

Typ 8792, 8793

Elektropneumatischer Positioner und Prozessregler

Bedienungsanleitung

We reserve the right to make technical changes without notice. Technische Änderungen vorbehalten. Sous resérve de modification techniques.

© Bürkert Werke GmbH & Co. KG, 2009 – 2022

Operating Instructions 2208/08_DE-de_00806082 / Original DE

Wir bieten Ihnen die Inbetriebnahme unserer Produkte durch unsere Servicetechniker direkt am Einsatzort an.

Kontaktieren Sie uns:

Deutschland Tel.: +49 (0) 7940 / 10 91 110

Österreich Tel.: +43 (0) 1 894 1333 Schweiz Tel.: +41 (41) 785 6666

BürkertPlus

Exzellenter Rundum-Service für Ihre Anlage

Als kompetenter Ansprechpartner für komplexe Systemlösungen und innovative Produkte bietet Ihnen Bürkert neben dem Engineering auch ein umfassendes Serviceangebot, das Sie den kompletten Produktlebenszyklus lang begleitet – den BürkertPlus Rundum-Service für Ihre Anlage.

Email: technik@burkert.com

Internet: www.buerkert.de/buerkertplus

<u>Inhalt</u>

1	DIE E	BEDIENU	NGSANLEITUNG	11
	1.1	Darste	ellungsmittel	11
	1.2	Begriff	fsdefinition "Gerät"	11
2	BES1	IMMUNO	GSGEMÄSSE VERWENDUNG	12
	2.1	Besch	ränkungen	12
3	GRU	NDLEGE	NDE SICHERHEITSHINWEISE	13
4	ALLG	EMEINE	HINWEISE	15
	4.1	Lieferu	umfang	15
	4.2	Kontal	ktadressenktadressen	15
	4.3	Gewäl	nrleistung	15
	4.4	Maste	rcode	15
	4.5	Inform	ationen im Internet	15
5	PROI	DUKTBE	SCHREIBUNG	16
	5.1	Allgem	neine Beschreibung	16
		5.1.1	Merkmale	16
		5.1.2	Kombination mit Ventiltypen und Anbauvarianten	17
		5.1.3	Übersicht der Anbaumöglichkeiten	18
	5.2	Varian	ten	19
		5.2.1	Typ 8792, Positioner	19
		5.2.2	Typ 8793, Prozessregler	19
		5.2.3	Typ 8793, Remote-Variante	19
6	AUFE	3AU		20
	6.1	Darste	ellung	20
	6.2	Funkti	onsschema	21
		6.2.1	Beispielhafte Darstellung mit einfachwirkendem Antrieb	21
7	DER	POSITIO	NER TYP 8792	22
	7.1	Schematische Darstellung der Stellungsregelung		
	7.2	Die Po	sitioner-Software	24
8	DER	PROZES	SREGLER TYP 8793	26
	8.1	Schem	natische Darstellung der Prozessregelung	27
	8.2	Die Pro	ozessregler-Software	28
9	SCHI	NITTSTEI	LLEN DES POSITIONERS / PROZESSREGLERS	30

10	TECHI	NISCHE	DATEN	31
	10.1	Konfor	mität	31
	10.2	Norme	n	31
	10.3	Zulassı	ungen	31
	10.4	Betrieb	sbedingungen	31
	10.5	Typsch	ild	32
	10.6	Mecha	nische Daten	32
	10.7	Elektris	sche Daten	33
	10.8	Pneum	atische Daten	34
	10.9	Sicherh	neitsendlagen nach Ausfall der elektrischen bzw. pneumatischen Hilfsenergie	35
	10.10	Werkse	einstellungen	36
11	ZUBEI	HÖR		36
	11.1	Kommı	unikationssoftware	36
12	ANBA	U UND N	MONTAGE	37
	12.1	Sicher	neitshinweise	37
	12.2	Anbau	an ein Stetigventil mit Schubantrieb nach NAMUR	38
		12.2.1	Anbausatz an Schubantriebe (IBestellnummer 787215)	38
		12.2.2	Montage	39
		12.2.3	Anbauwinkel befestigen	41
		12.2.4	Hebelmechanismus ausrichten	42
	12.3	Anbau	an ein Stetigventil mit Schwenkantrieb	43
		12.3.1	Anbausatz (nach VDI/VDE 3845) an Schwenkantrieb (Bestellnummer 787338)	43
		12.3.2	Montage	43
	12.4	Remote	e-Betrieb mit externem Wegaufnehmer	46
		12.4.1	Befestigungszubehör	46
		12.4.2	Anschluss und Inbetriebnahme des Remote Sensors Typ 8798	47
		12.4.3	Anschluss und Inbetriebnahme eines externen 420 mA Wegaufnehmers (nur bei Typ 8793 Remote-Variante)	48
13	PNEU	MATISCI	HER ANSCHLUSS	49
14	ELEKT	TRISCHE	R ANSCHLUSS - VARIANTE RUNDSTECKVERBINDER (MULTIPOLVARIANTE)	51
	14.1	Typ 879	92 - Bezeichnung der Rundsteckverbinder	51
	14.2	Anschl	uss des Positioners Typ 8792	52
		14.2.1	X1 - Rundstecker M12, 8-polig	52
		14.2.2	X4 - Buchse M8, 4-polig (nur bei Option Binärausgänge) Ausgangssignale zur Leitstelle (z.B. SPS)	52
	14.3	Typ 879	93 - Bezeichnung der Rundsteckverbinder und Kontakte	53
	14.4	Anschl	uss des Prozessreglers Typ 8793	54
		14.4.1	X5 - Rundstecker M8, 4-polig, Steckerbelegungen des Prozess-Istwert-Eingangs	54

15	ELEK	TRISCHER	R ANSCHLUSS - VARIANTE KLEMMEN FÜR KABELVERSCHRAUBUNG	55
	15.1	Anschlu	ssplatine des Typs 8792/8793 mit Schraubklemmen	55
	15.2	Klemme	nbelegung bei Kabelverschraubung - Positioner Typ 8792	56
		15.2.1	Eingangssignale der Leitstelle (z. B. SPS)	56
		15.2.2	Ausgangssignale zur Leitstelle (z.B. SPS) - (nur bei Option Analogausgang und/oder Binärausgang erforderlich)	56
		15.2.3	Betriebsspannung	
		15.2.4	Klemmenbelegung für externen Wegaufnehmer (nur bei Remote-Variante)	
	15.3	Klemme	enbelegung bei Kabelverschraubung - Prozessregler Typ 8793	
		15.3.1	Klemmenbelegungen des Prozess-Istwert-Eingangs	58
16	BEDIE	NEBENE	N	59
	16.1	Wechse	I zwischen den Bedienebenen	59
17	BEDIE	EN- UND A	ANZEIGEELEMENTE	60
	17.1	Beschre	eibung der Bedien- und Anzeigeelemente	60
		17.1.1	Beschreibung der Symbole, die in der Prozessebene angezeigt werden	61
	17.2	Funktion	n der Tasten	62
		17.2.1	Eingeben und verändern von Zahlenwerten	
	17.3	Anpasse	en des Displays	64
		17.3.1	Mögliche Displayanzeigen der Prozessebene	64
	17.4	Datum u	und Uhrzeit	66
		17.4.1	Einstellen von Datum und Uhrzeit:	67
18	BETR	IEBSZUST	TÄNDE	68
	18.1	Wechse	I des Betriebszustands	68
19	ZUSA		IONEN	
	19.1		en von Zusatzfunktionen	
	19.2	Deaktivi	eren von Zusatzfunktionen	70
20	MANU	JELLES A	UF- UND ZUFAHREN DES VENTILS	71
21	ABLA	UF DER IN	NBETRIEBNAHME	72
	21.1	Sicherhe	eitshinweise	72
22	GRUN		LLUNG DES GERÄTS	
	22.1		- Einstellung des Eingangssignals	
	22.2		E – Automatische Anpassung des Stellungsreglers	
		22.2.1	X.TUNE.CONFIG – Manuelle Konfiguration von X.TUNE	77
23	AKTIV	IERUNG I	DES PROZESSREGLERS	78

24	GRUN	IDEINSTE	LLUNG DES PROZESSREGLERS	79
	24.1	P.CON	TROL - Einrichten und Parametrieren des Prozessreglers	79
	24.2	SETUP	- Einrichten des Prozessreglers	81
		24.2.1	PV-INPUT – Signalart für den Prozess-Istwert festlegen	81
		24.2.2	PV-SCALE - Skalierung des Prozess-Istwerts	82
		24.2.3	SP-INPUT – Art der Sollwertvorgabe (intern oder extern)	86
		24.2.4	SP-SCALE - Skalierung des Prozess-Sollwerts (nur bei externer Sollwertvorgab	oe)86
		24.2.5	P.CO-INIT – Stoßfreies Umschalten HAND-AUTOMATIK	88
	24.3	PID.PA	RAMETER - Parametrieren des Prozessreglers	89
		24.3.1	Vorgehensweise zur Eingabe der Parameter	89
		24.3.2	DBND - Unempfindlichkeitsbereich (Totband)	90
		24.3.3	KP – Verstärkungsfaktor des Prozessreglers	90
		24.3.4	TN - Nachstellzeit des Prozessreglers	91
		24.3.5	TV - Vorhaltezeit des Prozessreglers	91
		24.3.6	X0 – Betriebspunkt des Prozessreglers	91
		24.3.7	FILTER - Filterung des Prozess-Istwert-Eingangs	92
	24.4	P.Q'LIN	/ - Linearisierung der Prozesskennlinie	93
	24.5	P.TUNE	E – Selbstoptimierung des Prozessreglers	94
		24.5.1	Die Funktionsweise von <i>P.TUNE</i>	94
		24.5.2	Vorbereitende Maßnahmen zum Ausführen von P.TUNE	94
		24.5.3	Start der Funktion <i>P.TUNE</i>	96
05	KONE		EN DED ZUGATZEUNIKTIONEN	00
25			EN DER ZUSATZFUNKTIONEN	
	25.1		en und deaktivieren von Zusatzfunktionen	
		25.1.1	Aufnahme von Zusatzfunktionen in das Hauptmenü	
		25.1.2	Entfernen von Zusatzfunktionen aus dem Hauptmenü	
		25.1.3	Prinzip der Aufnahme von Zusatzfunktionen ins Hauptmenü	
	25.2		ht und Beschreibung der Zusatzfunktionen	100
		25.2.1	CHARACT – Auswahl der Übertragungskennlinie zwischen Eingangssignal (Stellungs-Sollwert) und Hub	101
		25.2.2	CUTOFF - Dichtschließfunktion	
		25.2.3	DIR.CMD – Wirkrichtung (Direction) des Positioner-Sollwerts	
		25.2.4	DIR.ACT – Wirkrichtung (Direction) des Stellantriebs	
		25.2.5	SPLTRNG - Signalbereichsaufteilung (Split range)	
		25.2.6	X.LIMIT – Begrenzung des mechanischen Hubbereichs	
		25.2.7	X.TIME – Begrenzung der Stellgeschwindigkeit	
		25.2.8	X.CONTROL – Parametrierung des Positioners	
		25.2.9	P.CONTROL – Einrichten und Parametrieren des Prozessreglers	
			SECURITY – Codeschutz für die Einstellungen	
			SAFEPOS – Eingabe der Sicherheitsposition	
			SIG.ERROR – Konfiguration Fehlererkennung Signalpegel	
			BINARY.IN – Aktivierung des Binäreingangs	
			OUTPUT – Konfiguration der Ausgänge (Option)	

		25.2.15	CAL.USER - Kalibrierung von Istwert und Sollwert	126
		25.2.16	SET.FACTORY – Zurücksetzen auf die Werkseinstellungen	131
		25.2.17	SER. NO – Einstellungen der seriellen Schnittstelle	132
		25.2.18	EXTRAS - Einstellung des Displays	133
		25.2.19	POS.SENSOR – Einstellung Schnittstelle Remote Wegaufnehmer	136
		25.2.20	SERVICE	136
		25.2.21	SIMULATION - Menü zur Simulation von Sollwert, Prozess und Prozessventil	137
		25.2.22	DIAGNOSE - Menü zur Ventilüberwachung (Option)	142
	25.3	Manuel	le Konfiguration von X.TUNE	162
		25.3.1	Beschreibung des Menüs zur manuellen Konfiguration von X.TUNE	163
26	BEDIE	ENSTRUK	TUR UND WERKSEINSTELLUNG	167
27	PROF	IBUS DP		182
	27.1	Technis	che Daten	182
	27.2	Schnitt	stellen	182
	27.3		el des Betriebszustands	
	27.4		eitsposition bei Ausfall des Busses	
	27.5	Bus-Zu	standsanzeige	183
	27.6		hungen der Feldbusgeräte zu Geräten ohne Feldbus	
	27.7	Elektris	che Anschlüsse	184
		27.7.1	Anschlussbild Typ 8792	184
		27.7.2	Anschlussbild Typ 8793	
		27.7.3	X1 - Rundstecker M12, 8-polig	185
		27.7.4	X2/X3 - Buchse/Rundstecker M12, 5-polig - Busanschluss	186
		27.7.5	X4 - Buchse M8, 4-polig, optional - Remote Sensor (nur bei Remote-Variante)	186
		27.7.6	X5 - Rundstecker M8, 4-polig - Prozess-Istwert (bei Typ 8793)	187
	27.8	Inbetrie	bnahme des PROFIBUS DP	188
		27.8.1	Sicherheitshinweise	188
		27.8.2	Ablauf der Inbetriebnahme	188
		27.8.3	BUS.COMM - Einstellungen am Typ 8792/8793	189
		27.8.4	Konfiguration über die Steuerung (PROFIBUS DP Master)	191
		27.8.5	Ergänzende Literatur zur Konfiguration des PROFIBUS DP	191
		27.8.6	Konfiguration der Prozesswerte	191
	27.9	Konfigu	ıration mit Siemens Step7	194
		27.9.1	Beispiel 1 für einen Positioner (Typ 8792): Übertragung von Sollwert und Istwert	194
		27.9.2	Beispiel 2 für einen Prozessregler (Typ 8793): Übertragung mehrerer Prozesswerte	∍.195
28	WART	UNG		196
29	FEHLI	ERMELD	UNGEN UND STÖRUNGEN	196
	29.1	Fehlern	neldungen auf dem Display	196
		29.1.1	Allgemeine Fehlermeldungen	196

		29.1.2	Fehler-und Warnmeldungen bei der Durchführung der Funktion X.TUNE	197
		29.1.3	Fehlermeldungen bei der Durchführung der Funktion P.Q'LIN	198
		29.1.4	Fehlermeldung bei der Durchführung der Funktion P.TUNE	198
		29.1.5	Fehlermeldungen bei Feldbus-Geräten	199
	29.2	Sonstig	ge Störungen	199
30	VERP	ACKUNG	i, TRANSPORT	200
31	LAGE	RUNG		200
32	ENTS	ORGUNO	3	200
33	AUSW	/AHLKRI	TERIEN FÜR STETIGVENTILE	201
34	EIGEN	NSCHAFT	ΓEN VON PID-REGLERN	203
	34.1	P-Ante	il	203
	34.2	I-Anteil		204
	34.3	D-Ante	il	205
	34.4	Überla	gerung von P-, I- und D-Anteil	206
	34.5	Realisi	erter PID-Regler	207
		34.5.2	Funktion des realen PID-Reglers	207
35	EINST	ELLREG	ELN FÜR PID-REGLER	208
	35.1	Einstell	regeln nach Ziegler und Nichols (Schwingungsmethode)	208
	35.2	Einstell	regeln nach Chien, Hrones und Reswick (Stellgrößensprung-Methode)	210
36	TABE		IHRE EINSTELLUNGEN AM POSITIONER	
	36.1	Einstell	ungen der freiprogrammierten Kennlinie	212
37	TABE	_	IHRE EINSTELLUNGEN AM PROZESSREGLER TYP 8793	_
	37.1	Einges	tellte Parameter des Prozessreglers	213

1 DIE BEDIENUNGSANLEITUNG

Die Bedienungsanleitung beschreibt den gesamten Lebenszyklus des Geräts. Bewahren Sie diese Anleitung so auf, dass sie für jeden Benutzer gut zugänglich ist und jedem neuen Eigentümer des Geräts wieder zur Verfügung steht.

WARNUNG!

Die Bedienungsanleitung enthält wichtige Informationen zur Sicherheit.

Das Nichtbeachten dieser Hinweise kann zu gefährlichen Situationen führen.

▶ Die Bedienungsanleitung muss gelesen und verstanden werden.

1.1 Darstellungsmittel

GEFAHR!

Warnt vor einer unmittelbaren Gefahr.

▶ Bei Nichtbeachtung sind Tod oder schwere Verletzungen die Folge.

WARNUNG!

Warnt vor einer möglicherweise gefährlichen Situation.

▶ Bei Nichtbeachtung drohen schwere Verletzungen oder Tod.

VORSICHT!

Warnt vor einer möglichen Gefährdung.

► Nichtbeachtung kann mittelschwere oder leichte Verletzungen zur Folge haben.

HINWEIS!

Warnt vor Sachschäden.

• Bei Nichtbeachtung kann das Gerät oder die Anlage beschädigt werden.

bezeichnet wichtige Zusatzinformationen, Tipps und Empfehlungen.

verweist auf Informationen in dieser Bedienungsanleitung oder in anderen Dokumentationen.

→ markiert einen Arbeitsschritt, den Sie ausführen müssen.

1.2 Begriffsdefinition "Gerät"

Der in dieser Anleitung verwendete Begriff "Gerät" steht immer für den Typ 8792/8793.

2 BESTIMMUNGSGEMÄSSE VERWENDUNG

Bei nicht bestimmungsgemäßem Einsatz des Typs 8792 und 8793 können Gefahren für Personen, Anlagen in der Umgebung und für die Umwelt entstehen.

Das Gerät ist konzipiert für die Steuerung und Regelung von Medien.

- ▶ Im explosionsgefährdeten Bereich nur Geräte mit dem Ex-Zusatzschild einsetzen.
- ► Für den Einsatz im explosionsgefährdeten Bereich, die Ex-Zusatzanleitung und die Angaben auf dem Ex-Zusatzschild beachten.
- ▶ Das Gerät nicht der direkten Sonneneinstrahlung aussetzen.
- ► Als Betriebsspannung keine pulsierende Gleichspannung (gleichgerichtete Wechselspannung ohne Glättung) verwenden.
- ► Für den Einsatz, die in den Vertragsdokumenten und der Bedienungsanleitung spezifizierten zulässigen Daten, Betriebs- und Einsatzbedingungen beachten, die im Kapitel "10 Technische Daten" dieser Anleitung und in der Ventilanleitung für das jeweilige pneumatisch betätigte Ventil beschrieben sind.
- ▶ Das Gerät nur in Verbindung mit von Bürkert empfohlenen bzw. zugelassenen Fremdgeräten und -komponenten eingesetzen.
- ▶ Prüfen Sie, angesichts der Vielzahl möglicher Einsatz- und Verwendungsfälle, ob das Gerät für den konkreten Einsatzfall geeignet ist und testen Sie dies falls erforderlich aus.
- ► Voraussetzungen für den sicheren und einwandfreien Betrieb sind sachgemäßer Transport, sachgemäße Lagerung und Installation sowie sorgfältige Bedienung und Instandhaltung.
- ► Den Typ 8792 und 8793 nur bestimmungsgemäß einsetzen.

2.1 Beschränkungen

Beachten Sie bei der Ausfuhr des Systems/Geräts gegebenenfalls bestehende Beschränkungen.

3 GRUNDLEGENDE SICHERHEITSHINWEISE

Diese Sicherheitshinweise berücksichtigen keine Zufälligkeiten und Ereignisse, die bei Montage, Betrieb und Wartung der Geräte auftreten können. Für ortsbezogenen Sicherheitsbestimmungen und deren Einhaltung, auch in Bezug auf das Montagepersonal, ist der Betreiber verantwortlich.

Gefahr durch hohen Druck.

Vor dem Lösen von Leitungen und Ventilen den Druck abschalten und Leitungen entlüften.

Gefahr durch elektrische Spannung.

- ▶ Vor Eingriffen in das Gerät oder die Anlage, Spannung abschalten und gegen Wiedereinschalten sichern.
- ▶ Die geltenden Unfallverhütungs- und Sicherheitsbestimmungen für elektrische Geräte beachten.

Allgemeine Gefahrensituationen.

Zum Schutz vor Verletzungen ist zu beachten:

- ► Dass die Anlage nicht unbeabsichtigt betätigt werden kann.
- ▶ Installations- und Instandhaltungsarbeiten dürfen nur von autorisiertem Fachpersonal mit geeignetem Werkzeug ausgeführt werden.
- ▶ Nach einer Unterbrechung der elektrischen oder pneumatischen Versorgung ist ein definierter oder kontrollierter Wiederanlauf des Prozesses zu gewährleisten.
- ▶ Das Gerät darf nur in einwandfreiem Zustand und unter Beachtung der Bedienungsanleitung betrieben werden.
- ▶ In den Druckversorgungsanschluss des Systems keine aggressiven oder brennbaren Medien und keine Flüssigkeiten einspeisen.
- ▶ Belasten Sie das Antriebsgehäuse nicht mechanisch (z. B. durch Ablage von Gegenständen oder als Trittstufe).
- ► Nehmen Sie keine äußerlichen Veränderungen an den Gerätegehäusen vor. Gehäuseteile und Schrauben nicht lackieren.
- ► Für die Einsatzplanung und den Betrieb des Geräts müssen die allgemeinen Regeln der Technik eingehalten werden.

HINWEIS!

Elektrostatisch gefährdete Bauelemente / Baugruppen.

Das Gerät enthält elektronische Bauelemente, die gegen elektrostatische Entladung (ESD) empfindlich reagieren. Berührung mit elektrostatisch aufgeladenen Personen oder Gegenständen gefährdet diese Bauelemente. Im schlimmsten Fall werden diese Bauelemente sofort zerstört oder fallen nach der Inbetriebnahme aus.

- ▶ Um die Möglichkeit eines Schadens durch schlagartige elektrostatische Entladung zu minimieren oder zu vermeiden, die Anforderungen nach EN 61340-5-1 einhalten.
- ► Elektronische Bauelemente nicht bei anliegender Versorgungsspannung berühren.

Der Typ 8792/8793 wurde unter Einbeziehung der anerkannten sicherheitstechnischen Regeln entwickelt und entspricht dem Stand der Technik. Trotzdem können Gefahren entstehen.

Bei Nichtbeachtung dieser Bedienungsanleitung und ihrer Hinweise sowie bei unzulässigen Eingriffen in das Gerät entfällt jegliche Haftung unsererseits, ebenso erlischt die Gewährleistung auf Geräte und Zubehörteile.

4 ALLGEMEINE HINWEISE

4.1 Lieferumfang

Generell besteht dieser aus:

Typ 8792/8793 und Quickstart.

Anbausätze für Schub- oder Schwenkantriebe erhalten Sie als Zubehör.

Bei der Variante mit Rundsteckverbinder (Multipolvariante) des Typs 8792/8793 erhalten Sie die passenden Kabelstecker als Zubehör.

Bei Unstimmigkeiten wenden Sie sich bitte umgehend an uns.

4.2 Kontaktadressen

Deutschland

Bürkert Fluid Control System Chr.-Bürkert-Str. 13-17 D-74653 Ingelfingen E-mail: info@burkert.com

International

Die Kontaktadressen finden Sie auf den letzten Seiten der gedruckten Kurzanleitung (Quickstart).

Außerdem im Internet unter: www.buerkert.com

4.3 Gewährleistung

Voraussetzung für die Gewährleistung ist die bestimmungsgemäße Verwendung des Typs 8792/8793 unter Beachtung der spezifizierten Einsatzbedingungen.

4.4 Mastercode

Die Bedienung des Geräts kann über einen frei wählbaren Benutzer-Code verriegelt werden. Unabhängig davon existiert ein nicht veränderbarer Mastercode, mit dem Sie alle Bedienhandlungen am Gerät ausführen können. Diesen 4-stelligen Mastercode finden Sie auf den letzten Seiten des gedruckten Quickstarts, die jedem Gerät beigelegt wird.

Schneiden Sie bei Bedarf den Code aus und bewahren Sie ihn getrennt von dieser Bedienungsanleitung auf.

4.5 Informationen im Internet

Bedienungsanleitungen und Datenblätter zum Typ 8792 und 8793 finden Sie im Internet unter: www.buerkert.de

5 PRODUKTBESCHREIBUNG

5.1 Allgemeine Beschreibung

Der Positioner Typ 8792 / Prozessregler Typ 8793 ist ein digitaler, elektropneumatischer Stellungsregler für pneumatisch betätigte Stetigventile. Das Gerät umfasst die Hauptfunktionsgruppen

- Wegaufnehmer
- elektropneumatisches Stellsystem
- Mikroprozessorelektronik

Der Wegaufnehmer misst die aktuellen Positionen des Stetigventils.

Die Mikroprozessorelektronik vergleicht die aktuelle Position (Istwert) kontinuierlich mit einem über den Normsignaleingang vorgegebenen Stellungs-Sollwert und führt das Ergebnis dem Positioner zu. Liegt eine Regeldifferenz vor, wird durch das elektropneumatische Stellsystem eine entsprechende Korrektur der Istposition herbeigeführt.

5.1.1 Merkmale

Varianten

- Positioner (Stellungsregler) Typ 8792
- Prozessregler mit integriertem Stellungsregler, Typ 8793.

Wegaufnehmer

- internes hoch auflösendes Leitplastikpotentiometer oder
- externer berührungsloser, verschleißfreier Wegaufnehmer (Remote).
- Mikroprozessorgesteuerte Elektronik für die Signalverarbeitung, Regelung und Ventilansteuerung.

Bedienmodul

Die Bedienung des Geräts erfolgt über 4 Tasten. Das 128 x 64 Dot-Matrix Grafikdisplay ermöglicht die Anzeige von Sollwert oder Istwert sowie die Konfigurierung und Parametrierung über Menüfunktionen.

• Stellsystem

Das Stellsystem besteht aus 2 Magnetventilen und 4 Membranverstärkern. Bei einfachwirkenden Antrieben muss der Arbeitsanschluss 2 mit einem Gewindestopfen verschlossen werden.

• Rückmeldung (optional)

Die Rückmeldung erfolgt entweder über 2 Näherungsschalter (Initiatoren), über Binärausgänge oder über einen Ausgang (4...20 mA / 0...10 V).

Das Erreichen einer oberen oder einer unteren Stellung des Ventils kann über Binärausgänge z. B. an eine SPS weitergemeldet werden. Die Initiatoren bzw. Grenzstellungen sind über Steuerfahnen vom Betreiber veränderbar.

• Pneumatische Schnittstellen

Innengewinde G1/4"

• Elektrische Schnittstellen

Rundsteckverbinder oder Kabelverschraubung

Antriebsgehäuse

Kunststoffbeschichtetes Aluminium-Gehäuse mit aufklappbarem Deckel und unverlierbaren Schrauben.

Anbau

an Schubantrieb nach NAMUR Empfehlung (DIN IEC 534-6) oder an Schwenkantrieb nach VDI/VDE 3845.

Optional

Remote-Variante für Normschienenmontage oder für Befestigungswinkel.

5.1.2 Kombination mit Ventiltypen und Anbauvarianten

Der Positioner Typ 8792 / Prozessregler Typ 8793 kann an unterschiedliche Stetigventile angebaut werden. Zum Beispiel an Ventile mit Kolben-, Membran- oder Drehantrieb. Die Antriebe können einfachwirkend oder doppelt wirkend sein.

- Bei einfachwirkenden Antrieben wird nur eine Kammer im Antrieb belüftet und entlüftet. Der entstehende Druck arbeitet gegen eine Feder. Der Kolben bewegt sich so lange, bis sich ein Kräftegleichgewicht zwischen Druckkraft und Federkraft einstellt. Dazu muss einer der beiden Luftanschlüsse mit einem Gewindestopfen verschlossen werden.
- Bei doppelt wirkenden Antrieben werden die Kammern auf beiden Seiten des Kolbens druckbeaufschlagt.
 Dabei wird bei Belüftung der einen Kammer die andere Kammer entlüftet und umgekehrt. Bei dieser Variante ist im Antrieb keine Feder eingebaut.

Für den Positioner Typ 8792 / Prozessregler Typ 8793 werden zwei Basis-Gerätevarianten angeboten. Diese unterscheiden sich in der Befestigungsmöglichkeit und im Wegaufnehmer.

Gerätevariante NAMUR:

Es wird ein geräteinterner Wegaufnehmer verwendet, der als Drehpotentiometer ausgeführt ist. Der Typ 8792/8793 wird direkt auf den Antrieb montiert oder seitlich angebaut.

Gerätevariante Remote:

Es wird ein externer Wegaufnehmer (linear oder rotativ) über eine Schnittstelle angeschlossen. Der Typ 8792/8793 wird dabei entweder mit einer Normschiene oder mit einem Befestigungswinkel an eine Wand angebaut (Remote-Variante).

5.1.3 Übersicht der Anbaumöglichkeiten

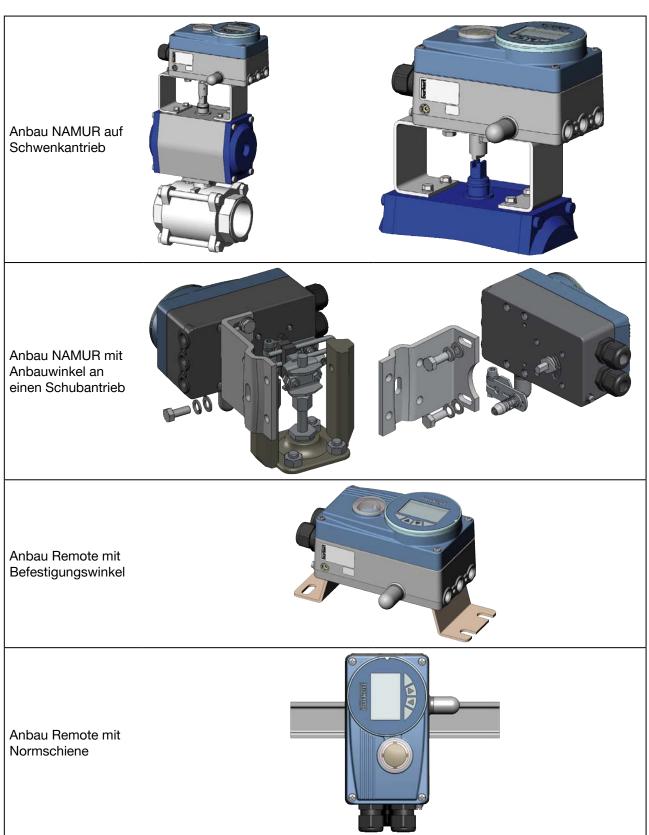


Tabelle 1: Übersicht der Anbaumöglichkeiten

5.2 Varianten

5.2.1 Typ 8792, Positioner

Die Stellung des Antriebs wird entsprechend des Stellungs-Sollwerts geregelt. Der Stellungs-Sollwert wird durch ein externes Normsignal vorgegeben (bzw. über Feldbus).

5.2.2 Typ 8793, Prozessregler

Im Typ 8793 ist zusätzlich ein PID-Regler implementiert, mit dem außer der eigentlichen Stellungsregelung auch eine Prozessregelung (z. B. Niveau, Druck, Durchfluss, Temperatur) im Sinne einer Kaskadenregelung durchgeführt werden kann.

Zur Bedienung des Prozessreglers Typ 8793 ist ein 128 x 64 Dot-Matrix Grafikdisplay und ein Tastenfeld mit 4 Tasten vorhanden.

Der Prozessregler ist in einen Regelkreis eingebunden. Aus dem Prozess-Sollwert und dem Prozess-Istwert errechnet sich über die Regelparameter (PID-Regler) der Stellungs-Sollwert des Ventils. Der Prozess-Sollwert kann durch ein externes Signal vorgegeben werden.

5.2.3 Typ 8793, Remote-Variante

Je nach Anschlussvariante des Wegaufnehmers funktioniert der Typ 8793 als

- Prozessregler oder
- Positioner (Stellungsregler)

Es gibt folgende Anschlussvarianten:

Funktion Typ 8793	Schnittstelle	Wegaufnehmer	Einstellung im Menü (ADD.FUNCTION)
Prozessregler	digital (seriell)	Remote Sensor Typ 8798	POS.SENSOR → DIGITAL Menübeschreibung siehe Kapitel "25.2.19"
Positioner (Stellungsregler)	analog (420 mA) *	beliebiger, hochauflö- sender Wegaufnehmer	POS.SENSOR → ANALOG Menübeschreibung siehe Kapitel "25.2.19"

Tabelle 2: Anschlussvarianten Typ 8793 mit externem Wegaufnehmer

* Wird bei dem Prozessregler Typ 8793 der externe Wegaufnehmer über die analoge Schnittstelle angeschlossen, kann dieser nur noch als Positioner (Stellungsregler) betrieben werden.

Die Möglichkeiten für den Anschluss eines externen Wegaufnehmers sind im Kapitel "12.4 Remote-Betrieb mit externem Wegaufnehmer" beschrieben.

6 AUFBAU

Der Positioner Typ 8792 und der Prozessregler Typ 8793 besteht aus der mikroprozessor-gesteuerten Elektronik, dem Wegaufnehmer und dem Stellsystem.

Das Gerät ist in Dreileitertechnik ausgeführt. Die Bedienung erfolgt über 4 Tasten und ein 128x64 Dot-Matrix Grafikdisplay.

Das pneumatische Stellsystem für einfachwirkende und doppelt wirkende Antriebe besteht aus 2 Magnetventilen.

6.1 Darstellung

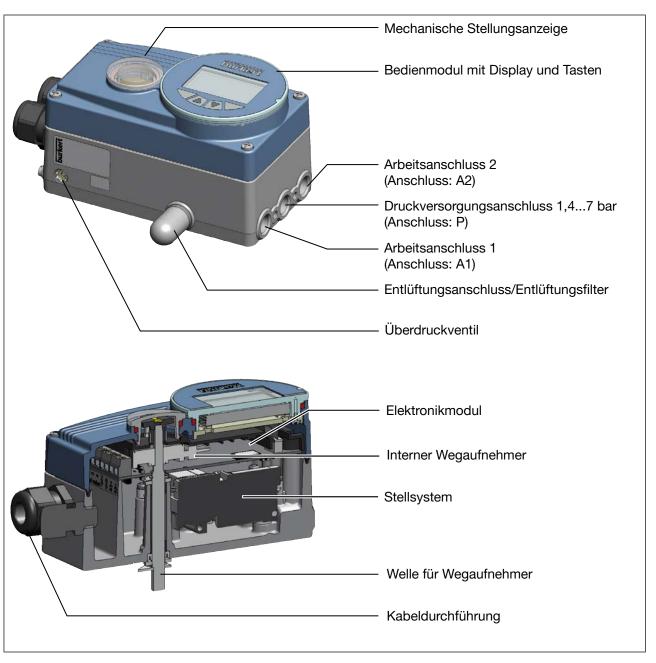


Abb. 1: Aufbau, Typ 8792/8793

6.2 Funktionsschema

6.2.1 Beispielhafte Darstellung mit einfachwirkendem Antrieb

Die schwarzen Linien in "Abb. 2" beschreiben die Funktion des Stellungsreglerkreises im Typ 8792. Die graue Darstellung zeigt die ergänzende Funktion des überlagerten Prozessregelkreises im Typ 8793.

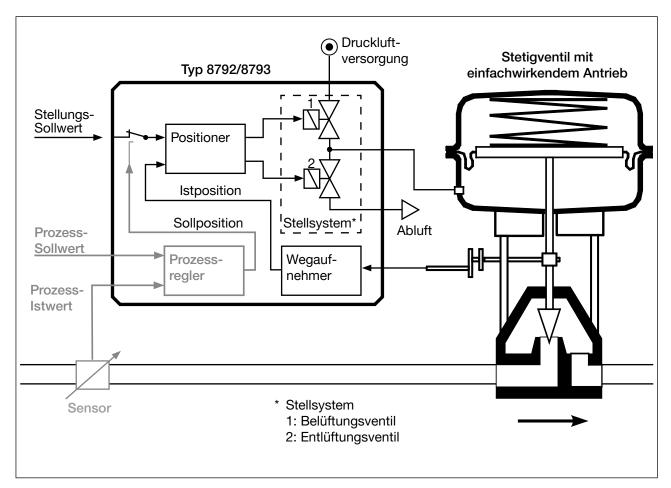


Abb. 2: Aufbau, Positioner Typ 8792 / Prozessregler Typ 8793

Bei der Remote-Variante befindet sich der Wegaufnehmer außerhalb des Geräts direkt am Stetigventil und ist mit diesem durch ein Kabel verbunden.

