreieck	DC-Start:	0.00V
	DC-Ende:	0.00V
Rechteck	Startfrequenz:	OHz
	Endfrequenz:	OHz
Trapez	Winkel:	0°
DIN 40839	Zeit:	0.00ms
Ramne		Import/Export

4. Tippen Sie unten rechts auf Die gewählte Datei wird nun überprüft und, sofern in Ordnung, geladen. Bei Formatfehlern wird eine entsprechende Meldung angezeigt. Dann muß die Datei korrigiert und der Vorgang wiederholt werden.

So speichern Sie die Sequenzpunkttabelle vom Gerät auf einen USB-Stick:

- 1. Stecken Sie den USB-Stick noch nicht ein bzw. ziehen Sie ihn zunächst heraus.
- 2. Öffnen Sie das Funktionsauswahlmenü des Funktionsgenerators aus der Hauptanzeige heraus mit wählen Sie Gruppe **Arbiträr**.

- 3. Wischen Sie herunter bis zu Sequenzkonfiguration und tippen Sie auf Import/Export, dann auf Sichern. Sie werden aufgefordert, den USB-Stick einzustecken. Das Gerät sucht daraufhin nach dem Ordner HMI_FILES auf dem Speicherstick und nach eventuell schon vorhandenen WAVE_U- bzw. WAVE_I-Dateien und listet gefundene auf. Soll eine vorhandene Datei mit den zu speichernden Daten überschrieben werden, wählen Sie diese aus, ansonsten wählen Sie keine aus. Es wird dann eine erzeugt.
- 4. Speichern, neu oder überschreibend, dann mit

3.10.11 Rampen-Funktion

Folgende Parameter können für die Rampen-Funktion konfiguriert werden:

Parameter	Einstellbereich	Erläuterung
Start	0U _{Nenn} oder 0I _{Nenn}	Start- und Endpunkt der Rampe. Beide können größer, gleich oder kleiner sein als
Ende		der andere, wodurch die Rampe entweder ansteigt, abfällt oder horizontal verläuft
Zeit t1	0.1 ms36.000.000 ms	Zeit vor der ansteigenden bzw. abfallenden Flanke der Rampe
Zeit t2	0.1 ms36.000.000 ms	Anstiegs- bzw. Abfallzeit der Rampe

Die Zeit nach dem Erreichen des Rampenendes ist nicht einstellbar. Das Gerät stoppt die Funktion automatisch nach max. 10 h und setzt I = 0 A, wenn Stromrampe, sofern sie nicht vorher schon anderweitig gestoppt wurde.

3.10.12 IU-Tabellenfunktion (XY-Tabelle)

Die IU-Funktion bietet dem Anwender die Möglichkeit, in Abhängigkeit von der DC-Eingangsspannung einen bestimmten DC-Strom zu setzen. Dazu muß eine Tabelle geladen werden, die genau 4096 Werte enthält, welche sich auf die gemessenen Eingangsspannung im Bereich 0...125% U_{Nenn} aufteilen, wovon nur 0...100% effektiv nutzbar sind. Diese Tabelle kann entweder von einem USB-Stick über die frontseitige USB-Buchse des Gerätes oder per Fernsteuerung (ModBus RTU-Protokoll oder SCPI) in das Gerät geladen und dann angewendet werden. Es gilt:

IU-Funktion: I = f(U)

Bei der **IU-Funktion** ermittelt ein Meßkreis des Gerätes den Istwert der Spannung am DC-Eingang. Zu jedem der 4096 möglichen Meßwerte des Eingangsstromes ist in der IU-Tabelle ein Stromwert hinterlegt, der vom Anwender beliebig zwischen 0 und Nennwert festgelegt werden kann. Die Werte in der vom USB-Stick geladenen Tabelle werden hier immer als Stromwerte interpretiert, selbst wenn sie vom Anwender als Spannungswerte berechnet und dann fälschlicherweise als IU-Tabelle geladen wurden.

Beim Laden einer Tabelle vom USB-Stick werden nur Textdateien vom Typ CSV (*.csv) akzeptiert. Die Tabelle wird beim Laden auf Plausibilität überprüft (Werte nicht zu groß, Anzahl der Werte korrekt) und eventuelle Fehler gemeldet und dann die Tabelle nicht geladen.

Die 4096 Werte innerhalb der Tabelle werden nur auf korrekte Größe und Anzahl hin untersucht. Würde man alle Werte in einem Diagramm darstellen, ergäbe sich eine bestimmte Kurve, die auch sehr starke Stromsprünge vom einem Wert zum nächsten enthalten könnte. Das kann zu Komplikationen für die angeschlossene Quelle führen, wenn z. B. der interne Spannungsmeßwert leicht schwankt und dazu führt, daß ständig zwischen zwei Stromwerten aus der Tabelle hin- und herpendelt wird, wo im ärgsten Fall der eine 0 A ist und der andere Maximalstrom.

3.10.12.1 Laden von IU-Tabellen über USB

Die sogenannten IU-Tabellen können über die USB-Schnittstelle auf der Vorderseite des Gerätes von einem USB-Stick (FAT32formatiert) geladen werden. Um dies tun zu können, muß die zu ladende Datei bestimmten Vorgaben entsprechen:

- Der Dateiname startet immer mit IU (Groß-/Kleinschreibung egal)
- Die Datei muß eine Textdatei vom Typ CSV sein und darf nur eine Spalte mit genau 4096 realen Werten (ohne Lücken) enthalten
- Keiner der 4096 Werte darf den Stromnennwert überschreiten, also wenn Sie z. B. ein 420 A-Modell haben und laden eine IU-Tabelle mit Stromwerten, dann darf keiner größer als 420 sein (Einstellgrenzen gelten hier nicht)

- Werte mit Nachkommastellen müssen ein Dezimaltrennzeichen haben, das der Auswahl Trennzeichen-Format im Menü USB-Logging entspricht, womit auch zwischen Komma und Punkt als Dezimaltrennzeichen unterschieden wird (im europäischem Standard ist das Komma verwendet)
- Die Datei muß im Ordner HMI_FILES liegen, der im Wurzelverzeichnis (root) des USB-Sticks sein muß

Werden die oben genannten Bedingungen nicht eingehalten, meldet das Gerät das mittels entsprechender Fehlermeldungen und akzeptiert die Datei nicht. Ein Stick kann natürlich mehrere IU-Tabellen als verschiedentlich benamte Dateien enthalten, aus denen eine ausgewählt werden kann.

So laden Sie eine IU-Tabelle von einem USB-Stick:

1. Bei ausgeschaltetem DC-Eingang öffnen Sie das Funktionsauswahlmenü aus der Hauptanzeige heraus durch Tippen

auf **Funk-Gen**

und wählen Sie Gruppe XY-Tabelle.

- 2. Stecken Sie den USB-Stick ein, falls noch nicht geschehen, dann betätigen Sie **Tabelle importieren** und sobald die Auswahl erscheint, wählen Sie eine der gelisteten Dateien und laden Sie sie mit Sterner. Falls die Datei nicht akzeptiert wird, entspricht sie nicht den Anforderungen. Dann korrigieren und wiederholen.
- 3. Im nächsten Fenster, das Sie mit Keiter erreichen, können Sie noch die globalen Sollwerte anpassen.
- 4. Laden Sie die Funktion mit keiter, um Sie danach zu starten und zu bedienen wie gewohnt. Siehe dazu auch «3.10.4.1 Auswahl und Steuerung einer Funktion».

