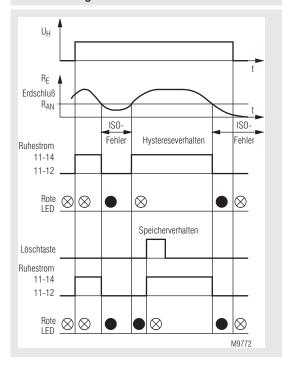
Überwachungstechnik

VARIMETER IMD Isolationswächter UH 5892

Original



Produktbeschreibung

Der Isolationswächter UH 5892 der Serie VARIMETER IMD überwacht den Isolationswiderstand von ungeerdeten Gleichund Wechselstromnetzen (IT-Systemen) mit Nennspannungen von DC 0 ... 600 V und AC 0 ... 400 V. Dabei werden sowohl symmetrische als auch unsymmetrische Isolationsfehler erkannt. Die separate Versorgungsspannung (Hilfsspannung) von AC/DC 24 ... 60 V oder AC/DC 85 ... 230 V ermöglicht auch die Überwachung eines spannungslosen Systems. Zur Anzeige des aktuellen Isolationswiderstandes dienen eine LED-Kette und ein Analogausgang. Bei Fehlererkennung schaltet das Melderelais und die rote LED "Alarm" leuchtet. Das Gerät eignet sich für Netzableitkapazitäten bis 20 μF.

Funktionsdiagramm

Ihre Vorteile

- · Vorbeugender Brand- und Anlagenschutz
- Isolationsüberwachung von DC- und AC-Netzen bis DC 600 V und AC 400 V Nennspannung
- Kein zusätzliches Vorschaltgerät erforderlich
- Für Netzableitkapazitäten bis 20 µF geeignet
- Überwachung auch bei spannungslosem Netz
- 2 Weitspannungsbereiche für die Hilfsspannung

Merkmale

- Isolationsüberwachung nach IEC/EN 61557-8
- Erkennung von symmetrischen und unsymmetrischen Isolationsfehlern
- 1 Wechsler für Alarm
- Fester Ansprechwert R_{AN}: 50 kΩ, andere auf Anfrage
- Interne Reset- und Test-Taste
- · Anschluss von externen Reset- und Test-Tasten möglich
- LED-Anzeige für Hilfsspannung und Alarm
- LED-Kette zur Anzeige des aktuellen Isolationswiderstandes
- Programmierbar für Speicher- oder Hystereseverhalten
- Analogausgang für Isolationswert
- Externes Anzeigeinstrument möglich
- Ruhestromprinzip (Ausgangsrelais im Fehlerfall nicht aktiviert)
- · Arbeitsstromprinzip auf Anfrage
- Mit steckbaren Anschlussblöcken für schnellen Geräteaustausch
- Mit Schraubklemmen
- Oder mit Federkraftklemmen
- Baubreite 45 mm

Zulassungen und Kennzeichen

Anwendungen

Überwachung des Isolationswiderstandes von ungeerdeten Gleich- und Wechselspannungsnetzen

Aufbau und Wirkungsweise

Das Gerät wird über die Klemmen A1(+)/A2 mit Hilfsspannung versorgt, eine grüne LED "ON" leuchtet. Nach Einschalten der Hilfsspannung ist zunächst eine ca. 10 s dauernde Anlaufüberbrückung aktiv, in der sich die Messschaltung einschwingt. Danach beginnt die Messung des Isolationswiderstandes im Messkreis.

Messkreis

(Isolationsmessung zwischen den Klemmen L(+)/L(-) und PE1/PE2). Die Klemmen L(+) und L(-) werden an das zu überwachende Netz angeschlossen.

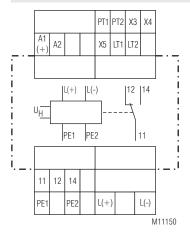
Außerdem sind die beiden Klemmen PE1 und PE2 über getrennte Leitungen an das Schutzleitungssystem anzuschließen.

Zur Messung des Isolationswiderstandes wird zwischen L(+)/L(-) und PE1/PE2 eine aktive Messspannung mit wechselnder Polarität angelegt. Die Länge der positiven und negativen Messphasen ist fest auf ca. 16 s (für eine max. Netzableitkapazität von 20µF) eingestellt.