7 DER POSITIONER TYP 8792

Über den Wegaufnehmer wird die aktuelle Position (*POS*) des pneumatischen Antriebs erfasst. Dieser Stellungs-Istwert wird vom Positioner mit dem als Normsignal vorgegebenen Sollwert (*CMD*) verglichen. Liegt eine Regeldifferenz (Xd1) vor, wird über das Stellsystem der Antrieb belüftet und entlüftet. Auf diese Weise wird die Position des Antriebs bis zur Regeldifferenz 0 verändert. Z1 stellt eine Störgröße dar.

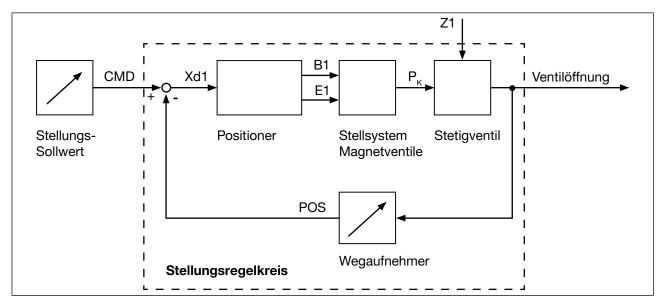


Abb. 3: Stellungsregelkreis im Typ 8792

7.1 Schematische Darstellung der Stellungsregelung

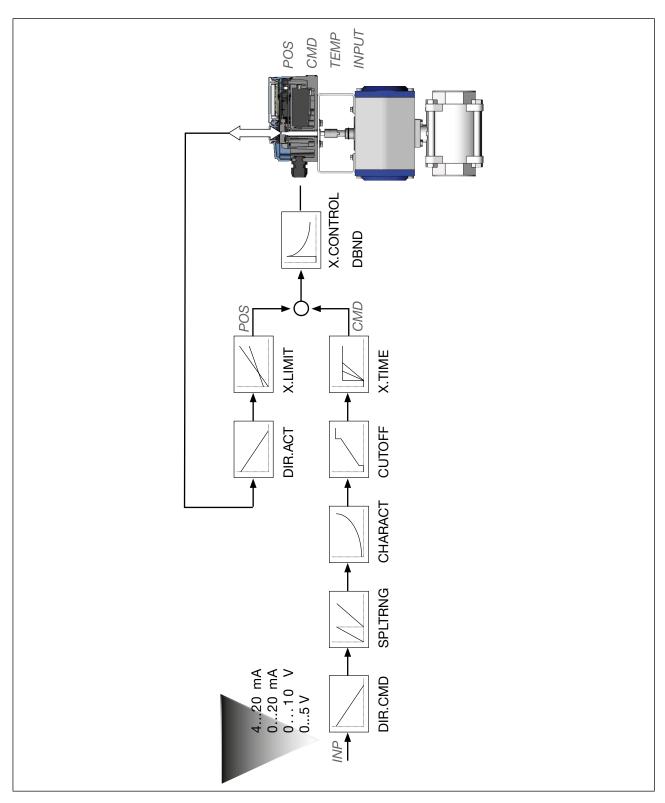


Abb. 4: Schematische Darstellung Stellungsregelung

7.2 Die Positioner-Software

Konfigurierbare Zusatzfunktionen	Wirkung
Korrekturlinie zur Anpassung der	Auswahl der Übertragungskennlinie zwischen Ein-
Betriebskennlinie	gangssignal und Hub (Korrekturkennlinie).
CHARACT Dichtschließfunktion	Vantil applia0t au0 arballs das Dagalls vaighs dieht
	Ventil schließt außerhalb des Regelbereichs dicht. Angabe des Werts (in %), ab dem der Antrieb voll-
CUTOFF	ständig entlüftet (bei 0 %) bzw. belüftet (bei 100 %) wird.
Wirkrichtung des Reglersollwerts	Wirkrichtung zwischen Eingangssignal und
DIR.CMD	Sollposition.
Wirkrichtung des Stellantriebs	Einstellung der Wirkrichtung zwischen Belüftungszu-
DIR.ACT	stand des Antriebs und der Istposition.
Signalbereichsaufteilung	Aufteilung des Normsignalbereichs auf zwei oder mehr Positioner.
SPLTRNG	Positioner.
Hubbegrenzung	Mechanische Ventilkolbenbewegung nur innerhalb
X.LIMIT	eines definierten Hubbereichs.
Begrenzung der Stellgeschwindigkeit	Eingabe der Öffnungszeit und Schließzeit für den
X.TIME	gesamten Hub.
Unempfindlichkeitsbereich	Der Positioner spricht erst ab einer zu definierenden Regeldifferenz an.
X.CONTROL	
Codeschutz	Codeschutz für Einstellungen.
SECURITY	
Sicherheitsposition	Definition der Sicherheitsposition.
SAFEPOS	<u>.</u>
Fehlererkennung Signalpegel	Überprüfung der Eingangssignale auf Fühlerbruch.
SIG.ERROR	Ausgabe einer Warnung am Display und Anfahren der Sicherheitsposition (falls ausgewählt).
Binäreingang	Umschaltung AUTOMATIK / MANU oder
BINARY. IN	Anfahren der Sicherheitsposition.
Analoge Rückmeldung (Option)	Rückmeldung Sollwert oder Istwert.
OUTPUT	
2 Binärausgänge (Option)	Ausgabe von zwei auswählbaren Binärwerten.
OUTPUT	
Anwenderkalibrierung	Änderung der Werkskalibrierung des Signaleingangs.
CAL.USER CAL.USER	
Werkseinstellungen	Rücksetzen auf die Werkseinstellungen.
SET.FACTORY	
Serielle Schnittstelle	Konfigurierung serielle Schnittstelle.
SER.I/O	

Konfigurierbare Zusatzfunktionen	Wirkung
Einstellung Display	Anpassung des Displays der Prozessebene.
EXTRAS	
SERVICE	Nur für den werksinternen Gebrauch.
POS.SENSOR	Einstellung Schnittstelle Remote Wegaufnehmer (nur bei Typ 8793 Remote verfügbar. Siehe Kapitel "5.2.3 Typ 8793, Remote-Variante"
Simulationssoftware	Zur Simulation der Gerätefunktionen.
SIMULATION	
DIAGNOSE (Option)	Überwachung von Prozessen.

Tabelle 3: Positioner-Software. Konfigurierbare Zusatzfunktionen

Hierarchisches Bedienkonzept zur einfachen Bedienung mit folgenden Bedienebenen	
Prozessebene	In der Prozessebene schalten Sie zwischen den Betriebszuständen AUTOMATIK und MANU um.
Einstellebene	In der Einstellebene spezifizieren Sie bei der Inbetrieb- nahme bestimmte Grundfunktionen und konfigurieren bei Bedarf die Zusatzfunktionen.

Tabelle 4: Die Positioner-Software. Hierarchisches Bedienkonzept.

8 DER PROZESSREGLER TYP 8793

Beim Prozessregler Typ 8793 wird die in Kapitel "7" erwähnte Stellungsregelung zum untergeordneten Hilfsregelkreis; es ergibt sich eine Kaskadenregelung. Der Prozessregler im Hauptregelkreis des Typs 8793 hat eine PID-Funktion. Als Sollwert wird der Prozess-Sollwert (SP) vorgegeben und mit dem Istwert (PV) der zu regelnden Prozessgröße verglichen. Über den Wegaufnehmer wird die aktuelle Position (POS) des pneumatischen Antriebs erfasst. Dieser Stellungs-Istwert wird vom Positioner mit dem vom Prozessregler vorgegebenen Sollwert (CMD) verglichen. Liegt eine Regeldifferenz (Xd1) vor, wird über das Stellsystem der Antrieb belüftet und entlüftet. Auf diese Weise wird die Position des Antriebs bis zur Regeldifferenz 0 verändert. Z2 stellt eine Störgröße dar.

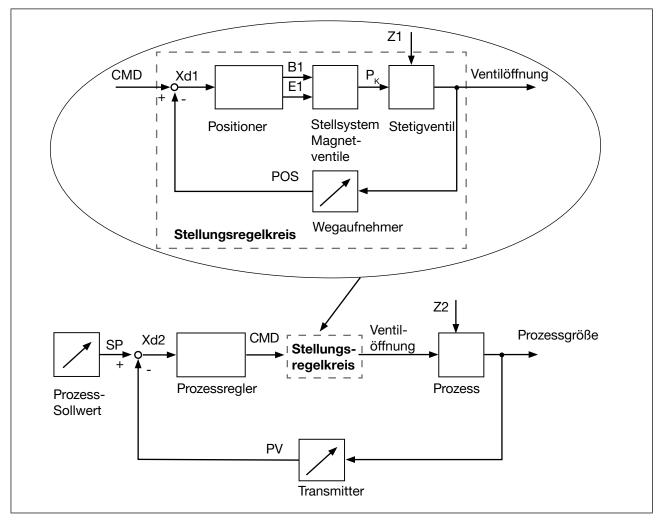


Abb. 5: Signalflussplan Prozessregler

8.1 Schematische Darstellung der Prozessregelung

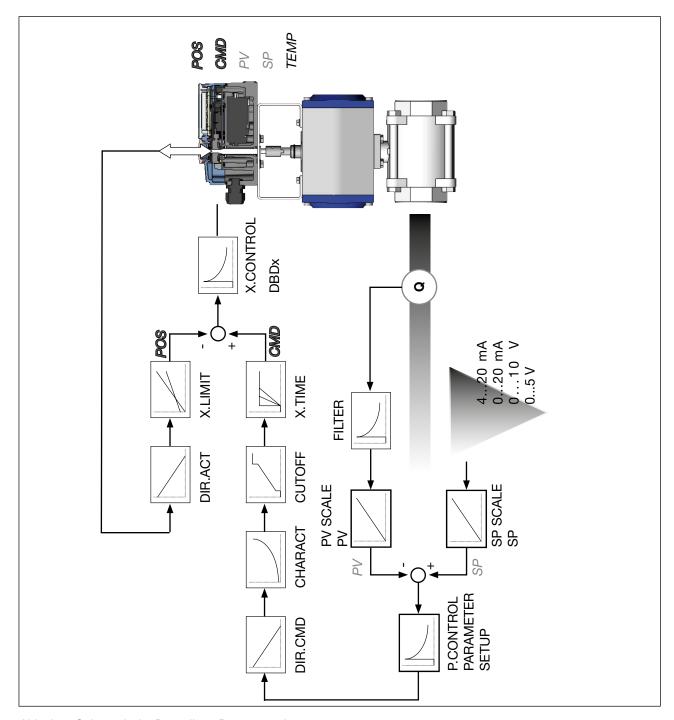


Abb. 6: Schematische Darstellung Prozessregelung

8.2 Die Prozessregler-Software

Konfigurierbare Zusatzfunktionen	Wirkung
Korrekturlinie zur Anpassung der	Auswahl der Übertragungskennlinie zwischen Ein-
Betriebskennlinie	gangssignal und Hub (Korrekturkennlinie).
CHARACT	
Dichtschließfunktion	Ventil schließt außerhalb des Regelbereichs dicht.
CUTOFF	Angabe des Werts (in %), ab dem der Antrieb vollständig entlüftet (bei 0 %) bzw. belüftet (bei 100 %) wird.
Wirkrichtung des Reglersollwerts	Wirkrichtung zwischen Eingangssignal und
DIR.CMD	Sollposition.
Wirkrichtung des Stellantriebs	Einstellung der Wirkrichtung zwischen Belüftungszu-
DIR.ACT	stand des Antriebs und der Istposition.
Signalbereichsaufteilung	Aufteilung des Normsignalbereichs auf zwei oder mehr
SPLTRNG	Positioner.
Hubbegrenzung	Mechanische Ventilkolbenbewegung nur innerhalb
X.LIMIT	eines definierten Hubbereichs.
Begrenzung der Stellgeschwindigkeit	Eingabe der Öffnungs- und Schließzeit für den
X.TIME	gesamten Hub.
Unempfindlichkeitsbereich	Der Positioner spricht erst ab einer zu definierenden
X.CONTROL	Regeldifferenz an.
Codeschutz	Codeschutz für Einstellungen.
SECURITY	
Sicherheitsposition	Definition der Sicherheitsposition.
SAFEPOS	
Fehlererkennung Signalpegel	Überprüfung der Eingangssignale auf Fühlerbruch.
SIG.ERROR	Ausgabe einer Warnung am Display und Anfahren der Sicherheitsposition (falls ausgewählt).
Binäreingang	Umschaltung AUTOMATIK / MANU oder
BINARY. IN	Anfahren der Sicherheitsposition.
Analoge Rückmeldung (Option)	Rückmeldung Sollwert oder Istwert.
OUTPUT	
2 Binärausgänge (Option)	Ausgabe von zwei auswählbaren Binärwerten.
OUTPUT	
Anwenderkalibrierung	Änderung der Werkskalibrierung des Signaleingangs.
CAL.USER	
Werkseinstellungen	Rücksetzen auf die Werkseinstellungen.
SET.FACTORY	
Serielle Schnittstelle	Konfigurierung serielle Schnittstelle.
SER.I/O	
Einstellung Display	Anpassung des Displays der Prozessebene.
EXTRAS	

Konfigurierbare Zusatzfunktionen	Wirkung
SERVICE	Nur für den werksinternen Gebrauch.
POS.SENSOR	Einstellung Schnittstelle Remote Wegaufnehmer (nur bei Typ 8793 Remote verfügbar. Siehe Kapitel "5.2.3 Typ 8793, Remote-Variante").
Simulationssoftware	Zur Simulation der Gerätefunktionen.
SIMULATION	
DIAGNOSE (Option)	Überwachung von Prozessen.

Tabelle 5: Die Prozessregler-Software. Konfigurierbare Zusatzfunktionen des Stellungsreglers

Funktionen und Einstellmöglichkeiten des Prozessreglers			
Prozessregler	PID - Prozessregler ist aktiviert.		
P.CONTROL			
Einstellbare Parameter	Parametrierung des Prozessreglers		
P.CONTROL - PARAMETER	Proportionalbeiwert, Nachstellzeit, Vorhaltezeit und Betriebspunkt.		
Skalierbare Eingänge	Konfiguration des Prozessreglers		
P.CONTROL - SETUP	- Auswahl des Sensoreingangs		
	- Skalierung von Prozess-Istwert und Prozess-Sollwert		
	- Auswahl der Sollwertvorgaben.		
Automatische Sensorerkennung oder manuelle Sensoreinstellung	Sensortypen Pt 100 und 420 mA werden automatisch erkannt oder können über das Bedienmenü manuell eingestellt werden.		
P.CONTROL - SETUP - PV INPUT			
Auswahl der Sollwertvorgabe	Sollwertvorgabe entweder über Normsignaleingang		
P.CONTROL - SETUP - SP INPUT	oder über Tasten.		
Prozesskennlinien-Linearisierung	Funktion zur automatischen Linearisierung der		
P.Q'LIN	Prozesskennlinien.		
Prozessregler-Optimierung	Funktion zur automatischen Optimierung der		
P.TUNE	Prozessregler-Parameter.		

Tabelle 6: Die Prozessregler-Software. Funktionen und Einstellmöglichkeiten des Prozessreglers

Hierarchisches Bedienkonzept zur einfachen Bedienung mit folgenden Bedienebenen		
Prozessebene	In der Prozessebene schalten Sie zwischen Betriebszuständen AUTOMATIK und MANU um.	
Einstellebene	In der Einstellebene spezifizieren Sie bei der Inbetrieb- nahme bestimmte Grundfunktionen und konfigurieren bei Bedarf die Zusatzfunktionen.	

Tabelle 7: Die Prozessregler-Software. Hierarchisches Bedienkonzept

9 SCHNITTSTELLEN DES POSITIONERS / PROZESSREGLERS

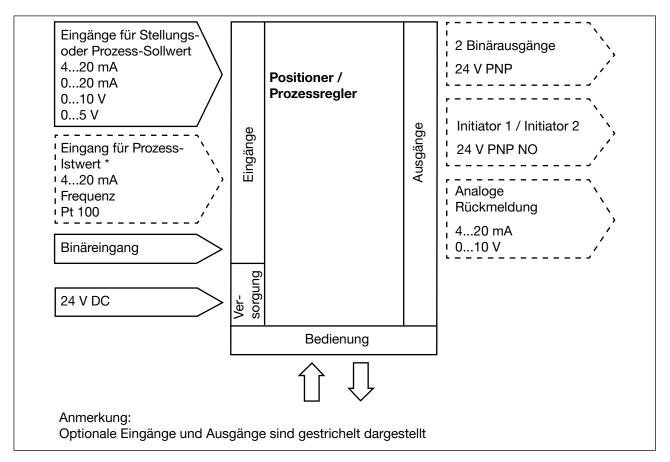


Abb. 7: Schnittstellen des Positioners / Prozessreglers

Die Typen 8792 und 8793 sind 3-Leiter-Geräte, d.h. die elektrische Versorgung (24 V DC) erfolgt getrennt vom Sollwert-Signal.

^{*} nur bei Prozessregler Typ 8793

10 TECHNISCHE DATEN

10.1 Konformität

Der Typ 8792/8793 ist konform zu den EG-Richtlinien entsprechend der EG-Konformitätserklärung.

10.2 Normen

Die angewandten Normen, mit denen die Konformität mit den EG-Richtlinien nachgewiesen wird, sind in der EG-Baumusterprüfbescheinigung und/oder der EG-Konformitätserklärung nachzulesen.

10.3 Zulassungen

Das Produkt ist nach Gerätegruppe II Kategorie 3G/D für den Einsatz in explosionsgefährdeten Bereichen der Zone 2 und 22 zugelassen.

Hinweise für den Einsatz in explosionsgefährdeten Bereich beachten. Siehe Zusatzanleitung ATEX.

10.4 Betriebsbedingungen

HINWEIS!

Beim Einsatz im Außenbereich kann das Gerät durch Sonneneinstrahlung und Temperaturschwankungen belastet werden, die Fehlfunktionen oder Undichtheiten bewirken können.

- ▶ Das Gerät bei Einsatz im Außenbereich nicht ungeschützt den Witterungsverhältnissen aussetzen.
- ▶ Darauf achten, dass die zulässige Umgebungstemperatur nicht überschritten oder unterschritten wird.

Umgebungstemperatur

-10...+60 °C

Schutzart

IP 65 / IP 67* nach EN 60529

(nur bei korrekt angeschlossenem Kabel bzw. Stecker und Buchsen)

* Bei Einsatz des Geräts unter IP 67 Bedingungen, muss der Entlüftungsfilter (siehe "Abb. 1: Aufbau, Typ 8792/8793") entfernt und die Abluft in den trockenen Bereich geführt werden

10.5 Typschild

Erklärung der gerätespezifischen Angaben des Typschilds:

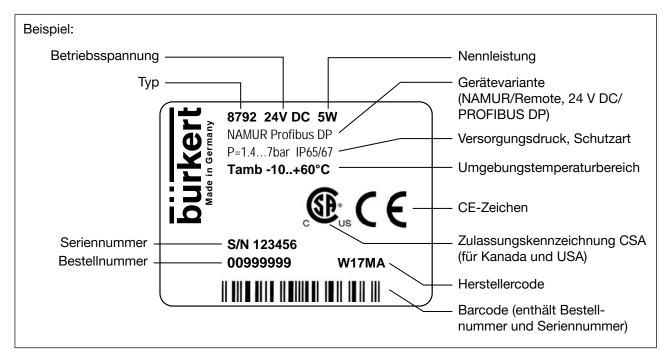


Abb. 8: Beispiel Typschild

10.6 Mechanische Daten

Maße siehe Datenblatt

Werkstoff

Gehäusematerial Aluminium kunststoffbeschichtet

Sonstige Außenteile rostfreier Stahl (V4A), PC, PE, POM, PTFE

Dichtwerkstoff EPDM, NBR, FKM

Masse ca. 1,0 kg

burkert

10.7 Elektrische Daten

Anschlüsse 2 Kabeldurchführungen (M20 x 1,5) mit Schraubklemmen 0,14...1,5 mm²

oder Rundsteckverbinder

Betriebsspannung 24 V DC ± 10 % max. Restwelligkeit 10 %

Leistungsaufnahme < 5 W

Eingangsdaten für Istwertsignal

4...20 mA: Eingangswiderstand 180 Ω

Auflösung 12 bit

Frequenz: Messbereich 0...1000 Hz

Eingangswiderstand 17 k Ω

Auflösung 1‰ vom Messwert,

Eingangssignal > 300 mV_{ss}

Signalform Sinus, Rechteck, Dreieck

Pt 100: Messbereich -20...+220 °C

Auflösung < 0,1 °C Messstrom < 1 mA

Eingangsdaten für Sollwertsignal

0/4...20 mA: Eingangswiderstand 180 Ω

Auflösung 12 bit Eingangswiderstand 19 k Ω

Auflösung 12 bit

Schutzklasse III nach DIN EN 61140 (VDE 0140-1)

Analoge Rückmeldung

0...5/10 V:

max. Strom 10 mA (für Spannungsausgang 0...5/10 V) Bürde (Last) 0...560 Ω (für Stromausgang 0/4...20 mA)

Induktive Näherungsschalter 100 mA Strombegrenzung

Binärausgänge galvanisch getrennt

Strombegrenzung 100 mA, Ausgang wird bei Überlast getaktet

Binäreingang galvanisch getrennt

0...5 V = logisch "0", 10...30 V = logisch "1"

invertierter Eingang entsprechend umgekehrt (Eingangsstrom < 6 mA)

Kommunikationsschnittstelle direkter Anschluss an PC über USB-Adapter mit integriertem

Schnittstellentreiber

Kommunikation mit Bürkert Communicator

Kommunikationssoftware Bürkert Communicator (siehe "11 Zubehör")

10.8 Pneumatische Daten

Steuermedium Luft, neutrale Gase

Qualitätsklassen nach ISO 8573-1

Staubgehalt Klasse 7, max. Teilchengröße 40 µm, max. Teilchendichte 10 mg/m³ Wassergehalt Klasse 3, max. Drucktaupunkt –20 °C oder min. 10 Grad unterhalb der

niedrigsten Betriebstemperatur

Ölgehalt Klasse X, max. 25 mg/m³

Temperaturbereich der Druckluft 0...+60 °C Druckbereich 1,4...7 bar

Luftleistung 95 I_N / min (bei 1,4 bar*) für Belüftung und Entlüftung

150 I_N / min (bei 6 bar*) für Belüftung und Entlüftung

 $(Q_{Nn} = 100 I_{N} / min (nach Definition bei Druckabfall von 7 auf 6 bar$

absolut).

Anschlüsse Innengewinde G1/4"

^{*} Druckangaben: Überdruck zum Atmosphärendruck

10.9 Sicherheitsendlagen nach Ausfall der elektrischen bzw. pneumatischen Hilfsenergie

Die Sicherheitsendlage ist vom pneumatischen Anschluss des Antriebs an die Arbeitsanschlüsse A1 oder A2 abhängig.

		Sicherheitsendlagen nach Ausfall der	
Antriebsart	Bezeichnung	elektrischen Hilfsenergie	pneumatischen Hilfsenergie
up	einfachwirkend Steuer- funktion A	down → Anschluss nach "Abb. 9" up → Anschluss nach "Abb. 10"	down
up	einfachwirkend Steuer- funktion B	up → Anschluss nach "Abb. 9" down → Anschluss nach "Abb. 10"	ир
obereKammer		Anschluss nach "Abb. 11"	
untere	doppelt wirkend Steuerfunktion I	up = untere Kammer des Antriebs an A2	nicht definiert
down		down = obere Kammer des Antriebs an A2	

Tabelle 8: Sicherheitsendlagen

pneumatischen Anschluss: Beschreibung zu "Tabelle 8".

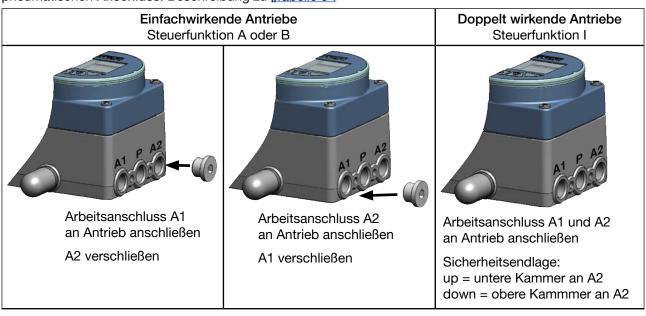


Abb. 9: Anschluss A1

Abb. 10: Anschluss A2

Abb. 11: Anschluss bei SFI

10.10 Werkseinstellungen

Die Werkseinstellungen finden Sie in Kapitel "26 Bedienstruktur und Werkseinstellung".

Die werkseitigen Voreinstellungen sind in der Bedienstruktur jeweils rechts vom Menü in blauer Farbe dargestellt.

Beispiele:

Darstellung	Bedeutung	
•	Workspitia aktivierte eder guagowählte Manünunkte	
\boxtimes	Werkseitig aktivierte oder ausgewählte Menüpunkte	
0	Werkseitig nicht aktivierte oder nicht ausgewählte Menüpunkte	
2.0 %	Werkseitig eingestellte Werte	
10.0 sec /		

Tabelle 9: Darstellung der Werkseinstellungen

11 ZUBEHÖR

Bezeichnung	Bestell-Nr.
USB Interface zur seriellen Kommunikation	227 093
Communicator	Infos unter: www.buerkert.de

Tabelle 10: Zubehör

Weiteres Zubehör finden Sie im Datenblatt zu Typ 8792/8793 unter www.buerkert.de.

11.1 Kommunikationssoftware

Das PC-Bedienungsprogramm "Communicator" ist für die Kommunikation mit Geräten aus der Positioner-Familie der Firma Bürkert konzipiert. Geräte ab Baujahr August 2014 unterstützen den vollen Funktionsumfang. Bei Fragen zur Kompatibilität kontaktieren Sie bitte das Bürkert Sales Center.

12 ANBAU UND MONTAGE

Die Abmessungen des Typs 8792/8793 und die verschiedenen Gerätevarianten finden Sie auf dem Datenblatt.

12.1 Sicherheitshinweise

WARNUNG!

Verletzungsgefahr bei unsachgemäßer Montage.

▶ Die Montage darf nur autorisiertes Fachpersonal mit geeignetem Werkzeug durchführen.

Verletzungsgefahr durch ungewolltes Einschalten der Anlage und unkontrollierten Wiederanlauf.

- ► Anlage gegen unbeabsichtigtes Betätigen sichern.
- ► Nach der Montage einen kontrollierten Wiederanlauf gewährleisten.

12.2 Anbau an ein Stetigventil mit Schubantrieb nach NAMUR

Die Übertragung der Ventilstellung auf den im Positioner eingebauten Wegaufnehmer erfolgt über einen Hebel (nach NAMUR).

12.2.1 Anbausatz an Schubantriebe (IBestellnummer 787215)

(Kann als Zubehör von Bürkert bezogen werden.)

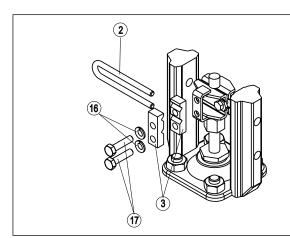
Lfd. Nr.	Stück	Benennung	
1	1	NAMUR Anbauwinkel IEC 534	
2	1	Bügel	
3	2	Klemmstück	
4	1	Mitnehmerstift	
5	1	Konusrolle	
6a	1	Hebel NAMUR für Hubbereich 3 - 35 mm	
6b	1	Hebel NAMUR für Hubbereich 35 - 130 mm	
7	2	U-Bolzen	
8	4	Sechskantschraube DIN 933 M8 x 20	
9	2	Sechskantschraube DIN 933 M8 x 16	
10	6	Federring DIN 127 A8	
11	6	Scheibe DIN 125 B8,4	
12	2	Scheibe DIN 125 B6,4	
13	1	Feder VD-115E 0,70 x 11,3 x 32,7 x 3,5	
14	1	Federscheibe DIN 137 A6	
15	1	Sicherungsscheibe DIN 6799 - 3,2	
16	3	Federring DIN 127 A6	
17	3	Sechskantschraube DIN 933 M6 x 25	
18	1	Sechskantmutter DIN 934 M6	
19	1	Vierkantmutter DIN 557 M6	
21	4	Sechskantmutter DIN 934 M8	
22	1	Führungsscheibe 6,2 x 9,9 x 15 x 3,5	

Tabelle 11: Anbausatz an Schubantriebe

12.2.2 Montage

WARNUNG!

Verletzungsgefahr bei unsachgemäßer Montage.

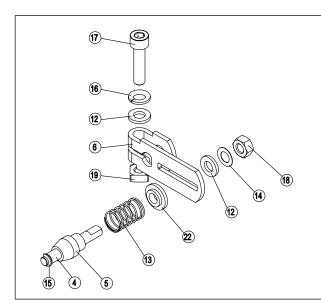

▶ Die Montage darf nur autorisiertes Fachpersonal mit geeignetem Werkzeug durchführen.

Verletzungsgefahr durch ungewolltes Einschalten der Anlage und unkontrollierten Wiederanlauf.

- ► Anlage gegen unbeabsichtigtes Betätigen sichern.
- ► Nach der Montage einen kontrollierten Wiederanlauf gewährleisten.

Vorgehensweise:

→ Bügel ② mit Hilfe der Klemmstücke ③, Sechskantschrauben ⑰ und Federringe ⑯ an der Antriebsspindel montieren.


Legende:

Nr.	Bezeichnung	
2	Bügel	
3	Klemmstück	
16	Federring	
17	Sechskantschraube	

Abb. 12: Bügelmontage

- → Kurzen oder langen Hebel entsprechend dem Hub des Antriebs auswählen (siehe "Tabelle 11: Anbausatz an Schubantriebe").
- → Hebel zusammenbauen (falls nicht vormontiert) (siehe "Abb. 13").

Legende:

Nr.	Bezeichnung				
4	Mitnehmerstift				
5	Konusrolle				
6	Hebel				
12					
13					
14					
15	Beschreibung der Numme-				
16	rierung siehe "Tabelle 11: Anbausatz an				
17	Schubantriebe"				
18	33				
19					
22					

Abb. 13: Hebelmontage

Der Abstand des Mitnehmerstifts zur Welle sollte gleich dem Antriebshub sein. Dadurch ergibt sich der ideale Schwenkbereich des Hebels von 60° (siehe "Abb. 14").

Drehbereich des Wegaufnehmers:

Der maximale Drehbereich des Wegaufnehmers beträgt 150°.

Schwenkbereich des Hebels:

Um sicherzustellen, dass der Wegaufnehmer mit guter Auflösung arbeitet, muss der Schwenkbereich des Hebels mindestens 30° betragen.

Die Schwenkbewegung des Hebels muss innerhalb des Wegaufnehmer-Drehbereichs von 150° erfolgen.

Die auf dem Hebel aufgedruckte Skala ist nicht relevant.

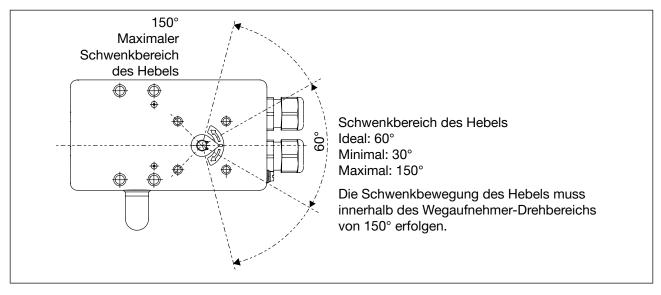


Abb. 14: Schwenkbereich des Hebels

 \rightarrow Hebel auf die Welle des Typs 8792/8793 stecken und festschrauben.

12.2.3 Anbauwinkel befestigen

→ Anbauwinkel ① mit Sechskantschrauben ②, Federringen ⑩ und Scheiben ⑪ an der Rückseite des Typs 8792/8793 befestigen (siehe "Abb. 15").

Die Wahl der verwendeten M8-Gewinde am Positioner hängt von der Antriebsgröße ab.

→ Zur Ermittlung der richtigen Position, den Positioner mit Anbauwinkel an den Antrieb halten.

Die Konusrolle am Hebel des Wegaufnehmers muss im Bügel (siehe "Abb. 15") über den gesamten Hubbereich am Antrieb frei laufen können.

Bei 50 % Hub sollte die Hebelstellung in etwa waagrecht sein (siehe Kapitel "12.2.4 Hebelmechanismus ausrichten").

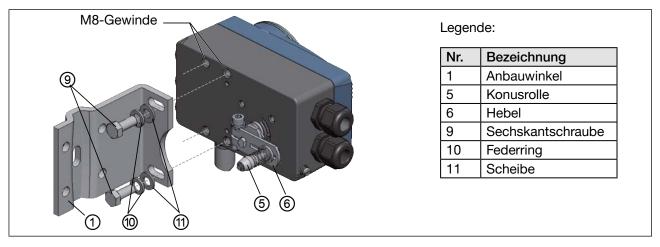
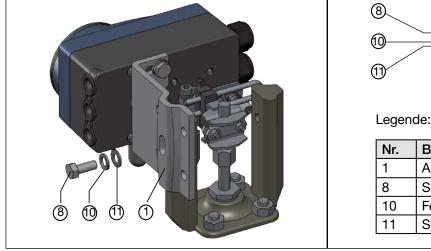
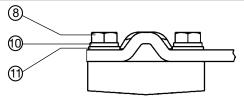




Abb. 15: Anbauwinkel befestigen

Befestigung des Typs 8792/8793 mit Anbauwinkel bei Antrieben mit Gussrahmen:

→ Anbauwinkel mit einer oder mehreren Sechskantschrauben ®, Scheiben ⑪ und Federringen ⑩ am Gussrahmen befestigen (siehe "Abb. 16").

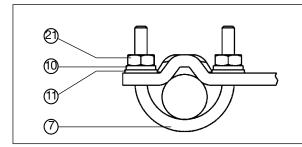

Nr.	Bezeichnung		
1	Anbauwinkel		
8	Sechskantschraube		
10	Federring		
11	Scheibe		

Abb. 16: Positioner mit Anbauwinkel befestigen; bei Antrieben mit Gussrahmen

Befestigung des Typs 8792/8793 mit Anbauwinkel bei Antrieben mit Säulenjoch:

→ Anbauwinkel mit den U-Bolzen ⑦, Scheiben ⑪, Federringen ⑩ und Sechskantmuttern am Säulenjoch ② befestigen (siehe "Abb. 17").

Legende:

Nr.	Bezeichnung	
7	U-Bolzen	
10	Federring	
11	Scheibe	
21	Sechskantmutter	

Abb. 17: Positioner mit Anbauwinkel befestigen; bei Antrieben mit Säulenjoch

12.2.4 Hebelmechanismus ausrichten

Der Hebelmechanismus kann erst dann korrekt ausgerichtet werden, wenn das Gerät elektrisch und pneumatisch angeschlossen ist.

- → Den Antrieb im Betriebszustand MANU auf halben Hub fahren (entsprechend der Skala am Antrieb).
- → Den Positioner in der Höhe so verschieben, dass der Hebel waagrecht steht.
- \rightarrow Den Positioner in dieser Position am Antrieb fixieren.

12.3 Anbau an ein Stetigventil mit Schwenkantrieb

Die Welle des im Positioner integrierten Wegaufnehmers wird direkt an die Welle des Schwenkantriebs angekoppelt.

12.3.1 Anbausatz (nach VDI/VDE 3845) an Schwenkantrieb (Bestellnummer 787338)

(Kann als Zubehör von Bürkert bezogen werden.)

Lfd. Nr.	Stück	Benennung	
1	1	dapter	
2	2	Gewindestift DIN 913 M4 x 10	
3	4	echskantschraube DIN 933 M6 x 12	
4	4	ederring B6	
5	2	Sechskantmutter DIN 985 M4	

Tabelle 12: Anbausatz an Schwenkantrieb

Weitere Zubehörteile:

Die Bestellnummer für die Montagebrücke mit Befestigungsschrauben (nach VDI/VDE 3845) finden Sie im Datenblatt zu Typ 8792/8793.

12.3.2 Montage

WARNUNG!

Verletzungsgefahr bei unsachgemäßer Montage.

Die Montage darf nur autorisiertes Fachpersonal mit geeignetem Werkzeug durchführen.

Verletzungsgefahr durch ungewolltes Einschalten der Anlage und unkontrollierten Wiederanlauf.

- ► Anlage gegen unbeabsichtigtes Betätigen sichern.
- ► Nach der Montage einen kontrollierten Wiederanlauf gewährleisten.

Vorgehensweise:

- → Die Anbauposition des Typs 8792/8793 festlegen:
 - parallel zum Antrieb oder
 - um 90° gedreht zum Antrieb.
- → Grundstellung und Drehrichtung des Antriebs ermitteln.
- ightarrow Adapter auf die Welle des Typs 8792/8793 stecken und mit 2 Gewindestiften befestigen.

Verdrehschutz:

Die Anflachung der Welle beachten.

Als Verdrehschutz muss einer der Gewindestifte auf der Anflachung der Welle aufliegen (siehe "Abb. 18").

Drehbereich des Wegaufnehmers:

Der maximale Drehbereich des Wegaufnehmers beträgt 150°.

Die Welle des Typs 8792/8793 darf nur innerhalb dieses Bereichs bewegt werden.