3.10.13 Batterietest-Funktion

Der Batterietest dient nur zum Testen von Batterien. Das Gerät hat kein Batteriemanagement an Bord und kann somit keine einzelnen Batteriezellen überwachen. Sollte mindestens eine Zelle in einer zu testenden Batterie defekt sein und sie trotzdem mit dem Gerät entladen werden, so kann die Batterie zerstört werden. Daher kann es erforderlich sein, externe Batteriemanagement-Hardware und -Software zu verwenden.

Die Batterietest-Funktion dient zum gezielten Entladen von Batterien unterschiedlicher Art in industriellen Produkttests oder auch in Laboranwendungen. Da eine elektronische Last nur im Senke-Betrieb arbeitet kann sie nur entladen, aber in Kombination mit einem Netzgerät, z. B. aus der Serie PSI 10000, wäre auch ein dynamischer Test umsetzbar, bei dem beide Geräte abwechselnd in Aktion treten, um den Prüfling zu laden und zu entladen, wie beim dynamischen Test der Serie PSB 10000. In Fernsteuerung mit einer entsprechend programmierten Software können separate Quellen und Senken so eingebunden werden, daß sie wie ein Zwei-Qudranten-System arbeiten.

Ah

Stop

Zur Auswahl stehen die zwei Testmodi Statisches Entladen (konstanter Strom) und Dynamisches Entladen (gepulster Strom).

Beim **statischen Entlade-Modus**, welcher standardmäßig mit Konstantstrom (CC) abläuft, können die Einstellwerte für die Leistung und den Widerstand bei entsprechender Konfiguration den Funktionsablauf auch auf Konstantleistung (CP) oder Konstantwiderstand (CR) bringen. Wie beim normalen Betrieb der Gerätes bestimmen die gesetzten Werte, welche Regelungsart (CC, CP oder CR) sich ergibt. So sollte z. B. für CP-Betrieb der Strom auf Maximum gestellt und der Widerstandsmodus ausgeschaltet werden. Ebenso sollten dann für CR-Betrieb die Werte für Strom (I) und Leistung (P) auf ihr Maximum gestellt werden.

Beim **dynamischen Entlade-Modus** gibt es auch einen einstellbaren Leistungswert. Dieser kann zwar nicht genutzt werden, um den dynamischen Batterietest mit gepulster Leistung ablaufen zu lassen, jedoch könnte das Ergebnis anders aussehen als erwartet, wenn die Leistung im Test begrenzt wird. Es wird daher empfohlen, diesen Wert immer hoch genug einzustellen.

Grafische Verdeutlichung beider Entlade-Modi:

Dynamische Entladung

3.10.13.1 Einstellwerte für den statischen Entladetest

Folgende Parameter können für das statische Entladen konfiguriert werden:

Wert	Einstellbereich	Erläuterung
Entladestrom	0 A I _{Nenn}	Maximaler Entladestrom (in Ampere)
Leistungslimitierung	0 W P _{Nenn}	Maximale Entladeleistung (in Watt)
R-Modus	ein/aus	Aktiviert den Widerstandsmodus für den Test und gibt den R-Wert frei
Entladewiderstand	$R_{\text{Min}}R_{\text{Max}}$	Maximaler Entladewiderstand (in Ohm)

3.10.13.2 Einstellwerte für den dynamischen Entladetest

Folgende Parameter können für das <u>dynamische</u> Entladen konfiguriert werden:

Wert	Einstellbereich	Erläuterung
Entladestrom 1	0 A I _{Nenn}	Unterer bzw. oberer Stromwert für gepulsten Betrieb (der höhere Einstellwert
Entladestrom 2	0 A I _{Nenn}	von beiden wird automatisch der obere) (in Ampere)
Leistungslimitierung	0 W P _{Nenn}	Maximale Entladeleistung (in Watt)
Zeit t1	136000 s	Zeit t1 = Zeit für den oberen Stromwert (Puls)
Zeit t2	136000 s	Zeit t2 = Zeit für den unteren Stromwert (Pause)

3.10.13.3 Stoppbedingungen

Diese Parameter gelten generell für alle Modi und definieren zusätzlich Stoppbedingungen:

Wert	Einstellbereich	Erläuterung		
Entladeschlußspannung	0U _{Nenn}	Schwelle (in Volt), bei deren Erreichen die Entladung stoppt (nur für Entlade-Modi)		
Aktion: Zeitlimit	Keine, Signal, Test- Ende	Aktiviert/deaktiviert einen Zeitzähler, der den Test bei Erreichen der Test- zeit stoppt		
Entladezeit	00:00:0010:00:00 h	Maximale Dauer, nach welcher der Test automatisch stoppen kann. Dieses Stoppkriterium ist optional, so daß ein Test auch länger als 10 h laufen kann.		
Aktion: Ah-Limit	Keine, Signal, Test- Ende	Aktiviert/deaktiviert einen Ah-Zähler, der den Test bei Erreichen der ent- nommenen Batteriekapazität stoppt		
Entladekapazität	0999999.99 Ah	Maximal zu entnehmende Batteriekapazität, nach deren Erreichen der Test automatisch stoppen kann. Dieses Stoppkriterium ist optional, so daß auch mehr Batteriekapazität zugeführt oder entnommen werden kann.		
USB-Logging	ein/aus	Aktiviert durch Setzen des Hakens das USB-Logging, das Daten während des Batterietests aufzeichnet, falls ein korrekt formatierter USB-Stick in der frontseitigen USB-Buchse eingesteckt ist. Die Daten haben ein etwas anderes Format als die des "normalen" USB-Logging. Siehe dazu 3.10.13.5.		
Logging-Intervall	100 ms - 1 s, 5 s,	Legt den Schreibzyklus für das USB-Logging fest		
	10 s			

3.10.13.4 Anzeigewerte

Während des Tests zeigt die Anzeige des Gerätes folgende Werte an:

- Aktuelle Batteriespannung am DC-Eingang
- Entladeschlußspannung U_{DV} (nur im Entlademodus)
- Ladespannung (nur im Lademodus)
- Aktueller Entladestrom
- Ist-Leistung
- Gesamt-Batteriekapazität (Laden & Entladen)
- Gesamt-Batterieenergie (Laden & Entladen)
- Testzeit
- Reglerstatus (CC, CP, CR, CV

Bild 16 - Anzeigebeispiel vom statischen Entladen

3.10.13.5 Datenaufzeichnung auf USB-Stick

Für alle Testmodi kann am Ende der Konfiguration eine Datenaufzeichnungsfunktion aktiviert werden, welche standardmäßig ausgeschaltet ist. Wurde sie aktiviert, während ein USB-Stick mit entsprechender Formatierung (siehe 1.9.6.5) ist im USB-Port am Bedienteil gesteckt, zeichnet das Gerät für die Testdauer Meßwerte im festgelegten Intervall auf. Dies wird in der Anzeige durch ein kleines Diskettensymbol markiert. Die aufgezeichneten Daten liegen nach Beendigung des Tests als Textdatei (CSV-Format) vor.