Die LED-Kette und der Analogausgang zeigen den ermittelten aktuellen Isolationswiderstand an, und das Melderelais schaltet entsprechend bei Unterschreiten des Ansprechwertes. Wird der Ansprechwert unterschritten, leuchtet zusätzlich noch die rote LED "Alarm".

Geräteanzeigen

Grüne LED "ON": Leuchtet bei anliegender Hilfsspannung


Rote LED "Alarm": Leuchtet bei Unterschreiten des

Ansprechwertes R_{AN}

Zeigt die Größenordnung des Isolations-LED-Kette:

widerstandes an

Schaltbild

Anschlussklemmen

Klemmenbezeichnung	Signalbeschreibung
A1(+), A2	Hilfsspannung U _H
L(+), L(-)	Anschlüsse für Messkreis
PE1, PE2	Anschlüsse für Schutzleiter
X5(/LT1)	Steuereingang (Speicher-/Hystereseverhalten) X5/LT1 gebrückt: Speicherverhalten X5/LT1 nicht gebrückt: Hystereseverhalten
PT1, PT2	Anschlussmöglichkeit externer Test-Taster
LT1, LT2	Anschlussmöglichkeit externer Reset-Taster
X3, X4	Analogausgang
11, 12, 14	Alarm-Melderelais (1 Wechslerkontakt)

Hinweise

Gefahr durch elektrischen Schlag! Lebensgefahr oder schwere Verletzungsgefahr.

- Stellen Sie sicher, dass Anlage und Gerät während der elektrischen Installation in spannungsfreiem Zustand sind und bleiben.
- Die Klemmen der Steuereingänge X5, LT1, LT2, PT1 und PT2 haben keine galvanische Trennung zum Messkreis L(+) - L(-) und sind elektrisch mit diesen verbunden; sie sind daher mit potenzialfreien Kontakten bzw. durch Brücken anzusteuern! Diese Kontakte/Brücken müssen je nach Höhe der Netzspannung an L(+) - L(-) über eine entsprechende Trennung verfügen!
- An die Steuerklemmen X5, LT1, LT2, PT1 und PT2 dürfen keine fremden Potenziale angeschlossen werden.
- Die Klemmen des Analogausgangs X3 und X4 haben keine galvanische Trennung zum Messkreis L(+) - L(-) und sind elektrisch mit diesen verbunden. Angeschlossene Geräte/Anzeigen müssen je nach Höhe der Netzspannung an L(+) - L(-) über eine entsprechende Trennung verfügen!

Zur Beachtung!

- Vor Isolations- und Spannungsprüfungen ist der Isolationswächter UH 5892 vom Netz zu trennen!
- In einem zu überwachenden Netz darf nur ein Isolationswächter angeschlossen sein. Dies muss bei Netzkopplungen berücksichtigt werden.
- Das Gerät darf nicht ohne PE1/PE2-Anschluss betrieben werden!
- Bei Schwankungen der Netzspannung kann es zu kurzfristigen Falschanzeigen kommen. Dies ist durch das getaktete Messprinzip bedingt und normal.

nfo Zur Beachtung!

- Enthält ein überwachtes AC-Netz galvanisch gekoppelte DC-Kreise, z. B. über einen Gleichrichter, so kann ein Isolationsfehler auf der DC-Seite nur richtig ermittelt werden, wenn über die Halbleiterventile ein Mindeststrom von > 10 mA fließt.
- Enthält ein überwachtes DC-Netz galvanisch gekoppelte AC-Kreise, z. B. über einen Wechselrichter, so kann ein Isolationsfehler auf der AC-Seite nur richtig ermittelt werden, wenn über die Halbleiterventile ein Mindeststrom von > 10 mA fließt.
- Der Ansprechwert R_{AN} ist im Gerät fest eingestellt. Der Anschluss eines externen Anzeigeinstruments am Analogausgang ist möglich.
- Das Gerät arbeitet im Ruhestromprinzip, d. h. bei einem Isolationsfehler $(R_{E} < R_{AN})$ fällt das Ausgangsrelais in die Ruhelage zurück.
- Mit einer Brücke zwischen Klemme X5 und LT1 ist der Isolationswächter UH 5892 für Speicher- oder Hystereseverhalten programmierbar. Zur Quittierung des Isolationsfehlers dient eine Reset-Taste auf der Frontseite des Gerätes. An den Klemmen LT1 und LT2 ist der Anschluss einer externen Reset-Taste möglich.
- Zur Funktionsprüfung des Gerätes kann über eine interne oder externe Test-Taste (Klemmen PT1 und PT2) ein Isolationsfehler simuliert werden. Dazu muss für die Dauer einer Messphase der Test-Taster betätigt werden.
- Am Analogausgang (Klemmen X3 und X4) steht eine vom Isolationszustand des Netzes abhängige Gleichspannung an. Die Abhängigkeit wird durch folgende Formel beschrieben:

(0V bei $R_{\rm F} = 0$ und 13,0 13,5 V bei $R_{\rm F} = \infty$)

$$U_{A} = \frac{U_{max}}{\frac{180 \text{ k}\Omega}{R_{F}} + 1} \qquad ; \qquad U_{max} = 13,25 \text{ V} \pm 0,25 \text{ V}$$

Diese Werte für U_{Δ} gelten exakt für $C_{E} = 0$ (siehe Kennlinie). In der Praxis macht es wenig Sinn, höhere Werte als 11 ... 12 V auszuwerten, da hier die Toleranzen, speziell auch bei Netzableitkapazitäten, zunehmen.

Technische Daten

Hilfskreis

Nenn-Hilfs- spannung U _H	Spannungsbereich	Frequenzbereich	
AC/DC 24 60V	AC 19 68 V	45 400 Hz; DC 48 % W*)	
	DC 18 96 V	W*) ≤ 5 %	
AC/DC 85 230 V	AC 65 276 V	45 400 Hz; DC 48 % W*)	
	DC 75 300 V	W*) ≤ 5 %	
*) W = zulässige Welligkeit der Hilfsspannung			

Nennverbrauch: Max. 1,5 W

Messkreis

Nennspannung U_N: DC 0 ... 600 V / AC 0 ... 400 V

0 ... 1,15 U_N Spannungsbereich: Frequenzbereich: DC oder 40 ... 60 Hz

Ansprechwert R_{AN}: 50 k Ω , 10 ... 440 k Ω auf Anfrage

Einstellung R_{AN}: Fest eingestellt

Wechselstrom-

innenwiderstand: > 120 kΩ

Gleichstrom-

innenwiderstand: $> 150 \text{ k}\Omega$ Messspannung: Ca. ± 13 V Max. Messstrom ($R_E = 0$): < 0.3 mAMesstakt intern einstellbar: 2 ... 16 s

Für eine Netzableit-

 $1 \dots 20 \mu F$

kapazität C_E nach Erde von: Werksmäßig eingestellt: 16 s (für $C_F = 20 \mu F$)

Ansprechverzögerung

Bei $R_{AN} = 50 \text{ k}\Omega$, $C_{E} = 20 \text{ }\mu\text{F}$ $R_{E} \text{ von} \propto \text{auf } 0.9 \text{ } R_{AN}$:

< 100 s R_{E} von ∞ auf 0 k Ω : < 60 s

Hysterese

Bei $R_{AN} = 50 \text{ k}\Omega$: Ca. 5 %

Ansprechunsicherheit: IEC/EN 61557-8 \pm 15% \pm 1,5 k Ω

Ausgang

Kontaktbestückung: 1 Wechsler Max. Schaltspannung: AC 250 V Thermischer Strom I .: 5 A

Schaltvermögen

Nach AC 15:

Schließer: 5 A / AC 230 V IEC/EN 60947-5-1 Öffner: 2 A / AC 230 V IEC/EN 60947-5-1

Kurzschlussfestigkeit

Max. Schmelzsicherung: IEC/EN 60947-5-1 6 A gG/gL

Elektrische Lebensdauer

Bei 5 A, AC 230 V: 1 x 105 Schaltspiele Mechanische Lebensdauer: > 50 x 10⁶ Schaltspiele

Analogausgang

Für aktuellen Isolationswert, nicht galvanisch getrennt zum Mess-

kreis

Typ. 0 ... 13,25 V / R, ca. 50 Ω Klemmen X3-X4:

 $(0 \text{ V bei R}_{\scriptscriptstyle F} = 0 \text{ und } 13,0 \dots 13,5 \text{ V}$

bei $R_{\scriptscriptstyle F} = \infty$

X4 ist intern mit PE verbunden

Allgemeine Daten

Dauerbetrieb Nennbetriebsart:

Temperaturbereich

Betrieb: - 25 ... + 60 °C Lagerung: - 25 ... + 70 °C Betriebshöhe: < 2000 m

Luft- und Kriechstrecken

Bemessungsstoßspannung / Verschmutzungsgrad:

Messkreis zu Hilfsspannung und Relaiskontakt: 6 kV/2

Hilfsspannung zu

Relaiskontakt: 6 kV/2

Isolations-Prüfspannungen,

Stückprüfung: AC 4 kV; 1 s **Technische Daten**

Statische Entladung (ESD): 8 kV (Luftentladung) IEC/EN 61000-4-2

HF-Einstrahlung

80 MHz ... 1 GHz: 20 V / m IEC/EN 61000-4-3 1 GHz ... 2,7 GHz 10 V / m IEC/EN 61000-4-3 Schnelle Transienten: 4 kV IEC/EN 61000-4-4

1 kV

Stoßspannungen (Surge) Zwischen A1(+) - A2 und

L(+) - L(-): Zwischen A1(+), A2 - PE und

L(+), L(-) - PE: 2 kV IEC/EN 61000-4-5

Zwischen Steuerleitungen: Zwischen Steuerleitungen

0,5 kV und Erde: 1 kV IEC/EN 61000-4-5 HF-leitungsgeführt: 20 V IEC/EN 61000-4-6

Funkentstörung: Schutzart:

Gehäuse: IP 40 IEC/EN 60529 IP 20 Klemmen: IEC/EN 60529

Gehäuse: Thermoplast mit V0-Verhalten

nach UL Subiekt 94 Amplitude 0,35 mm

Grenzwert Klasse B

Rüttelfestigkeit: Frequenz 10 ... 55 Hz, IEC/EN 60068-2-6 IEC/EN 60068-1

25 / 060 / 04 Klimafestigkeit: Klemmenbezeichnung: EN 50005

Leiteranschlüsse: DIN 46228-1/-2/-3/-4

Klemmenblöcke mit Schraubklemmen

Anschlussquerschnitt: 1 x 0,25 ... 2,5 mm2 massiv oder Litze mit Hülse und Kunststoffkragen oder

2 x 0,25 ... 1,0 mm2 massiv oder Litze mit Hülse und Kunststoffkragen

IEC/EN 61000-4-5

IEC/EN 61000-4-5

EN 55011

Abisolierung der Leiter bzw. Hülsenlänge:

Klemmenblöcke mit Federkraftklemmen

1 x 0,25 ... 2,5 mm2 massiv oder Anschlussquerschnitt:

7 mm

Litze mit Hülse und Kunststoffkragen 2 x 0,25 ... 1,5 mm2 Litze mit

TWIN-Aderendhülse mit Kunststoffkragen

Abisolierung der Leiter

bzw. Hülsenlänge: 10 mm

Leiterbefestigung: Unverlierbare Schlitzschraube oder Federkraftklemmen

Anzugsdrehmoment: 0,5 Nm Schnellbefestigung: Hutschiene

IEC/EN 60715 **Nettogewicht:** Ca. 270 g

Geräteabmessungen

Breite x Höhe x Tiefe: 45 x 107 x 121 mm

Klassifizierung nach DIN EN 50155

Schwingen und Schocken: Kategorie 1, Klasse B IEC/EN 61373

Betriebstemperaturklassen: OT1 konform

Schutzlackierung Leiterplatte: Nein

Standardtypen

UH 5892.11PS AC/DC 24 ... 60 V 50 k Ω Artikelnummer: 0066309 Ausgang: 1 Wechsler Hilfsspannung U,: AC/DC 24 ... 60 V

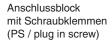
Ansprechwert R $50 \text{ k}\Omega$ Netzableitkapazität: 20 μF

Ruhestromprinzip

Baubreite: 45 mm

UH 5892.11PS AC/DC 85 ... 230 V 50 kΩ Artikelnummer: 0066946 Ausgang: 1 Wechsler Hilfsspannung U_H: AC/DC 85 ... 230 V

Ansprechwert R $50~k\Omega$ Netzableitkapazítät: 20 μF


Ruhestromprinzip

IEC 60664-1

Baubreite: 45 mm

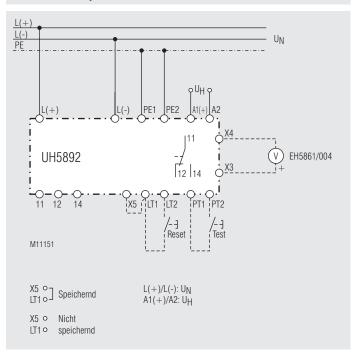
Anschlussoptionen mit steckbaren Anschlussblöcken