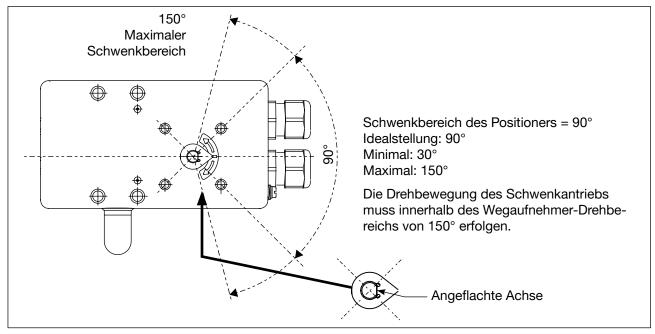


Abb. 18: Drehbereich / Verdrehschutz

- → Die mehrteilige Montagebrücke* passend zum Antrieb aufbauen.
- → Die Montagebrücke mit 4 Sechskantschrauben ③ und Federringen ④ an Typ 8792/8793 befestigen (siehe "Abb. 19").

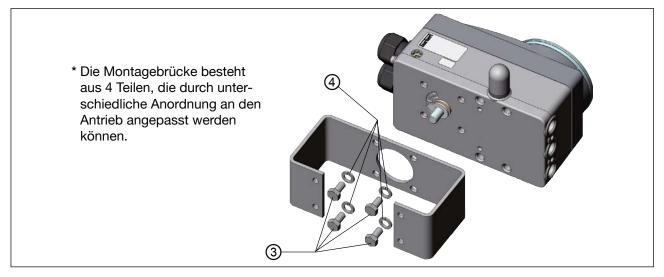


Abb. 19: Montagebrücke befestigen (schematische Darstellung)

→ Typ 8792/8793 mit Montagebrücke auf den Schwenkantrieb aufsetzen und befestigen (siehe "Abb. 20").

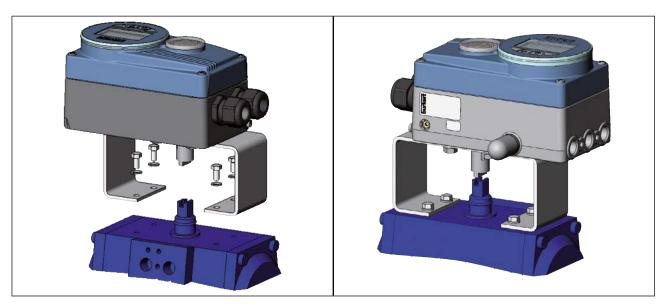


Abb. 20: Schwenkantriebbefestigung

Wird nach dem Start der Funktion *X.TUNE* die Meldung X.TUNE ERROR 5 angezeigt, ist die Ausrichtung der Welle des Typs 8792/8793 zur Welle des Antriebs nicht korrekt (siehe "Tabelle 112: Fehler- und Warnmeldung bei X.TUNE" auf Seite 197).

- → Ausrichtung überprüfen (wie in diesem Kapitel zuvor beschrieben).
- → Anschließend die Funktion X.TUNE wiederholen.

12.4 Remote-Betrieb mit externem Wegaufnehmer

Bei dieser Variante besitzt der Positioner keinen Wegaufnehmer in Form eines Drehwinkelsensors, sondern einen externen Wegaufnehmer.

Je nach Variante des Typs 8792/8793 gibt es folgende Anschlussvarianten:

Gerätetyp	Schnittstelle	Wegaufnehmer	Einstellung im Menü (ADD.FUNCTION)
Typ 8792 Remote	digital (seriell)	Remote Sensor Typ 8798	_
Tup 9702 Pamata	digital (seriell)	Remote Sensor Typ 8798	POS.SENSOR → DIGITAL Menübeschreibung siehe Kapitel "25.2.19"
Typ 8793 Remote	analog (420 mA) *	beliebiger, hochauflösender Wegaufnehmer	POS.SENSOR → ANALOG Menübeschreibung siehe Kapitel "25.2.19"

Tabelle 13: Anschlussvarianten externer Wegaufnehmer

Wird beim Prozessregler Typ 8793 der externe Wegaufnehmer über die analoge Schnittstelle angeschlossen, kann dieser nur noch als Positioner (Stellungsregler) betrieben werden.

12.4.1 Befestigungszubehör

Für die Befestigung des Typs 8792/8793 im Remote-Betrieb gibt es zwei Möglichkeiten (siehe "Abb. 21").

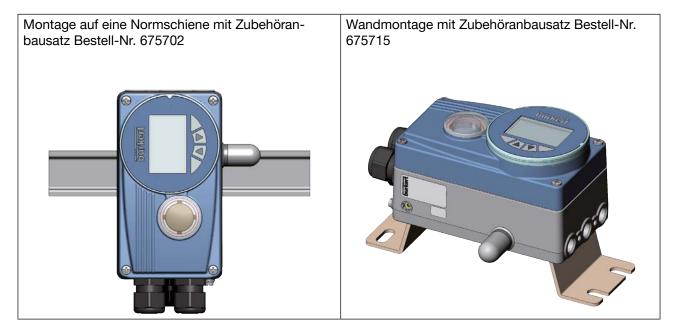


Abb. 21: Befestigungsarten im Remote-Betrieb

12.4.2 Anschluss und Inbetriebnahme des Remote Sensors Typ 8798

WARNUNG!

Verletzungsgefahr bei unsachgemäßer Inbetriebnahme.

▶ Die Inbetriebnahme darf nur autorisiertes Fachpersonal mit geeignetem Werkzeug durchführen.

Verletzungsgefahr durch ungewolltes Einschalten der Anlage und unkontrollierten Wiederanlauf.

- ► Anlage gegen unbeabsichtigtes Betätigen sichern.
- ► Nach der Montage einen kontrollierten Wiederanlauf gewährleisten.
- → Die 3 bzw. 4 Adern des Sensorkabels an die dafür vorgesehenen Schraubklemmen des Typs 8792/8793 anschließen.

Anschluss Schraubklemmen: Siehe Kapitel "15.2.4 Klemmenbelegung für externen Wegaufnehmer (nur bei Remote-Variante)" auf Seite 57.

Anschluss Rundstecker M8 (nur für PROFIBUS): Siehe Kapitel PROFIBUS "27.7.5" auf Seite 186.

- → Remote Sensor an den Antrieb montieren.

 Die ordnungsgemäße Vorgehensweise ist in der Kurzanleitung des Remote Sensors Typ 8798 beschrieben.
- → Druckluft an Positioner anschließen.
- → Positioner pneumatisch mit dem Antrieb verbinden.
- → Betriebsspannung des Typs 8792/8793 einschalten.
- \rightarrow Die Funktion *X.TUNE* ausführen.

12.4.3 Anschluss und Inbetriebnahme eines externen 4...20 mA Wegaufnehmers (nur bei Typ 8793 Remote-Variante)

Durch den Anschluss eines externen 4...20 mA Wegaufnehmers ist der Prozessregler Typ 8793 nur noch als Positioner (Stellungsregler) verwendbar, da als Eingang für den externen Wegaufnehmer der Prozess-Istwert Eingang verwendet wird.

Grundsätzlich kann jeder beliebige Wegaufnehmer mit einem 4...20 mA Ausgang angeschlossen werden, der eine ausreichende Auflösung des Wegsignals besitzt.

Gute Regeleigenschaften werden erreicht, wenn die Auflösung des Wegaufnehmers mindestens 1000 Messschritte über den zu erfassenden Weg erlaubt.

Beispiel: Wegaufnehmer mit Messbereich 150 mm

davon genutzter Messbereich (= Hub) 100 mm

Geforderte Mindestauflösung des Sensors:

$$\frac{100 \text{ mm}}{1000 \text{ Schritte}} = 0.1 \text{ mm}$$

WARNUNG!

Verletzungsgefahr bei unsachgemäßer Inbetriebnahme.

Die Inbetriebnahme darf nur autorisiertes Fachpersonal mit geeignetem Werkzeug durchführen.

Verletzungsgefahr durch ungewolltes Einschalten der Anlage und unkontrollierten Wiederanlauf.

- Anlage gegen unbeabsichtigtes Betätigen sichern.
- ► Nach der Montage einen kontrollierten Wiederanlauf gewährleisten.
- → Externen 4...20 mA Wegaufnehmer an die Klemmen 1 4 des Prozessreglers Typ 8793 Remote-Variante anschließen. (siehe "Tabelle 22: Klemmenbelegungen des Prozess-Istwert-Eingangs" auf Seite 58)

Interne Versorgung des externen Wegaufnehmers durch Typ 8793:

→ Anschluss gemäß Eingangstyp "4...20 mA - intern versorgt"

Separate Versorgung des externen Wegaufnehmers:

- → Anschluss gemäß Eingangstyp "4...20 mA extern versorgt".
- → Externen Wegaufnehmer an den Antrieb montieren.

 Die ordnungsgemäße Vorgehensweise ist in der Anleitung des externen Wegaufnehmers beschrieben.
- → Druckluft an Typ 8793 anschließen.
- → Typ 8793 pneumatisch mit dem Antrieb verbinden.
- → Betriebsspannung des Typ 8793 einschalten.
- → Um die bestmögliche Regelgenauigkeit zu erhalten den externen Wegaufnehmer so einstellen, dass der zu erfassende Weg dem Signalbereich 4...20 mA entspricht (nur wenn der externe Wegaufnehmer diese Funktion beinhaltet).
- → Im Menü ADD.FUNCTION die Funktion POS.SENSOR aktivieren. Dann im Hauptmenü POS.SENSOR auswählen und ANALOG einstellen (siehe Kapitel "25.2.19 POS.SENSOR Einstellung Schnittstelle Remote Wegaufnehmer" auf Seite 136).
- → Die Funktion X.TUNE ausführen.

13 PNEUMATISCHER ANSCHLUSS

GEFAHR!

Verletzungsgefahr durch hohen Druck in der Anlage.

▶ Vor dem Lösen von Leitungen und Ventilen den Druck abschalten und Leitungen entlüften.

WARNUNG!

Verletzungsgefahr bei unsachgemäßer Installation.

Die Installation darf nur autorisiertes Fachpersonal mit geeignetem Werkzeug durchführen.

Verletzungsgefahr durch ungewolltes Einschalten der Anlage und unkontrollierten Wiederanlauf.

- ► Anlage gegen unbeabsichtigtes Betätigen sichern.
- ► Nach der Installation einen kontrollierten Wiederanlauf gewährleisten.

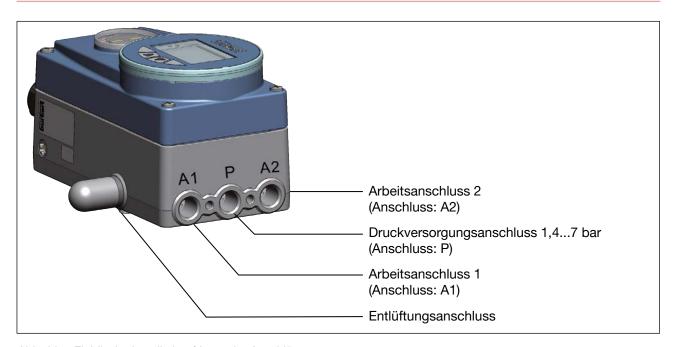


Abb. 22: Fluidische Installation / Lage der Anschlüsse

Vorgehensweise:

→ Versorgungsdruck (1,4...7 bar) an den Druckversorgungsanschluss P anlegen.

Bei einfachwirkenden Antrieben (Steuerfunktion A und B):

- → Einen Arbeitsanschluss (A1 oder A2, je nach gewünschter Sicherheitsendlage) mit der Kammer des einfachwirkenden Antriebs verbinden.
 Siehe Kapitel "10.9 Sicherheitsendlagen nach Ausfall der elektrischen bzw. pneumatischen Hilfsenergie".
- → Nicht benötigten Arbeitsanschluss mit einem Verschlussstopfen verschließen.

Bei doppelt wirkenden Antrieben (Steuerfunktion I):

→ Arbeitsanschlüsse A1 und A2 mit den jeweiligen Kammern des doppelt wirkenden Antriebs verbinden. Siehe Kapitel "10.9 Sicherheitsendlagen nach Ausfall der elektrischen bzw. pneumatischen Hilfsenergie".

Wichtige Information für einwandfreies Regelverhalten.

Damit das Regelverhalten im oberen Hubbereich aufgrund zu kleiner Druckdifferenz nicht stark negativ beeinflusst wird:

→ Den anliegenden Versorgungsdruck mindestens 0,5...1 bar über dem Druck halten, der notwendig ist um den pneumatischen Antrieb in Endlage zu bringen.

Bei größeren Schwankungen sind die mit der Funktion *X.TUNE* eingemessenen Reglerparameter nicht optimal.

→ Die Schwankungen des Versorgungsdrucks während des Betriebs möglichst gering halten (max. ±10 %).

14 ELEKTRISCHER ANSCHLUSS - VARIANTE RUNDSTECKVERBINDER (MULTIPOLVARIANTE)

GEFAHR!

Verletzungsgefahr durch Stromschlag.

- ▶ Vor Eingriffen in das Gerät oder die Anlage, Spannung abschalten und gegen Wiedereinschalten sichern.
- ▶ Die geltenden Unfallverhütungs- und Sicherheitsbestimmungen für elektrische Geräte beachten.

WARNUNG!

Verletzungsgefahr bei unsachgemäßer Installation.

▶ Die Installation darf nur autorisiertes Fachpersonal mit geeignetem Werkzeug durchführen.

Verletzungsgefahr durch ungewolltes Einschalten der Anlage und unkontrollierten Wiederanlauf.

- ► Anlage gegen unbeabsichtigtes Betätigen sichern.
- ► Nach der Installation einen kontrollierten Wiederanlauf gewährleisten.

Verwendung des 4 - 20 mA-Sollwerteingangs

Fällt bei einer Reihenschaltung mehrerer Geräte vom Typ 8792/8793 die elektrische Versorgung eines Geräts in dieser Reihenschaltung aus, wird der Eingang des ausgefallenen Geräts hochohmig. Dadurch fällt das 4 - 20 mA-Normsignal aus.

Wenden Sie sich in diesem Fall bitte direkt an den Bürkert-Service.

Bei PROFIBUS DP:

Die Bezeichnung der Rundsteckverbinder, Buchsen und Kontakte finden Sie in den jeweiligen Kapiteln.

14.1 Typ 8792 - Bezeichnung der Rundsteckverbinder

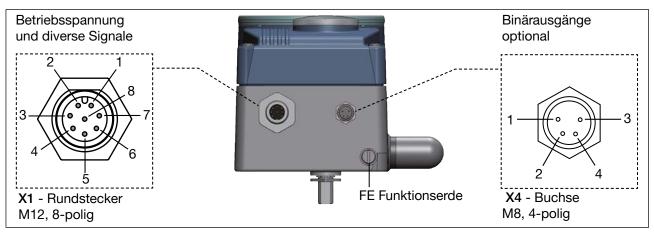


Abb. 23: Typ 8792; Bezeichnung Rundsteckverbinder und Kontakte

14.2 Anschluss des Positioners Typ 8792

→ Pins entsprechend der Variante (Optionen) des Positioners anschließen.

14.2.1 X1 - Rundstecker M12, 8-polig

Pin	Aderfarbe*	Belegung	Geräteseitig	Äußere Beschaltung / Signalpegel			
Eing	Eingangssignale der Leitstelle (z.B. SPS)						
1	weiß	Sollwert + (0/420 mA oder 05 / 10 V)	1 0	+ (0/420 mA oder 05 / 10 V) komplett galvanisch getrennt			
2	braun	Sollwert GND	2 0	GND Sollwert			
5	grau	Binäreingang	5 0	+ 05 V (log. 0) 1030 V (log. 1)			
6	rosa	Binäreingang GND	6 o	GND (identisch mit GND Betriebsspannung)			
Aus	gangssignale	zur Leitstelle (z.B. SPS) - (nur be	elegt bei Option Ana	alogausgang)			
8	rot	Analoge Rückmeldung +	8 •	+ (0/420 mA oder 05 / 10 V) komplett galvanisch getrennt			
7	blau	Analoge Rückmeldung GND	7 0	GND Analoge Rückmeldung			
Betr	Betriebsspannung						
3	grün	GND	3 •	24 V DC ± 10 %			
4	gelb	+24 V	4 0	max. Restwelligkeit 10 %			
* Die angegebenen Aderfarben beziehen sich auf das als Zubehör erhältliche Anschlusskabel mit der ID-Nr. 919267.							

Tabelle 14: Pin-Belegung; X1 - Rundstecker M12, 8-polig

14.2.2 X4 - Buchse M8, 4-polig (nur bei Option Binärausgänge) Ausgangssignale zur Leitstelle (z.B. SPS)

Pin	Belegung	Geräteseitig	Äußere Beschaltung / Signalpegel
1	Binärausgang 1	1 0	024 V
2	Binärausgang 2	2 0	024 V
3	Binärausgang GND	3 •	GND (identisch mit GND Betriebsspannung)

Tabelle 15: Pin-Belegung; X4 - Buchse M8, 4-polig - Ausgangssignale zur Leitstelle

Nach Anlegen der Betriebsspannung ist der Positioner in Betrieb.

→ Nun die erforderlichen Grundeinstellungen vornehmen und die automatische Anpassung des Positioners auslösen. Die Vorgehensweise ist in Kapitel "21 Ablauf der Inbetriebnahme" beschrieben.

14.3 Typ 8793 - Bezeichnung der Rundsteckverbinder und Kontakte

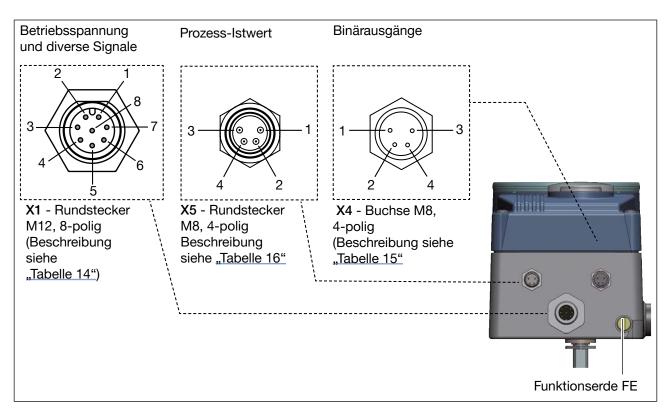


Abb. 24: Typ 8793; Bezeichnung Rundsteckverbinder und Kontakte

Lage des Schalters:

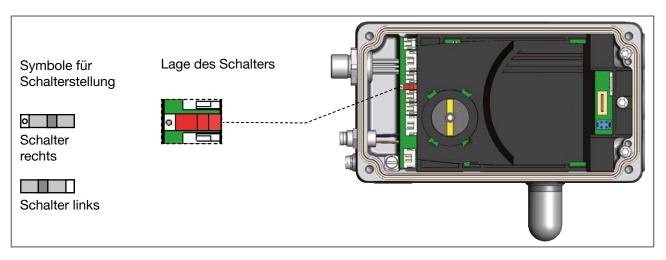


Abb. 25: Lage des Schalters; Symbole für Schalterstellung

14.4 Anschluss des Prozessreglers Typ 8793

→ Den Prozessregler zunächst wie in Kapitel "14.2 Anschluss des Positioners Typ 8792" beschrieben anschließen.

14.4.1 X5 - Rundstecker M8, 4-polig,Steckerbelegungen des Prozess-Istwert-Eingangs

Eingangs- typ*	Pin	Aderfarbe	Belegung	DIP- Schalter	Geräteseitig	Äußere Beschaltung
420 mA	1	braun	+24 V Versorgung Transmitter		1 0	
- intern versorgt	2	weiß	Ausgang von Transmitter		2 0	I Transmitter
versorgt	3	blau	GND (identisch mit GND Betriebsspannung)	Schalter links	3 0-	GND
	4	schwarz	Brücke nach GND (Pin 3)		4 0	
420 mA	1	braun	nicht belegt			
- extern	2	weiß	Prozess-Ist +	0	2 •	420 mA
versorgt	3	blau	nicht belegt	Schalter		
	4	schwarz	Prozess-Ist –	rechts	4 0	GND 420 mA
Frequenz	1	braun	+24 V Versorgung Sensor		1 0	+24 V
- intern	2	weiß	Takt-Eingang +		2 0	Takt +
versorgt	3	blau	Takt-Eingang – (GND)		3 •	Takt -/ GND
				Schalter links		(identisch mit GND Betriebsspannung)
	4	schwarz	nicht belegt			
Frequenz	1	braun	nicht belegt			
- extern	2	weiß	Takt-Eingang +	0	2 0	Takt +
versorgt	3	blau	Takt-Eingang –	Schalter	3 •——	Takt -
	4	schwarz	nicht belegt	rechts		
Pt 100	1	braun	nicht belegt		2 o	
(siehe Hinweis	2	weiß	Prozess-Ist 1 (Stromspeisung)		2 0	Pt 100
unten)	3	blau	Prozess-Ist 3 (GND)	Schalter rechts	3 o ——	─ ─┤'
	4	schwarz	Prozess-Ist 2 (Kompensation)		4 o	

^{*} Über Software einstellbar (siehe Kapitel, 21 Ablauf der Inbetriebnahme").

Tabelle 16: Pin-Belegung; X5 - Rundstecker M8, 4-polig - Prozess-Istwert-Eingang

Den Sensor Pt 100 zur Leitungskompensation über 3 Leitungen anschließen. Klemme 3 und Klemme 4 unbedingt am Sensor brücken.

Nach Anlegen der Betriebsspannung ist der Prozessregler in Betrieb.

→ Nun die erforderlichen Grundeinstellungen vornehmen und die automatische Anpassung des Prozessreglers auslösen. Die Vorgehensweise ist in Kapitel "21 Ablauf der Inbetriebnahme" beschrieben.

^{**} Die angegebenen Farben beziehen sich auf das als Zubehör erhältliche Anschlusskabel (918718).

15 ELEKTRISCHER ANSCHLUSS - VARIANTE KLEMMEN FÜR KABELVERSCHRAUBUNG

GEFAHR!

Verletzungsgefahr durch Stromschlag.

- ▶ Vor Eingriffen in das Gerät oder die Anlage, Spannung abschalten und gegen Wiedereinschalten sichern.
- ▶ Die geltenden Unfallverhütungs- und Sicherheitsbestimmungen für elektrische Geräte beachten.

WARNUNG!

Verletzungsgefahr bei unsachgemäßer Installation.

▶ Die Installation darf nur autorisiertes Fachpersonal mit geeignetem Werkzeug durchführen.

Verletzungsgefahr durch ungewolltes Einschalten der Anlage und unkontrollierten Wiederanlauf.

- ► Anlage gegen unbeabsichtigtes Betätigen sichern.
- ► Nach der Installation einen kontrollierten Wiederanlauf gewährleisten.

Verwendung des 4 - 20 mA-Sollwerteingangs

Fällt bei einer Reihenschaltung mehrerer Geräte vom Typ 8792/8793 die elektrische Versorgung eines Geräts in dieser Reihenschaltung aus, wird der Eingang des ausgefallenen Geräts hochohmig. Dadurch fällt das 4 - 20 mA-Normsignal aus.

Wenden Sie sich in diesem Fall bitte direkt an den Bürkert-Service.

15.1 Anschlussplatine des Typs 8792/8793 mit Schraubklemmen

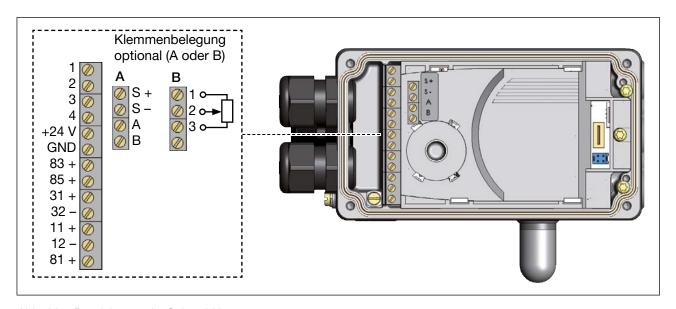


Abb. 26: Bezeichnung der Schraubklemmen

Vorgehensweise:

- → Die 4 Schrauben am Gehäusedeckel herausdrehen und den Deckel abnehmen. Die Schraubklemmen sind nun zugänglich.
- \rightarrow Typ 8792/8793 anschließen.

Die Vorgehensweise ist in den nachfolgenden Kapiteln beschrieben.

für Typ 8792: Kapitel, 15.2 Klemmenbelegung bei Kabelverschraubung - Positioner Typ 8792"

für Typ 8793: Kapitel "15.3 Klemmenbelegung bei Kabelverschraubung - Prozessregler Typ 8793"

Klemmenbelegung bei Kabelverschraubung -15.2 Positioner Typ 8792

15.2.1 Eingangssignale der Leitstelle (z. B. SPS)

Klemme	Belegung	Geräteseitig	Äußere Beschaltung / Signalpegel
11 +	Sollwert +	11 + O	+ (0/420 mA oder 05 / 10 V) komplett galvanisch getrennt
12 –	Sollwert GND	12 - o	GND Sollwert
81 +	Binäreingang +	81 + o	+ 05 V (log. 0) + 1030 V (log. 1) bezogen auf Betriebsspannung GND (Klemme GND)

Tabelle 17: Klemmenbelegung; Eingangssignale der Leitstelle

15.2.2 Ausgangssignale zur Leitstelle (z.B. SPS) -(nur bei Option Analogausgang und/oder Binärausgang erforderlich)

→ Klemmen entsprechend der Variante (Optionen) des Positioners anschließen.

Klemme	Belegung	Geräteseitig	Äußere Beschaltung / Signalpegel
83 +	Binärausgang 1	83 + o	24 V / 0 V, NC / NO bezogen auf Betriebsspannung GND (Klemme GND)
85 +	Binärausgang 2	85 + o	24 V / 0 V, NC / NO bezogen auf Betriebsspannung GND (Klemme GND)
31 +	Analoge Rückmeldung +	31 + 0	+ (0/420 mA oder 05 / 10 V) komplett galvanisch getrennt
32 –	Analoge Rückmeldung GND	32 - 0	GND Analoge Rückmeldung

Tabelle 18: Klemmenbelegung; Ausgangssignale zur Leitstelle

15.2.3 Betriebsspannung

Klemme	Belegung	Geräteseitig	Äußere Beschaltung / Signalpegel
+24 V	Betriebsspannung +	+24 V o	☐ 24 V DC ± 10 %
GND	Betriebsspannung GND	GND o-	max. Restwelligkeit 10 %

Tabelle 19: Klemmenbelegung; Betriebsspannung

15.2.4 Klemmenbelegung für externen Wegaufnehmer (nur bei Remote-Variante)

Anschluss des digitalen, berührungslosen Wegaufnehmers Typ 8798:

	Aderfarbe				Äußere Beschaltung /	
Klemme	Kabeltyp 1	Kabeltyp 2 Belegung Geräteseitig		Geräteseitig	Signalpegel	
S+	braun	braun	Versorgung Sensor +	S + o	+ —	
S -	weiß	schwarz	Versorgung Sensor –	s- •	_ Remote	
А	grün	rot	Serielle Schnittstelle, A-Leitung	А о	A-Leitung — Sensor Typ 8798	
В	gelb	orange	Serielle Schnittstelle; B-Leitung	в •——	B-Leitung — digital	

Tabelle 20: Klemmenbelegung; digitaler, berührungsloser Wegaufnehmer Typ 8798

Anschluss eines potentiometrischen Wegaufnehmers:

Klemme	Belegung	Gera	äteseitig	Äußere Beschalt	tung
-	Potentiometer 1	1	0		
○	Schleifkontakt 2	2	•—— Sch	nleifkontakt ———	Potentio- meter
	Potentiometer 3	3	0		

Tabelle 21: Klemmenbelegung; potentiometrischer Wegaufnehmer

Nach Anlegen der Betriebsspannung ist der Positioner in Betrieb.

→ Nun die erforderlichen Grundeinstellungen vornehmen und die automatische Anpassung des Positioners auslösen. Die Vorgehensweise ist in Kapitel "21 Ablauf der Inbetriebnahme" beschrieben.

15.3 Klemmenbelegung bei Kabelverschraubung - Prozessregler Typ 8793

→ Den Prozessregler zunächst wie in Kapitel, 15.2 Klemmenbelegung bei Kabelverschraubung - Positioner Typ 8792" beschrieben anschließen.

15.3.1 Klemmenbelegungen des Prozess-Istwert-Eingangs

Eingangstyp*	Eingangstyp* Klemme		Belegung	Geräteseitig	Äußere Beschaltung
420 mA - intern versorgt	actual value	1 2 3 4	+24 V Eingang Transmitter Ausgang von Transmitter Brücke nach GND (Klemme GND von Betriebsspannung) nicht belegt	1 o Tr	ansmitter GND
4 00 mA	GNE	1	GND von Betriebsspannung		
420 mA - extern versorgt	actual value	2 3 4	nicht belegt Prozess-Ist + Prozess-Ist -	2 o 3 o	- + (420 mA) - GND 420 mA
Frequenz -intern versorgt	lue	1	+24 V Versorgung Sensor	1 0	
	actual value	2 3 4	Takt-Eingang + nicht belegt Takt-Eingang –	2 o———— 4 o—,	- Iakt +
	GNE)	GND von Betriebsspannung	GND O	- Takt – (GND)
Frequenz - extern versorgt	actual value	1 2 3 4	nicht belegt Takt-Eingang + nicht belegt Takt-Eingang –	2 o	
Pt 100 siehe Hinweis unten)	actual value	1 2 3 4	nicht belegt Prozess-Ist 1 (Stromspeisung) Prozess-Ist 3 (GND) Prozess-Ist 2 (Kompensation)	2 o	Pt 100
*Über Software einstellbar (siehe Kapitel "21 Ablauf der Inbetriebnahme").					

Tabelle 22: Klemmenbelegungen des Prozess-Istwert-Eingangs

Den Sensor Pt 100 zur Leitungskompensation über 3 Leitungen anschließen. Klemme 3 und Klemme 4 unbedingt am Sensor brücken.

Nach Anlegen der Betriebsspannung ist der Prozessregler in Betrieb.

→ Nun die erforderlichen Grundeinstellungen vornehmen und die automatische Anpassung des Prozessreglers auslösen. Die Vorgehensweise ist in Kapitel "21 Ablauf der Inbetriebnahme" beschrieben.

16 BEDIENEBENEN

Für die Bedienung und Einstellung des Typs 8792/8793 gibt es die Prozessebene und die Einstellebene.

Prozessebene:

In der Prozessebene wird der laufende Prozess angezeigt und bedient.

Betriebszustand: AUTOMATIK - Anzeigen der Prozessdaten

MANU – Manuelles Öffnen und Schließen des Ventils

Einstellebene:

In der Einstellebene werden die Grundeinstellungen für den Prozess vorgenommen.

- Eingabe der Betriebsparameter
- Aktivierung von Zusatzfunktionen

Ist das Gerät beim Wechsel in die Einstellebene im Betriebszustand AUTOMATIK, läuft der Prozess während der Einstellung weiter.

16.1 Wechsel zwischen den Bedienebenen

Wechsel in die Einstellebene	MENU	3 Sekunden drücken
Rückkehr in die Prozessebene	EXIT	kurz drücken

Der eingestellte Betriebszustand MANU oder AUTOMATIK bleibt auch bei einem Wechsel der Bedienebene bestehen.

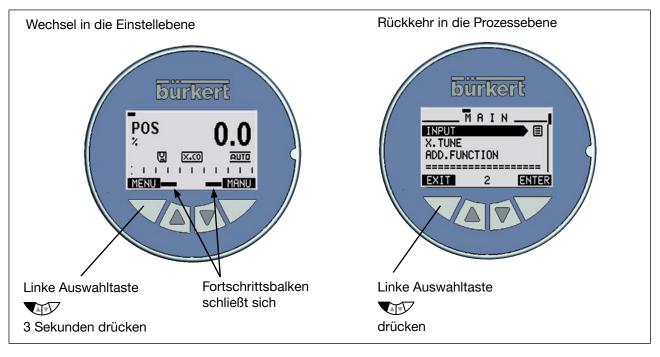


Abb. 27: Wechsel Bedienebene

17 BEDIEN- UND ANZEIGEELEMENTE

Das folgende Kapitel beschreibt die Bedien- und Anzeigeelemente des Typs 8792/8793.

17.1 Beschreibung der Bedien- und Anzeigeelemente

Das Gerät ist mit 4-Tasten für die Bedienung und einem 128x64 Dot-Matrix Grafikdisplay als Anzeigeelement ausgestattet.

Die Anzeige des Displays passt sich den eingestellten Funktionen und Bedienebenen an.

Grundsätzlich unterschieden werden kann zwischen der Displayansicht für die Prozessebene und die Einstellebene.

Nach dem Anlegen der Betriebsspannung zeigt das Display die Prozessebene an.

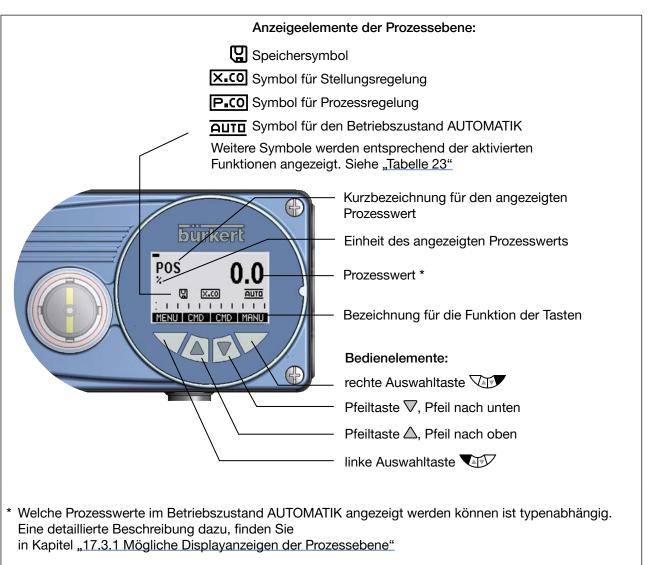


Abb. 28: Anzeige und Bedienelemente der Prozessebene

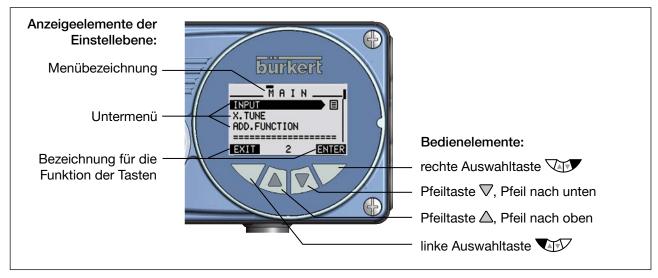


Abb. 29: Anzeige und Bedienelemente der Einstellebene

17.1.1 Beschreibung der Symbole, die in der Prozessebene angezeigt werden

Welche Symbole auf dem Display angezeigt werden, ist abhängig

- vom Typ,
- vom Betrieb als Stellungs- oder Prozessregler,
- vom Betriebszustand AUTOMATIK oder MANU und
- von den aktivierten Funktionen.

Betrieb	Symbol	Beschreibung
Typ 8792/8793	<u>АПТП</u>	Betriebszustand AUTOMATIK
Betrieb als Stellungsregler	V	Diagnose aktiv (Optional; nur vorhanden wenn das Gerät die Zusatz- software für die Diagnose besitzt)
	×.co	X.CONTROL / Stellungsregler aktiv (Symbol erscheint nur bei Typ 8793)
	(C)	EEPROM speichern (erscheint während des Speichervorgangs)
	A	CUTOFF aktiv
	트	SAFEPOS aktiv
	t	Schnittstelle I/O Burst
	5	Schnittstelle I/O RS232 HART
	•	SECURITY aktiv
Weitere Symbole	P.CO	P.CONTROL / Prozessregler aktiv
bei Typ 8793	BUS	Bus aktiv
Betrieb als Prozessregler	SIM	SIMULATION aktiv

Tabelle 23: Symbole der Prozessebene.

17.2 Funktion der Tasten

Die Funktion der 4 Tasten zur Bedienung ist je nach Betriebszustand (AUTOMATIK oder MANU) und Bedienebene (Prozessebene oder Einstellebene) unterschiedlich.

Welche Tastenfunktion aktiv ist, wird in dem grauen Textfeld angezeigt, das sich über der Taste befindet.

Die Beschreibung der Bedienebenen und Betriebszustände finden Sie in Kapitel "16 Bedienebenen" und "18 Betriebszustände" .