Aufbau der Logdatei anhand des Beispiels des statischen Entladetests:

	Α	В	С	D	E	F	G
1	Static:Uset	Iset	Pset	Rset	DV	DT	DC
2	0,00V	0,00A	1200W	OFF	0,00V	10:00:00	99999,00Ah
з							
4	Uactual	lactual	Pactual	Ah	Wh	Time	
5	0,34V	0,00A	0W	0,00Ah	0,00Wh	00:00:00,800	
6	0,28V	0,00A	0W	0,00Ah	0,00Wh	00:00:01,800	
7	0,28V	0,00A	0W	0,00Ah	0,00Wh	00:00:02,800	
8	0,28V	0,00A	0W	0,00Ah	0,00Wh	00:00:03,800	
	1						

Static = Aktueller Modus Iset = Stromsollwert Pset = Leistungssollwert Rset = Gewünschter Widerstand DV = Entladeschlußspannung DT = Entladezeit DC = Entladeschlußkapazität U/I/Pactual = Istwerte Ah = Entnommene Kapazität Wh = Entnommene Energie Time = Testzeit

3.10.13.6 Abbruchbedingungen

Der Ablauf der Batterietest-Funktion kann gewollt oder ungewollt gestoppt werden durch:

- Manuelle Betätigung der Taste "Stopp" am HMI
- Irgendeinen Geräte-Alarm wie OT usw.
- Erreichen der max. eingestellten Testzeit, wenn als Aktion Test-Ende eingestellt ist
- Erreichen des max. eingestellten Ah-Wertes, wenn als Aktion Test-Ende eingestellt ist
- Erreichen der Entladeschlußspannung $U_{\mbox{\tiny DV}}$
- Erreichen des Ladeschlußstromes

© EA Elektro-Automatik in 2022, Irrtümer und Änderungen vorbehalten

3.10.14 MPP-Tracking-Funktion

Das MPP im Namen der Funktion steht für "maximum power point" und bezeichnet den Punkt an dem die Leistung eines Solarmoduls am höchsten ist. Diesen MPP versuchen sog. Solarwechselrichter durch einen Suchvorgang (engl. "tracking") zu finden und zu verfolgen.

Eine elektronische Last kann dieses Verhalten einfach imitieren und kann somit dem Test von Solarpaneelen dienen, ohne einen Solarwechselrichter betreiben zu müssen, der aufgrund seines Aufbaus am AC-Ausgang wiederum eine AC-Last bräuchte. Dabei kann das Gerät in allen für die Funktion verfügbaren Parametern beliebig variiert werden und zwecks Datenerfassung eine Reihe von Meßwerten herausgeben (nur auslesbar über digitale Schnittstelle). Diese Meßwerte stellen 100 Punkte auf der U/I-Kurve dar, auf welcher sich der MPP befindet.

Alternativ können auch DC-Eingangswerte wie Strom und Spannung am Gerät auf USB-Stick aufgezeichnet werden. Die Senke ist dadurch flexibler einsetzbar als ein Solarwechselrichter, weil dessen DC-Eingangsbereich eingeschränkt ist.

Die MPP-Tracking-Funktion bietet **vier Modi** zur Auswahl. Die Eingabe von Werten erfolgt hier nur über Direkteingabe per Touchscreen.

3.10.14.1 Modus MPP1

Dieser Modus wird auch "MPP finden" genannt. Er ist die einfachste Möglichkeit, ein MPP-Tracking durchzuführen. Benötigt werden dazu nur drei Parameter. Der Wert U_{oc} ist erforderlich, damit das Tracking den MPP schneller finden kann als wenn das Gerät bei 0 V oder Nennspannung starten würde. Trotzdem startet es leicht oberhalb des eingegebenen U_{oc} -Wertes. I_{sc} wiederum dient als obere Grenze für den Strom, weil eine Senke die Spannung nach unten hinten nur begrenzen kann, indem sie den Innenwiderstand verringert und somit den Strom erhöht.

Folgende Parameter können für den Tracking-Modus **MPP1** konfiguriert werden:

Wert	Einstellbereich	Erläuterung		
U _{oc} (Leerlaufspannung)	0U _{Nenn}	${\sf U}_{{\sf oc}}$ des Solarpaneels, aus dessen Spezifikationen entnommen		
Isc (Kurzschlußstrom) 0I _{Nenn} I _{sc} des Solarpaneels, aus dessen Spezifikationen entnomme		I_{sc} des Solarpaneels, aus dessen Spezifikationen entnommen		
Trackingintervall (∆t)	560000 ms	Zeit zwischen zwei Trackingversuchen während der MPP-Suche		

Anwendung und Resultat:

Nach Eingabe der drei Parameter kann die Funktion direkt gestartet werden. Sobald der MPP gefunden wurde, stoppt die Funktion mit ausgeschaltetem DC-Eingang und die ermittelten Werte für Strom (I_{MPP}), Spannung (U_{MPP}) und Leistung (P_{MPP}) im MPP werden auf der Anzeige ausgegeben.

Die Dauer eines Trackingvorgangs hängt dabei maßgeblich vom Parameter Δt ab. Bei den minimal setzbaren 5 ms können sich bereits mehrere Sekunden Suchzeit ergeben.

3.10.14.2 Modus MPP2

Dieser Modus simuliert das eigentliche Trackingverhalten eines Solarwechselrichters, indem der Funktionsablauf nach dem Finden des MPP nicht gestoppt, sondern um den MPP herum geregelt wird. Das geschieht, der Natur eines Solarpaneels geschuldet, immer unterhalb des MPP. Nach Erreichen des MPP sinkt die Spannung zunächst und somit auch die Leistung. Der zusätzliche Parameter **Delta P** definiert, wie weit die Leistung absinken darf, bevor die Richtung der Spannungsänderung wieder umgekehrt und der MPP erneut angefahren wird. Spannung und Strom resultieren dadurch in einen zickzackförmigen Verlauf.

Eine mögliche Darstellung des Verlaufs ist im Bild rechts zu sehen. Durch einen kleinen **Delta P**-Wert erscheint die Leistungskurve fast linear. Das Gerät arbeitet dann immer nah am MPP.

Folgende Parameter können für den Tracking-Modus MPP2 konfiguriert werden:

Wert	Einstellbereich	Erläuterung
U _{oc} (Leerlaufspannung)	0U _{Nenn} U _{oc} des Solarpaneels, aus dessen Spezifikationen entnommen	
I _{sc} (Kurzschlußstrom)	0I _{Nenn} I _{sc} des Solarpaneels, aus dessen Spezifikationen entnommen	
Trackingintervall (Δt)	ervall (Δt) 560000 ms Zeit zwischen zwei Trackingversuchen während der MPP-Suche	
Delta P	0P _{Nenn}	Regeltoleranz unter dem MPP

3.10.14.3 Modus MPP3

Auch genannt "Direkt" ist dieser Modus ähnlich Modus MPP2, aber ohne die anfängliche Suche des MPP, da dieser anhand der Benutzervorgaben (U_{MPP} , P_{MPP}) direkt angefahren wird. Falls die MPP-Werte des zu testenden Prüflings bekannt sind, soll das helfen, die Zeit der Suche nach dem MPP in wiederholten Tests einzusparen. Das restliche Verhalten ist wie bei Modus MPP2. Während und nach dem Ablauf der Funktion werden die ermittelten Werte für Strom (I_{MPP}), Spannung (U_{MPP}) und Leistung (P_{MPP}) im MPP auf der Anzeige ausgegeben.