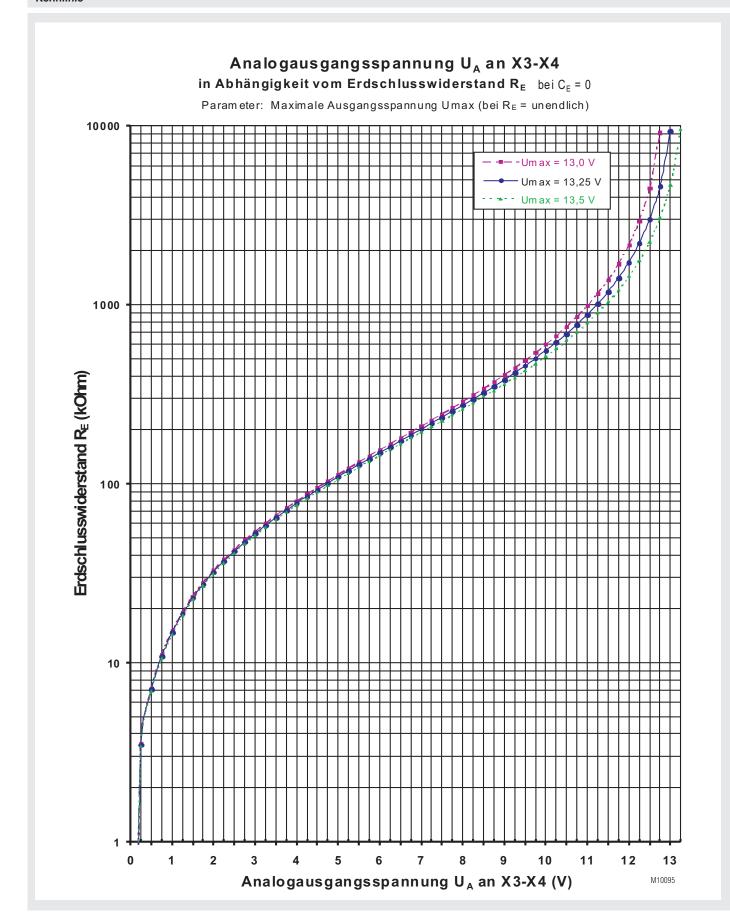
Anschlussblock mit Federkraftklemmen (PC / plug in cage clamp)

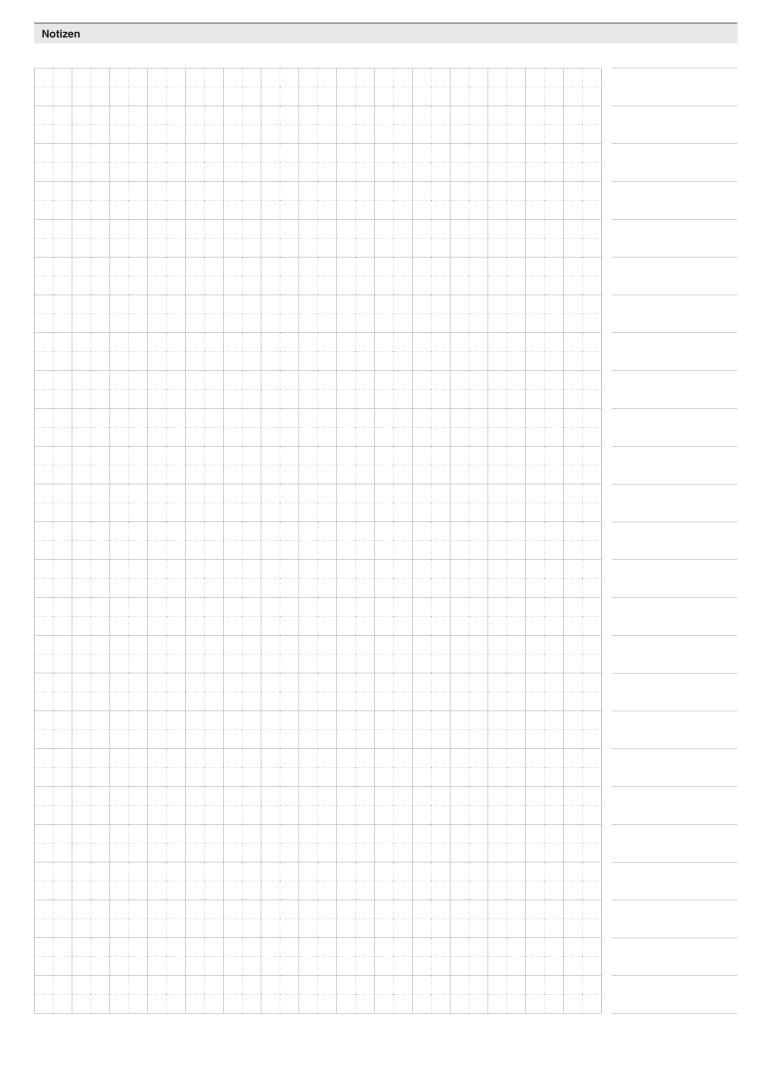
Der 3-polige Anschlussblock für L(+)/L(-) ist auch in der Anschlussoption mit Federkraftklemme (PC) nur als Schraubklemme (PS) verfügbar.