Tastenfunktio	Tastenfunktion in der Prozessebene:					
Taste	Tastenfunktion	Beschreibung der Funktion	Betriebszustand			
Pfeiltaste	OPN (AUF)	Manuelles Auffahren des Antriebs.	MANU			
		Wechsel des angezeigten Werts (z.B. POS-CMD-TEMP).	AUTOMATIK			
Pfeiltaste	CLS (ZU)	Manuelles Zufahren des Antriebs.	MANU			
∇		Wechsel des angezeigten Werts (z.B. POS-CMD-TEMP).	AUTOMATIK			
linke Auswahltaste	MENU	Wechsel in die Einstellebene. Hinweis: Taste ca. 3 s lang drücken.	AUTOMATIK oder MANU			
rechte Auswahltaste	AUTO	Rückkehr in den Betriebszustand AUTOMATIK.	MANU			
VALV	HAND	Wechsel in den Betriebszustand HAND.	AUTOMATIK			

Tastenfunktio	Tastenfunktion in der Einstellebene:				
Taste	Tastenfunktion	Beschreibung der Funktion			
Pfeiltaste		Blättern in den Menüs nach oben.			
	+	Vergrößern von Zahlenwerten.			
Pfeiltaste		Blättern in den Menüs nach unten.			
∇	-	Verkleinern von Zahlenwerten.			
	<-	Wechsel um eine Stelle nach links; bei der Eingabe von Zahlenwerten.			
linke	EXIT (ZURÜCK)	Rückkehr in die Prozessebene.			
Auswahltaste		Schrittweise Rückkehr aus einem Untermenüpunkt.			
	ESC	Verlassen eines Menüs.			
	STOP	Abbrechen eines Ablaufs.			
rechte Auswahltaste	ENTER SELEC	Auswahl, Aktivieren oder Deaktivieren eines Menüpunkts.			
VAF	OK INPUT				
	EXIT (ZURÜCK)	Schrittweise Rückkehr aus einem Untermenüpunkt.			
	RUN	Starten eines Ablaufs.			
	STOP	Abbrechen eines Ablaufs.			

Tabelle 24: Funktion der Tasten

17.2.1 Eingeben und verändern von Zahlenwerten

Zahlenwerte mit festgelegten Dezimalstellen verändern:

Taste	Tasten- funktion	Beschreibung der Funktion	Beispiel
Pfeiltaste ▽	<-	Zur nächsten Dezimalstelle wechseln (von rechts nach links). Nach Erreichen der letzten Dezimalstelle, wechselt die Anzeige wieder zur ersten Dezimalstelle.	Datum und Uhrzeit
Pfeiltaste △ +		Wert vergrößern. Nach Erreichen des größtmöglichen Werts, wird wieder 0 angezeigt.	eingeben.
linke Auswahltaste	esc oder exit	Rückkehr ohne Änderung.	SET DATE 00:01 00 Sun. 01.02.55
rechte Auswahltaste	OK	Den eingestellten Wert übernehmen.	ESC + <- OK

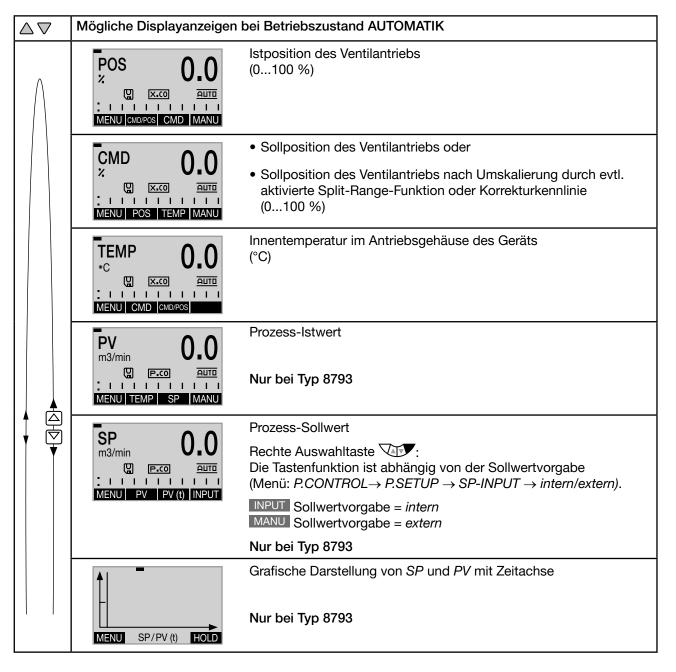
Tabelle 25: Zahlenwerte mit feststehenden Dezimalstellen verändern.

Zahlenwerte mit variablen Dezimalstellen eingeben:

Taste	Tasten- funktion	Beschreibung der Funktion	Beispiel
Pfeiltaste \triangle	+	Wert vergrößern.	DWM Circulaingahan
Pfeiltaste ▽	_	Wert verkleinern.	PWM-Signal eingeben
linke Auswahltaste	esc oder exit	Rückkehr ohne Änderung.	TUNE. 9B 9B.min: 78
rechte Auswahltaste	OK	Den eingestellten Wert übernehmen.	:

Tabelle 26: Zahlenwerte mit variablen Dezimalstellen eingeben.

17.3 Anpassen des Displays


Das Display ist für das Bedienen und Überwachen des Prozesses individuell einstellbar.

- Dazu können Menüpunkte für das Display der Prozessebene aktiviert werden. Im Auslieferungszustand sind POS und CMD aktiviert.
- Welche Menüpunkte für die Anzeige auf dem Display zur Auswahl stehen ist typenabhängig.

Wie Sie das Display für Typ 8792 individuell an den zu regelnden Prozess anpassen können ist in Kapitel "25.2.18 EXTRAS – Einstellung des Displays" auf Seite 133 beschrieben.

17.3.1 Mögliche Displayanzeigen der Prozessebene

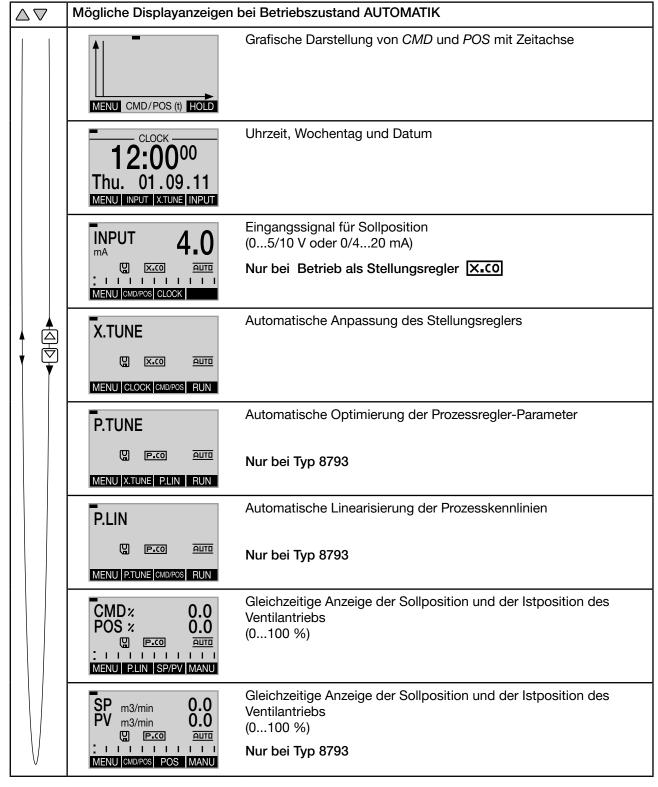


Tabelle 27: Displayanzeigen der Prozessebene bei Betriebszustand AUTOMATIK

17.4 Datum und Uhrzeit

Datum und Uhrzeit werden in der Prozessebene im Menü CLOCK eingestellt.

Damit das Menü für *CLOCK* in der Prozessebene ausgewählt werden kann, müssen folgende Funktionen in 2 Schritten aktiviert werden:

- 1. Die Zusatzfunktion EXTRAS im Menü ADD.FUNCTION
- 2. Die Funktion CLOCK in der Zusatzfunktion EXTRAS, Untermenü DISP.ITEMS.

Aktivieren von EXTRAS und CLOCK:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
△/▽	ADD.FUNCTION auswählen	
ENTER	drücken	Die möglichen Zusatzfunktionen werden angezeigt.
△/▽	EXTRAS auswählen	
ENTER	drücken	Die Zusatzfunktion <i>EXTRAS</i> durch ankreuzen ⊠ aktivieren und ins Hauptmenü (MAIN) übernehmen.
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).
△/▽	EXTRAS auswählen	
ENTER	drücken	Die Untermenüs von EXTRAS werden angezeigt.
△/▽	DISP.ITEMS auswählen	
ENTER	drücken	Die möglichen Menüpunkte werden angezeigt.
△/▽	CLOCK auswählen	
SELEC	drücken	Die aktivierte Funktion <i>CLOCK</i> ist nun durch ein Kreuz Markiert.
EXIT	drücken	Rückkehr ins Menü EXTRAS.
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

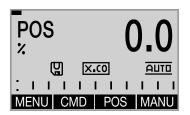
Tabelle 28: EXTRAS; Aktivieren der Funktion CLOCK

Datum und Uhrzeit müssen nach jedem Geräteneustart neu eingestellt werden. Das Gerät wechselt deshalb nach einem Neustart sofort automatisch in das entsprechende Menü.

17.4.1 Einstellen von Datum und Uhrzeit:

- ightarrow In der Prozessebene über die Pfeiltasten \triangle ∇ die Displayanzeige für *CLOCK* auswählen.
- → INPUT drücken um die Eingabemaske für die Einstellung zu öffnen.
- ightarrow Datum und Uhrzeit wie in der nachfolgenden Tabelle beschrieben einstellen.

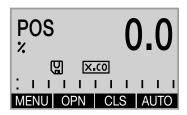
Taste	Tasten- funktion	Beschreibung der Funktion	Eingabemaske
Pfeiltaste ▽	<-	Zur nächsten Zeiteinheit wechseln (von rechts nach links). Nach Erreichen der letzten Zeiteinheit für das Datum, wechselt die Anzeige in die Zeiteinheiten für die Uhrzeit.	
		Ist die letzten Einheit links oben (Stunden), wechselt die Anzeige wieder in die erste Einheit rechts unten (Jahr).	CLOCK
Pfeiltaste △	+	Wert vergrößern. Nach Erreichen des größtmöglichen Werts, wird wieder 0 angezeigt.	12:00 ⁰⁰ Thu. 01.09.11
linke Auswahltaste	ESC	Rückkehr ohne Änderung.	MENU + <- INPUT
rechte Auswahltaste	OK	Den eingestellten Wert übernehmen.	
$\triangle \nabla$		Wechsel der Displayanzeige.	


Tabelle 29: Datum und Uhrzeit einstellen

18 BETRIEBSZUSTÄNDE

Der Typ 8792/8793 verfügt über 2 Betriebszustände: AUTOMATIK und HAND.

Nach Einschalten der Betriebsspannung befindet sich das Gerät im Betriebszustand AUTOMATIK.



AUTOMATIK

Im Betriebszustand AUTOMATIK wird der normale Regelbetrieb ausgeführt.

(Das Symbol für AUTOMATIK <u>AUTU</u> ist auf dem Display eingeblendet.

Oben am Displayrand läuft ein Balken.)

HAND

Im Betriebszustand HAND kann das Ventil manuell über die Pfeiltasten $\triangle \nabla$ (Tastenfunktion OPN und CLS) auf- oder zugefahren werden.

(Das Symbol für AUTOMATIK AUTOMATIK AUTOMATIK AUTOMATIK Rein laufender Balken am oberen Displayrand.)

Den Betriebszustand HAND (Tastenfunktion MANU) gibt es nur für folgende Prozesswertanzeigen:

POS, CMD, PV, CMD/POS, SP/PV.

Für SP nur bei externem Prozess-Sollwert.

18.1 Wechsel des Betriebszustands

Der Wechsel des Betriebzustands HAND oder AUTOMATIK erfolgt in der Prozessebene.

Beim Wechsel in die Einstellebene wird der Betriebszustand beibehalten.

Wechsel in den Betriebszustand HAND	MANU	drücken	Nur verfügbar bei Prozesswertanzeige: POS, CMD, PV, SP
Rückkehr in den Betriebszustand AUTOMATIK	AUTO	drücken	

19 ZUSATZFUNKTIONEN

Für anspruchsvolle Regelungsaufgaben, können Zusatzfunktionen aktiviert werden.

Die Zusatzfunktion werden über die Grundfunktion *ADD.FUNCTION* aktiviert und damit ins Hauptmenü (MAIN) übernommen.

Die Zusatzfunktionen kann danach im erweiterten Hauptmenü (MAIN) ausgewählt und eingestellt werden.

19.1 Aktivieren von Zusatzfunktionen

Vorgehensweise:

Taste	Aktion	Beschreibung		
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.		
△/▽	ADD.FUNCTION auswählen			
ENTER	drücken	Die möglichen Zusatzfunktionen werden angezeigt.		
▲/▼	Gewünschte Zusatzfunktion auswählen			
ENTER	drücken	Die ausgewählte Zusatzfunktion ist nun durch ein Kreuz ⊠ markiert.		
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Hauptmenü (MAIN). Die markierte Funktion ist nun aktiviert und ins Hauptmenü aufgenommen.		
Anschließ	end können die Parameter auf	folgende Weise eingestellt werden.		
△/▼	Zusatzfunktion auswählen	Im Hauptmenü (MAIN) die Zusatzfunktion auswählen.		
ENTER	drücken	Öffnung des Untermenüs zur Eingabe der Parameter. Die Einstellung des Untermenüs ist im jeweiligen Kapitel der Zusatzfunktion beschrieben.		
Rückkehr aus dem Untermenü und Wechsel in die Prozessebene				
EXIT *	drücken	Rückkehr in eine übergeordnete Ebene oder in das Hauptmenü (MAIN).		
EXIT	drücken drücken	Wechsel von Einstellebene ⇒ Prozessebene.		
* Die Reze	eichnung der Taste ist von der a	usgewählten Zusatzfunktion abhängig.		

Tabelle 30: Aktivieren von Zusatzfunktionen

Prinzip: Aktivierung von Zusatzfunktionen bei gleichzeitiger Aufnahme ins Hauptmenü

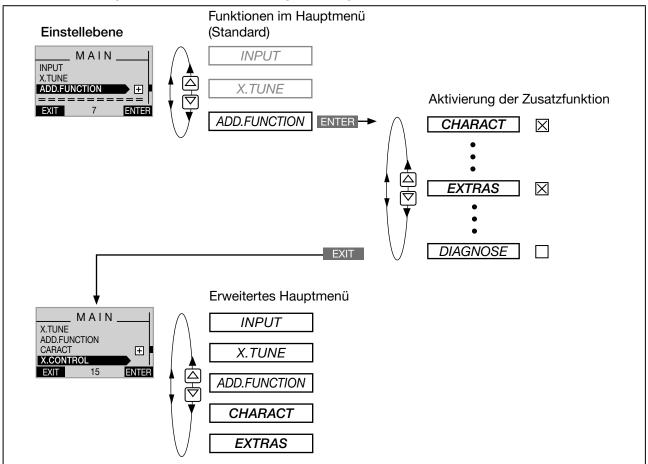


Abb. 30: Prinzip: Aktivierung von Zusatzfunktionen bei gleichzeitiger Aufnahme ins Hauptmenü (MAIN)

19.2 Deaktivieren von Zusatzfunktionen

Vorgehensweise:

Taste	Aktion	Beschreibung		
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.		
△/▼	ADD.FUNCTION auswählen			
ENTER	drücken	Die möglichen Zusatzfunktionen werden angezeigt.		
△/▽	Zusatzfunktion auswählen			
ENTER	drücken	Markierung der Funktion entfernen (Kein Kreuz ☐).		
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Hauptmenü (MAIN). Die markierte Funktion ist nun deaktiviert und aus dem Hauptmenü entfernt.		

Tabelle 31: Deaktivieren von Zusatzfunktionen

Durch das Deaktivieren wird die Zusatzfunktion aus dem Hauptmenü (MAIN) entfernt. Die zuvor unter dieser Funktion vorgenommenen Einstellungen werden dadurch ungültig.

20 MANUELLES AUF- UND ZUFAHREN DES VENTILS

Im Betriebszustand HAND kann das Ventil manuell über die Pfeiltasten $\triangle \nabla$ auf- oder zugefahren werden.

Den Betriebszustand HAND (Tastenfunktion MANU) gibt es für folgende Prozesswertanzeigen:

- POS, Istposition des Ventilantriebs.
- CMD, Sollposition des Ventilantriebs.
 Beim Wechsel in den Betriebszustand HAND wird POS angezeigt.
- PV, Prozess-Istwert.
- SP, Prozess-Sollwert.
 Beim Wechsel in den Betriebszustand HAND wird PV angezeigt. Der Wechsel ist nur bei externer Sollwertvorgabe möglich (Menü: P.CONTROL→ P.SETUP → SP-INPUT → extern).
- CMD/POS, Sollposition des Ventilantriebs.
 Beim Wechsel in den Betriebszustand HAND wird POS angezeigt.
- SP/PV, Prozess-Sollwert.
 Beim Wechsel in den Betriebszustand HAND wird PV angezeigt. Der Wechsel ist nur bei externer Sollwertvorgabe möglich (Menü: P.CONTROL→ P.SETUP → SP-INPUT → extern).

Ventil manuell auf- oder zufahren:

Taste	Aktion	Beschreibung	
△/▼	POS, CMD, PV oder SP auswählen		
MANU	drücken	Wechsel in den Betriebszustand HAND	
	drücken	Belüften des Antriebs	
		Steuerfunktion A (SFA): Ventil öffnet Steuerfunktion B (SFB): Ventil schließt Steuerfunktion I (SFI): Anschluss 2.1 belüftet	
	drücken	Entlüften des Antriebs	
		Steuerfunktion A (SFA): Ventil schließt Steuerfunktion B (SFB): Ventil öffnet Steuerfunktion I (SFI): Anschluss 2.2 belüftet	

Tabelle 32: Manuelles Auf- und Zufahren des Ventils

SFA: Antrieb Federkraft schließend
SFB: Antrieb Federkraft öffnend
SFI: Antrieb doppelt wirkend

21 ABLAUF DER INBETRIEBNAHME

Vor der Inbetriebnahme die fluidische und elektrische Installation des Typs 8792/8793 und des Ventils ausführen. Beschreibung siehe Kapitel "13", "14" und "15"...

Nach Anlegen der Betriebsspannung ist der Typ 8792/8793 in Betrieb und befindet sich im Betriebszustand AUTOMATIK. Das Display zeigt die Prozessebene mit den Werten für *POS* und *CMD* an.

Für die Inbetriebnahme des Geräts müssen folgende Grundeinstellungen vorgenommen werden:

Geräte- typ	Reihen- folge	Art der Grundeinstellung	Einstellung über	Beschreibung in Kapitel	Erfordernis
	Grundeinstellung des Geräts				
8792 und 8793	1	Eingangssignal (Normsignal) einstellen.	INPUT	"22.1"	zwingend
	2	Gerät an die örtlichen Bedingungen anpassen.	X.TUNE	"22.2"	erforderlich
	3	Prozessregler aktivieren.	ADD.FUNCTION	"23"	
		Grundeinstellung des Prozessreglers:	P.CONTROL	<u>"24"</u>	zwingend
nur 8793 4		 Einstellung der Hardware 	→ SETUP	<u>"24.2"</u>	erforderlich
(Prozess- regler)	5	 Parametereinstellung der Software. 	→ PID.PARAMETER	"24.3"	
	6	Automatische Linearisierung der Prozesskennlinie.	P.Q'LIN	<u>"24.4"</u>	wahlweise durchzu-
	7	Automatische Parametereinstellung für den Prozessregler.	P.TUNE	"24.5"	führen

Tabelle 33: Ablauf der Inbetriebnahme

Die Grundeinstellungen werden in der Einstellebene vorgenommen.

Zum Wechsel von der Prozess- in die Einstellebene die Taste MENU ca. 3 Sekunden drücken.

Danach erscheint auf dem Display das Hauptmenü (MAIN) der Einstellebene.

21.1 Sicherheitshinweise

WARNUNG!

Verletzungsgefahr bei unsachgemäßem Betrieb.

Nicht sachgemäßer Betrieb kann zu Verletzungen, sowie Schäden am Gerät und seiner Umgebung führen

- ▶ Vor der Inbetriebnahme muss gewährleistet sein, dass der Inhalt der Bedienungsanleitung dem Bedienpersonal bekannt ist und vollständig verstanden wurde.
- ▶ Die Sicherheitshinweise und die bestimmungsgemäße Verwendung müssen beachtet werden.
- Nur ausreichend geschultes Personal darf die Anlage/das Gerät in Betrieb nehmen.

22 GRUNDEINSTELLUNG DES GERÄTS

Zur Grundeinstellung von Typ 8792/8793 müssen Sie folgende Einstellungen vornehmen:

- 1. *INPUT* Auswahl des Eingangssignals (siehe Kapitel "22.1").
- 2. X.TUNE Automatische Selbstparametrierung des Stellungsreglers (siehe Kapitel "22.2")

Bedienstruktur zur Grundeinstellung:

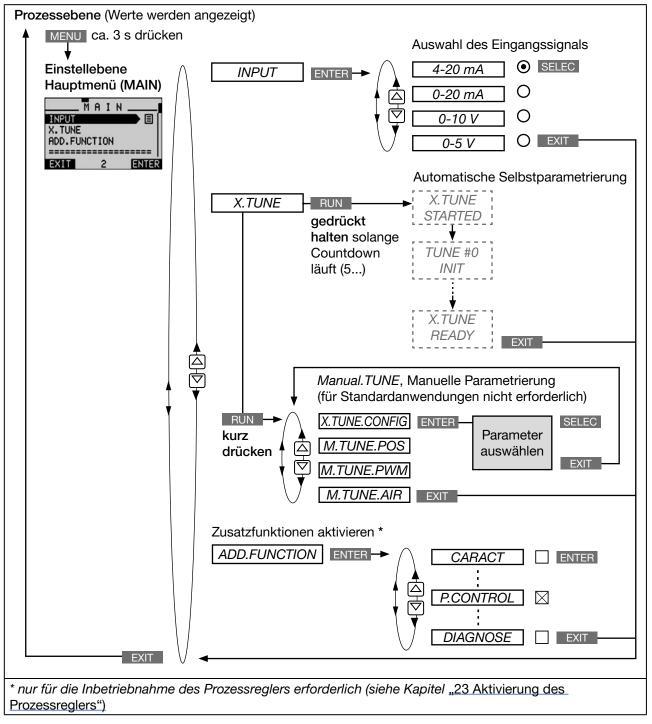


Abb. 31: MAIN – Hauptmenü, Bedienstruktur im Auslieferungszustand

22.1 INPUT - Einstellung des Eingangssignals

Bei dieser Einstellung wird das Eingangssignal für den Sollwert ausgewählt.

Vorgehensweise:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
\triangle/∇	INPUT auswählen	
ENTER	drücken	Die möglichen Eingangssignale für INPUT werden angezeigt.
▲/▼	Eingangssignal auswählen (4-20 mA, 0-20 mA,)	
SELEC	drücken	Das ausgewählte Eingangssignal ist nun durch einen gefüllten Kreis markiert.
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 34: Einstellung des Eingangssignals

Bedienstruktur:

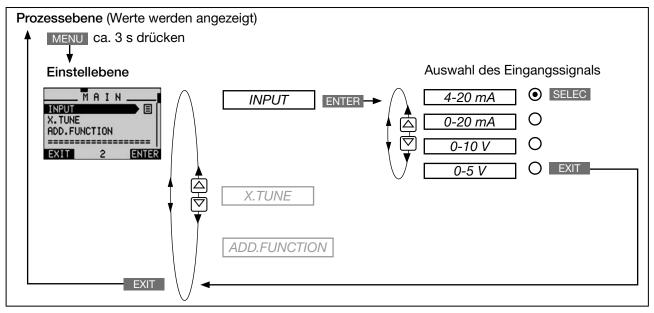


Abb. 32: Bedienstruktur INPUT

22.2 *X.TUNE* - Automatische Anpassung des Stellungsreglers

WARNUNG!

Gefahr durch Änderung der Ventilstellung bei Ausführung der Funktion X.TUNE.

Beim Ausführen der Funktion X.TUNE unter Betriebsdruck besteht akute Verletzungsgefahr.

- ► X.TUNE niemals bei laufendem Prozess durchführen.
- ► Anlage vor unbeabsichtigtem Betätigen sichern.

HINWEIS!

Durch einen falschen Versorgungsdruck oder aufgeschalteten Betriebsmediumsdruck kann es zur Fehlanpassung des Reglers kommen.

- ► X.TUNE in jedem Fall bei dem im späteren Betrieb zur Verfügung stehenden Versorgungsdruck (= pneumatische Hilfsenergie) durchführen.
- ▶ Die Funktion *X.TUNE* vorzugsweise **ohne** Betriebsmediumsdruck durchführen, um Störungseinflüsse infolge von Strömungskräften auszuschließen.

Folgende Funktionen werden selbsttätig ausgelöst:

- Anpassung des Sensorsignals an den (physikalischen) Hub des verwendeten Stellglieds.
- Ermittlung von Parametern der PWM-Signale zur Ansteuerung der im Typ 8792/8793 integrierten Magnetventile.
- Einstellung der Reglerparameter des Stellungsreglers. Die Optimierung erfolgt nach den Kriterien einer möglichst kurzen Ausregelzeit ohne Überschwinger.

Vorgehensweise:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
△/▽	X.TUNE auswählen	
RUN	gedrückt halten solange Countdown (5) läuft	Während der automatischen Anpassung erscheinen auf dem Display Meldungen über den Fortschritt der X.TUNE (z.B. "TUNE #1").
		Ist die automatische Anpassung beendet erscheint die Meldung "TUNE ready".
	beliebige Taste drücken	Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 35: Automatische Anpassung X.TUNE

Zum Abbrechen von X.TUNE, die linke oder rechte Auswahltaste STOP betätigen.

Bedienstruktur:

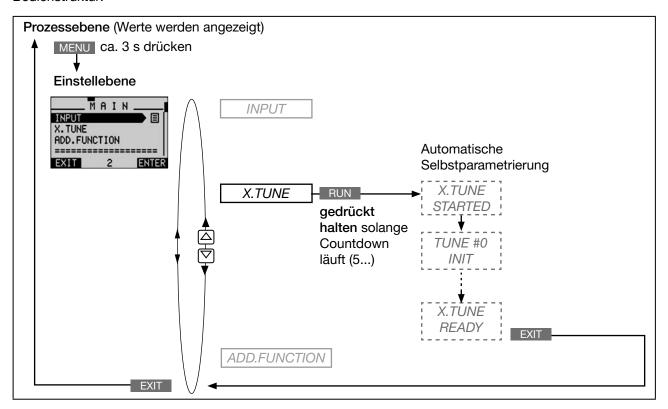


Abb. 33: Bedienstruktur X.TUNE

Totband DBND durch Ausführen von X.TUNE automatisch ermitteln:

Beim Ausführen von *X.TUNE* kann automatisch das Totband in Abhängigkeit zum Reibverhalten des Stellantriebs ermittelt werden.

Dazu muss, vor dem Ausführen von *X.TUNE*, die Zusatzfunktion *X.CONTROL* durch Aufnahme ins Hauptmenü (MAIN) aktiviert werden.

Ist X.CONTROL nicht aktiviert, wird ein festes Totband von 1 % verwendet.

Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT , werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol 🖫 auf dem Display.

Mögliche Fehlermeldungen beim Ausführen von X.TUNE:

Anzeige	Fehlerursachen	Abhilfe
TUNE err/break	Manueller Abbruch der Selbstoptimierung durch Drücken der EXIT Taste.	
X.TUNE locked	Die Funktion X.TUNE ist gesperrt.	Zugangscode eingeben.
X.TUNE ERROR 1	Keine Druckluft angeschlossen.	Druckluft anschließen.
X.TUNE ERROR 2	Druckluftausfall während der Autotune (X.TUNE).	Druckluftversorgung kontrollieren.

X.TUNE ERROR 3	Antrieb bzw. Stellsystem-Entlüftungsseite undicht.	nicht möglich, Gerät defekt.
X.TUNE ERROR 4	Stellsystem-Belüftungsseite undicht.	nicht möglich, Gerät defekt.
X.TUNE ERROR 5	Der Drehbereich des Wegaufnehmers von 150° wird überschritten.	Anbau der Welle des Wegaufnehmers an den Antrieb korrigieren (siehe Kapitel "12.2" und "12.3").
X.TUNE ERROR 6	Die Endlagen für <i>POS-MIN</i> und <i>POS-MAX</i> sind zu nahe zusammen.	Druckluftversorgung kontrollieren.
X.TUNE ERROR 7	Falsche Zuordnung POS-MIN und POS-MAX.	Zur Ermittlung von POS-MIN und POS-MAX den Antrieb jeweils in die auf dem Display dargestellte Richtung fahren.
X.TUNE WARNING 1*	Potentiometer ist nicht optimal an den Antrieb gekoppelt. Durch optimale Ankopplung kann eine größere Genauigkeit bei der Wegmessung erreicht werden.	Mittelstellung wie in Kapitel "12.2.4 Hebel- mechanismus ausrichten" beschrieben einstellen.

^{*} Warnhinweise geben Tipps für einen optimierten Betrieb. Das Gerät ist auch bei Nichtbeachtung dieses Warnhinweises betriebsbereit. Warnhinweise werden nach einigen Sekunden automatisch ausgeblendet.

Tabelle 36: X.TUNE; mögliche Fehlermeldungen

Nach Ausführen der in Kapitel "22.1" und "22.2" beschriebenen Einstellungen ist der Positioner (Stellungsregler) betriebsbereit.

Das Aktivieren und Konfigurieren von Zusatzfunktionen ist im nachfolgenden Kapitel "25 Konfigurieren der Zusatzfunktionen" beschrieben.

22.2.1 X.TUNE.CONFIG - Manuelle Konfiguration von X.TUNE

Diese Funktion wird nur bei speziellen Anforderungen benötigt.

Für Standardanwendungen wird die Funktion *X.TUNE* (automatische Anpassung des Positioners), wie zuvor beschrieben, mit den werkseitigen Voreinstellungen ausgeführt.

Die Beschreibung der Funktion *X.TUNE.CONFIG* finden Sie in Kapitel "25.3 Manuelle Konfiguration von X.TUNE".

23 AKTIVIERUNG DES PROZESSREGLERS

Der Prozessreglers wird durch die Auswahl der Zusatzfunktion *P.CONTROL*, im Menü *ADD.FUNCTION*, aktiviert.

Mit der Aktivierung wird *P.CONTROL* ins Hauptmenü (MAIN) übernommen und steht dort für weitere Einstellungen zur Verfügung.

Vorgehensweise:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
△/▽	ADD.FUNCTION auswählen	
ENTER	drücken	Die möglichen Zusatzfunktionen werden angezeigt.
△/▽	P.CONTROL auswählen	
ENTER	drücken	P.CONTROL ist nun durch ein Kreuz ⊠ markiert.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Hauptmenü (MAIN). <i>P.CONTROL</i> ist nun aktiviert und ins Hauptmenü aufgenommen.

Tabelle 37: Aktivieren von Zusatzfunktionen

Nach der Aktivierung von *P.CONTROL* stehen im Hauptmenü (MAIN) auch die Menüs *P.Q'LIN* und *P.TUNE* zur Verfügung. Sie bieten eine Unterstützung zur Einstellung der Prozessregelung an.

P.Q'LIN Linearisierung der Prozesskennlinie

Beschreibung siehe Kapitel "24.4"

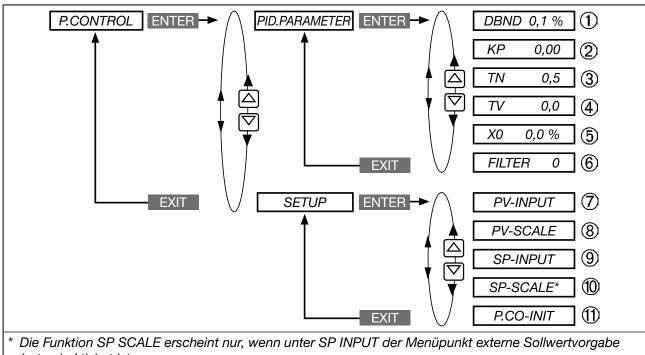
P.TUNE Selbstoptimierung des Prozessreglers (process tune)

Beschreibung siehe Kapitel "24.5"

ADD.FUNCTION - Zusatzfunktionen hinzufügen

Mit ADD.FUNCTION können neben der Aktivierung des Prozessreglers weitere Zusatzfunktionen aktiviert und ins Hauptmenü aufgenommen werden.

Die Beschreibung dazu finden Sie in Kapitel "25 Konfigurieren der Zusatzfunktionen".


24 GRUNDEINSTELLUNG DES PROZESSREGLERS

P.CONTROL - Einrichten und Parametrieren des 24.1 **Prozessreglers**

Für die Inbetriebnahme des Prozessreglers müssen Sie im Menü P.CONTROL folgende Einstellungen vornehmen:

- 1. **SETUP** Einrichten des Prozessreglers (Konfiguration)
- 2. PID.PARAMETER Prozessregler parametrieren

Bedienstruktur:

(extern) aktiviert ist.

Abb. 34: Bedienstruktur P.CONTROL

Legende:

- ① Unempfindlichkeitsbereich (Totband) des PID-Prozessreglers
- ② Verstärkungsfaktor des Prozessreglers
- ③ Nachstellzeit
- 4 Vorhaltezeit
- ⑤ Betriebspunkt
- 6 Filterung des Prozess-Istwert-Eingangs
- Angabe der Signalart für Prozess-Istwert (4 20 mA, Frequenzeingang, Pt 100-Eingang)
- 8 Festlegung der physikalische Einheit und Skalierung des Prozess-Istwerts
- Skalierung des Prozess-Sollwerts (nur bei externer Sollwertvorgabe)
- ① Ermöglicht ein stoßfreies Umschalten zwischen Betriebszustand AUTOMATIK und HAND Betrieb

Vorgehensweise:

Taste	Aktion	Beschreibung	
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.	
△/▽	P.CONTROL auswählen	Auswahl im Hauptmenü (MAIN).	
ENTER	drücken	Die Untermenüpunkte zur Grundeinstellung stehen nun zur Auswahl.	
1. Prozess	sregler einrichten (Konfiguratio	n)	
△/▼	SETUP auswählen		
ENTER	drücken	Das Menü zum Einrichten des Prozessreglers wird angezeigt. Das Einrichten ist in Kapitel "24.2 SETUP – Einrichten des Prozessreglers" beschrieben.	
EXIT	drücken	Rückkehr in P.CONTROL.	
	2. Prozessregler parametrieren		
△/▼	PID.PARAMETER auswählen		
ENTER	drücken	Das Menü zum Parametrieren des Prozessreglers wird angezeigt. Das Parametrieren ist in Kapitel "24.3 PID.PARAMETER – Parametrieren des Prozessreglers" beschrieben.	
EXIT	drücken	Rückkehr in P.CONTROL.	
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).	
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.	

Tabelle 38: P.CONTROL; Grundeinstellung des Prozessreglers

24.2 SETUP - Einrichten des Prozessreglers

Mit diesen Funktionen wird die Art der Regelung festgelegt.

Die Vorgehensweise ist in den nachfolgenden Kapiteln "24.2.1" bis "24.2.5" beschrieben.

24.2.1 PV-INPUT - Signalart für den Prozess-Istwert festlegen

Für den Prozess-Istwert kann eine der folgenden Signalarten gewählt werden:

Normsignal
 4...20 mA
 Durchfluss, Druck, Niveau

• Frequenzsignal 0...1000 Hz Durchfluss

Beschaltung mit Pt 100
 -20 °C...+220 °C
 Temperatur

Werkseinstellung: 4...20 mA

Nach dem Einschalten der Betriebsspannung sucht das Gerät nach angeschlossenen Sensortypen (automatische Sensorerkennung).

Bei Erkennen eines Sensortyps (PT 100 oder 4...20 mA) wird die Signalart im Bedienmenü *PV-INPUT* automatisch vorgenommen.

Wird kein Sensorsignal erkannt, bleibt die letzte Einstellung erhalten.

Die Signalart Frequenzsignal kann nicht automatisch erkannt werden, sondern muss manuell im Menü *PV-INPUT* eingestellt werden.

Bedienstruktur:

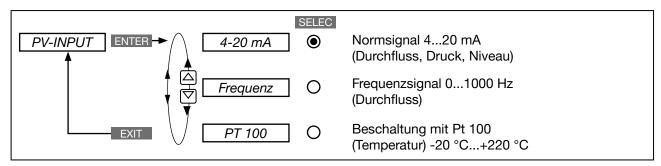


Abb. 35: Bedienstruktur PV-INPUT

Signalart festlegen im Menü $SETUP \rightarrow PV-INPUT$:

Taste	Aktion	Beschreibung
△/▼	PV-INPUT auswählen	
ENTER	drücken	Die Signalarten werden angezeigt.
△/▽	Signalart auswählen	
SELEC	drücken	Die ausgewählte Signalart ist nun durch einen gefüllten Kreis markiert.
EXIT	drücken	Rückkehr in SETUP.