Folgende Parameter können für den Tracking-Modus **MPP3** konfiguriert werden:

Wert	Einstellbereich	Erläuterung		
U _{oc} (Leerlaufspannung)	0U _{Nenn}	U_{oc} des Solarpaneels, aus dessen Spezifikationen entnommen		
I _{sc} (Kurzschlußstrom)	0I _{Nenn}	I_{sc} des Solarpaneels, aus dessen Spezifikationen entnommen		
U _{MPP} (max. power point)	0U _{Nenn}	Spannung im MPP		
P _{MPP} (max. power point)	0P _{Nenn}	Leistung im MPP		
Trackingintervall (Δt)	560000 ms	Zeit zwischen zwei Trackingversuchen während der MPP-Suche		
Delta P	0P _{Nenn}	Regeltoleranz unterhalb des MPP		

3.10.14.4 Modus MPP4

Dieser Modus bietet kein Tracking im Sinne der anderen Modi, dient aber durch eine benutzerdefinierbare Kurve zur gezielten Auswertung. Der Anwender kann bis zu 100 Punkte auf einer beliebigen Spannungskurve vorgeben und alle oder einen Teil davon abfahren lassen. Die Punkte lassen sich nur von einem USB-Stick laden. Zwischen zwei Punkten vergeht die einstellbare Zeit Δt , der Durchlauf der definierten Punkte kann 0-65535 mal wiederholt werden. Nach Ende der Funktion stoppt sie automatisch mit ausgeschaltetem DC-Eingang und stellt dann pro benutzerdefiniertem Kurvenpunkt einen Meßwertsatz (Istwerte U, I, P) zur Verfügung. Außerdem werden die Werte des Datensatzes mit der höchsten Ist-Leistung auf der Anzeige ausgegeben. Geht man dann auf dem Bildschirm **Zurück**, können die 100 Meßwertsätze als Datei auf einen USB-Stick gespeichert werden. Alternativ ist nach dem Stopp der Funktion das Auslesen über digitale Schnittstelle möglich.

Folgende Parameter können für den Tracking-Modus **MPP4** konfiguriert werden:

Wert	Einstellbereich	Erläuterung	
Start	1Ende	Ende Startpunkt für den Ablauf von x aus 100 Punkten	
Ende	Start100	Endpunkt für den Ablauf von x aus 100 Punkten	
Wiederholungen	065535	Anzahl der Wiederholungen des Durchlaufs von Start bis Ende	
Regelintervall ∆t	560000 ms	Zeit zwischen zwei Trackingversuchen während der MPP-Suche	

3.10.14.5 Kurvendaten für Modus MPP4 von USB-Stick laden

Die Spannungswerte werden in Form einer CSV-Tabelle von einem USB-Stick geladen. Siehe dazu auch Abschnitt 1.9.6.5 wegen der vorgesehenen Benamung. Im Gegensatz zur manuellen Einstellung, wo man nur die Anzahl Punkte definieren würde, die man auch nutzen möchte, lädt die Tabelle immer alle 100 Punkte. Trotzdem gilt der festgelegte Bereich zwischen **Start** und **Ende** auch hier.

Definition des Dateiformats:

- Die Datei muß eine Textdatei sein und die Endung *.csv haben
- Die Datei darf nur eine Spalte mit Spannungswerten (0...Nennspannung des Gerätes) enthalten
- Die Datei muß genau 100 Zeilen mit 100 Werten ohne Lücken enthalten
- Das Dezimaltrennzeichen von gebrochenen Zahlen muß der Einstellung "USB Trennzeichenformat" in den allg. Einstellungen des Gerätes übereinstimmen, wobei die Wahl **Standard** ein Komma als Dezimaltrennzeichen erwartet und Wahl **US** einen Punkt

► So laden Sie Kurvendaten für MPP4

1. Bei ausgeschaltetem DC-Eingang aktivieren den **Funktionsgenerator** durch Tippen auf Auswahl links runter zu **MPP-Tracking**.

und rollen in der

- 2. Im Feld "Moduswahl" auf MPP4 (Benutzerkurve) wechseln. Dann erscheint im unteren Teil bei "Parameter" ein Bedienfeld MPP4 Spannungswerte laden. Dieses antippen.
- **3.** USB-Stick einstecken, wenn nicht bereits geschehen.
- 4. Im nächsten Bildschirm wird der Stick nach kompatiblen Dateien durchsucht und diese werden aufgelistet. Davon eine wählen und mit

3.10.14.6 Ergebnisdaten vom MPP4-Durchlauf auf USB speichern

Nach jedem Durchlauf der Funktion MPP4 liegen neue Ergebnis-Datensätze vor, die man auf einen USB-Stick speichern kann. Dabei werden immer 100 Datensätze gespeichert, auch wenn der Durchlauf nicht von Punkt 1 bis 100 erfolgte. Den entsprechenden Block kann man später aus der Datei herausfiltern. Die Datensätze enthalten zu jedem angefahrenen Spannungspunkt auf der benutzerdefinierten Kurve drei Istwerte (U, I, P). Kurvenpunkte, die nicht definiert wurden, sind auf 0 V gesetzt. Das führt bei einer elektronischen Last dazu, daß sie bei diesen den max. Strom aufnehmen könnte, weil für Modus MPP4 Strom und Leistung auf das Maximum gesetzt werden. Daher ist die korrekte Wahl von **Start** und **Ende** sehr wichtig.

Format der Ergebnisdaten-Datei (siehe auch Abschnitt 1.9.6.5 für die Benamung):

	А	В	С
1	1,01V	20,960A	21,0W
2	2,99V	20,970A	63,0W
3	3,99V	20,970A	84,0W
4	5,99V	20,940A	125,0W
5	7,00V	20,920A	146,0W
6	8,00V	20,930A	168,0W
7	9,00V	20,950A	188,0W
8	9,99V	20,960A	210,0W
9	10,99V	20,970A	231,0W

Legende:

- Spalte A: Spannungsistwerte der Punkte 1-100 (= U_{MPP})
- Spalte B: Stromistwerte der Punkte 1-100 (= I_{MPP})
- Spalte C: Leistungsistwerte der Punkte 1-100 (= P_{MPP})
- Zeilen 1-100:Ergebnisdatensätze aller Kurvenpunkte

Die Werte in der Beispieltabelle links sind mit phys. Einheiten. Sollte dies nicht gewünscht sein, können diese über die Einstellung "Logging mit Einheit (V,A,W)" im Menü in "Einstellungen" deaktiviert werden.

So speichern Sie die Ergebnisdaten vom MPP4-Test auf USB-Stick

- 1. Nachdem die MPP4-Funktion durchgelaufen ist, stoppt sie automatisch. Tippen Sie oben links auf **Zurück** um wieder in den Konfigurationsbildschirm von MPP4 zu gelangen.
- 2. USB-Stick einstecken, wenn nicht bereits geschehen.
- **3.** Tippen Sie dort auf **Messergebnisse sichern**. Im nächsten Bildschirm wird der Stick nach kompatiblen Dateien durchsucht und diese werden aufgelistet. Wählen Sie eine zum Überschreiben oder, wenn eine neue erzeugt werden soll, wählen Sie keine aus. Dann mit **Schwarzen** bestätigen.

3.10.15 Fernsteuerung des Funktionsgenerators

Der Funktionsgenerator ist fernsteuerbar, allerdings geschehen Fernkonfiguration und -steuerung von Funktionen mittels einzelner Befehle prinzipiell anders als bei manueller Bedienung. Die auf USB-Stick mitgelieferte Dokumentation "Programmieranleitung ModBus & SCPI" erläutert die Vorgehensweise.