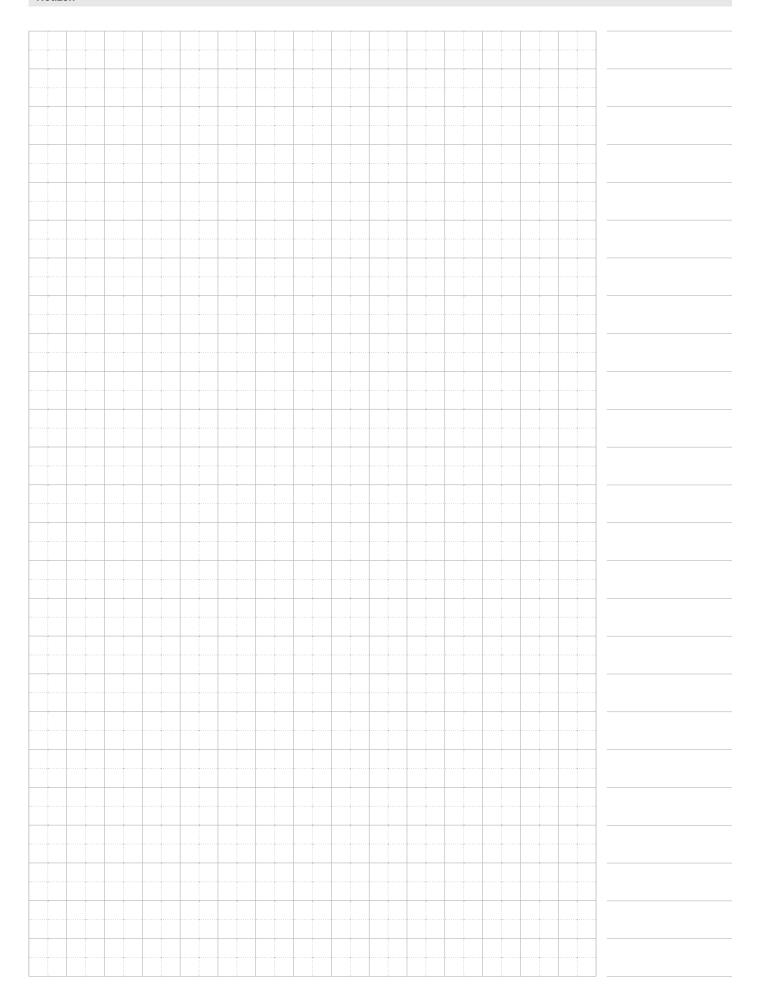
Zubehör

EH 5861/004:


Das Anzeigeninstrument EH 5861 wird extern an den Analogausgang des Isolationswächters angeschlos-


sen und zeigt den augenblicklichen Isolationswiderstand des Netzes gegen Erde in $k\Omega$ an. Geräteabmessungen: Breite x Höhe x Tiefe 96 x 96 x 52





Anschlussbeispiel

7

E. Dold & Söhne GmbH & Co. KG • D-78120 Furtwangen •	Bregstraße 18 • Telefon +49 7723 654-0 • Fax +49 7723 654	1356