Tabelle 39: PV-INPUT; Signalart festlegen

24.2.2 PV-SCALE - Skalierung des Prozess-Istwerts

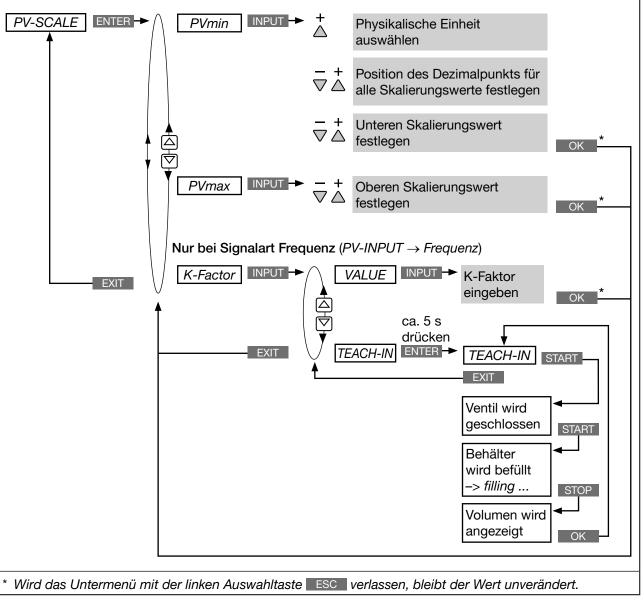
Im Untermenü von PV-SCALE werden folgende Einstellungen festgelegt:

PVmin

- 1. Die physikalische Einheit des Prozess-Istwerts.
- 2. Position des Dezimalpunkts des Prozess-Istwerts.
- 3. Unterer Skalierungswert des Prozess-Istwerts.

In *PVmin* wird die Einheit des Prozess-Istwerts und die Position des Dezimalpunkts für alle Skalierungswerte (*SPmin*, *SPmax*, *PVmin*, *PVmax*) festgelegt.

PVmax


Oberer Skalierungswert des Prozess-Istwerts.

K-Factor

K-Faktor für den Durchflusssensor

Der Menüpunkt ist nur bei der Signalart Frequenz verfügbar (PV-INPUT → Frequenz).

Bedienstruktur:

24.2.2.1. Auswirkungen und Abhängigkeiten der Einstellungen von PV-INPUT auf PV-SCALE

Die Einstellungen im Menü *PV-SCALE* haben abhängig von der in *PV-INPUT* gewählten Signalart unterschiedliche Auswirkungen.

(1)

Auch die Auswahlmöglichkeiten für die Einheiten des Prozess-Istwerts (in *PVmin*) sind von der in *PV-INPUT* gewählten Signalart abhängig.

Siehe nachfolgende "Tabelle 40"

Einstellungen im Untermenü	Beschreibung der Auswirkung	Abhängigkeit zu der in Sigr	n <i>PV-INPUT</i> g nalart	jewählten
von PV-SCALE		4 - 20 mA	PT 100	Frequenz
PVmin	Auswählbare Einheit des Prozess- Istwertes für die physikalischen Größen.	Durchfluss, Temperatur, Druck, Länge, Volumen. (sowie Verhältnis in % und keine Einheit)	Temperatur	Durchfluss
	Einstellbereich:	09999 (Temperatur -200800)	-200800	09999
PVmin PVmax	Vorgabe der Bezugsspanne für das Totband des Prozessreglers (P.CONTROL → PID.PARAMETER → DBND).	ja	ja	ja
	Vorgabe der Bezugsspanne für die analoge Rückmeldung (Option). Siehe Kapitel "25.2.14 OUTPUT – Konfiguration der Ausgänge (Option)".	ja	ja	ja
	Sensorkalibrierung:	ja siehe <u>"Abb. 37"</u>	nein	nein
K-Factor	Sensorkalibrierung:	nein	nein	ja siehe "Abb. 38"
	Einstellbereich:	_	_	09999

Tabelle 40: Auswirkungen der Einstellungen in PV-SCALE in Abhängigkeit zur in PV-INPUT gewählten Signalart

Beispiel einer Sensorkalibrierung für die Signalart 4 - 20 mA:

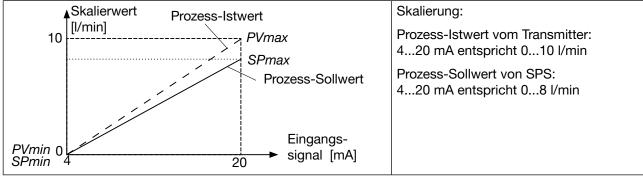


Abb. 37: Beispiel einer Sensorkalibrierung für die Signalart 4 - 20 mA

Bei interner Sollwertvorgabe (SP- $INPUT \rightarrow intern$), erfolgt die Eingabe des Prozess-Sollwerts direkt in der Prozessebene.

Beispiel einer Sensorkalibrierung für die Signalart Frequenz:

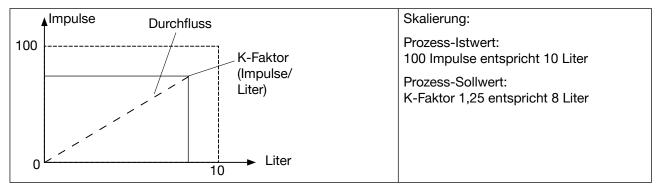


Abb. 38: Beispiel einer Sensorkalibrierung für die Signalart Frequenz

Skalieren des Prozess-Istwerts im Menü SETUP → PV-SCALE:

Taste	Aktion	Beschreibung	
△/▽	PV-SCALE auswählen	Auswahl im Hauptmenü (MAIN).	
ENTER	drücken	Die Untermenüpunkte zur Skalierung des Prozess-Istwerts werden angezeigt.	
1. PVmin	einstellen		
△/▽	PVmin auswählen		
INPUT	drücken	Die Eingabemaske wird geöffnet. Zuerst die dunkel hinterlegte physikalische Einheit festlegen.	
	+ drücken (x-mal)	Physikalische Einheit auswählen.	
\blacksquare	C- Dezimalpunkt wählen	Der Dezimalpunkt ist dunkel hinterlegt.	
	+ drücken (x-mal)	Position des Dezimalpunkts festlegen.	
	Skalierungswert auswählen	Die letzte Stelle des Skalierungswerts ist dunkel hinterlegt.	
▲/▼	+ Wert erhöhen	Skalierungswert einstellen (Unterer Prozess-Istwert).	
OK	drücken	Rückkehr in PV-SCALE.	
2. PVmax	2. <i>PVmax</i> einstellen		
△/▼	PVmax auswählen		
INPUT	drücken	Die Eingabemaske wird geöffnet. Die letzte Stelle des Skalierungswerts ist dunkel hinterlegt.	
▲/▼	Wert erhöhen - Dezimalstelle wählen	Skalierungswert einstellen (Oberer Prozess-Istwert).	
OK	drücken	Rückkehr in <i>PV-SCALE</i> .	

Taste	Aktion	Beschreibung		
3. K-Facto	3. <i>K-Factor</i> einstellen (nur bei Signalart Frequenz verfügbar)			
△/▽	K-Factor auswählen			
ENTER	drücken	Das Untermenü für die Einstellung des K-Faktors wird angezeigt.		
entweder				
△/▼	VALUE auswählen	Manuelle Eingabe des K-Faktors.		
INPUT	drücken	Die Eingabemaske wird geöffnet. Der Dezimalpunkt ist dunkel hinterlegt.		
	+ Dezimalpunkt wählen	Position des Dezimalpunkts festlegen.		
\blacksquare	<- Wert auswählen	Die letzte Stelle des Werts ist dunkel hinterlegt.		
▲/▼	Dezimalstelle wählen + Wert erhöhen	KFaktor einstellen.		
OK	drücken	Rückkehr in K-Factor.		
oder	odor			
△/▼	TEACH-IN auswählen	Berechnen des K-Faktors durch Abmessen einer bestimmten Flüssigkeitsmenge.		
ENTER	ca. 5 s drücken	Das Ventil wird geschlossen.		
START	drücken	Der Behälter wird befüllt.		
STOP	drücken	Das gemessene Volumen wird angezeigt und die Eingabemaske geöffnet. Der Dezimalpunkt ist dunkel hinterlegt.		
	+ Dezimalpunkt wählen	Position des Dezimalpunkts festlegen.		
	<- Wert auswählen	Die letzte Stelle des Werts ist dunkel hinterlegt.		
▲/▼	Dezimalstelle wählen Wert erhöhen	Das gemessene Volumen einstellen.		
OK	drücken	Rückkehr in TEACH-IN.		
EXIT	drücken	Rückkehr in K-Factor.		
EXIT	drücken	Rückkehr in <i>PV-SCALE.</i>		
EXIT	drücken	Rückkehr in SETUP.		

PV-SCALE; Prozess-Istwert skalieren Tabelle 41:

Wird das Untermenü mit der linken Auswahltaste ESC verlassen, bleibt der Wert unverändert.

24.2.3 SP-INPUT - Art der Sollwertvorgabe (intern oder extern)

Im Menü SP-INPUT wird festgelegt wie die Vorgabe des Prozess-Sollwerts erfolgen soll.

• Intern: Eingabe des Sollwerts in der Prozessebene

• Extern Vorgabe des Sollwerts über den Normsignaleingang

Bedienstruktur:

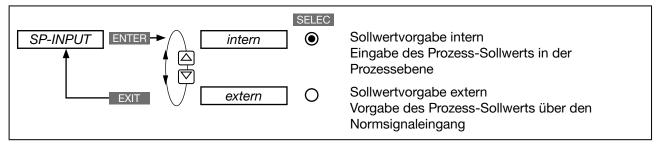


Abb. 39: Bedienstruktur PV-INPUT

Art der Sollwertvorgabe festlegen im Menü SETUP → SP-INPUT:

Taste	Aktion	Beschreibung
△/▼	SP-INPUT auswählen	
ENTER	drücken	Die Arten der Sollwertvorgabe werden angezeigt.
▲/▼	Art der Sollwertvorgabe auswählen	
SELEC	drücken	Die Auswahl ist durch einen gefüllten Kreis markiert.
EXIT	drücken	Rückkehr in SETUP.

Tabelle 42: SP-INPUT; Art der Sollwertvorgabe festlegen

Bei interner Sollwertvorgabe (SP- $INPUT \rightarrow intern$), erfolgt die Eingabe des Prozess-Sollwerts direkt in der Prozessebene.

24.2.4 *SP-SCALE* – Skalierung des Prozess-Sollwerts (nur bei externer Sollwertvorgabe)

Im Menü *SP-SCALE* werden die Werte für den unteren und oberen Prozess-Sollwert dem jeweiligen Strombzw. Spannungswert des Normsignals zugeordnet.

Das Menü steht nur bei externer Sollwertvorgabe zur Verfügung (SP-INPUT → extern).

Bei interner Sollwertvorgabe (SP- $INPUT \rightarrow intern$), gibt es keine Skalierung des Prozess-Sollwerts über SPmin und SPmax.

Der Sollwert wird direkt in der Prozessebene eingegeben. Die physikalische Einheit und die Position des Dezimalpunkts werden bei der Skalierung des Prozess-Istwerts festgelegt (*PV-SCALE* → *PVmin*). Beschreibung siehe Kapitel "24.2.2 PV-SCALE – Skalierung des Prozess-Istwerts" auf Seite 82

Bedienstruktur:

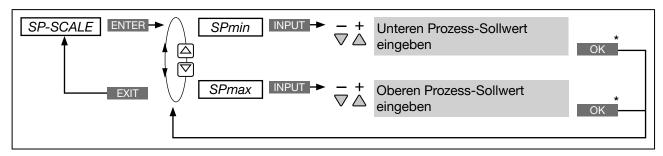


Abb. 40: Bedienstruktur SP-SCALE

Prozess-Sollwert skalieren SETUP → SP-SCALE:

Taste	Aktion	Beschreibung
△/▽	SP-SCALE auswählen	
ENTER	drücken	Die Untermenüpunkte zur Skalierung des Prozess-Sollwerts werden angezeigt.
△/▽	SPmin auswählen	
INPUT	drücken	Die Eingabemaske wird geöffnet.
△/▼	+ Wert erhöhen	Skalierungswert einstellen (Unterer Prozess-Sollwert).
	C- Dezimalstelle wählen	Der Wert wird dem kleinsten Strom- bzw. Spannungswert des Normsignals zugeordnet.
OK	drücken	Rückkehr in SP-SCALE.
△/▽	SPmax auswählen	
INPUT	drücken	Die Eingabemaske wird geöffnet.
△/▼	+ Wert erhöhen	Skalierungswert einstellen (Oberer Prozess-Sollwert).
	Dezimalstelle wählen	Der Wert wird dem größten Strom- bzw. Spannungswert des Normsignals zugeordnet.
OK	drücken	Rückkehr in SP-SCALE.
EXIT	drücken	Rückkehr in SETUP.

Tabelle 43: SP-SCALE; Prozess-Sollwert skalieren

Wird das Untermenü mit der linken Auswahltaste ESC verlassen, bleibt der Wert unverändert.

24.2.5 P.CO-INIT - Stoßfreies Umschalten HAND-AUTOMATIK

Im Menü *P.CO-INIT* kann das stoßfreie Umschalten zwischen den Betriebszuständen HAND und AUTO-MATIK aktiviert oder deaktiviert werden.

Werkseitige Einstellung: bumpless Stoßfreies Umschalten aktiviert.

Bedienstruktur:

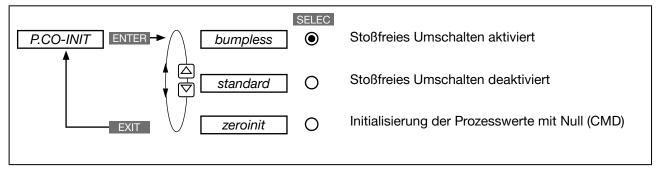


Abb. 41: Bedienstruktur P.CO-INIT

Vorgehensweise:

Taste	Aktion	Beschreibung
△/▽	P.CO-INIT auswählen	
ENTER	drücken	Die Auswahl (bumpless) und (standard) wird angezeigt.
▲/▼	gewünschte Funktion auswählen	bumpless = stroßfreies Umschalten aktiviert standard = stoßfreies Umschalten deaktiviert
SELEC	drücken	Die Auswahl ist durch einen gefüllten Kreis markiert.
EXIT	drücken	Rückkehr in SETUP.

Tabelle 44: P.CO-INIT; Stoßfreies Umschalten HAND-AUTOMATIK

24.3 PID.PARAMETER - Parametrieren des Prozessreglers

In diesem Menü werden folgende regelungstechnischen Parameter des Prozessreglers manuell eingestellt.

DBND 1.0 %	Unempfindlichkeitsbereich (Totband) des Prozessreglers
KP 1.00	Verstärkungsfaktor des (P-Anteil des PID-Reglers)
TN 999.0	Nachstellzeit (I-Anteil des PID-Reglers)
TV 0.0	Vorhaltezeit (D-Anteil des PID-Reglers)
XO 0.0 %	Betriebspunkt
FILTER 0	Filterung des Prozess-Istwert-Eingangs

Die automatische Parametrierung des im Prozessregler integrierten PID-Reglers (Menüpunkte *KP*, *TN. TV*)kann mit Hilfe der Funktion *P.TUNE* erfolgen (siehe Kapitel "24.5 P.TUNE – Selbstoptimierung des Prozessreglers").

Die Grundlagen zur Einstellung des Prozessreglers finden Sie in den Kapiteln "34 Eigenschaften von PID-Reglern" und "35 Einstellregeln für PID-Regler".

24.3.1 Vorgehensweise zur Eingabe der Parameter

Die Einstellungen im Menü PID.PARAMETER werden immer nach dem gleichen Schema vorgenommen.

Vorgehensweise:

Taste	Aktion	Beschreibung
△/▽	PID.PARAMETER auswählen	
ENTER	drücken	Das Menü zum Parametrieren des Prozessreglers wird angezeigt.
△/▼	Menüpunkt auswählen	
INPUT	drücken	Die Eingabemaske wird geöffnet.
▲/▼	+ Wert erhöhen - Wert verringern oder - Dezimalstelle wählen + Wert erhöhen	Wert einstellen bei * DBND X.X % / X0 0 % / FILTER 5 : Wert einstellen bei * KP X.XX / TN X.0 sec / TV 1.0 sec :
OK	drücken	Rückkehr in PID.PARAMETER.
EXIT	drücken	Rückkehr in P.CONTROL.
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.
* Die Beschreibung zu den Untermenüs von PID.PARAMETER finden Sie in den nachfolgenden Kapiteln.		

Tabelle 45: PID.PARAMETER; Prozessregler parametrieren

Wird das Untermenü mit der linken Auswahltaste ESC verlassen, bleibt der Wert unverändert.

24.3.2 DBND - Unempfindlichkeitsbereich (Totband)

Durch diese Funktion wird festgelegt, dass der Prozessregler erst ab einer bestimmten Regeldifferenz anspricht. Dadurch werden die Magnetventile im Typ 8792/8793 und der pneumatische Antrieb geschont.

Werkseinstellung: 1,0 % bezogen auf die Spanne des skalierten Prozess-Istwerts (Einstellung im Menü PV-SCALE → PVmin → PVmax).

Bedienstruktur:

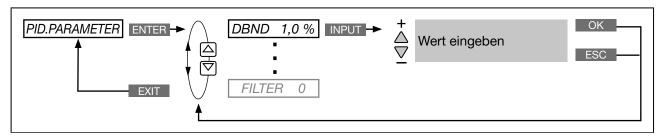


Abb. 42: Bedienstruktur DBND; Unempfindlichkeitsbereich

Unempfindlichkeitsbereich bei Prozessregelung

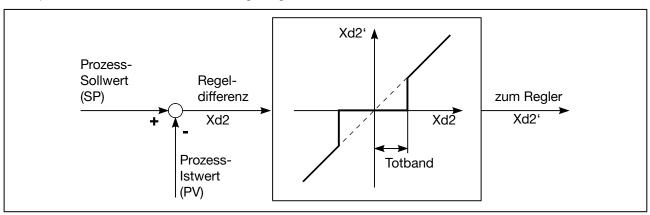


Abb. 43: Diagramm DBND; Unempfindlichkeitsbereich bei Prozessregelung

24.3.3 KP - Verstärkungsfaktor des Prozessreglers

Der Verstärkungsfaktor bestimmt den P-Anteil des PID-Reglers (kann mit Hilfe der Funktion *P.TUNE* eingestellt werden).

Werkseinstellung: 1,00

Bedienstruktur:

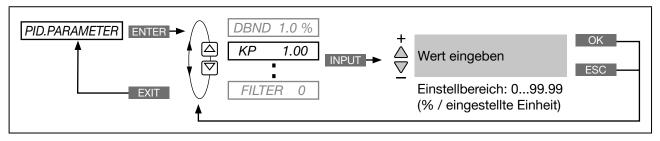


Abb. 44: Bedienstruktur KP; Verstärkungsfaktor

Die Verstärkung KP des Prozessreglers bezieht sich auf die skalierte, physikalische Einheit.

24.3.4 TN - Nachstellzeit des Prozessreglers

Die Nachstellzeit bestimmt den I-Anteil des PID-Reglers (kann mit Hilfe der Funktion *P.TUNE* eingestellt werden).

Werkseinstellung: 999,9 s

Bedienstruktur:

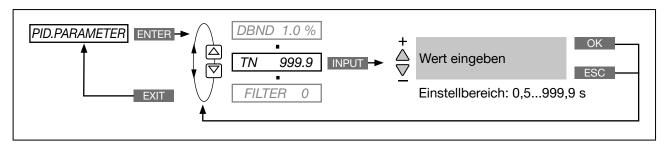


Abb. 45: Bedienstruktur TN; Nachstellzeit

24.3.5 TV - Vorhaltezeit des Prozessreglers

Die Vorhaltezeit bestimmt den D-Anteil des PID-Reglers (kann mit Hilfe der Funktion *P.TUNE* eingestellt werden).

Werkseinstellung: 0,0 s

Bedienstruktur:

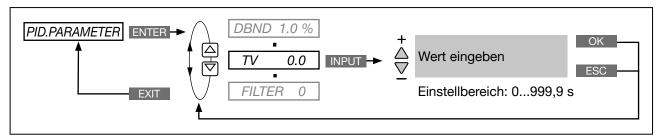


Abb. 46: Bedienstruktur TV; Vorhaltezeit

24.3.6 X0 - Betriebspunkt des Prozessreglers

Der Betriebspunkt entspricht dem Betriebspunkt des Proportionalanteils bei Regeldifferenz = 0.

Werkseinstellung: 0,0 %

Bedienstruktur:

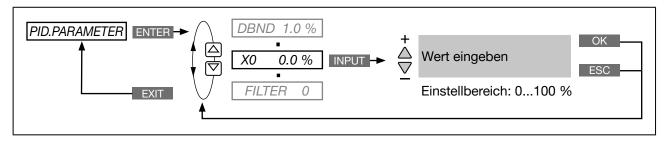


Abb. 47: Bedienstruktur X0; Betriebspunkt

24.3.7 FILTER - Filterung des Prozess-Istwert-Eingangs

Der Filter ist gültig für alle Prozess-Istwert-Typen und hat ein Tiefpassverhalten (PT1).

Werkseinstellung: 0

Bedienstruktur:

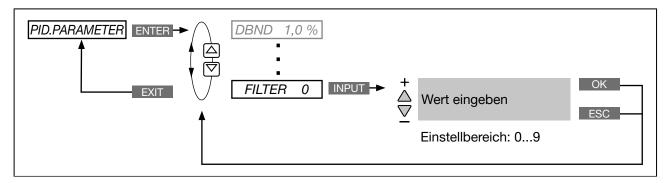


Abb. 48: Bedienstruktur FILTER; Filterung des Prozess-Istwert-Eingangs

Einstellung der Filterwirkung in 10 Stufen

Einstellung	Entspricht Grenzfrequenz (Hz)	Wirkung
0	10	geringste Filterwirkung
1	5	
2	2	
3	1	
4	0,5	
5	0,2	
6	0,1	
7	0,07	
8	0,05	
9	0,03	größte Filterwirkung

Tabelle 46: Einstellung der Filterwirkung

Auf Seite 213 finden Sie eine Tabelle zum Eintragen Ihrer eingestellten Parameter.

24.4 P.Q'LIN - Linearisierung der Prozesskennlinie

Mit dieser Funktion kann die Prozesskennlinie automatisch linearisiert werden.

Dabei werden selbsttätig die Stützstellen für die Korrekturkennlinie ermittelt. Dazu durchfährt das Programm in 20 Schritten den Ventilhub und misst dabei die dazugehörige Prozessgröße.

Die Korrekturkennlinie und die dazugehörigen Wertepaare werden im Menüpunkt *CHARACT* → *FREE* abgelegt. Dort können Sie angesehen und frei programmiert werden. Beschreibung siehe Kapitel "25.2.1".

Ist der Menüpunkt *CARACT* noch nicht aktiviert und ins Hauptmenü (MAIN) aufgenommen, geschieht das automatisch beim Ausführen von *P.Q'LIN*.

P.Q'LIN ausführen:

Taste	Aktion	Beschreibung
▲/▼	P.Q'LIN auswählen	Die Funktion steht nach der Aktivierung von <i>P.CONTROL</i> im Hauptmenü (MAIN).
RUN	gedrückt halten solange Countdown (5) läuft	P.Q'LIN wird gestartet.
	Folgende Anzeigen erscheinen auf dem Display:	
	Q'LIN #0 CMD=0%	Anzeige der Stützstelle, die gerade angefahren wird (der Fortgang wird durch fortlaufende Balken am oberen Rand
	Q.LIN #1 CMD=10%	des Displays angezeigt).
	fortlaufend bis	
	Q.LIN #10 CMD=100%	
	Q.LIN ready	Die automatische Linearisierung wurde erfolgreich beendet.
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).

Tabelle 47: P.Q'LIN; Automatische Linearisierung der Prozesskennlinie

Mögliche Fehlermeldungen beim Ausführen von P.Q'LIN:

Display-Anzeige	Fehlerursache	Abhilfe
Q.LIN err/break	Manueller Abbruch der Linearisierung durch Drücken der EXIT Taste.	
P.Q'LIN	Kein Versorgungsdruck angeschlossen.	Versorgungsdruck anschließen.
ERROR 1	Keine Änderung der Prozessgröße.	Prozess kontrollieren, ggf. Pumpe einschalten bzw. das Absperrventil öffnen. Prozesssensor überprüfen.
P.QʻLIN ERROR 2	Ausfall des Versorgungsdrucks während der Durchführung von P.Q'LIN.	Versorgungsdruck kontrollieren.
	Automatische Anpassung des Stellungsreglers <i>X.TUNE</i> nicht durchgeführt.	X.TUNE durchführen.

Tabelle 48: P.Q'LIN; mögliche Fehlermeldungen

24.5 P.TUNE - Selbstoptimierung des Prozessreglers

Mit dieser Funktion kann der im Prozessregler integrierte PID-Reglers automatisch parametriert werden.

Dabei werden selbsttätig die Parameter für den P,- I- und D-Anteil des PID-Reglers ermittelt und in die entsprechenden Menüs von (*KP*, *TN*, *TV*) übertragen. Dort können sie angesehen und verändert werden.

Erläuterung zum PID-Regler:

Das Regelsystem des Typs 8793 verfügt über einen integrierten PID-Prozessregler. Durch den Anschluss eines entsprechenden Sensors kann eine beliebige Prozessgröße wie Durchfluss, Temperatur, Druck etc. geregelt werden.

Um ein gutes Regelverhalten zu erzielen, müssen die Struktur und Parametrierung des PID-Reglers an die Eigenschaften des Prozesses (Regelstrecke) angepasst werden.

Diese Aufgabe erfordert regelungstechnische Erfahrung sowie messtechnische Hilfsmittel und ist zeitaufwändig. Mit der Funktion *P.TUNE* kann der im Prozessregler integrierte PID-Reglers automatisch parametriert werden.

Die Grundlagen zur Einstellung des Prozessreglers finden Sie in den Kapiteln "34 Eigenschaften von PID-Reglern" und "35 Einstellregeln für PID-Regler".

24.5.1 Die Funktionsweise von P.TUNE

Die Funktion *P.TUNE* führt eine automatische Prozessidentifikation durch. Dazu wird der Prozess mit einer definierten Störgröße angeregt. Aus dem Antwortsignal werden charakteristische Prozesskenngrößen abgeleitet und auf deren Basis die Struktur- und Parameter des Prozessreglers ermittelt.

Bei Verwendung der Selbstoptimierung *P.TUNE* werden unter folgenden Voraussetzungen optimale Ergebnisse erzielt:

- Stabile bzw. stationäre Bedingungen bezüglich des Prozess-Istwerts PV beim Start von P.TUNE.
- Durchführung der P.TUNE im Betriebspunkt bzw. im Arbeitsbereich der Prozessregelung.

24.5.2 Vorbereitende Maßnahmen zum Ausführen von P.TUNE

Die in den nachfolgend beschriebenen Maßnahmen sind keine zwingenden Voraussetzungen für die Durchführung der Funktion *P.TUNE*.

Sie erhöhen jedoch die Qualität des Ergebnisses.

Die Funktion P.TUNE kann im Betriebszustand HAND oder AUTOMATIK ausgeführt werden.

Nach Beendigung von P.TUNE befindet sich das Regelsystem im zuvor eingestellten Betriebszustand.

24.5.2.1. Vorbereitende Maßnahme zum Ausführen von *P.TUNE* im Betriebszustand HAND

Prozess-Istwert PV an den Betriebspunkt heranführen:

Taste	Aktion	Beschreibung	
Einstellu	Einstellung in der Prozessebene:		
△/▽	PV auswählen	Der Prozess-Istwert PV wird auf dem Display angezeigt.	
MANU	drücken	Wechsel in den Betriebszustand HAND. Die Eingabemaske zum manuellen Öffnen und Schließen des Ventils wird angezeigt.	
	Ventil Öffnen OPN oder	Durch Öffnen oder Schließen des Regelventils, den Prozess-	
	Ventil Schließen CLS	Istwert an den gewünschten Betriebspunkt heranführen.	
Sobald der Prozess-Istwert PV konstant ist, kann die Funktion P.TUNE gestartet werden.			

Tabelle 49: P.TUNE; Vorbereitende Maßnahme zum Ausführen von X.TUNE im Betriebszustand HAND

24.5.2.2. Vorbereitende Maßnahme zum Ausführen von *P.TUNE* im Betriebszustand AUTOMATIK

Durch Eingabe eines Prozess-Sollwerts SP, den Prozess-Istwert PV an den Betriebspunkt heranführen.

Zur Eingabe die interne oder externe Sollwertvorgabe beachten $(P,CONTROL \rightarrow SETUP \rightarrow SP-INPUT \rightarrow intern/extern)$:

Bei interner Sollwertvorgabe: Eingabe des Prozess-Sollwerts SP über die Tastatur des Geräts (siehe nachfolgende Beschreibung "Tabelle 50").

Bei externer Sollwertvorgabe: Eingabe des Prozess-Sollwerts SP über den analogen Sollwerteingang.

Eingabe eines Prozess-Sollwerts:

Taste	Aktion	Beschreibung	
Einstellun	Einstellung in der Prozessebene:		
▲/▼	SP auswählen	Der Prozess-Sollwert wird auf dem Display angezeigt.	
INPUT	drücken	Die Eingabemaske zum Eingeben des Prozess-Sollwerts wird angezeigt.	
▲/▼	Wert eingeben	Der gewählte Sollwert <i>SP</i> sollte in der Nähe des künftigen Betriebspunkts liegen.	
OK	drücken	Eingabe bestätigen und Rückkehr zur Anzeige von SP.	

Tabelle 50: P.TUNE; Vorbereitende Maßnahme zum Ausführen von X.TUNE im Betriebszustand AUTOMATIK

Nach der Sollwertvorgabe ergibt sich auf Basis der werkseitig voreingestellten PID-Parameter eine Änderung der Prozessgröße *PV*.

→ Vor dem Ausführen der Funktion *P.TUNE* abwarten, bis der Prozess-Istwert *PV* einen stabilen Zustand erreicht hat.

Zur Beobachtung von *PV*, empfiehlt es sich über die Pfeiltasten ▲ / ▼ die grafische Anzeige *SP/PV(t)* auszuwählen.

Damit die Anzeige *SP/PV(t)* zur Auswahl steht, muss sie im Menü EXTRAS aktiviert sein (siehe Kapitel, 25.2.18 EXTRAS – Einstellung des Displays").

- → Bei anhaltender Schwingung von PV sollte der voreingestellte Verstärkungsfaktor des Prozessreglers KP im Menü P.CONTROL → PID.PARAMETER verkleinert werden.
- → Sobald der Prozess-Istwert PV konstant ist, kann die Funktion P.TUNE gestartet werden.

24.5.3 Start der Funktion P.TUNE

WARNUNG!

Verletzungsgefahr durch unkontrollierten Prozess.

Während der Ausführung von Funktion *P.TUNE* verändert das Regelventil selbsttätig den augenblicklichen Öffnungsgrad und greift in den laufenden Prozess ein.

- ► Verhindern Sie durch geeignete Maßnahmen ein Überschreiten der zulässigen Prozessgrenzen. Zum Beispiel durch:
 - eine automatische Notabschaltung
 - Abbrechen der Funktion P.TUNE durch die STOP-Taste (linke oder rechte Taste betätigen).

Vorgehensweise:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene
\triangle/∇	P.TUNE auswählen	
RUN	gedrückt halten solange Countdown (5)	Während der automatischen Anpassung erscheinen auf dem Display folgende Meldungen.
	läuft	"starting process tune" - Start der Selbstoptimierung.
		"identivying control process" - Prozessidentifikation. Aus dem Antwortsignal auf eine definierte Anregung werden charakteristische Prozessgrößen ermittelt.
		"calculating PID parameters" - Struktur und Parameter des Prozessreglers werden ermittelt.
		"TUNE ready" - Die Selbstoptimierung wurde erfolgreich beendet.
	beliebige Taste drücken	Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 51: Automatische Anpassung X.TUNE

Zum Abbrechen von P.TUNE, die linke oder rechte Auswahltaste STOP betätigen.

Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT , werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol auf dem Display.

Mögliche Fehlermeldungen beim Ausführen von P.TUNE:

Display-Anzeige	Fehlerursache	Abhilfe
TUNE err/break	Manueller Abbruch der Selbstoptimierung durch drücken der EXIT Taste.	
P.TUNE	Kein Versorgungsdruck angeschlossen.	Versorgungsdruck anschließen.
ERROR 1	Keine Änderung der Prozessgröße.	Prozess kontrollieren, ggf. Pumpe einschalten bzw. das Absperrventil öffnen.
		Prozesssensor überprüfen.

Tabelle 52: P.TUNE; mögliche Fehlermeldungen

Nach Ausführen aller in Kapitel "21 Ablauf der Inbetriebnahme" beschriebenen Einstellungen ist der Prozessregler betriebsbereit.

Das Aktivieren und Konfigurieren von Zusatzfunktionen ist im nachfolgenden Kapitel "25 Konfigurieren der Zusatzfunktionen" beschrieben.

25 KONFIGURIEREN DER ZUSATZFUNKTIONEN

Für anspruchvollere Regelungsaufgaben besitzt das Gerät Zusatzfunktionen.

In diesem Kapitel wird beschrieben wie die Zusatzfunktionen aktiviert, eingestellt und konfiguriert werden.

25.1 Aktivieren und deaktivieren von Zusatzfunktionen

Die gewünschte Zusatzfunktionen müssen vom Benutzer zuerst durch das Aufnehmen ins Hauptmenü (MAIN) aktiviert werden. Anschließend können die Parameter für die Zusatzfunktionen eingestellt werden.

Durch Entfernen einer Funktion aus dem Hauptmenü wird diese deaktiviert. Die zuvor unter dieser Funktion vorgenommenen Einstellungen werden dadurch wieder ungültig.

25.1.1 Aufnahme von Zusatzfunktionen in das Hauptmenü

Vorgehensweise:

Taste	Aktion	Beschreibung	
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.	
△/▽	ADD.FUNCTION auswählen		
ENTER	drücken	Die möglichen Zusatzfunktionen werden angezeigt.	
▲/▼	Gewünschte Zusatzfunktion auswählen		
ENTER	drücken	Die ausgewählte Zusatzfunktion ist nun durch ein Kreuz ⊠ markiert.	
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Hauptmenü (MAIN). Die markierte Funktion ist nun aktiviert und ins Hauptmenü aufgenommen.	
Anschließ	Anschließend können die Parameter auf folgende Weise eingestellt werden.		
△/▼	Zusatzfunktion auswählen	Im Hauptmenü (MAIN) die Zusatzfunktion auswählen.	
ENTER	drücken	Öffnung des Untermenüs zur Eingabe der Parameter. Weitere Informationen über die Einstellung finden Sie in dem nachfolgenden Kapitel "25.2 Übersicht und Beschreibung der Zusatzfunktionen".	
EXIT *	drücken	Rückkehr in eine übergeordnete Ebene oder in die Hauptebene (MAIN).	
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.	
* Die Beze	* Die Bezeichnung der Taste ist von der ausgewählten Zusatzfunktion abhängig.		

Tabelle 53: Aufnahme von Zusatzfunktionen

Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT , werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol auf dem Display.

25.1.2 Entfernen von Zusatzfunktionen aus dem Hauptmenü

Durch das Entfernen einer Funktion aus dem Hauptmenü werden die zuvor unter dieser Funktion vorgenommenen Einstellungen wieder ungültig.

Vorgehensweise:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
△/▽	ADD.FUNCTION auswählen	
ENTER	drücken	Die möglichen Zusatzfunktionen werden angezeigt.
△/▼	Zusatzfunktion auswählen	
ENTER	drücken	Markierung der Funktion entfernen (Kein Kreuz ☐).
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Hauptmenü (MAIN). Die markierte Funktion ist nun deaktiviert und aus dem Hauptmenü entfernt.