Folgendes gilt generell:

- Der Funktionsgenerator ist nicht bzw. nur bedingt über die analoge Schnittstelle fernbedienbar; der einzige effektive Einfluß kann vom Pin REM-SB kommen, wenn dieser den DC-Eingang aus- oder einschaltet, wodurch die Funktion dann auch stoppt oder neu startet.
- Der Funktionsgenerator ist nicht verfügbar, solange der sog. Widerstands-Betrieb (R-Modus) aktiviert ist

3.11 Weitere Anwendungen

3.11.1 Parallelschaltung als Master-Slave (MS)

Mehrere Geräte gleicher Art können zu einer Parallelschaltung verbunden werden, um eine höhere Gesamtleistung zu erzielen. Für die Parallelschaltung werden üblicherweise alle Einheiten an ihren DC-Anschlüssen, dem Share-Bus und dem Master-Slave-Bus verbunden. Der Geräteverbund kann dann wie ein System, wie ein größeres Gerät mit mehr Leistung betrachtet und behandelt werden.

Der Share-Bus wiederum dient zur dynamischen Ausregelung der Spannung am DC-Eingang der Geräte, d. h. im CV-Betrieb, besonders wenn am Mastergerät der Funktionsgenerator genutzt werden soll. Es müssen zumindest die DC-Minus-Anschlüsse aller über Share-Bus verschalteten Geräte verbunden sein, damit der Share-Bus sauber regeln kann.

Prinzipdarstellung ohne externe Quelle:

3.11.1.1 Einschränkungen

Gegenüber dem Normalbetrieb eines Einzelgerätes hat Master-Slave-Betrieb folgende Einschränkungen:

- Das MS-System reagiert auf Alarmsituationen zum Teil anders (siehe unten bei 3.11.1.8)
- Die Share-Bus-Verbindung hilft dem System, die Spannung aller beteiligter Geräte so schnell wie möglich auszuregeln, trotzdem ist eine Parallelschaltung nicht so dynamisch wie ein Einzelgerät
- Verbindung zu identischen Modellen aus anderen Serien wird nicht unterstützt

3.11.1.2 Verkabelung der DC-Eingänge

Der DC-Eingang jedes beteiligten Gerätes wird mit dem des nächsten Gerätes polrichtig verbunden usw. Dabei sind möglichst kurze Kabel oder Kupferschienen mit ausreichendem Querschnitt (=niederinduktiv) zu benutzen. Der Querschnitt richtet sich nach dem Gesamtstrom der Parallelschaltung.

3.11.1.3 Verkabelung des Share-Bus'

Der Share-Bus wird über handelsübliche BNC-Leitungen (koaxiales Kabel, Typ 50 Ω) mit z. B. 0,5 m Länge von Gerät zu Gerät verbunden. Die beiden Anschlüsse sind durchverbunden und stellen keinen dedizierten Eingang und Ausgang dar. Die Beschriftung dient lediglich der Orientierung.

• Es können max. 64 Geräte über den Share-Bus verbunden werden.

• Wird der Share-Bus zu einem anderen, eingeschalteten Gerät verbunden während Master-Slave noch nicht aktiviert wurde (Einstellung: Slave oder Master), tritt ein SF-Alarm auf

3.11.1.4 Verkabelung des digitalen Master-Slaves-Busses

Der Master-Slave-Bus ist fest im Gerät integriert und muß vor der Benutzung per Netzwerkkabel (≥CAT3, Patchkabel) verbunden und dann manuell oder per Fernsteuerung konfiguriert werden. Folgendes ist dabei gegeben:

- Maximal 64 Geräte können über den Bus zusammengeschaltet werden: 1 Master, bis zu 63 Slaves
- Nur Verbindung zu Geräten gleicher Art, also elektronische Last zu elektronischer Last; unterschiedliche Leistungsklassen sind zulässig und unterstützt, z. B. ein 15 kW 3U mit einem 30 kW 4U um auf 45 kW zu kommen, setzt aber auf allen Geräten die Mindestfirmwareversion KE/HMI 3.02 voraus
- Geräte an den Enden des Busses sollten bei Bedarf terminiert werden (siehe unten)

Der Master-Slave-Bus darf nicht über Crossover-Kabel verbunden werden!

Für den späteren Betrieb des MS-Systems gilt dann:

- Am Master werden die Istwerte aller Geräte aufsummiert und angezeigt bzw. sind per Fernsteuerung auslesbar
- Die Einstellbereiche der Sollwerte, Einstellgrenzen (Limits), Schutzgrenzen (OVP usw.), sowie von Benutzerereignissen werden beim Master an die Anzahl der initialisierten Slaves angepaßt. Wenn also z. B. fünf Einheiten mit je 15 kW Leistung zu einem 75 kW-System zusammengeschaltet werden, kann am Master 0...75 kW als Leistungssollwert eingestellt werden (manuell oder bei Fernsteuerung)
- Die Slaves sind nicht bedienbar, solange wie vom Master gesteuert
- Slaves zeigen den Alarm "MSS" in der Anzeige, solange sie noch nicht durch den Master initialisiert wurden. Derselbe Alarm wird bei einem Verbindungsverlust zum Master ausgegeben
- Soll der Funktionsgenerator am Master verwendet werden, muß zusätzlich der Share-Bus verbunden werden

► So stellen Sie die digitale Master-Slave-Verbindung her

- 1. Alle zu verbindenden Geräte ausschalten und mittels Netzwerkkabel (CAT3 oder besser, nicht im Lieferumfang des Gerätes enthalten) untereinander verbinden. Dabei ist es egal, welcher der beiden Master-Slave-Busanschlüsse (RJ45, Rückseite) zum jeweils nächsten Gerät verbunden wird.
- **2.** Je nach gewünschter Konfiguration nun auch die Geräte DC-seitig verbinden. Die beiden Geräte am Anfang und am Ende des Busses müssen immer terminiert werden, der Master benötigt eine separate Einstellung, siehe die Tabelle unten.

Die Terminierung erfolgt mittels elektronischer Schalter, die im Einstellungsmenü des Gerätes in Gruppe **Master-Slave** zugänglich sind. Das kann als Teil der Konfiguration der einzelnen Geräte und Wahl von Master- oder Slave-Modus erfolgen, sollte aber vorher schon erledigt werden, da beim Master durch Setzen des Modus' **Master** sofort eine Businitialisierung erfolgt. In der Menügruppe **Master-Slave** können die beiden BIAS-Widerstände (siehe Grafik rechts) und der Abschlußwiderstand je Gerät separat geschaltet werden.

Übersichtsmatrix, was bei welchem Gerät am Bus zu setzen wäre:

Position des Gerätes	Terminierungseinstellung(en)
Master (am Ende des Buses)	BIAS + TERM
Master (mittig im Bus)	BIAS
Slave (am Ende des Buses)	TERM
Slave (mittig im Bus)	-

3.11.1.5 Gemischte Systeme

Unter gemischten Systemen wird hier folgendes verstanden:

• Unterschiedliche Leistungsklassen, wie z. B. 5 kW, 15 kW und 30 kW in einem Verbund (erfordert mind. Firmware KE 3.02)

Bei der Kombination unterschiedlicher Leistungsklassen ist zu beachten daß, je nach dem welches Gerät der Master ist, die sich ergebende Gesamtleistung, wie am Master nach der Initialisierung des Busses angezeigt, geringer als erwartet sein kann. In so einem Fall gilt, daß möglichst immer eins von den Geräten mit der höchsten Nennleistung als Master definiert werden sollte.

Beispiel: ein 3 kW-Modell als Master eines 15 kW-Modells ergibt bei Firmware KE 3.02 nur 15,75 kW Systemleistung. Wechselt man auf das 15 kW als Master ergeben sich 18 kW Gesamtleistung.

3.11.1.6 Konfiguration des Master-Slave-Betriebs

Nun muß das Master-Slave-System noch auf jedem Gerät für Master bzw. Slave konfiguriert werden. Als Reihenfolge empfiehlt es sich, zuerst alle Slave-Geräte zu konfigurieren und dann das Master-Gerät.

Schritt 1: So konfigurieren Sie die Slave-Geräte

- 1. Bei ausgeschaltetem DC-Ausgang tippen Sie in der Hauptanzeige auf links hoch bis Gruppe Master-Slave erscheint. Antippen.
- 2. Durch Tippen auf die Einstellung **Modus** rechts erscheint eine Auswahl. Durch Wahl von **Slave**, sofern nicht bereits gesetzt, aktivieren Sie den Master-Slave-Modus und legen gleichzeitig das Gerät als Slave-Gerät fest. Zusätzlich kann hier noch die Terminierung erfolgen, sofern für das gerade konfigurierte Gerät nötig.
- **3.** Verlassen Sie das Einstellmenü.

Das Slave-Gerät ist hiermit fertig konfiguriert. Für jedes weitere Slave-Gerät genauso wiederholen.

Schritt 2: So konfigurieren Sie das Master-Gerät

- Bei ausgeschaltetem DC-Ausgang tippen Sie in der Hauptanzeige auf bis zu Master-Slave.
 und rollen dann in der Auswahl links runter Einstell.
- 2. Durch Tippen auf die Einstellung **Modus** rechts erscheint eine Auswahl. Durch Wahl von **Master**, sofern nicht bereits gesetzt, aktivieren Sie den Master-Slave-Modus und legen gleichzeitig das Gerät als Master-Gerät fest und aktiviert die Terminierung durch die BIAS-Widerstände, wie für den Master erforderlich.

Schritt 3: Master initialisieren

Durch den Wechsel auf Modus **Master** wird sofort eine Initialisierung des MS-Systems gestartet und das Ergebnis im selben Fenster angezeigt. Sollte die Initialisierung nicht erfolgreich sein, was sich an der Anzahl der Slaves bzw. an der Gesamtleistung erkennen läßt, kann man die Initialisierung hier auch wiederholen:

Initialisierungsstatus	Initialisiert
Anzahl der Slaves	1
Systemspannung	80.00V
Systemstrom	1020.0A
Systemleistung	30.00kW
Systemwiderstand	4.0000Ω System initialisieren

Betätigung von **System initialisieren** wiederholt die Initialisierung, falls nicht alle Slaves erkannt wurden, das System umkonfiguriert wurde, wenn z. B. ein Verdrahtungsfehler am digitalen MS-Bus vorliegt oder noch nicht alle Slave-Geräte als **Slave** konfiguriert wurden. Das Fenster listet auf, wieviele Slaves gefunden wurden, sowie die sich aus dem Verbund ergebende Gesamtleistung, Gesamtstrom und Gesamtwiderstand. Im Fall, daß gar kein Slave-Gerät gefunden wurde, wird das MS-System mit nur dem Master verwendet.

Die Initialisierung des Masters und des Master-Slave-Systems wird, solange der Master-Slave-Modus aktiviert ist, nach dem Netzeinschalten des Mastergerätes jedesmal automatisch ausgeführt. Die Initialisierung kann über das Menü "Einstellungen" des Mastergerätes, in Gruppe "Master-Slave" jederzeit wiederholt werden.

und wischen dann in der Gruppenauswahl

3.11.1.7 Bedienung des Master-Slave-Systems

Nach erfolgreicher Initialisierung des Masters und aller Slaves zeigen diese ihren Status in der Anzeige an. Der Master zeigt **MS-Modus: Master** im Statusfeld, die Slaves entsprechend **MS-Modus: Slave**, sowie **Fern: Master-Slave**, so lange wie sie vom Master ferngesteuert werden.

Die Slaves sind dann nicht manuell bedienbar und auch nicht per analoger oder digitaler Schnittstelle fernsteuerbar. Sie könnten jedoch, falls nötig, über diese Schnittstellen überwacht werden (Monitoring), durch Auslesen der Istwerte und des Status'. Nach der Initialisierung und Rückkehr aus dem Menü zeigt der Master nun die Ist- und Sollwerte des Gesamtsystems an. Je nach Anzahl der Geräte vervielfacht sich der Einstellbereich für Strom und Leistung, wogegen sich der Widerstandsbereich verkleinert. Es gilt dann:

- Der Master ist bedienbar wie ein Einzelgerät
- Der Master gibt die eingestellten Sollwerte usw. an die Slaves weiter und steuert diese
- Der Master ist über analoge oder eine der digitalen Schnittstellen fernsteuerbar
- Sämtliche Einstellungen zu den Sollwerten U, I, P und R, sowie alle darauf bezogenen Werte wie Überwachung, Einstellgrenzen usw. werden am Master an die neuen Gesamtwerte angepaßt
- Bei allen initialisierten Slaves werden Einstellgrenzen (U_{Min}, I_{Max} etc.), Überwachungsgrenzen (OVP, OPP ect.) und Event-Einstellungen (UCD, OVD) auf Standardwerte zurückgesetzt, damit diese nicht die Steuerung durch den Master stören. Werden diese Grenzen am Master angepaßt, werden sie 1:1 an die Slaves übertragen. Beim späteren Betrieb können Slaves, durch ungleichmäßige Lastverteilung und unterschiedlich schnelle Reaktion, anstelle des Masters Alarme wie OCP, OVP oder Events usw. auslösen

Um alle diese Werte nach dem Verlassen des MS-Betriebs schnell wieder herstellen zu können, wird die Verwendung von Nutzerprofilen empfohlen (siehe «3.9 Nutzerprofile laden und speichern»)

- Wenn ein oder mehrere Slaves einen Gerätealarm melden, so wird dies am Master angezeigt und muß auch dort bestätigt werden, damit das System weiterarbeiten kann. Da ein Alarm immer alle DC-Eingänge des Systems abschaltet und der Master diese nur nach einem Alarm PF oder OT automatisch wieder einschalten kann, was zudem abhängig von Einstellparametern ist, kann unter Umständen der Eingriff des Betreibers des Gerätes oder einer Fernsteuerungssoftware erforderlich werden.
- Verbindungsabbruch zu einem oder mehreren Slaves führt aus Sicherheitsgründen auch zur Abschaltung aller DC-Eingänge und der Master meldet diesen Zustand als "Master-Slave-Sicherheitsmodus". Dann muß das MS-System durch Betätigung des Bedienfeldes **Initialisieren** neu initialisiert werden, mit oder ohne den/die Slaves, die den Verbindungsabbruch verursachten. Das gilt ebenso für Fernsteuerung.
- Alle Geräte, auch die Slaves, können über den Pin REM-SB der analogen Schnittstelle DC-seitig ausgeschaltet werden. Das kann als eine Art Notfallabschaltung (kein Not-Aus!) dienen, die üblicherweise über einen Kontakt gesteuert zu allen beteiligten Geräten parallel verdrahtet wird.