Tabelle 54: Entfernen von Zusatzfunktionen

25.1.3 Prinzip der Aufnahme von Zusatzfunktionen ins Hauptmenü

Abb. 49: Aufnahme von Zusatzfunktionen ins Hauptmenü

25.2 Übersicht und Beschreibung der Zusatzfunktionen

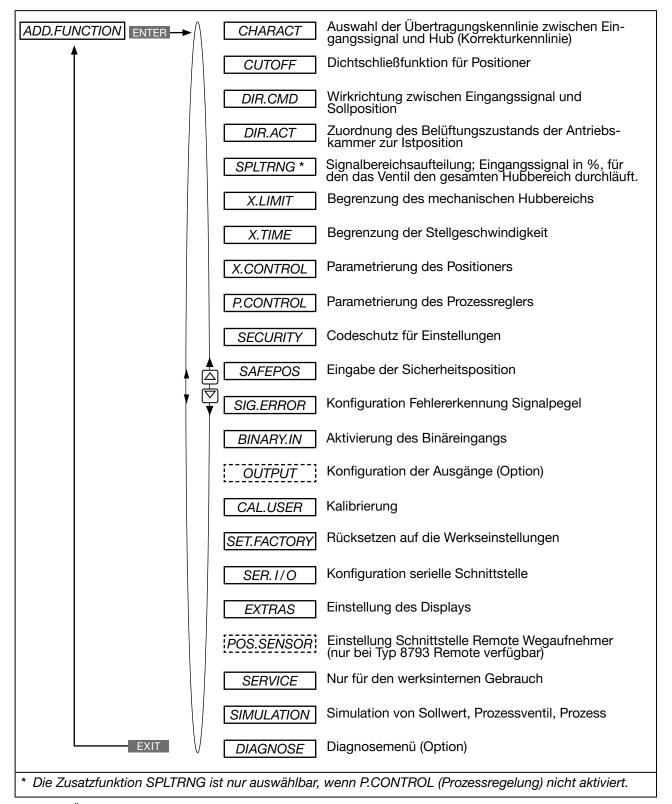


Abb. 50: Übersicht - Zusatzfunktionen

25.2.1 CHARACT – Auswahl der Übertragungskennlinie zwischen Eingangssignal (Stellungs-Sollwert) und Hub

Characteristic (kundenspezifische Kennlinie)

Mit dieser Zusatzfunktion wählen Sie eine Übertragungskennlinie bezüglich Sollwert (Sollposition, *CMD*) und Ventilhub (*POS*) zur Korrektur der Durchfluss- bzw. Betriebskennlinie aus.

Werkseinstellung: linear

Jede Zusatzfunktion, die eingestellt werden soll, muss zunächst ins Hauptmenü (MAIN) aufgenommen werden. Siehe Kapitel "25.1 Aktivieren und deaktivieren von Zusatzfunktionen".

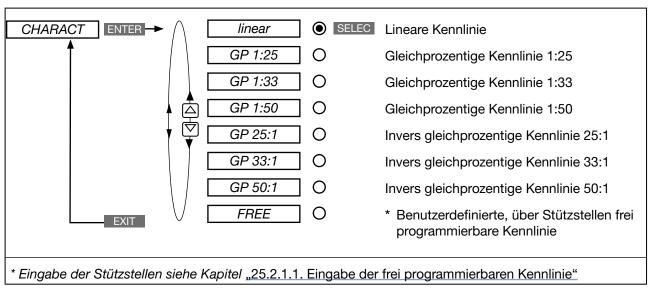


Abb. 51: Bedienstruktur CHARACT

Die Durchflusskennlinie $k_v = f(s)$ kennzeichnet den Durchfluss eines Ventils, ausgedrückt durch den k_v -Wert in Abhängigkeit vom Hub s der Antriebsspindel. Sie ist durch die Formgebung des Ventilsitzes und der Sitzdichtung festgelegt. Im Allgemeinen werden zwei Typen von Durchflusskennlinien realisiert, die lineare und die Gleichprozentige.

Bei linearen Kennlinien sind gleichen Hubänderungen ds gleiche k,-Wert-Änderungen dk, zugeordnet.

$$(dk_v = n_{lin} \cdot ds).$$

Bei einer gleichprozentigen Kennlinie entspricht einer Hubänderung ds eine gleichprozentige Änderung des k_v -Wertes.

$$(dk_v/k_v = n_{gleichpr} \cdot ds).$$

Die Betriebskennlinie Q = f(s) gibt den Zusammenhang zwischen dem Volumenstrom Q im eingebauten Ventil und dem Hub s wieder. In diese Kennlinie gehen die Eigenschaften der Rohrleitungen, Pumpen und Verbraucher ein. Sie weist deshalb eine von der Durchflusskennlinie verschiedene Form auf.

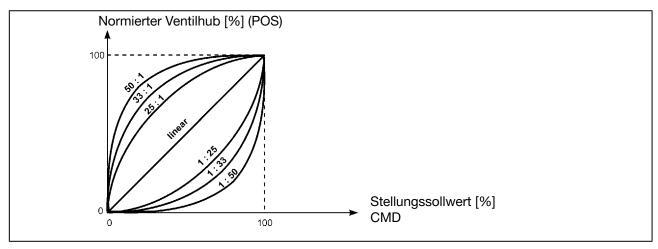


Abb. 52: Kennlinien

Bei Stellaufgaben für Regelungen werden an den Verlauf der Betriebskennlinie meist besondere Anforderungen gestellt, z. B. Linearität. Aus diesem Grund ist es gelegentlich erforderlich, den Verlauf der Betriebskennlinie in geeigneter Weise zu korrigieren. Zu diesem Zweck ist im Typ 8792/8793 ein Übertragungsglied vorgesehen, das verschiedene Kennlinien realisiert. Diese werden zur Korrektur der Betriebskennlinie verwendet.

Es können gleichprozentige Kennlinien 1:25, 1:33, 1:50, 25:1, 33:1 und 50:1 und eine lineare Kennlinie eingestellt werden. Darüber hinaus ist es möglich, eine Kennlinie über Stützstellen frei zu programmieren bzw. automatisch einmessen zu lassen.

25.2.1.1. Eingabe der frei programmierbaren Kennlinie

Die Kennlinie wird über 21 Stützstellen definiert, die gleichmäßig über den Stellungs-Sollwertbereich von 0...100 % verteilt sind. Ihr Abstand beträgt 5 %. Jeder Stützstelle kann ein frei wählbarer Hub (Einstellbereich 0...100 %) zugeordnet werden. Die Differenz zwischen den Hubwerten zweier benachbarter Stützstellen darf nicht größer als 20 % sein.

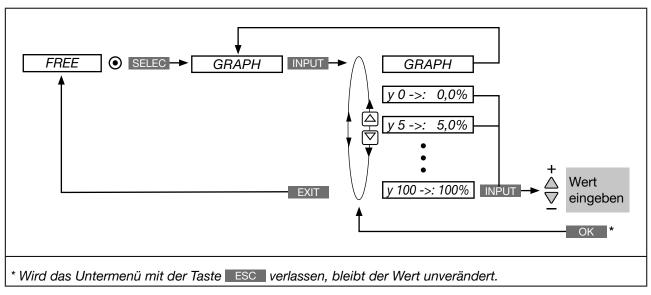


Abb. 53: Bedienstruktur CHARACT FREE

Vorgehensweise:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
▲/▼	CHARACT auswählen	(Dazu muss die Zusatzfunktion ins Hauptmenü aufgenommen sein).
ENTER		Menüpunkte von CHARACT werden angezeigt.
△/▽	FREE auswählen	
SELEC	drücken	Die grafische Darstellung der Kennlinie wird angezeigt.
INPUT	drücken	Untermenü mit den einzelnen Stützstellen (in %) wird geöffnet.
△/▽	Stützstelle auswählen	
INPUT	drücken	Die Eingabemaske SET-VALUE zur Eingabe von Werten wird geöffnet. SET VALUE Bisher eingestellter Wert (in %) Dieser Wert wird mit den Pfeiltasten verändert Wert bestätigen Rückkehr ohne Änderung
▲/▼	Wert eingeben: + Wert erhöhen - Wert verringern	Wert für die gewählte Stützstelle eingeben.
OK	drücken	Eingabe bestätigen und Rückkehr in das Untermenü FREE.
EXIT	drücken	Rückkehr in das Menü CHARACT.
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene. Die geänderten Daten werden im Speicher (EEPROM) abgelegt.

Tabelle 55: FREE; Eingabe der frei programmierbaren Kennlinie

Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT , werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol \square auf dem Display.

Beispiel einer programmierten Kennlinie

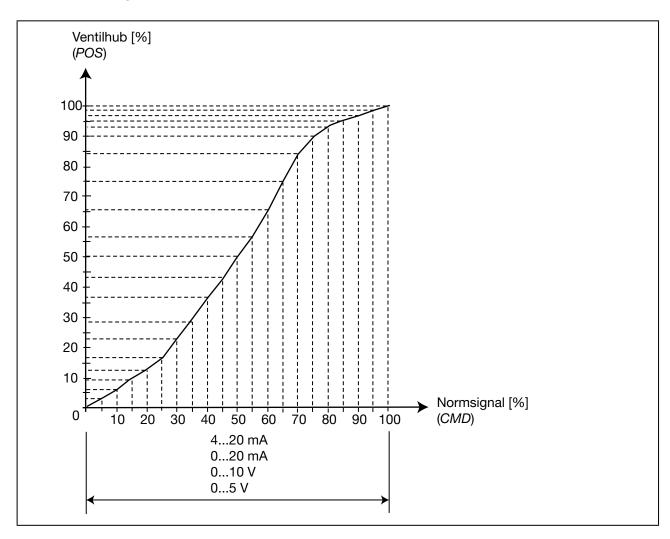


Abb. 54: Beispiel einer programmierten Kennlinie

Im Abschnitt "*Tabellen für kundenspezifische Einstellungen*" befindet sich im Kapitel "<u>36.1 Einstellungen der freiprogrammierten Kennlinie"</u> eine Tabelle, in der Sie Ihre Einstellungen der freiprogrammierbaren Kennlinie eintragen können.

25.2.2 CUTOFF - Dichtschließfunktion

Diese Funktion bewirkt, dass das Ventil außerhalb des Regelbereichs dicht schließt.

Dazu werden die Grenzen für den Stellungs-Sollwert (*CMD*) in Prozent eingegeben, ab denen der Antrieb vollständig entlüftet bzw. belüftet wird.

Das Öffnen bzw. die Wiederaufnahme des Regelbetriebs erfolgt mit einer Hysterese von 1 %.

Befindet sich das Prozessventil im Dichtschließbereich, erscheint im Display die Meldung "CUTOFF ACTIVE".

Nur bei Typ 8793: Hier steht zur Auswahl, für welchen Sollwert die Dichtschließfunktion gelten soll:

Type PCO Prozess-Sollwert (SP)

Type XCO Stellungs-Sollwert (CMD)

Wurde *Type PCO* gewählt werden die Grenzen für den Prozess-Sollwert (SP) in Prozent bezogen auf den Skalierbereich eingegeben.

Werkseinstellung: Min = 0 %; Max = 100 %; CUT type = Type PCO

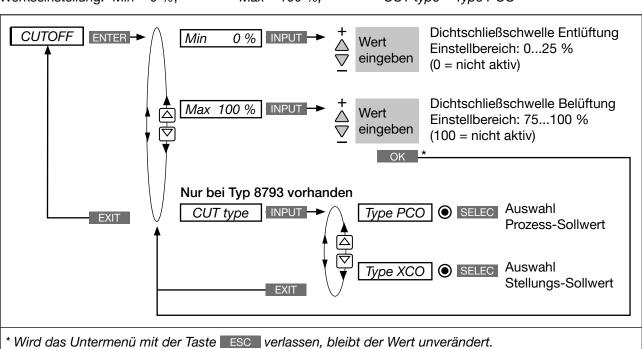


Abb. 55: Bedienstruktur CUTOFF

Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT , werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol \square auf dem Display.

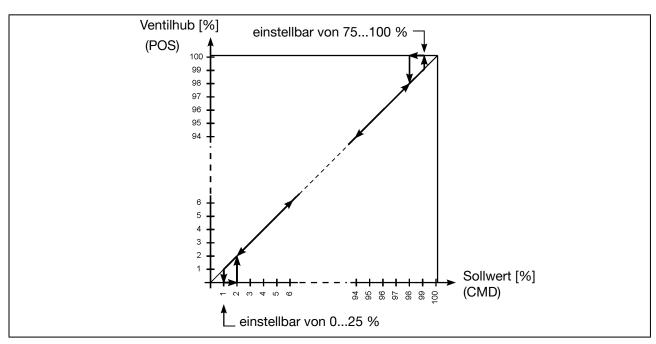


Abb. 56: Diagramm - CUTOFF;

25.2.3 DIR.CMD - Wirkrichtung (Direction) des Positioner-Sollwerts

Über diese Zusatzfunktion stellen Sie die Wirkrichtung zwischen dem Eingangssignal (*INPUT*) und der Sollposition (*CMD*) des Antriebs ein.

Jede Zusatzfunktion, die eingestellt werden soll, muss zunächst ins Hauptmenü (MAIN) aufgenommen werden. Siehe Kapitel "25.1 Aktivieren und deaktivieren von Zusatzfunktionen".

Werkseinstellung: Rise

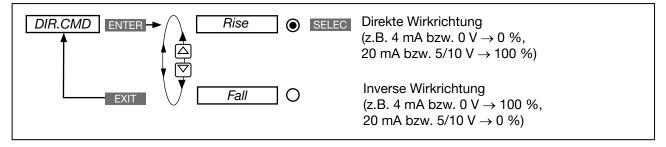


Abb. 57: Bedienstruktur DIR.CMD

Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT, werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol auf dem Display.

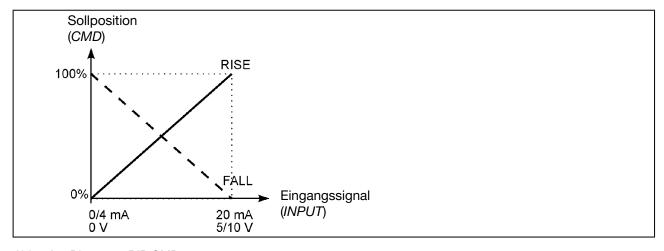


Abb. 58: Diagramm DIR.CMD

25.2.4 DIR.ACT - Wirkrichtung (Direction) des Stellantriebs

Über diese Zusatzfunktion stellen Sie die Wirkrichtung zwischen dem Belüftungszustand des Antriebs und der Istposition (POS) ein.

Werkseinstellung: Rise

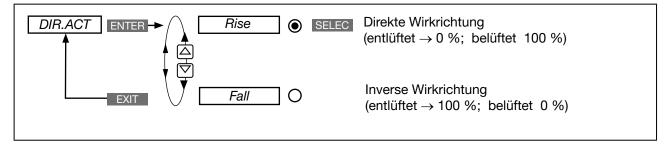


Abb. 59: Bedienstruktur DIR.ACT

Wird hier die Funktion *Fall* ausgewählt, ändert sich die Beschreibung der Pfeiltasten (im Display) im Betriebszustand HAND

OPN → CLS und CLS → OPN

Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT , werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol **Q** auf dem Display.

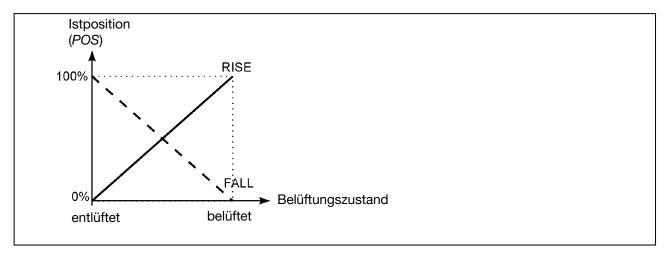


Abb. 60: Diagramm DIR.ACT

25.2.5 SPLTRNG - Signalbereichsaufteilung (Split range)

Min. und Max.-Werte des Eingangssignals in %, für den das Ventil den gesamten Hubbereich durchläuft.

Werkseinstellung: Min = 0 %; Max = 100 %

Typ 8793: Die Zusatzfunktion *SPLTRNG* ist nur auswählbar, bei Betrieb als Positioner (Stellungsregler).

P.CONTROL = nicht aktiviert.

Mit dieser Zusatzfunktion wird der Stellungs-Sollwertbereich des Typs 8792/8793 durch Festlegen eines minimalen und eines maximalen Wertes eingeschränkt.

Dadurch ist es möglich, einen genutzten Normsignalbereich (4...20 mA, 0...20 mA, 0...10 V oder 0...5 V) auf mehrere Geräte aufzuteilen (ohne oder mit Überlappung).

Auf diese Weise können mehrere Ventile **abwechselnd** oder bei überlappenden Sollwertbereichen **gleichzeitig** als Stellglieder genutzt werden.

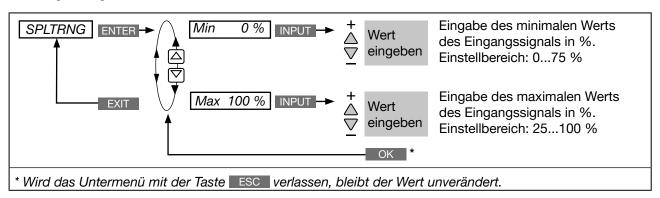


Abb. 61: Bedienstruktur SPLTRNG

Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT , werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol auf dem Display.

Aufspalten eines Normsignalbereichs in zwei Sollwertbereiche

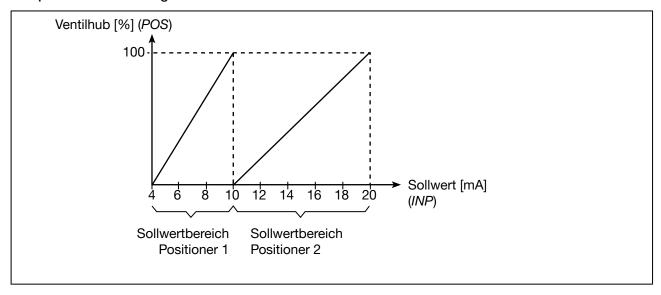


Abb. 62: Diagramm SPLTRNG

25.2.6 X.LIMIT - Begrenzung des mechanischen Hubbereichs

Diese Zusatzfunktion begrenzt den (physikalischen) Hub auf vorgegebene Prozentwerte (minimal und maximal). Dabei wird der Hubbereich des begrenzten Hubes gleich 100 % gesetzt.

Wird im Betrieb der begrenzte Hubbereich verlassen, werden negative POS-Werte oder POS-Werte größer 100 % angezeigt.

Werkseinstellung: Min = 0 %, Max = 100 %

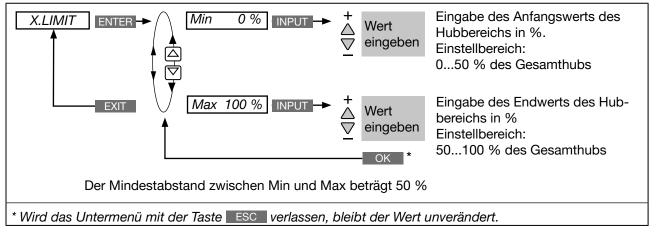


Abb. 63: Bedienstruktur X.LIMIT

Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT , werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol \square auf dem Display.

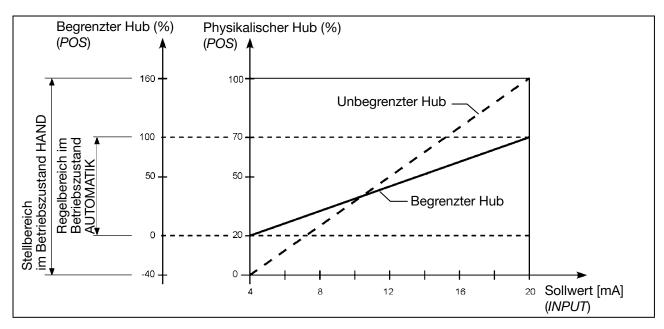


Abb. 64: Diagramm X.LIMIT

25.2.7 X.TIME - Begrenzung der Stellgeschwindigkeit

Mit dieser Zusatzfunktion können die Öffnungs- und Schließzeiten für den gesamten Hub festgelegt und damit die Stellgeschwindigkeiten begrenzt werden.

Beim Ausführen der Funktion *X.TUNE* wird für *Open* und *Close* automatisch die minimale Öffnungsund Schließzeit für den gesamten Hub eingetragen. Somit kann mit maximaler Geschwindigkeit verfahren werden.

Werkseinstellung: werkseitig ermittelte Werte durch die Funktion X.TUNE

Soll die Stellgeschwindigkeit begrenzt werden, so können für *Open* und *Close* Werte eingegeben werden, die zwischen den durch die *X.TUNE* ermittelten Minimalwerten und 60 s liegen.

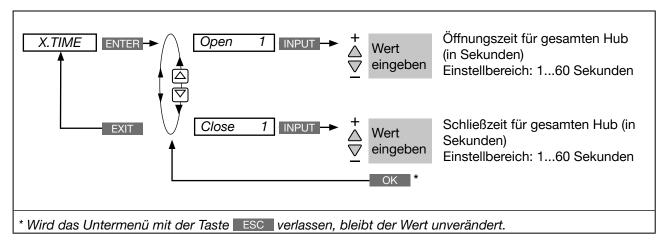


Abb. 65: Bedienstruktur X.TIME

Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT , werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol auf dem Display.

Auswirkung einer Begrenzung der Öffnungsgeschwindigkeit bei einem Sollwertsprung

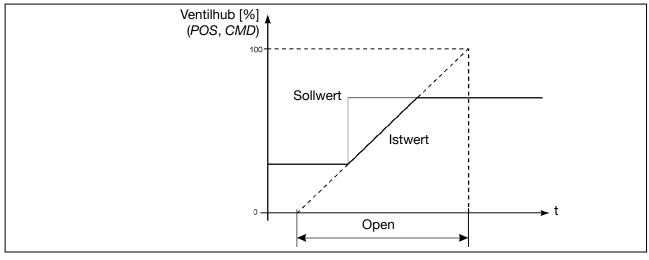


Abb. 66: Diagramm X.TIME

25.2.8 X.CONTROL - Parametrierung des Positioners

Mit dieser Funktion können die Parameter des Positioners nachjustiert werden. Die Nachjustierung sollte nur vorgenommen werden, wenn dies für den Einsatzzweck erforderlich ist.

Die Parameter für X.CONTROL werden mit Ausnahme von DBND (Totband) beim Festlegen der Grundeinstellungen durch das Ausführen von X.TUNE automatisch eingestellt.

Soll beim Ausführen von *X.TUNE* auch die Einstellung für DBND (Totband in Abhängigkeit zum Reibverhalten des Stellantriebs) automatisch ermittelt werden, muss *X.CONTROL* durch die Aufnahme ins Hauptmenü (MAIN) aktiviert sein.

Beim Ausführen von *X.TUNE* werden alle zuvor nachjustierten Werte überschrieben (ausgenommen die Funktion *X.TUNE* wurde manuell parametriert).

DBND Unempfindlichkeitsbereich (Totband)

KXopn Verstärkungsfaktor des Proportionalanteils (zum Belüften des Ventils)
 KXcls Verstärkungsfaktor des Proportionalanteils (zum Entlüften des Ventils)
 KDopn Verstärkungsfaktor des Differentialanteils (zum Belüften des Ventils)
 KDcls Verstärkungsfaktor des Differentialanteils (zum Entlüften des Ventils)

YBfric Reibungskorrektur (zum Belüften des Ventils)YEfric Reibungskorrektur (zum Entlüften des Ventils)

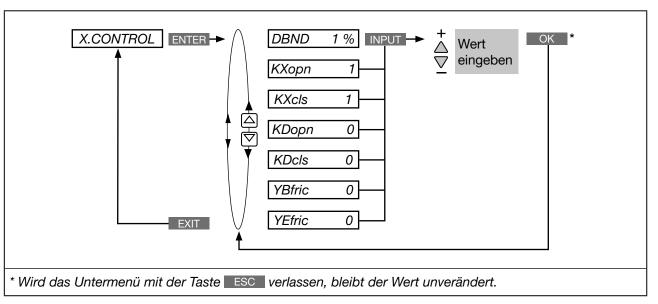


Abb. 67: Bedienstruktur X.CONTROL

DBND Unempfindlichkeitsbereich (Totband) des Positioners

Eingabe des Totbands in %, bezogen auf den skalierten Hubbereich; d.h. *X.LIMIT Max - X.LIMIT Min* (siehe Zusatzfunktion "25.2.6 X.LIMIT – Begrenzung des mechanischen Hubbereichs").

Diese Funktion bewirkt, dass der Regler erst ab einer bestimmten Regeldifferenz anspricht, dadurch werden die Magnetventile im Typ 8792/8793 und der pneumatische Antrieb geschont.

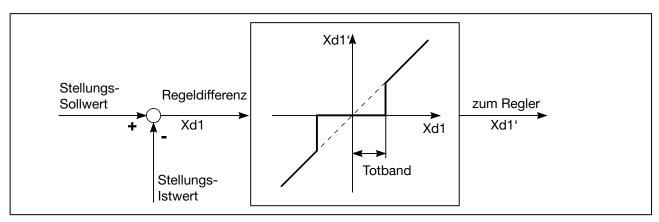


Abb. 68: Diagramm X.CONTROL

25.2.9 P.CONTROL - Einrichten und Parametrieren des Prozessreglers

Die Parametrierung des Prozessreglers ist im Kapitel "24.1 P.CONTROL – Einrichten und Parametrieren des Prozessreglers"

25.2.10 SECURITY - Codeschutz für die Einstellungen

Mit der Funktion SECURITY kann ein ungewollter Zugriff auf Typ 8792/8793 bzw. auf einzelne Funktionen verhindert werden.

Werkseinstellung: Access Code: 0000

Ist der Codeschutz aktiviert, wird bei jeder gesperrten Bedienhandlung zuerst die Eingabe des Codes (eingestellter *Access Code* oder Mastercode) verlangt.

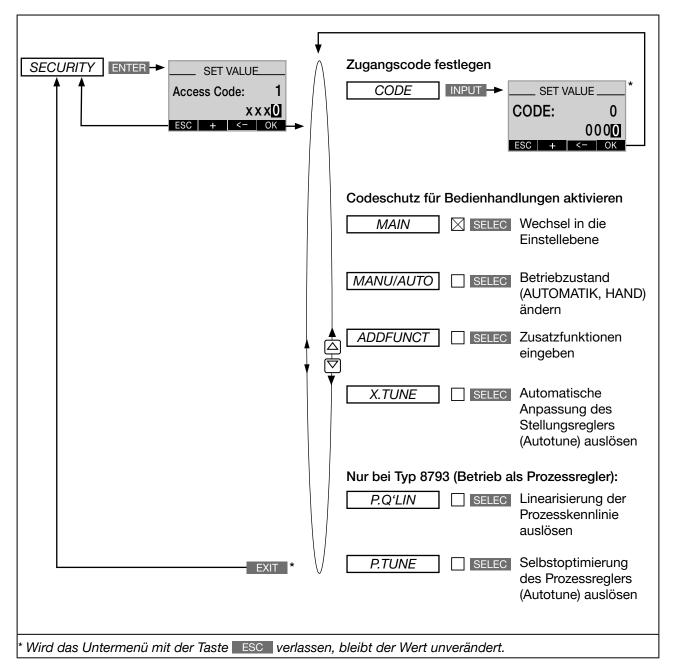


Abb. 69: Bedienstruktur SECURITY

Codeschutz einstellen:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
▲/▼	SECURITY auswählen	(Dazu muss die Zusatzfunktion ins Hauptmenü aufgenommen sein).
ENTER	drücken	Die Eingabemaske für den Zugangscode (Access Code) wird angezeigt.
△/▼	Dezimalstelle wählen	Code eingeben.
	Ziffer erhöhen	Bei der Ersteinstellung: Access Code 0000 (Werkseinstellung) Bei aktiviertem Codeschutz: Access Code vom Benutzer *
OK	drücken	Das Untermenü von SECURITY wird geöffnet.
△/▼	CODE auswählen	
INPUT	drücken	Die Eingabemaske zum Festlegen des Zugangscodes (Access Code) wird angezeigt.
△/▼	C Dezimalstelle wählen	Gewünschten Zugangscode eingeben.
	Ziffer erhöhen	
OK	drücken	Bestätigung und Rückkehr ins Menü SECURITY.
▲/▼	auswählen	Bedienhandlungen auswählen für die der Codeschutz gelten soll.
SELEC	drücken	Codeschutz durch ankreuzen aktivieren ⊠.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 56: SECURITY; Codeschutz einstellen

Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT , werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol 🖫 auf dem Display.

* Falls der eingestellte Code vergessen wurde:

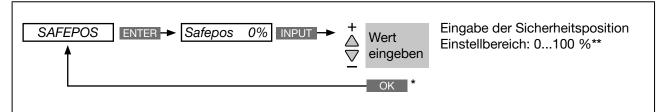
Mit dem nicht veränderbaren Mastercode können alle Bedienhandlungen ausgeführt werden. Diesen 4-stelligen Mastercode finden Sie in der gedruckten Kurzanleitung für Typ 8792/8793.

25.2.11 SAFEPOS - Eingabe der Sicherheitsposition

Mit dieser Funktion wird die Sicherheitsposition des Antriebs festgelegt, die bei definierten Signalen angefahren wird.

Die eingestellte Sicherheitsposition wird nur angefahren

- wenn ein entsprechendes Signal am Binäreingang anliegt (Konfiguration siehe Kapitel "25.2.13 BINARY.IN – Aktivierung des Binäreingangs") oder
- bei Auftreten eines Signalfehlers (Konfiguration siehe Kapitel "25.2.12 SIG.ERROR – Konfiguration Fehlererkennung Signalpegel").


Bei der Busvariante PROFIBUS wird die Sicherheitsposition zusätzlich angefahren bei

- entsprechendem Parametertelegramm
- BUS ERROR (einstellbar)

Ist der mechanische Hubbereich mit der Funktion *X.LIMIT* begrenzt, können nur Sicherheitspositionen innerhalb dieser Begrenzungen angefahren werden.

Diese Funktion wird nur im Betriebszustand AUTOMATIK ausgeführt.

Werkseinstellung: 0 %

- * Wird das Untermenü mit der Taste ESC verlassen, bleibt der Wert unverändert.
- **Beträgt die Sicherheitsposition 0 % oder 100 %, wird der Antrieb vollständig entlüftet bzw. belüftet, sobald in den Zusatzfunktionen SIG-ERROR oder BINARY-IN die Sicherheitsposition aktiv ist.

Abb. 70: Bedienstruktur SAFEPOS

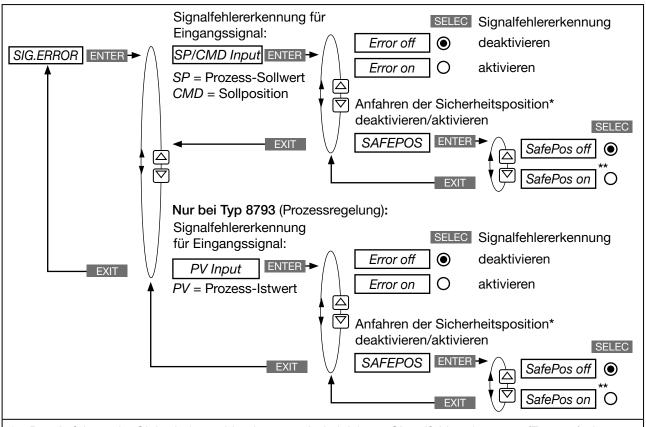
Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT , werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol auf dem Display.

25.2.12 SIG.ERROR - Konfiguration Fehlererkennung Signalpegel

Die Funktion SIG.ERROR dient zur Erkennung eines Fehlers am Eingangssignal.

Bei aktivierter Signalfehlererkennung wird der jeweilige Fehler im Display zur Anzeige gebracht. (siehe Kapitel "29.1 Fehlermeldungen auf dem Display".

Eine Fehlererkennung am Eingangssignal ist nur möglich für die Signalarten 4 -20 mA und Pt 100. Bei anderen Signalarten wird der jeweilige Menüzweig ausgeblendet.


- 4 20 mA: Fehler bei Eingangssignal ≤ 3,5 mA (± 0,5 % v. Endwert, Hysterese 0,5 % v. Endwert)
- Pt 100 (nur bei Prozessregler Typ 8793 einstellbar):
 Fehler bei Eingangssignal 225 °C (± 0,5 % v. Endwert, Hysterese 0,5 % v. Endwert)

0

Die Signalart wird in folgenden Menüs eingestellt:

- INPUT (bei Typ 8792 und 8793): Siehe Kapitel "22.1 INPUT – Einstellung des Eingangssignals".
- P.CONTROL (nur bei Typ 8793 und aktiviertem Prozessregler):
 Siehe Kapitel "24.2.1 PV-INPUT Signalart für den Prozess-Istwert festlegen".

HINWEIS: Die Fehlererkennung ist nur möglich wenn in SP-INPUT die externe Sollwertvorgabe gewählt wurde. Siehe Kapitel "24.2.3 SP-INPUT – Art der Sollwertvorgabe (intern oder extern)".

- * Das Anfahren der Sicherheitsposition kann nur bei aktivierter Signalfehlererkennung (Error on) eingestellt werden. Bei deaktivierter Signalfehlererkennung (Error off) erscheint die Meldung "not available".
- ** Verhalten des Antriebs bei einer Signalfehlererkennung siehe nachfolgende Beschreibung.

25.2.12.1. Verhalten des Antriebs bei deaktivierter oder aktivierter Sicherheitsposition

Auswahl SafePos off

One – Der Antrieb bleibt in der Position stehen, die dem zuletzt übertragenen Sollwert entspricht (Default-Einstellung).

Auswahl SafePos on — Anfahren der Sicherheitsposition aktiviert:

Das Verhalten des Antriebs bei einer Signalfehlererkennung ist von der Aktivierung der Zusatzfunktion SAFEPOS abhängig. Siehe Kapitel "25.2.11 SAFEPOS – Eingabe der Sicherheitsposition".

• SAFEPOS aktiviert: Bei einer Signalfehlererkennung fährt der Antrieb in die Position, die in der

Zusatzfunktion SAFEPOS vorgegeben ist.

• SAFEPOS nicht aktiviert: Der Antrieb fährt in die Sicherheitsendlage die er bei Ausfall der elektri-

schen und pneumatischen Hilfsenergie einnehmen würde.

Siehe Kapitel "10.9 Sicherheitsendlagen nach Ausfall der elektrischen bzw.

pneumatischen Hilfsenergie".

Die Aktivierung zum Anfahren der Sicherheitsposition (Auswahl *SafePos on*) ist nur bei aktivierter Signalfehlererkennung (*ERROR on*) möglich.

25.2.13 BINARY.IN - Aktivierung des Binäreingangs

In diesem Menü wird der Binäreingang konfiguriert. Folgende Funktionen können ihm zugeordnet werden:

SafePos Anfahren von SafePos

Manu/Auto Umschalten des Betriebszustands (HAND / AUTOMATIK)

X.TUNE Starten der Funktion X.TUNE

Nur bei Typ 8793 und aktiviertem Prozessregler:

X.CO/P.CO Umschalten zwischen Stellungs- und Prozessregler

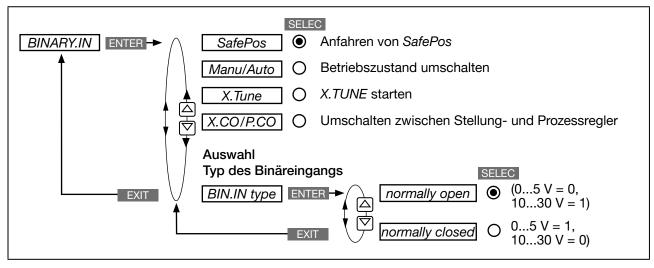


Abb. 72: Bedienstruktur BINARY.IN

SafePos - Anfahren einer Sicherheitsposition:

Das Verhalten des Antriebs ist von der Aktivierung der Zusatzfunktion SAFEPOS abhängig. Siehe Kapitel "25.2.11 SAFEPOS – Eingabe der Sicherheitsposition".

SAFEPOS aktiviert: Der Antrieb fährt in die Sicherheitsposition, die in der Zusatzfunktion SAFEPOS

vorgegeben ist.

SAFEPOS deaktiviert: Der Antrieb fährt in die Sicherheitsendlage die er bei Ausfall der elektrischen und

pneumatischen Hilfsenergie einnehmen würde.

Siehe Kapitel "10.9 Sicherheitsendlagen nach Ausfall der elektrischen bzw. pneu-

matischen Hilfsenergie".

Binäreingang = 1 → Antrieb fährt in die eingestellte Sicherheitsposition.

Manu/Auto - Umschalten zwischen dem Betriebszustand HAND und AUTOMATIK:

Binäreingang = 0 → Betriebszustand AUTOMATIK AUTO

Binäreingang = 1 → Betriebszustand HAND MANU

Wurde in Menü *BINARY.IN* die Funktion *Manu/Auto* gewählt, ist in der Prozessebene das Ändern des Betriebszustands, über die Tasten MANU und AUTO, nicht mehr möglich.

X.TUNE - Starten der Funktion X.TUNE:

Binäreingang = 1 \rightarrow *X.TUNE* Starten

X.CO/P.CO - Umschalten zwischen Stellungs- und Prozessregler:

Dieser Menüpunkt steht nur für Typ 8793 und bei aktiviertem Prozessregler (P.CONTROL) zur Verfügung.

Binäreingang = $0 \rightarrow \text{Stellungsregler}(X.CO)$

Binäreingang = $1 \rightarrow \text{Prozessregler}(P.CO)$

25.2.14 *OUTPUT* - Konfiguration der Ausgänge (Option)

Der Menüpunkt *OUTPUT* erscheint nur dann im Auswahlmenü von *ADD.FUNCTION*, wenn der Typ 8792/8793 über Ausgänge verfügt (Option).

Für den Typ 8792/8793 mit Option Ausgänge gibt es folgende Varianten:

- ein Analogausgang
- ein Analogausgang und zwei Binärausgänge
- zwei Binärausgänge

Entsprechend der Variante des Typ 8792/8793 erscheinen im Menüpunkt *OUTPUT* nur die möglichen einstellbaren Ausgänge (*ANALOG*, *ANALOG* + *BIN* 1 + *BIN* 2).