3.11.1.8 Alarm- und andere Problemsituationen

Beim Master-Slave-Betrieb können, durch die Verbindung mehrerer Geräte und deren Zusammenarbeit, zusätzliche Problemsituationen entstehen, die beim Betrieb einzelner Geräte nicht auftreten würden. Es wurden für solche Fälle folgende Festlegungen getroffen:

- Wenn der Master die Verbindung zu irgendeinem der Slaves verliert, wird immer ein MSS-Alarm (Master-Slave Sicherheitsmodus) ausgelöst, der zur Abschaltung des DC-Eingangs des Masters und einem Pop-up in der Anzeige führt. Alle Slaves fallen zurück in den Einzelbetrieb und schalten auch ihren DC-Eingang aus. Der MSS-Alarm kann gelöscht werden, indem der Master-Slave-Betrieb erneut initialisiert wird. Das kann direkt im Pop-up-Fenster des MSS-Alarms oder im Menü des Masters oder per Fernsteuerung geschehen. Alternativ kann zum Löschen des Alarms auch der MS-Modus deaktiviert werden.
- Falls ein oder mehrere Slave-Geräte AC-seitig ausfallen (ausgeschaltet am Netzschalter, Stromausfall, auch bei Netzunterspannung) werden sie nach der Wiederkehr nicht automatisch wieder als Slaves eingebunden. Die Initialisierung des MS-System muß dann vom Anwender explizit wiederholt werden.
- Falls das Master-Gerät AC-seitig ausfällt (ausgeschaltet am Netzschalter, Stromausfall) und später wiederkommt, initialisiert es automatisch das MS-System neu und bindet alle erkannten Slaves ein. In diesem Fall kann der MS-Betrieb automatisch fortgeführt werden, wenn z. B. eine Software das Master-Gerät überwacht und steuert.
- Falls mehrere Master-Geräte oder gar keines definiert wurde, kann das Master-Slave-System nicht initialisiert werden.

In Situationen, wo ein oder mehrere Geräte einen Gerätealarm wie OVP o. ä. erzeugen, gilt Folgendes:

- Jeder Gerätealarm eines Slaves wird auf dem Display des Slaves und auf dem des Masters angezeigt.
- Bei gleichzeitig auftretenden Alarmen mehrerer Slaves zeigt der Master nur den zuletzt aufgetretenen Alarm an. Hier könnten die konkret anliegenden Alarme dann nur bei den Slaves selbst erfaßt werden, z. B. durch das Auslesen der Alarmhistorie über eine Software.
- Alle Geräte im MS-System überwachen ihre eigenen Werte hinsichtlich Überstrom (OCP) und anderer Schwellen und melden Alarme an den Master. Es kann daher auch vorkommen, hauptsächlich wenn durch irgendeinen Grund der Strom zwischen den Geräten nicht gleichmäßig aufgeteilt ist, daß ein Gerät bereits OCP meldet, auch wenn die globale OCP-Schwelle des MS-Systems noch gar nicht erreicht wurde. Das Gleiche gilt für OPP.

3.11.2 Reihenschaltung

Eine Reihenschaltung von elektronischen Lasten ist nicht zulässig und darf daher nicht betrieben werden! Grund: mögliche, ungleichmäßige Verteilung der Eingangsspannung durch intern unterschiedlich ausgeregelten Zustand und somit Innenwiderstand. Im Härtefall hat bei mindestens zwei Lasten in Reihe eine einen sehr niedrigen und die anderen einen hohen Innenwiderstand, wodurch fast die gesamte Eingangsspannung an der mit dem hohen Innenwiderstand anliegen und die Eingangsstufe, sowie Isolation beschädigen könnte.

3.11.3 SEMI F47

SEMI F47, wobei das SEMI von semiconductor, dem englischen Wort für Halbleiter kommt, ist eine Spezifikation die es erfordert, daß das Gerät bei einer bestimmten Netzspannungsschwankung von max. 1,7 s Dauer und einer Unterspannung von max. -50% Nenn-AC-Spannung ohne Unterbrechung weiterarbeiten kann. Ab Firmware KE 3.02 und HMI 3.02 ist diese Funktionalität in allen 10000er Geräteserien implementiert, kann jedoch nicht durch ein Update installiert werden. Der nach SEMI F47 definierte Spannungseinbruch erfolgt in ansteigenden Stufen:

Stufe	Dauer bei 50 Hz	Dauer bei 60 Hz	Dauer
50%	10 Perioden	12 Perioden	0,2 s
70%	25 Perioden	30 Perioden	0,5 s
80%	50 Perioden	60 Perioden	1 s

3.11.3.1 Einschränkungen

- Die Funktionalität wird automatisch deaktiviert und gleichzeitig gesperrt, sollte das Gerät bei ohnehin niedriger Netzspannung starten, z. B. 208 V statt 400 V (L-L), wodurch es die geforderten 1,7 s nicht mehr überbrücken könnte. SEMI F47 funktioniert daher nicht im sog. Derating-Betrieb.
- Die Funktionalität bedingt zwecks Aufrechterhaltung der eingestellten Werte eine gewisse Maximalleistung, die geringer als die Nennleistung des Gerätes; es ist somit auch eine Art von Leistungsreduktion, die aber durch Ein-/Ausschalten von SEMI F47 mit aktiviert bzw. deaktiviert wird und nicht netzspannungsabhängig ist

3.11.3.2 Einstellmöglichkeiten

• SEMI F47 kann manuell am HMI (siehe 3.4.3.1) oder per Fernsteuerung über digitale Schnittstelle ein- oder ausgeschaltet werden, sofern nicht durch einen bestimmten Umstand blockiert

3.11.3.3 Anwendung

SEMI F47 kann jederzeit aktiviert werden, sofern nicht durch die netzspannungsbedingte Leistungsreduzierung (siehe 3.2.3.1) blockiert. Geschieht die Aktivierung irgendwann mitten im Betrieb, erscheint nach dem Verlassen des Menüs auf der Anzeige eine Meldung und die für SEMI F47 definierte Maximalleistung wird sofort übernommen, sowie die aktuell gesetzten Leistungssollwerte, sollten Sie höher sein als die neue Maximalleistung, entsprechend heruntergesetzt. Umgekehrt erfolgt die Anpassung der maximal einstellbaren Leistung ebenso, nur die Sollwerte bleiben in dieser Situation unverändert. Da die Einstellung für SEMI F47 über das Ausschalten des Gerätes hinaus gespeichert wird, kann das Gerät direkt im Modus SEMI F47 hochfahren und würde dann die o.g. Meldung einmal nach jedem Hochfahren anzeigen, was deaktiviert werden kann.

Tritt später Netzunterspannung auf, entscheidet deren Dauer oder momentaner AC-Spannungswert darüber, ob das Gerät ohne Ausschalten des DC-Eingangs weiterarbeitet oder ob es den DC-Eingang abschaltet und Alarm **PF** meldet. Ohne aktiviertes SEMI F47 kommt der **PF**-Alarm sofort, mit aktiviertem SEMI F47 frühestens nach 2 Sekunden. Ist die Netzunterspannung von einer geringeren Dauer und ausreichender Spannungshöhe erfolgt keine Reaktion des Gerätes. Das Auftreten wird dann auch nicht anderweitig registriert.

4. Instandhaltung und Wartung

4.1 Wartung / Reinigung

Die Geräte erfordern keine regelmäßige Wartung. Reinigung kann, jenachdem in welcher Umgebung sie betrieben werden, früher oder später für die internen Lüfter nötig sein. Diese dienen zur Kühlung der internen Komponenten, die durch die zwangsweise entstehende, jedoch geringe Verlustleistung erhitzt werden. Stark verdreckte Lüfter können zu unzureichender Luftzufuhr führen und damit zu vorzeitiger Abschaltung des DC-Eingangs wegen Überhitzung bzw. zu vorzeitigen Defekten.