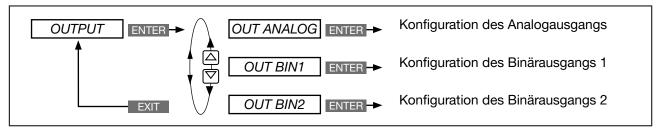


Abb. 73: Bedienstruktur OUTPUT;

25.2.14.1. OUT ANALOG - Konfiguration des Analogausgangs

Typ 8792: Über den Analogausgang kann die Rückmeldung der aktuellen Position (*POS*) oder des Sollwerts (*CMD*) an die Leitstelle erfolgen.

Typ 8793: Über den Analogausgang kann die Rückmeldung der aktuellen Position (POS) oder des Sollwerts (CMD), des Prozess-Istwerts (PV) oder des Prozess-Sollwerts (SP) an die Leitstelle erfolgen.

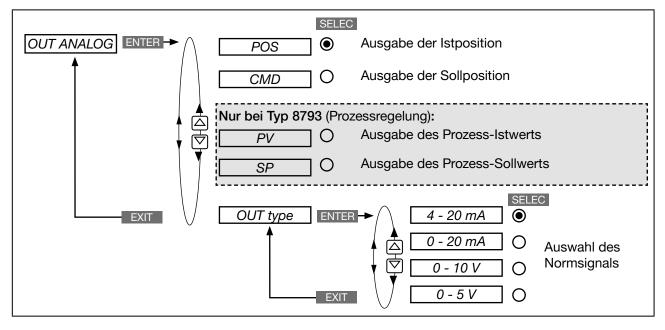


Abb. 74: Bedienstruktur OUTPUT-ANALOG

25.2.14.2. OUT BIN1 / OUT BIN2 - Konfigurieren der Binärausgänge

Die folgende Beschreibung gilt für beide Binärausgänge OUT BIN 1 und OUT BIN 2, da die Bedienung im Menü identisch ist.

Die Binärausgänge 1 und 2 können für eine der folgenden Ausgaben verwendet werden:

POS.Dev Überschreiten der zulässigen Regelabweichung

POS.Lim-1/2 Aktuelle Position bezüglich einer vorgegebenen Grenzstellung (> oder <)

Safepos Antrieb in Sicherheitsposition

ERR.SP/CMD Fühlerbruch (SP = Prozess Sollwert / CMD = Sollwertposition)

ERR.PV Fühlerbruch (Prozess-Istwert). Nur bei Typ 8793 vorhanden.

Remote Betriebszustand (AUTOMATIK / HAND)

Tune.Status Zustand X.TUNE (Prozessoptimierung)

DIAG.State-1/2 Diagnoseausgang (Option)

Übersicht möglicher Ausgaben und dazugehörige Schaltsignale:

Menüpunkt	Schaltsignal	Beschreibung
POS.Dev	0	Regelabweichung befindet sich innerhalb der eingestellten Grenze.
FO3.Dev	1	Regelabweichung befindet sich außerhalb der eingestellten Grenze.
POS.Lim-1/2	0	Istposition befindet sich oberhalb der Grenzstellung.
PO3.LIIII-1/2	1	Istposition befindet sich unterhalb der Grenzstellung.
Cofonos	0	Antrieb ist nicht in der Sicherheitsposition.
Safepos	1	Antrieb ist in der Sicherheitsposition.
ERR.SP/CMD	0	Kein Fühlerbruch vorhanden.
ERR.PV	1	Fühlerbruch vorhanden.
Remote	0	Gerät befindet sich im Betriebszustand AUTOMATIK.
	1	Gerät befindet sich im Betriebszustand HAND.
	0	Momentan wird die Funktion X.TUNE nicht ausgeführt.
Tune.Status	1	Momentan wird die Funktion X.TUNE ausgeführt.
rune.otatus	0/1 wechselnd (10 s)	Die Funktion X.TUNE wurde, durch einen Fehler während der Ausführung, abgebrochen.
DIAG.State-1/2	0	Keine Diagnosemeldung für die ausgewählten Statussignale vorhanden.
	1	Diagnosemeldung für die ausgewählten Statussignale vorhanden.

Tabelle 57: OUT BIN 1/2; Mögliche Ausgaben und dazugehörige Schaltsignale

Calcultairmal	Schaltzustände	
Schaltsignal	normally open	normally closed
0	0 V	24 V
1	24 V	0 V

Tabelle 58: OUT BIN 1/2; Schaltzustände

122

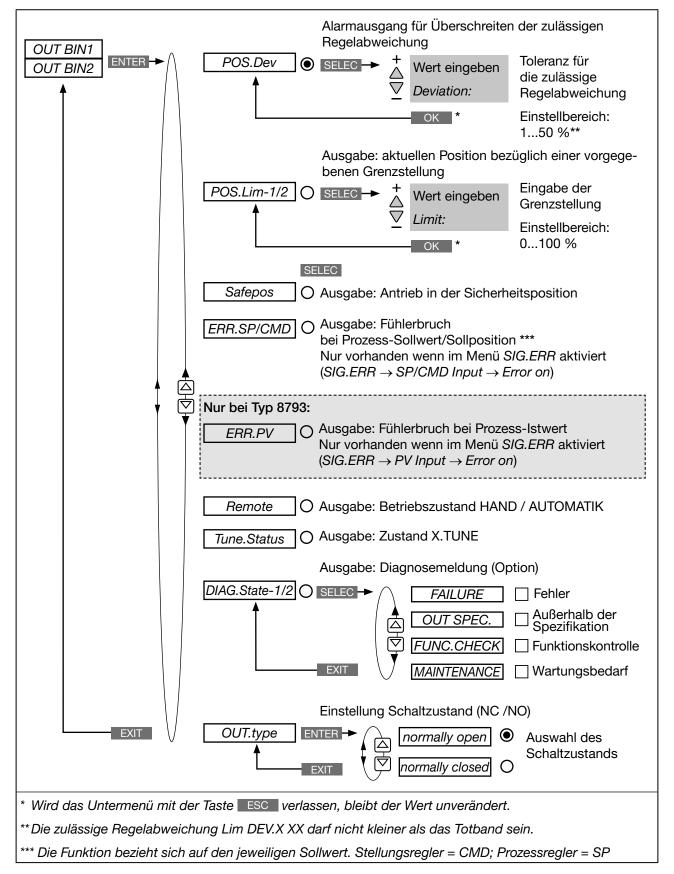


Abb. 75: Bedienstruktur OUTPUT-BIN1/BIN2

25.2.14.3. Einstellung der Untermenüpunkte von OUT BIN 1 / OUT BIN 2

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
▲/▼	OUTPUT auswählen	(Dazu muss die Zusatzfunktion ins Hauptmenü aufgenommen sein).
ENTER		Die Ausgänge werden angezeigt.
△/▼	OUT BIN1/2 auswählen	
ENTER	drücken	Untermenüpunkte von OUT BIN 1/2 werden angezeigt.

Tabelle 59: OUT BIN1 / OUT BIN2; Öffnen des Untermenüs

- POS.Dev Alarmausgang für zu große Regelabweichung des Positioners
- POS.Lim-1/2 Ausgabe der aktuellen Position bezüglich einer vorgegebenen Grenzstellung

Taste	Aktion	Beschreibung	
POS.Dev	POS.Dev - Alarmausgang für zu große Regelabweichung des Positioners:		
△/▽	POS.Dev auswählen		
SELEC	drücken	Die Eingabemaske für den Grenzwert (Deviation:) wird geöffnet.	
▲/▼	+ Wert erhöhen - Wert verringern	Grenzwert für zulässige Regelabweichung eingeben. Einstellbereich: 150 % (darf nicht kleiner als das Totband sein).	
OK	drücken	Bestätigung und gleichzeitig Rückkehr ins Menü <i>OUT BIN 1/2</i> . Anschließend im Untermenü <i>OUT.type</i> den gewünschten Schaltzustand einstellen.	
POS.Lim-	1/2 - Ausgabe der aktuellen Pos	sition bezüglich einer vorgegebenen Grenzstellung:	
△/▼	POS.Lim-1/2 auswählen		
SELEC	drücken	Die Eingabemaske für die Grenzstellung (Limit:) wird geöffnet.	
▲/▼	+ Wert erhöhen - Wert verringern	Grenzstellung eingeben. Einstellbereich: 0100 %.	
OK	drücken	Bestätigung und gleichzeitig Rückkehr ins Menü <i>OUT BIN 1/2</i> . Anschließend im Untermenü <i>OUT.type</i> den gewünschten Schaltzustand einstellen.	

Tabelle 60: OUT BIN1 / OUT BIN2; Wert für POS.Dev oder POS.Lim-1/2 einstellen

- Safepos Ausgabe der Meldung: Antrieb in Sicherheitsposition
- ERR.SP/CMD Ausgabe der Meldung: Fühlerbruch bei Prozess-Sollwert/Sollposition
 Nur vorhanden wenn die Funktion im Menü SIG.ERR aktiviert ist (SIG.ERR → SP/CMD input → Error on).
 Siehe Kapitel "25.2.12 SIG.ERROR Konfiguration Fehlererkennung Signalpegel".
- ERR.PV Ausgabe der Meldung: Fühlerbruch bei Prozess-Istwert (nur bei Typ 8793)
 Nur vorhanden wenn die Funktion im Menü SIG.ERR aktiviert ist (SIG.ERR → PV Input → Error on).
 Siehe Kapitel "25.2.12 SIG.ERROR Konfiguration Fehlererkennung Signalpegel".
- Remote Ausgabe Betriebszustand AUTOMATIK / HAND
- Tune.Status Ausgabe TUNE (Prozessoptimierung)

Taste	Aktion	Beschreibung
△/▽	Untermenüpunkt auswählen	(Safepos, ERR.SP/CMD, ERR.PV, Remote oder Tune.Status).
SELEC	drücken	Untermenüpunkt als Ausgabefunktion für den Binärausgang bestätigen. Die Auswahl ist durch einen gefüllten Kreis markiert.
		Anschließend im Untermenü <i>OUT.type</i> den gewünschten Schaltzustand einstellen.

Tabelle 61: OUT BIN1 / OUT BIN2; Safepos, ERR.SP/CMD, ERR.PV, Remote oder Tune.Status als Ausgabe festlegen.

DIAG.State-1/2 - Diagnoseausgang (Option)
 Ausgabe der Meldung: Diagnosemeldung von ausgewähltem Statussignal
 Beschreibung siehe Kapitel "25.2.22 DIAGNOSE – Menü zur Ventilüberwachung (Option)".

Taste	Aktion	Beschreibung
△/▽	DIAG.State-1/2 auswählen	
SELEC	drücken	Die Statussignale die für die Ausgabe der Meldung aktiviert werden können, werden angezeigt.
▲/▼	Statussignal auswählen	Das Statussignal, das dem Diagnoseausgang zugeordnet werden soll auswählen.
SELEC	drücken	Die Auswahl durch ankreuzen ⊠ aktivieren oder durch Entfernen des Kreuzes ☐ deaktivieren.
		Falls gewünscht weitere Statussignale für den Diagnoseausgang über die Tasten ▲ / ▼ und SELEC aktivieren.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Menü <i>OUT BIN 1/2.</i> Anschließend im Untermenü <i>OUT.type</i> den gewünschten Schaltzustand einstellen.

Tabelle 62: OUT.type; Schaltzustand für Binärausgang eingeben und Rückkehr in die Prozessebene .

• OUT.type - Einstellung des Schaltzustands

Zusätzlich zur Auswahl der Ausgabe muss für den Binärausgang der gewünschte Schaltzustand eingegeben werden. Siehe "Tabelle 64".

Taste	Aktion	Beschreibung
\triangle/∇	OUT.type auswählen	
SELEC	drücken	Die Schaltzustände <i>normally open</i> und <i>normally closed</i> werden angezeigt.
\triangle/∇	Schaltzustand auswählen	
SELEC	drücken	Die Auswahl ist durch einen gefüllten Kreis markiert.
EXIT	drücken drücken	Bestätigung und gleichzeitig Rückkehr ins Menü OUT BIN 1/2.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Menü OUTPUT.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 63: OUT.type; Schaltzustand für Binärausgang eingeben und Rückkehr in die Prozessebene .

Cabaltaianal	Schaltzustände		
Schaltsignal	normally open	normally closed	
0	0 V	24 V	
1	24 V	0 V	

Tabelle 64: OUT BIN 1/2; Schaltzustände

Erst mit dem Wechsel in die Prozessebene, durch Verlassen des Hauptmenüs (MAIN) über die linke Auswahltaste EXIT , werden die geänderten Daten im Speicher (EEPROM) abgelegt. Während des Speichervorgangs erscheint das Speichersymbol \square auf dem Display.

25.2.15 CAL.USER - Kalibrierung von Istwert und Sollwert

Mit dieser Funktion können folgende Werte manuell kalibriert werden:

- Stellungs-Istwert calibr. POS (0 100 %)
- Stellungs-Sollwert <u>calibr. INP</u> (4 20 mA, 0 20 mA, 0 5 V, 0 10 V) Zur Kalibrierung wird die Signalart angezeigt, die für das Eingangssignal festgelegt wurde. Siehe Kapitel "22.1 INPUT – Einstellung des Eingangssignals".

Typ 8793:

Die nachfolgenden Werte können nur bei Typ 8793 und aktiviertem Prozessregler (P.CONTROL) kalibriert werden.

• Prozess-Sollwert <u>calibr. SP</u> (4 - 20 mA, 0 - 20 mA, 0 - 5 V, 0 - 10 V) Zur Kalibrierung wird die Signalart angezeigt, die für das Eingangssignal festgelegt wurde. Siehe Kapitel "22.1 INPUT – Einstellung des Eingangssignals".

Die Kalibrierung des Prozess-Sollwerts ist nur möglich, wenn beim Einrichten des Prozessreglers die externe Sollwertvorgabe gewählt wurde.

Siehe Kapitel "24.2.3 SP-INPUT – Art der Sollwertvorgabe (intern oder extern)". Einstellung: $P.CONTROL \rightarrow SETUP \rightarrow SP-INPUT \rightarrow extern$

Prozess-Istwert calibr. PV (4 - 20 mA oder *C)

Prozess-Istwert <u>calibr. PV</u> (4 - 20 mA oder *C)
 Zur Kalibrierung wird die Signalart angezeigt, die beim Einrichten des Prozessreglers für den Prozess-Istwert festgelegt wurde.
 Siehe Kapitel "24.2.1 PV-INPUT – Signalart für den Prozess-Istwert festlegen".

Die Signalart Frequenz (Durchfluss) kann nicht kalibriert werden. Wurde beim Einrichten des Prozessreglers Frequenz eingestellt ($P.CONTROL \rightarrow SETUP \rightarrow PV-INPUT \rightarrow Frequenz$) ist der Menüpunkt *calibr. PV* ausgeblendet.

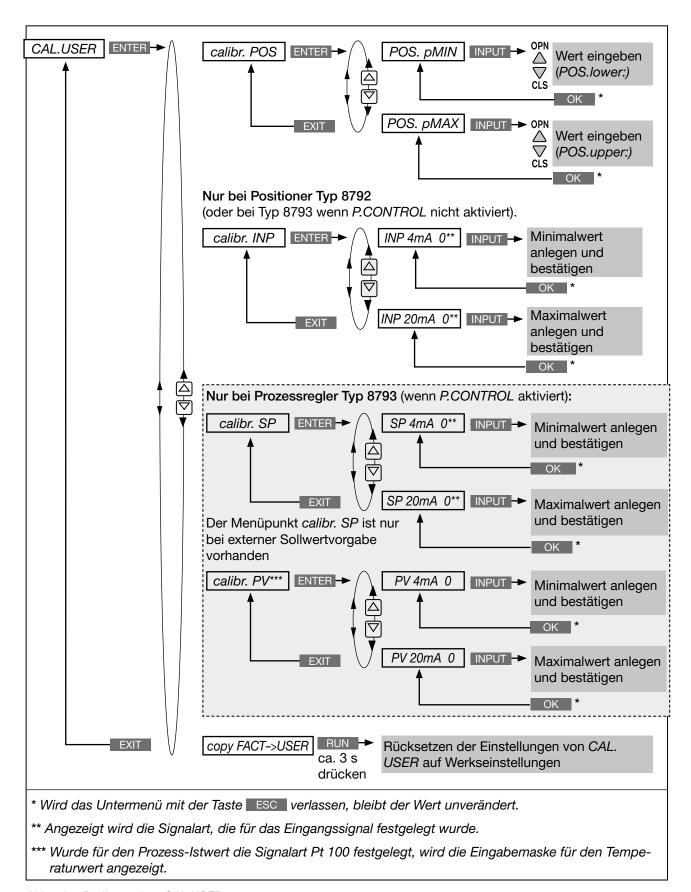


Abb. 76: Bedienstruktur CAL.USER

25.2.15.1. Kalibrierung des Stellungs-Istwerts und des Stellungs-Sollwerts

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
▲/▼	CAL.USER auswählen	(Dazu muss die Zusatzfunktion ins Hauptmenü aufgenommen sein).
ENTER		Die Untermenüpunkte werden angezeigt.
calibr. PC	DS - Kalibrierung des Stellung	gs-Istwerts (0 - 100 %):
△/▽	calibr. POS auswählen	
ENTER	drücken	Die Menüpunkte für den minimalen und den maximalen Stellungs-Istwert werden angezeigt.
△/▽	POS. pMin auswählen	
INPUT	drücken	Die Eingabemaske für den unteren Wert (POS.lower) wird geöffnet.
▲/▼	OPN mehr öffnen CLS mehr schließen	Minimale Position des Ventils anfahren.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü calibr.POS.
△/▽	POS. pMax auswählen	
INPUT	drücken	Die Eingabemaske für den oberen Wert (POS.upper) wird geöffnet.
▲/▼	OPN mehr öffnen CLS mehr schließen	Maximale Position des Ventils anfahren.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü calibr.POS.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Menü CAL.USER.
△/▼	calibr. INP auswählen	s-Sollwerts (420 mA, 020 mA, 05 V, 010 V):
ENTER	drücken	Die Menüpunkte für den minimalen und maximalen Wert des Eingangssignals werden angezeigt.
▲/▼	INP 0mA (4mA/0V) auswählen	Der minimale Wert für das Eingangssignals wird angezeigt.
-	-	Den minimalen Wert am Eingang anlegen.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü calibr.INP.
▲/▼	INP 20mA (5V/10V) auswählen	Der maximale Wert für das Eingangssignals wird angezeigt.
	-	Den maximalen Wert am Eingang anlegen.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü calibr.INP.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Menü CAL.USER.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 65: CAL.USER; Kalibrierung von Stellungs-Istwert und Stellungs-Sollwert

25.2.15.2. Kalibrierung des Prozess-Sollwerts und des Prozess-Istwerts

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
△/▼	CAL.USER auswählen	(Dazu muss die Zusatzfunktion ins Hauptmenü aufgenommen sein).
ENTER		Die Untermenüpunkte werden angezeigt.
	1	
calibr. SP	- Kalibrierung des Prozess-Soll	werts:
△/▼	calibr. SP auswählen	
ENTER	drücken	Die Menüpunkte für den minimalen und den maximalen Prozess- Sollwert werden angezeigt.
△/▼	SP 0mA (4mA/0V) auswählen	Der minimale Wert für das Eingangssignals wird angezeigt.
-	-	Den minimalen Wert am Eingang anlegen.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü calibr.SP.
△/▼	SP 20mA (5V/10V) auswählen	Der maximale Wert für das Eingangssignals wird angezeigt.
-	-	Den maximalen Wert am Eingang anlegen.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü calibr.SP.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Menü CAL.USER.
△/▼	calibr. PV auswählen	erts bei Eingangssignal 4 - 20 mA:
ENTER	drücken	Die Menüpunkte für den minimalen und den maximalen Prozess- Istwert werden angezeigt.
△/▽	PV 4mA auswählen	Der minimale Wert für das Eingangssignals wird angezeigt.
-	-	Den minimalen Wert am Eingang anlegen.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü calibr.PV.
△/▼	PV 20mA auswählen	Der maximale Wert für das Eingangssignals wird angezeigt.
-	-	Den maximalen Wert am Eingang anlegen.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü calibr.PV.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Menü CAL.USER.
calibr. PV	- Kalibrierung des Prozess-Istw	erts bei Eingangssignal Pt 100:
△/▼	calibr. PV auswählen	
ENTER	drücken	Die Eingabemaske zur Kalibrierung der Temperatur wird geöffnet.
△/▽	C Dezimalstelle wählen	Die vorliegende Temperatur eingeben.
	+ Ziffer erhöhen	
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü CAL.USER.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 66: CAL.USER; Kalibrierung von Stellungs-Istwert und Stellungs-Sollwert

25.2.15.3. Rücksetzen der Einstellungen unter *CAL.USER* auf die Werkseinstellungen

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
▲/▼	CAL.USER auswählen	(Dazu muss die Zusatzfunktion ins Hauptmenü aufgenommen sein).
ENTER		Die Untermenüpunkte werden angezeigt.
▲/▼	copy FACT->USER auswählen	
RUN	gedrückt halten solange Countdown (5) läuft	Die Einstellungen von CAL.USER werden auf die Werkseinstellungen zurückgesetzt.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 67: copy FACT->USER; Rücksetzen der Einstellungen unter CAL.USER auf die Werkseinstellungen

Mit dem Deaktivieren von *CAL.USER*, durch Entfernen der Zusatzfunktion aus dem Hauptmenü (MAIN), wird die Werkskalibrierung wieder aktiviert.

25.2.16 SET.FACTORY - Zurücksetzen auf die Werkseinstellungen

Mit dieser Funktion können alle vom Benutzer vorgenommenen Einstellungen auf den Zustand bei Auslieferung zurückgesetzt werden.

Alle EEPROM-Parameter mit Ausnahme der Kalibrierwerte werden auf Default-Werte zurückgesetzt. Anschließend wird ein Hardware-Reset durchgeführt.

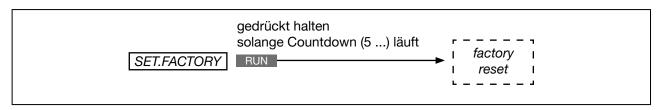


Abb. 77: Bedienstruktur SET.FACTORY

Zurücksetzen auf die Werkseinstellungen:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
▲/▼	SET.FACTORY auswählen	(Dazu muss die Zusatzfunktion ins Hauptmenü aufgenommen sein).
RUN	ca. 3 s drücken (bis Fortschrittsbalken geschlossen ist)	"factory reset" wird eingeblendet. Reset wird ausgeführt.
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 68: SET.FACTORY; Zurücksetzen auf die Werkseinstellungen

Zur Anpassung des Typs 8792/8793 an die Betriebsparameter, führen Sie erneut die Selbstparametrierung des Positioners durch (*X.TUNE*).

25.2.17 SER. NO - Einstellungen der seriellen Schnittstelle

Mit dieser Funktion kann die Art der seriellen Schnittstelle und die Baud-Rate eingestellt werden.

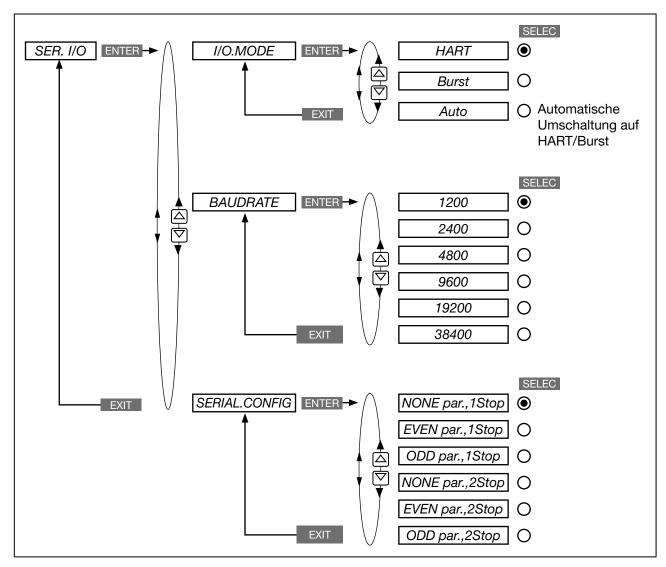


Abb. 78: Bedienstruktur SER. NO

25.2.18 EXTRAS - Einstellung des Displays

Mit dieser Funktion kann das Display individuell eingestellt werden.

- In DISP.ITEMS lässt sich das Display der Prozessebene individuell einstellen.
 Dazu können weitere Menüpunkte für das Display der Prozessebene aktiviert werden. Im Auslieferungszustand sind POS und CMD aktiviert.
- In START-UP.ITEM wird einer der aktivierten Menüpunkte als Startanzeige nach einem Neustart festgelegt.
- Über DISP.MODE wird die Art der Darstellung gewählt. normal = schwarze Schrift auf hellem Hintergrund. invers = weiße Schrift auf dunklem Hintergrund.

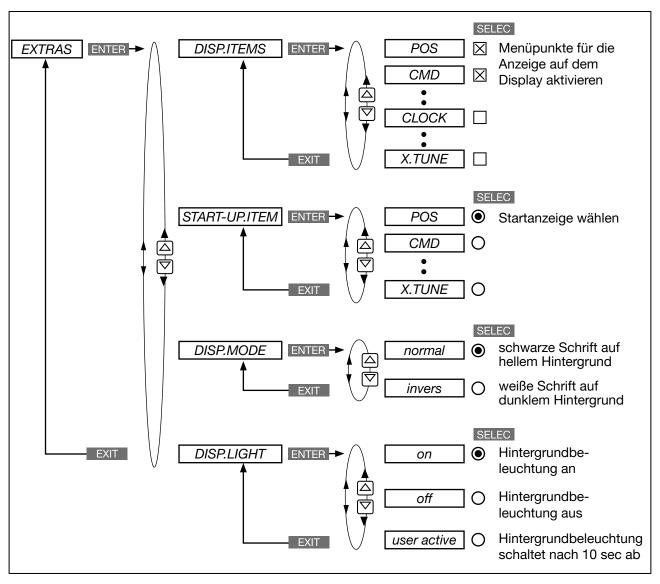


Abb. 79: Bedienstruktur EXTRAS

DISP.ITEMS - Menüanzeigen für das Display der Prozessebene aktivieren:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
△/▼	ADD.FUNCTION auswählen	
ENTER	drücken	Die möglichen Zusatzfunktionen werden angezeigt.
△/▼	EXTRAS auswählen	
ENTER	drücken	Die Zusatzfunktion <i>EXTRAS</i> durch ankreuzen ⊠ aktivieren und ins Hauptmenü übernehmen.
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).
△/▽	EXTRAS auswählen	
ENTER	drücken	Die Untermenüs von EXTRAS werden angezeigt.
△/▼	DISP.ITEMS auswählen	
ENTER	drücken	Die möglichen Menüpunkte werden angezeigt. POS, CMD, CMDIPOS, CMD/POS(t), CLOCK, INPUT, TEMP, X.TUNE.
		Zusätzlich bei Prozessregler Typ 8793: PV, SP, SPIPV, SP/PV(t), P.TUNE, P.LIN.
▲/▼	Gewünschte Menüpunkte auswählen	
SELEC	drücken	Die Auswahl durch ankreuzen ⊠ aktivieren oder durch entfernen des Kreuzes □ deaktivieren.
EXIT	drücken	Rückkehr ins Menü EXTRAS.
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 69: DISP.ITEMS; Menüpunkte für die Anzeige in der Prozessebene aktivieren

Die aktivierten Menüpunkte werden nun auf dem Display der Prozessebene angezeigt.

Mit den Pfeiltasten $\triangle \nabla$ kann zwischen den Anzeigen gewechselt werden.

Jeder zur Auswahl stehende Menüpunkt kann auch deaktiviert werden, damit er nicht auf dem Display der Prozessebene erscheint.

Es muss jedoch mindestens ein Menüpunkt für die Anzeige auf dem Display zu Verfügung stehen. Wurde nichts ausgewählt, wird automatisch der Menüpunkt *POS* aktiviert.

START-UP.ITEM - Menüpunkt für die Startanzeige festlegen:

EXTRAS → START-UP.ITEM ▲ / ▼ Menüpunkt auswählen und mit SELEC festlegen.

Der Menüpunkt für die Startanzeige ist durch den gefüllten Kreis markiert .

Die detaillierte Vorgehensweise kann der ausführlichen Menübeschreibung für *DISP.ITEMS* entnommen werden (siehe "<u>Tabelle 69"</u>). Die Menüeinstellung von *START-UP.ITEM* und *DISP.ITEMS* erfolgt nach demselben Schema.

DISP.MODE - Art der Darstellung wählen (schwarze Schrift auf hellem Hintergrund oder weiße Schrift auf dunklem Hintergrund):

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
△/▽	ADD.FUNCTION auswählen	
ENTER	drücken	Die möglichen Zusatzfunktionen werden angezeigt.
△ /▽	EXTRAS auswählen	
ENTER	drücken	Die Zusatzfunktion <i>EXTRAS</i> durch ankreuzen ⊠ aktivieren und ins Hauptmenü übernehmen.
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).
△/▽	EXTRAS auswählen	
ENTER	drücken	Die Untermenüs von EXTRAS werden angezeigt.
△/▽	DISP.MODE auswählen	
ENTER	drücken	Die möglichen Menüpunkte für die Art der Darstellung werden angezeigt. normal = schwarze Schrift auf hellem Hintergrund invers = weiße Schrift auf dunklem Hintergrund
△/▽	Art der Darstellung wählen	
SELEC	drücken	Die Auswahl ist durch einen gefüllten Kreis markiert.
EXIT	drücken	Rückkehr ins Menü EXTRAS.
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 70: DISP.MODE; Art der Darstellung wählen

DISP.LIGHT - Hintergrundbeleuchtung für Display festlegen:

EXTRAS ightarrow DISP.LIGHT ightharpoonup A / <math>
ightharpoonup Hintergrundbeleuchtung auswählen und mit SELEC festlegen.

Der Menüpunkt für die Hintergrundbeleuchtung ist durch den gefüllten Kreis markiert .

on = Hintergrundbeleuchtung an.

off = Hintergrundbeleuchtung aus.

user active = Hintergrundbeleuchtung schaltet nach 10 Sekunden ohne Benutzerinteraktion ab. Bei erneutem Tastendruck geht die Hintergrundbeleuchtung wieder an.

Die detaillierte Vorgehensweise kann der ausführlichen Menübeschreibung für *DISP.MODE* entnommen werden (siehe "<u>Tabelle 70"</u>). Die Menüeinstellung von *DISP.LIGHT* und *DISP.MODE* erfolgt nach demselben Schema.

25.2.19 POS.SENSOR - Einstellung Schnittstelle Remote Wegaufnehmer

In diesem Menü kann die Schnittstelle für den Anschluss eines externen Wegaufnehmers ausgewählt werden.

Der Menüpunkt POS.SENSOR steht nur bei Typ 8793 Remote zu Verfügung.

Es gibt folgende Anschlussmöglichkeiten:

Schnittstelle	Wegaufnehmer	Einstellung im Menü (ADD.FUNCTION)
digital (seriell)	Remote Sensor Typ 8798.	$POS.SENSOR \rightarrow DIGITAL$
analog (4 - 20 mA) * beliebiger, hochauflösender Wegaufnehmer.		POS.SENSOR → ANALOG

Tabelle 71: Anschlussmöglichkeiten Typ 8793 mit externem Wegaufnehmer

Wird bei dem Prozessregler Typ 8793 der externe Wegaufnehmers über die analoge Schnittstelle angeschlossen, kann dieser nur noch als Positioner (Stellungsregler) betrieben werden.

Die Zusatzfunktion P.CONTROL wird automatisch entfernt.

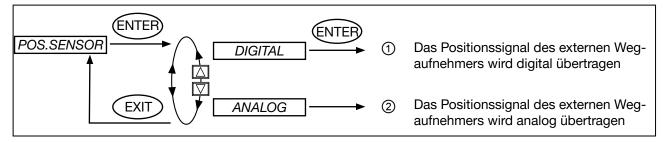


Abb. 80: Bedienstruktur POS.SENSOR

- ① Digitale Schnittstelle (Menüpunkt *POS.SENSOR* → *DIGITAL*):

 Der Typ 8792/8793 wird über eine digitale Schnittstelle mit dem externen Wegaufnehmer Typ 8798 verbunden (siehe Kapitel "15.2.4 Klemmenbelegung für externen Wegaufnehmer (nur bei Remote-Variante)" auf Seite 57.
- ② Analoge Schnittstelle (Menüpunkt POS.SENSOR → ANALOG): Der Typ 8793 wird über eine 4...20 mA Schnittstelle mit einem beliebigen externen Wegaufnehmer mit 4...20 mA Ausganssignal verbunden. Dazu wird der externe Wegaufnehmer an den Prozess-Istwert-Eingang angeschlossen (siehe Kapitel "15.3.1 Klemmenbelegungen des Prozess-Istwert-Eingangs" auf Seite 58).

Benötigt der externe Wegaufnehmer eine zusätzliche elektrische Versorgung von 24 V DC kann diese über den Positioner mitversorgt werden.

25.2.20 SERVICE

Diese Funktion hat für den Bediener des Typs 8792/8793 keine Bedeutung. Sie dient ausschließlich dem werksinternen Gebrauch.

25.2.21 SIMULATION - Menü zur Simulation von Sollwert, Prozess und Prozessventil

Mit dieser Funktion können Sollwert, Prozess und Prozessventil unabhängig voneinander simuliert werden.

Achtung! Durch einen Geräteneustart wird die Simulation inaktiv. Die Einstellungen von *SIGNAL.form*, *x.SIM* und *p.SIM* werden auf die Werkseinstellung zurückgesetzt.

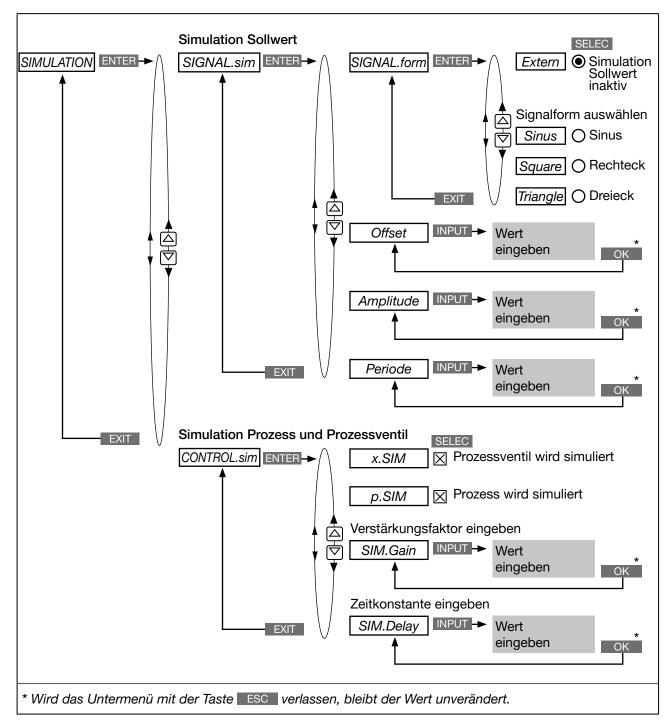


Abb. 81: Bedienstruktur SIMULATION

25.2.21.1. SIGNAL.sim - Simulation des Sollwerts

Die Einstellungen zur Simulation des Sollwerts werden im Menü SIGNAL.sim vorgenommen.

Aktivierung der Simulation: Im Untermenü SIGNAL.form durch Auswahl einer der folgenden Signalformen

Einmaliger Durchlauf einer wechselnden Signalfolge.

Anschließend wird die Auswahl auf Extern (Sollwert-Simulation inaktiv) gesetzt.

Für die gewählte Signalform können folgende Parameter eingestellt werden.

Menüpunkt	Parametereinstellung	Schematische Darstellung mit Sinussignal
Offset	(Nullpunktverschiebung in %)	70 % 50 % Offset in % • t
Amplitude	(Amplitude in %)	70 %
Periode	(Periodendauer in s)	Periode in s 50 %

Tabelle 72: SIGNAL.sim; Parametereinstellungen für Sollwert-Simulation

Deaktivierung der Simulation: Im Untermenü SIGNAL.form

Auswahl Extern = Sollwert Simulation inaktiv

(entspricht der Werkseinstellung im Auslieferungszustand)

Aktiveren und parametrieren der Sollwert-Simulation:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
▲/▼	SIMULATION auswählen	(Dazu muss die Zusatzfunktion ins Hauptmenü aufgenommen sein).