Zwecks einer Wartung dieser Art kontaktieren Sie uns bitte.

4.1.1 Batterietausch

Das Gerät enthält eine Lithium-Knopfzelle vom Typ CR2032, die sich auf der sog. KE-Platine befindet, die hinten rechts im Gerät (von vorn betrachtet) an der Seitenwand befestigt ist. Die Batterie puffert die Echtzeituhr und ist für mindestens 5 Jahre Lebensdauer ausgelegt. Die Lebensdauer wird jedoch auch durch äußere Einflüsse wie Temperatur bestimmt und kann geringer sein. Sollte es nötig sein, die Batterie zu tauschen, so kann das unter Berücksichtigung von ESD-Schutzmaßnahmen durch eine geeignete Person vor Ort selbst vorgenommen werden. Dazu wäre die KE-Platine zu lösen und mit angesteckten Kabeln vorsichtig etwas heraus zu ziehen.

4.2 Fehlersuche / Fehlerdiagnose / Reparatur

Im Fall, daß sich das Gerät plötzlich unerwartet verhält, was auf einen möglichen Defekt hinweist, oder es einen offensichtlichen Defekt hat, kann und darf es nicht durch den Anwender repariert werden. Konsultieren Sie bitte im Verdachtsfall den Lieferanten und klären Sie mit ihm weitere Schritte ab.

Üblicherweise wird es dann nötig werden, das Gerät an den Hersteller zwecks Reparatur (mit Garantie oder ohne) einzuschikken. Im Fall, daß eine Einsendung zur Überprüfung bzw. Reparatur ansteht, stellen Sie sicher, daß...

- Sie vorher Ihren Lieferanten kontaktiert und mit ihm abgeklärt haben, wie und wohin das Gerät geschickt werden soll
- es in zusammengebautem Zustand sicher für den Transport verpackt wird, idealerweise in der Originalverpackung.
- mit dem Gerät zusammen betriebene Optionen, wie z. B. ein digitales Schnittstellen-Modul, mit dem Gerät mit eingeschickt werden, wenn sie mit dem Problemfall in Zusammenhang stehen.
- eine möglichst detaillierte Fehlerbeschreibung beiliegt.
- bei Einsendung zum Hersteller in ein anderes Land alle für den Zoll benötigten Papiere beiliegen.

4.2.1 Firmware-Aktualisierungen

Firmware-Updates sollten nur dann durchgeführt werden, wenn damit Fehler in der bisherigen Firmware des Gerätes behoben werden können!

Die Firmwares der Bedieneinheit HMI, der Kommunikationseinheit KE und des digitalen Reglers DR können über die rückseitige USB-Schnittstelle aktualisiert werden. Dazu wird die Software EA Power Control benötigt, die mit dem Gerät mitgeliefert wird, welche aber auch als Download von der Herstellerwebseite erhältlich ist, zusammen mit einer Firmware-Datei.

Es wird jedoch davor gewarnt, Updates bedenkenlos zu installieren. Jedes Update birgt das Risiko, das Gerät oder ganze Prüfsysteme vorerst unbenutzbar zu machen. Daher wird empfohlen, nur dann Updates zu installieren, wenn...

- damit ein am Gerät bestehendes Problem direkt behoben werden kann, insbesondere wenn das von uns im Rahmen der Unterstützung zur Problembehebung vorgeschlagen wurde.
- neue Funktionen in der Firmware-Historie aufgelistet sind, die genutzt werden möchten. In diesem Fall geschieht die Aktualisierung des Gerätes auf eigene Gefahr!

Außerdem gilt im Zusammenhang mit Firmware-Aktualisierung folgendes zu beachten:

- Simple Änderungen in Firmwares können für den Endanwender zeitaufwendige Änderungen von Steuerungs-Applikationen mit sich bringen. Es wird empfohlen, die Firmware-Historie in Hinsicht auf Änderungen genauestens durchzulesen
- Bei neuen Funktionen ist eine aktualisierte Dokumentation (Handbuch und/oder Programmieranleitung, sowie LabView VIs) teils erst viel später verfügbar

4.2.2 Vermeidung und Behandlung von Gerätefehlern

Fehlerfall	Mögliche Gefahr	Wahrschein- lichkeit	Sicherheitsmaßnahmen seitens des Anwenders	Restrisiko
Eine Spannung mit umgekehrter Polarität wurde am DC-Eingang angelegt	Zerstörung der sekundären Lei- stungsstufe(n)	Gering	Bei allen Anwendungen, wo eine externe Quelle an das Gerät angeschlossen wird, besonders im Fall von Batterien, einen Warnhinweis am Gerät anbrin- gen, daß besonders auf korrekte Polarität geachtet werden muß bzw. zusätzlich die DC-Leitung mit Sicherungen versehen, welche die Beschädigung mildern oder ganz verhindern könnten.	Gering

4.2.3 Ersatzableitstrommessung

4.2.3.1 Messung nach DIN VDE 0701-1

Die nach DIN VDE 0701-1 durchgeführte Ersatz-Ableitstrommessung führt unter Umständen zu Ergebnissen, die außerhalb der Norm liegen. Grund: die Messung wird in erster Linie an sogenannten Netzfiltern am Wechselspannungs-Eingang der Geräte durchgeführt. Diese Filter sind **symmetrisch** aufgebaut, das heißt, es ist unter Anderem jeweils ein Y-Kondensator von L1/2/3 nach PE geführt. Da bei der Messung L1, L2 und L3 verbunden werden und der nach PE abfließende Strom gemessen wird, liegen somit bis zu **drei** Kondensatoren parallel, was den gemessenen Ableitstrom **verdoppelt oder verdreifacht**. Dies ist nach geltender Norm zulässig.

Zitat aus der Norm von 2008, Anhang D:

"Es ist zu beachten, daß bei Geräten mit Schutzlieter und symmetrischen Beschaltungen der mit dem Ersatz-Ableitstrom-Meßverfahren gemessene Schutzleiterstrom infolge der Beschaltung 3-mal bis 4-mal so hoch sein kann wie der Ableitstrom der Beschaltung einer Phase."

5. Service und Support

5.1 Reparaturen

Reparaturen, falls nicht anders zwischen Anwender und Lieferant ausgemacht, werden durch den Hersteller durchgeführt. Dazu muß das Gerät im Allgemeinen an den Hersteller eingeschickt werden. Es wird keine RMA-Nummer benötigt. Es genügt, das Gerät ausreichend zu verpacken, eine ausführliche Fehlerbeschreibung und, bei noch bestehender Garantie, die Kopie des Kaufbelegs beizulegen und an die unten genannte Adresse einzuschicken.

5.2 Kontaktmöglichkeiten

Bei Fragen und Problemen mit dem Betrieb des Gerätes, Verwendung von optionalen Komponenten, mit der Dokumentation oder Software kann der technische Support telefonisch oder per E-Mail kontaktiert werden.

Hauptsitz	E-Mailadressen	Telefonnummern
EA Elektro-Automatik GmbH	Technische Hilfe:	Zentrale: 02162 / 37850
Helmholtzstr. 31-37	support@elektroautomatik.de	Support: 02162 / 378566
41747 Viersen	Alle anderen Themen:	
Deutschland	ea1974@elektroautomatik.de	

EA Elektro-Automatik GmbH & Co. KG Helmholtzstr. 31-37 41747 Viersen

Phone +49 2162 3785 - 0 Fax +49 2162 1623 - 0 ea1974@elektroautomatik.com

www.elektroautomatik.com