Taste	Aktion	Beschreibung	
ENTER	drücken	Das Untermenü zur Einstellung der Simulation wird angezeigt.	
△/▼	SIGNAL.sim auswählen		
ENTER	drücken	Das Untermenü zur Aktivierung und Parametrierung der Sollwert-Simulation wird angezeigt.	
△/▼	SIGNAL.form auswählen		
ENTER	drücken	Die Menüpunkte zur Aktivierung und zur Auswahl der Signalform werden angezeigt.	
△/▼	Gewünschten Menüpunkt auswählen	Auswahl Extern = Simulation inaktiv.	
		Auswahl Sinus / Square / Triangle / Mixed = festlegen der Signalform, sowie Aktivierung der Simulation.	
SELEC	drücken	Die Auswahl ist durch einen gefüllten Kreis markiert.	
EXIT	drücken	Rückkehr ins Menü SIGNAL.sim.	
Einstellun	g der Parameter für die Simulat	ion des Sollwerts:	
△/▼	Offset auswählen	(Nullpunktverschiebung in %).	
INPUT	drücken	Die Eingabemaske zum Festlegen des Offsets wird geöffnet.	
△/▼	+ Wert erhöhen <- Dezimalstelle wählen	Wert eingeben.	
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü SIGNAL.sim.	
△/▼	Amplitude auswählen	(Amplitude in %).	
INPUT	drücken	Die Eingabemaske zum Festlegen der Amplitude wird geöffnet.	
▲/▼	+ Wert erhöhen <- Dezimalstelle wählen	Wert eingeben.	
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü SIGNAL.sim.	
△/▽	Periode auswählen	(Periodendauer in Sekunden).	
INPUT	drücken	Die Eingabemaske zum Festlegen der Periodendauer wird geöffnet.	
△/▼	+ Wert erhöhen <- Dezimalstelle wählen	Wert eingeben.	
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü SIGNAL.sim.	
EXIT	drücken	Rückkehr ins Menü SIMULATION.	
Zur Simul	Zur Simulation von Prozess und Prozessventil:		
▲/▼	CONTROL.sim auswählen	Beschreibung siehe Kapitel "25.2.21.2. CONTROL.sim – Simulation des Prozesses und Prozessventils".	
Verlassen	des Menüs SIMULATION:		
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).	
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.	

Tabelle 73: SIGNAL.sim; aktivieren und parametrieren der Sollwert-Simulation.

25.2.21.2. CONTROL.sim - Simulation des Prozesses und Prozessventils

Die Einstellungen zur Simulation des Prozesses und des Prozessventils werden im Menü *CONTROL.sim* vorgenommen.

Einstellungen

Art der Simulation: x.SIM Simul

Simulation des Prozessventils.

p.SIM

Simulation des Prozesses.

Parametrierung des Prozesses:

SIM.Gain

Verstärkungsfaktor festlegen.

SIM.Delay

Zeitkonstante in Sekunden festlegen.

Beispiel eines simulierten Prozesses:

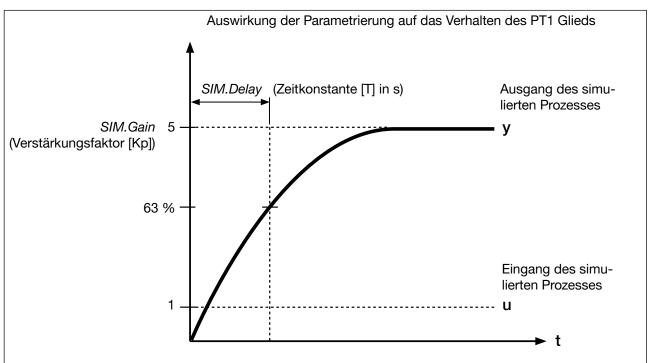


Abb. 82: Beispiel eines simulierten Prozesses. Verhalten des PT1 Glieds

Aktiveren und parametrieren der Simulation des Prozesses und/oder Prozessventils:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
△/▼	SIMULATION auswählen	(Dazu muss die Zusatzfunktion ins Hauptmenü aufgenommen sein.)
ENTER	drücken	Das Untermenü zur Einstellung der Simulation wird angezeigt.
△/▽	CONTROL.sim auswählen	
ENTER	drücken	Das Untermenü zur Aktivierung und Parametrierung der Prozess- und Prozessventil-Simulation wird angezeigt.

Taste	Aktion	Beschreibung
▲/▼	Gewünschten Simulation auswählen	Auswahl x.SIM = Simulation Prozess.
		Auswahl p.SIM = Simulation Prozessventil.
SELEC	drücken	Die Auswahl durch ankreuzen ⊠ aktivieren oder durch Entfernen des Kreuzes ☐ deaktivieren.
Einstellung	g der Parameter für die Simulati	ion des Prozesses und/oder des Prozessventils:
△/▽	SIM.Gain auswählen	(Verstärkungsfaktor).
INPUT	drücken	Die Eingabemaske zum Festlegen des Verstärkungsfaktors wird geöffnet.
▲/▼	+ Wert erhöhen <- Dezimalstelle wählen	Wert eingeben.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü CONTROL.sim.
△/▽	SIM.Delay auswählen	(Zeitkonstante in Sekunden).
INPUT	drücken	Die Eingabemaske zum Festlegen der Zeitkonstante wird geöffnet.
▲/▼	+ Wert erhöhen <- Dezimalstelle wählen	Wert eingeben.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü CONTROL.sim.
EXIT	drücken	Rückkehr ins Menü SIMULATION.
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 74: CONTROL.sim; aktivieren und parametrieren der Simulation des Prozesses und/oder Prozessventils.

25.2.22 DIAGNOSE - Menü zur Ventilüberwachung (Option)

Mit der optionalen Funktion *DIAGNOSE* kann der Zustand des Ventils überwacht werden. Bei Abweichungen vom Sollzustand werden Meldungen gemäß NE 107 ausgegeben.

Beispiel für die Ausgabe einer Diagnosemeldung:

Abb. 83: Beispiel für eine Diagnosemeldung

25.2.22.1. Aktivierung des Menüs DIAGNOSE

Damit das Menü *DIAGNOSE* eingestellt werden kann, muss es zunächst im Hauptmenü der Einstellebene (MAIN) über *ADD.FUNCTION* aktiviert werden. Siehe Kapitel "25.1 Aktivieren und deaktivieren von Zusatzfunktionen".

Die aktive Diagnose wird auf dem Display der Prozessebene mit einem Häckchen-Symbol ☑ angezeigt. Siehe "Abb. 83"

25.2.22.2. Das DIAGNOSE Hauptmenü

Das Hauptmenü von DIAGNOSE besteht aus folgenden Untermenüs.

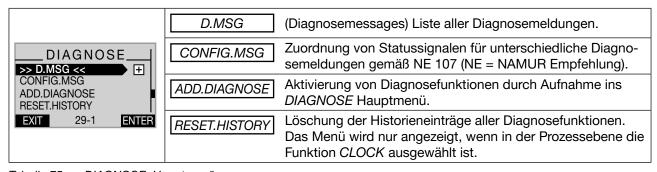
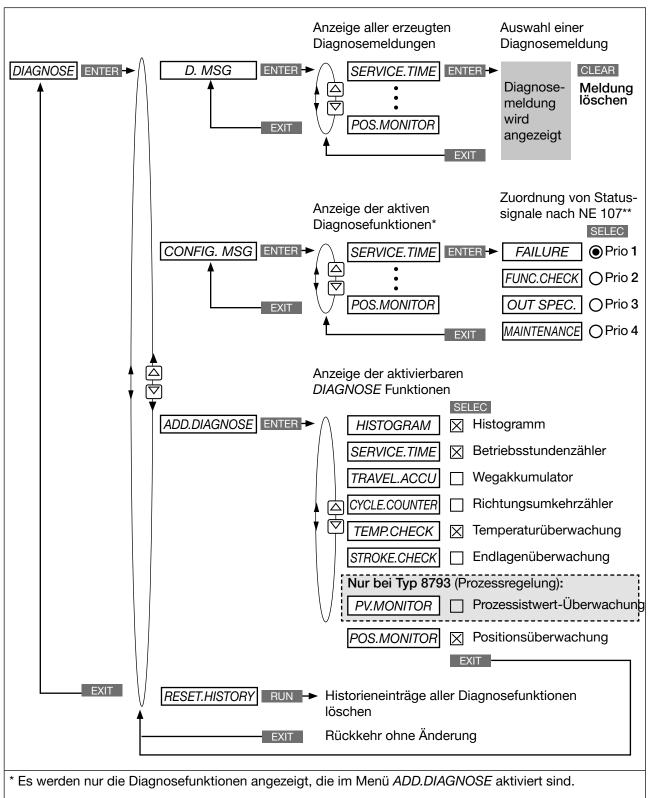



Tabelle 75: DIAGNOSE; Hauptmenü

Die Beschreibung dazu finden Sie im Kapitel "25.2.22.5. Beschreibung des DIAGNOSE Hauptmenüs".

25.2.22.3. DIAGNOSE - Bedienstruktur

^{**} Sind mehrere Diagnosemeldungen gleichzeitig vorhanden, wird auf dem Display das Statussignal mit der höchsten Priorität eingeblendet.

Abb. 84: Bedienstruktur DIAGNOSE

144

25.2.22.4. Aktivierung von Diagnosefunktionen

Im Menü *ADD.DIAGNOSE* werden Diagnosefunktionen aktiviert und damit ins Hauptmenü von *DIAGNOSE* aufgenommen.

Aktivierbare Diagnosefunktionen:

HISTOGRAMM	Grafische Darstellung der Verweildauerdichte und Bewegungsspanne.
SERVICE.TIME	Betriebsstundenzähler
TRAVEL.ACCU	Wegakkumulator
CYCLE.COUNTER	Richtungsumkehrzähler
TEMP.CHECK	Temperaturüberwachung
STROKE.CHECK	Überwachung der mechanischen Endlagen in der Armatur
PV.MONITOR	Prozess-Istwert-Überwachung (nur bei Typ 8793, Prozessregelung)
POS.MONITOR	Positionsüberwachung

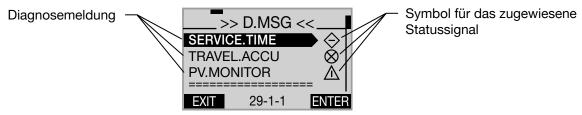
Tabelle 76: ADD.DIAGNOSE; Übersicht Diagnosefunktionen

Die genaue Beschreibung finden Sie in Kapitel "25.2.22.6. Beschreibung der Diagnosefunktionen"

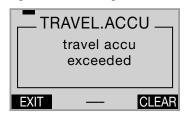
ADD.DIAGNOSE - Diagnosefunktionen aktivieren:

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
▲/▼	DIAGNOSE auswählen	(Dazu muss die Zusatzfunktion <i>DIAGNOSE</i> bereits durch Aufnahme ins Hauptmenü (MAIN) aktiviert sein.)
ENTER	drücken	Die Untermenüs werden angezeigt.
△/▽	ADD.DIAGNOSE auswählen	
ENTER	drücken	Die weiteren Diagnosefunktionen werden angezeigt.
▲/▼	Gewünschte Diagnose- funktion auswählen	
ENTER	drücken	Die gewünschte Diagnosefunktion ist nun durch ein Kreuz ⊠ markiert.
entweder		
△/▼	Weitere Diagnosefunktionen auswählen	So oft wiederholen bis alle gewünschten Diagnosefunktionen mit
ENTER	drücken	einem Kreuz 🗵 markiert sind.
oder		
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins <i>DIAGNOSE</i> Hauptmenü. Die markierten Diagnosefunktionen sind damit aktiviert und die Menüs zur Einstellung befinden sich nun im Hauptmenü von <i>DIAGNOSE</i> .

Tabelle 77: Aktivierung von Diagnosefunktionen



25.2.22.5. Beschreibung des DIAGNOSE Hauptmenüs


1. D.MSG - (Diagnosemessages) Diagnosemeldungen

Im Menü D.MSG sind alle erzeugten Diagnosemeldungen aufgelistet, sie können dort angesehen und gelöscht werden. Das Statussignal, das der Diagnosemeldung zugewiesen ist, wird durch ein Symbol angezeigt.

Displaybeispiel für eine Liste mit Diagnosemeldungen

Displaybeispiel für den Beschreibungstext einer Diagnosemeldung

Ansehen und Löschen einer Diagnosemeldung:

Taste	Aktion	Beschreibung
△/▽	D.MSG auswählen	
ENTER	drücken	Alle erzeugten Diagnosemeldungen werden angezeigt.
▲/▼	Gewünschte Meldung auswählen	
ENTER	drücken	Öffnen der Diagnosemeldung. Der Beschreibungstext wird angezeigt (in Englisch).
exit oder	drücken	Schließen der Diagnosemeldung und Rückkehr in D.MSG.
CLEAR	gedrückt halten solange Countdown (5) läuft	Löschen der Diagnosemeldung und Rückkehr in <i>D.MSG.</i>
EXIT	drücken	Rückkehr ins <i>DIAGNOSE</i> Hauptmenü.

Tabelle 78: D.MSG; Ansehen und Löschen einer Diagnosemeldung

2. CONFIG.MSG - Zuordnung von Statussignalen gemäß NE 107 (NAMUR Empfehlung)

Im Menü CONFIG.MSG können die Statussignale der Diagnosemeldungen geändert werden.

Das Menü zeigt nur Diagnosefunktionen an, die eine Meldung ausgeben können und die bereits im Menü *ADD.DIAGNOSE* aktiviert sind.

Die Statussignale besitzen unterschiedliche Prioritäten.

Sind mehrere Diagnosemeldungen mit unterschiedlichen Statussignalen vorhanden, wird auf dem Display das Statussignal mit der höchsten Priorität eingeblendet.

Übersicht der Statussignale gemäße NE 107 (NE = NAMUR Empfehlung):

Priorität	1	2	3	4
Statussignal		V		
Bedeutung	Failure (Ausfall)	Function check (Funktionskontrolle)	Out of specification (Außerhalb der Spezifikation)	Maintenance required (Wartungs- bedarf)

Tabelle 79: CONFIG.MSG; Übersicht Statussignale

Werkseitig sind für die Meldungen der Diagnosefunktionen folgende Statussignale voreingestellt:

Diagnosefunktion	Statussignal gemäß NE 107	Signal Miniatur	Priorität
SERVICE.TIME	Maintenance required	\Diamond	4
TRAVEL.ACCU	Maintenance required	\Diamond	4
CYCLE.COUNTER	Maintenance required	\Diamond	4
TEMP.CHECK	Out of specification	\triangle	3
STROKE.CHECK	Out of specification	\triangle	3
PV.MONITOR	Out of specification	<u></u>	3
POS.MONITOR	Out of specification	\triangle	3

Tabelle 80: CONFIG.MSG; Werkseinstellung (Default)

Zuweisen von Statussignalen:

Taste	Aktion	Beschreibung
△ /▼	CONFIG.MSG auswählen	
ENTER	drücken	Alle aktivierten Diagnosefunktionen, die eine Meldung ausgeben können, werden angezeigt.
△/▼	Gewünschte Diagnose- funktion auswählen	
ENTER	drücken	Die Liste möglicher Statussignale wird angezeigt.
▲/▼	Gewünschtes Statussignal auswählen	
SELEC	drücken	Das gewählte Statussignal ist nun durch einen gefüllten Kreis markiert.
EXIT	drücken	Bestätigung und gleichzeitig Rückkehr ins Menü CONFIG.MSG. Das Statussignal ist nun der Diagnosefunktion zugewiesen.
EXIT	drücken	Rückkehr ins <i>DIAGNOSE</i> Hauptmenü.

Tabelle 81: CONFIG.MSG; Zuweisen von Statussignalen

3. ADD.DIAGNOSE - Aktivierung und Deaktivierung von Diagnosefunktionen

In diesem Menü können Diagnosefunktionen aktiviert und ins Hauptmenü von *DIAGNOSE* aufgenommen oder bereits aktivierte Diagnosefunktionen wieder deaktiviert werden.

Aktivierung von Diagnosefunktionen:

Beschreibung siehe Kapitel "25.2.22.4. Aktivierung von Diagnosefunktionen"

Deaktivierung von Diagnosefunktionen:

Die Vorgehensweise ist gleich wie bei der Aktivierung. Nur wird bei der Deaktivierung das vorhandene Kreuz hinter der Diagnosefunktion, durch Drücken der ENTER Taste, wieder entfernt .

4. RESET.HISTORY – Löschung der Historieneinträge aller Diagnosefunktionen

Erläuterung zu den Historieneinträgen:

Bei jeder Diagnosemeldung erfolgt ein Historieneintrag. Dieser Eintrag wird der Diagnosefunktion, die diese Meldung ausgelöst hat zugeordnet und dort im Untermenü *HISTORY* abgelegt.

Im Menü einiger Diagnosefunktion gibt es ein Untermenü *HISTORY* in dem die Historieneinträge abgelegt werden.

Mit RESET.HISTORY werden die Einträge aller HISTORY Untermenüs gelöscht.

Einzelne Einträge können im Untermenü HISTORY der jeweiligen Diagnosefunktion gelöscht werden.

Siehe auch Kapitel "25.2.22.7. Historieneinträge im Untermenü HISTORY".

Löschen aller Historieneinträge:

Taste	Aktion	Beschreibung
△/▽	RESET.HISTORY auswählen	
RUN	gedrückt halten solange Countdown (5) läuft	Alle Historieneinträge werden gelöscht.
EXIT	drücken	Rückkehr ins <i>DIAGNOSE</i> Hauptmenü.

Tabelle 82: RESET.HISTORY; Löschung aller Historieneinträge

ACHTUNG!

Historieneinträge werden nur erstellt, wenn die Funktion *CLOCK* für die Anzeige in der Prozessebene aktiviert ist.

Aktiveren und Einstellen von CLOCK siehe Kapitel "17.4.1 Einstellen von Datum und Uhrzeit:"

25.2.22.6. Beschreibung der Diagnosefunktionen

HISTOGRAM - Ausgabe von Histogrammen

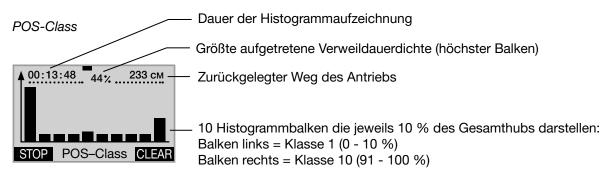
Das Menü HISTOGRAM gliedert sich in 2 Teile.:

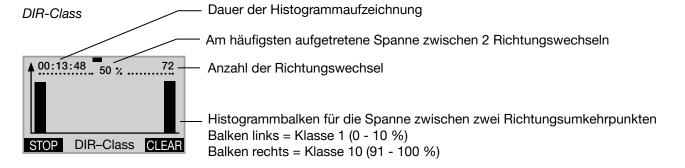
 Ausgeben der Histogramme für POS-Class (Verweildauerdichte) und DIR-Class (Bewegungsspanne)

2. Auflistung der Kennwerte für

CMD Sollposition Ventilantrieb

POS Istposition Ventilantrieb


DEV Abweichung von POS zu CMD


TEMP Temperatur

SP Prozess-Sollwert

PV Prozess-Istwert

Displaybeschreibung der Histogramme:

Bedienstruktur:

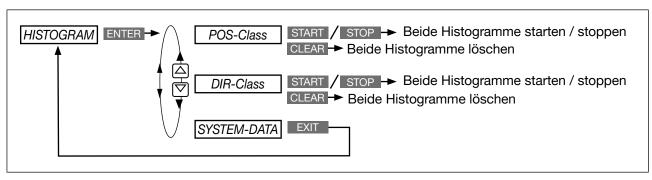


Abb. 85: HISTOGRAM; Bedienstruktur

POS-Class - Beschreibung des Histogramms der Verweildauerdichte

Das Histogramm zeigt an, wie lange sich der Antrieb in einer bestimmten Position aufgehalten hat.

Dafür wird der Hubbereich in 10 Klassen eingeteilt.

Jeder Abtastzeit wird die aktuelle Position einer der 10 Klassen zugeordnet.

<10 %	11 - 20	21 - 30	31 - 40	41 - 50 %	51 - 60 %	61 - 70 %	71 - 80 %	81 - 90 %	91 - 100 %
Klasse 1	2	3	4	5	6	7	8	9	10

Abb. 86: CMD-Class; Positionsklassen

Erläuterung des Histogramms am Beispiel

Sinusförmiger Verlauf der Antriebsposition:

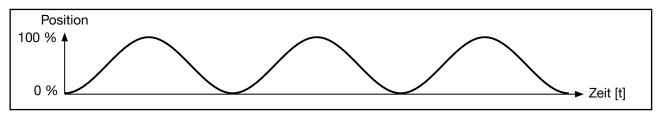


Abb. 87: Sinusförmiger Verlauf der Antriebsposition

Histogramm zum sinusförmigen Verlauf der Antriebsposition:

Rückschlüsse aus dem Histogramm auf das Verhalten des Antriebs:

Der Antrieb verbrachte

ca. 30 % seiner Zeit in Positionsklasse 1 (0-10 % des Gesamthubs) und

ca., 30 % seiner Zeit in Positionsklasse 10 (90 - 100 % des Gesamthubs).

Die restliche Zeit war der Antrieb in einer Position zwischen 11 % und 89 % des Gesamthubs.

Abb. 88: POS-Class; Histogramm der Verweildauerdichte bei sinusförmigem Verlauf der Antriebsposition

Die Verteilung des Histogramms lässt Rückschlüsse auf die Auslegung des Regelventils zu. Befindet sich der Antrieb beispielsweise nur im unteren Hubbereich, ist das Ventil wahrscheinlich zu groß ausgelegt.

DIR-Class - Beschreibung des Histogramms der Bewegungsspanne

Das Histogramm zeigt die Bewegungsspannen des Antriebs zwischen zwei Richtungsumkehrpunkten an.

Dafür wird die Bewegungsspanne zwischen zwei Richtungswechseln in 10 Klassen eingeteilt. Jeder Abtastzeit wird die aktuelle Position einer der 10 Klassen zugeordnet.

	0 - 10	11 - 20	21 - 30	31 - 40	41 - 50 %	51 - 60 %	61 - 70 %	71 - 80 %	81 - 90 %	91 - 100	
Klas	se 1	2	3	4	5	6	7	8	9	10	

Abb. 89: DIR-Class; Richtungswechselklassen

Erläuterung des Histogramms am Beispiel

Sinusförmiger Verlauf der Antriebsposition:

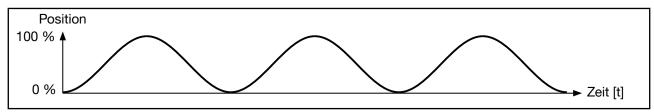
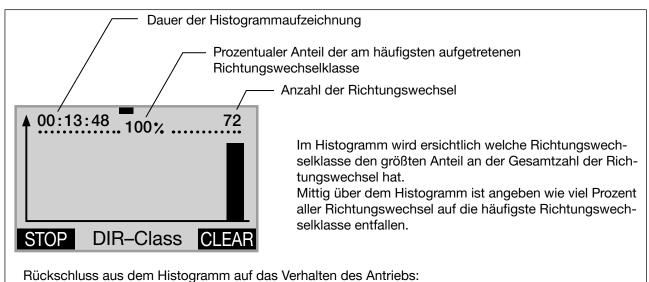



Abb. 90: Sinusförmiger Verlauf der Antriebsposition

Histogramm zum sinusförmigen Verlauf der Antriebsposition:

nackschiass aus achi i listografiliti auf aus verhalten aes Antifebs.

Der Antrieb bewegte sich bei allen Richtungswechseln in der Richtungswechselklasse 10 (91 - 100 %)

Abb. 91: DIR-Class; Histogramm der Verweildauerdichte bei sinusförmigem Verlauf der Antriebsposition

Die Histogramme geben nur dann korrekte Auskunft über das Verhalten des Antriebs, wenn die für die Grundeinstellung geforderte Funktion *X.TUNE* ausgeführt wurde.

Starten, Stoppen und Löschen der Histogramme

Taste	Aktion	Beschreibung
▲/▼	HISTOGRAM auswählen	(Dazu muss die Funktion <i>HISTOGRAM</i> ins Hauptmenü von <i>DIAGNOSE</i> aufgenommen sein. Siehe Kapitel "25.2.22.4. Aktivierung von Diagnosefunktionen").
ENTER	drücken	Die leere Matrix des Untermenüs POS-Class (Verweildauerdichte) wird angezeigt.
Histogra	nme starten:	
START *	gedrückt halten solange Countdown (5) läuft	Beide Histogramme (POS-Class und DIR-Class) werden gestartet.
▲/▼	Wechsel der Displayansicht	Auswahlmöglichkeiten: POS-Class (Histogramm für die Verweildauerdichte), DIR-Class (Histogramm für die Bewegungsspanne), SYSTEM-DATA (Auflistung der Kennwerte).
Histogra	nme stoppen:	
STOP *	gedrückt halten solange Countdown (5) läuft	Die Aufzeichnung für beide Histogramme (POS-Class und DIR-Class) wird gestoppt.
▲/▼	Wechsel der Displayansicht	Auswahlmöglichkeiten: POS-Class (Histogramm für die Verweildauerdichte), DIR-Class (Histogramm für die Bewegungsspanne), SYSTEM-DATA (Auflistung der Kennwerte).
Histogra	nm löschen:	
CLEAR *	gedrückt halten solange Countdown (5) läuft	Beide Histogramme (POS-Class und DIR-Class) werden gelöscht.
Rückkeh	r ins Hauptmenü <i>DIAGNOSE</i> :	
△/▽	SYSTEM-DATA auswählen	
EXIT	oder drücken	Rückkehr ins Hauptmenü <i>DIAGNOSE.</i>

Tabelle 83: HISTOGRAM; Starten, Stoppen und Löschen von Histogrammen

POS-Class und DIR-Class.

SERVICE.TIME - Betriebsstundenzähler

Der Betriebsstundenzähler erfasst die Zeit, in der das Gerät eingeschaltet ist.

Erreicht die Einschaltdauer das vorgegebene Zeitlimit, wird eine Meldung erzeugt.

- Dazu erfolgt ein Historieneintrag im Untermenü *HISTORY*. Beschreibung siehe "25.2.22.7. Historieneinträge im Untermenü HISTORY".
- Das Statussignal, das der Meldung zugeordnet ist, erscheint in kurzen Abständen auf dem Display. Siehe auch *D.MSG* und *CONFIG.MSG* in Kapitel "25.2.22.5" auf Seite 145.

Display SERVICE.TIME	Beschreibung der Funktionen
SERVICE.TIME	Im Untermenü <i>LIMIT</i> kann das werkseitig auf 90 Tage eingestellte Zeitintervall für Meldungen geändert werden.
NEXT.M 89d. 23h HISTORY	Hinter NEXT.M wird die verbleibende Zeit bis zur nächsten Meldung angezeigt.
EXIT 29-5-1 INPUT	Im Untermenü <i>HISTORY</i> können die Historieneinträge der letzten 3 Meldungen angesehen und gelöscht werden.

Tabelle 84: SERVICE.TIME; Betriebsstundenzähler

Bedienstruktur:

Abb. 92: Bedienstruktur SERVICE.TIME

Zeitintervall für die Ausgabe von Meldungen festlegen

Taste	Aktion	Beschreibung
▲/▼	SERVICE.TIME auswählen	(Dazu muss die Funktion SERVICE.TIME ins Hauptmenü von DIAGNOSE aufgenommen sein. Siehe Kapitel "25.2.22.4. Aktivierung von Diagnosefunktionen").
ENTER	drücken	Das Menü wird angezeigt.
△/▽	LIMIT auswählen	
INPUT	drücken	Der voreingestellte Wert wird angezeigt.
▲/▼	+ Wert erhöhen Wechsel der (Zeit- einheit: d/h/m)	Zeitintervall für die Ausgabe der Meldung einstellen.
OK	drücken	Rückkehr ins Menü SERVICE.TIME.
EXIT	drücken	Rückkehr ins Hauptmenü DIAGNOSE.

Tabelle 85: SERVICE.TIME; Zeitintervall festlegen.

TRAVEL.ACCU - Wegakkumulator

Im Wegakkumulator wird der Weg, den der Antriebskolben zurücklegt, erfasst und aufsummiert. Eine Bewegung des Antriebskolbens wird erkannt, wenn sich die Position um mindestens 1 % ändert.

Durch Eingeben eines Limits für die Summe der Kolbenbewegungen wird das Intervall für die Ausgabe von Meldungen festgelegt.

- Dazu erfolgt ein Historieneintrag im Untermenü *HISTORY.* Beschreibung siehe "25.2.22.7. Historieneinträge im Untermenü HISTORY".
- Das Statussignal, das der Meldung zugeordnet ist, erscheint in kurzen Abständen auf dem Display. Siehe auch *D.MSG* und *CONFIG.MSG* in Kapitel "25.2.22.5" auf Seite 145.

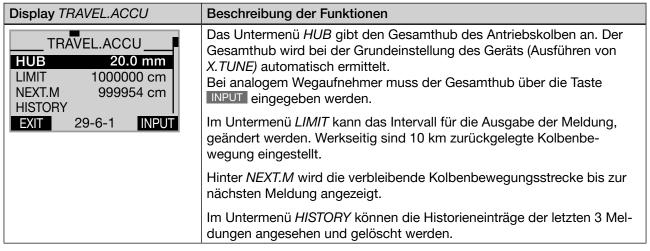


Tabelle 86: TRAVEL.ACCU; Wegakkumulator

Bedienstruktur:

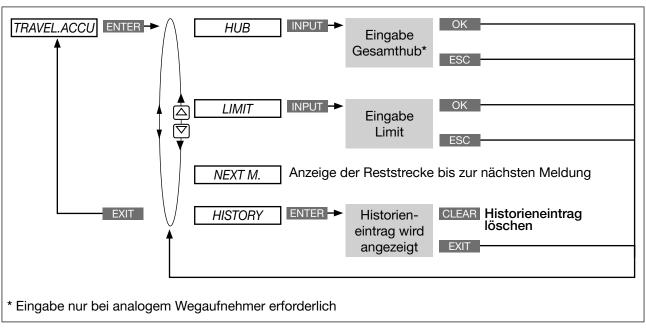


Abb. 93: Bedienstruktur TRAVEL.ACCU

Intervall für die Ausgabe von Meldungen festlegen

Taste	Aktion	Beschreibung
▲/▼	TRAVEL.ACCU auswählen	(Dazu muss die Funktion <i>TRAVEL.ACCU</i> ins Hauptmenü von <i>DIAGNOSE</i> aufgenommen sein. Siehe Kapitel "25.2.22.4. Aktivierung von Diagnosefunktionen").
ENTER	drücken	Das Menü wird angezeigt.
* Nur bei a	analogem Wegaufnehmer erford	derlich (Einstellen des Untermenüs <i>HUB</i>)
△/▽*	HUB auswählen	
INPUT *	drücken	Der voreingestellte Wert wird angezeigt.
△/▼*	+ Wert erhöhen	Gesamthub des Antriebskolbens einstellen.
	Wechsel der Dezimalstelle	
△/▼	LIMIT auswählen	
INPUT	drücken	Der voreingestellte Wert wird angezeigt.
△/▼	+ Wert erhöhen	Intervall für die Ausgabe der Meldung einstellen (Limit für
	Wechsel der Dezimalstelle	Summe der Kolbenbewegung).
OK	drücken	Rückkehr ins Menü TRAVEL.ACCU.
EXIT	drücken	Rückkehr ins Hauptmenü <i>DIAGNOSE</i> .

Tabelle 87: TRAVEL.ACCU; Intervall festlegen.

CYCLE.COUNTER - Richtungsumkehrzähler

Der Richtungsumkehrzähler zählt die Anzahl der Richtungswechsel des Antriebskolbens. Ein Richtungswechsel wird erkannt, wenn sich die Position des Antriebskolbens um mindestens 1 % ändert.

Durch Eingeben eines Limits für die Summe der Richtungswechsel wird das Intervall für die Ausgabe von Meldungen festgelegt.

- Dazu erfolgt ein Historieneintrag im Untermenü *HISTORY*. Beschreibung siehe "25.2.22.7. Historieneinträge im Untermenü HISTORY".
- Das Statussignal, das der Meldung zugeordnet ist, erscheint in kurzen Abständen auf dem Display. Siehe auch *D.MSG* und *CONFIG.MSG* in Kapitel "25.2.22.5" auf Seite 145.

Display CYCLE.COUNTER	Beschreibung der Funktionen
CYCLE.COUNTER LIMIT 1000000 NEXT.M 999960 HISTORY	Im Untermenü <i>LIMIT</i> kann das Intervall für die Ausgabe der Meldung, geändert werden. Werkseitig sind 1 Million Richtungswechsel eingestellt. Hinter <i>NEXT.M</i> werden die verbleibenden Richtungswechsel bis zur nächsten Meldung angezeigt.
EXIT 29-7-1 INPUT	Im Untermenü <i>HISTORY</i> können die Historieneinträge der letzten 3 Meldungen angesehen und gelöscht werden.

Tabelle 88: SERVICE.TIME; Betriebsstundenzähler

Bedienstruktur:

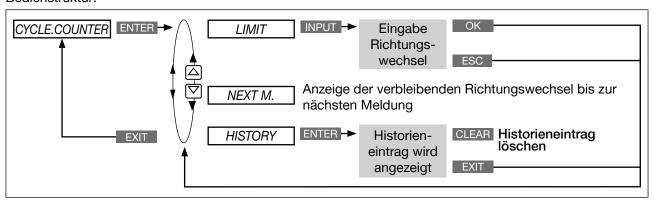


Abb. 94: Bedienstruktur CYCLE.COUNTER

Intervall für die Ausgabe von Meldungen festlegen

Taste	Aktion	Beschreibung
▲/▼	CYCLE.COUNTER auswählen	(Dazu muss die Funktion CYCLE.COUNTER ins Hauptmenü von DIAGNOSE aufgenommen sein. Siehe Kapitel "25.2.22.4. Aktivierung von Diagnosefunktionen".)
ENTER	drücken	Das Menü wird angezeigt.
△/▽	LIMIT auswählen	
INPUT	drücken	Der voreingestellte Wert wird angezeigt.
▲/▼	+ Wert erhöhen <- Wechsel der Dezimalstelle	Intervall für die Ausgabe der Meldung einstellen (limitierte Anzahl von Richtungswechseln).
OK	drücken	Rückkehr ins Menü CYCLE.COUNTER.
EXIT	drücken	Rückkehr ins Hauptmenü <i>DIAGNOSE.</i>

Tabelle 89: CYCLE.COUNTER; Intervall festlegen.

TEMP.CHECK - Temperaturüberwachung

Die Temperaturüberwachung prüft, ob sich die aktuelle Temperatur im vorgegebenen Temperaturbereich befindet. Der Temperaturbereich wird durch die Eingabe einer Minimal- und Maximaltemperatur festgelegt. Weicht die Temperatur vom vorgegebenen Bereich ab, wird eine Meldung ausgegeben.

- Dazu erfolgt ein Historieneintrag im Untermenü *HISTORY.* Beschreibung siehe "25.2.22.7. Historieneinträge im Untermenü HISTORY".
- Das Statussignal, das der Meldung zugeordnet ist, erscheint in kurzen Abständen auf dem Display. Siehe auch *D.MSG* und *CONFIG.MSG* in Kapitel "25.2.22.5" auf Seite 145.

Zusätzlich zur Überwachung gibt es einen Temperaturschleppzeiger. Dieser zeigt von den gemessenen Temperaturwerten den Niedrigsten und Höchsten an. Über die Taste CLEAR kann der Schleppzeiger zurückgesetzt werden.

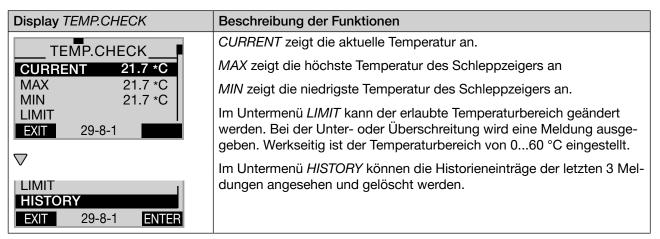


Tabelle 90: TEMP.CHECK; Temperaturbereich

Bedienstruktur:

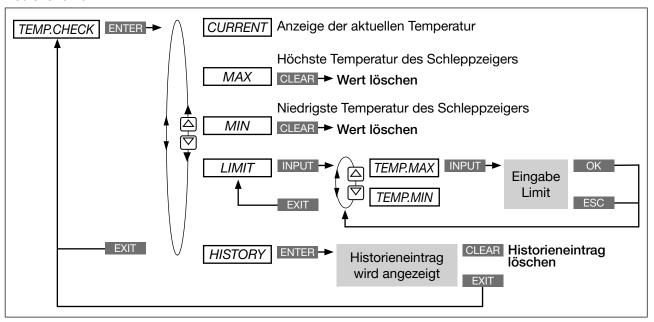


Abb. 95: Bedienstruktur TEMP.CHECK

Temperaturlimit für die Ausgabe von Meldungen festlegen

Taste	Aktion	Beschreibung
▲/▼	TEMP.CHECK auswählen	(Dazu muss die Funktion <i>TEMP.CHECK</i> ins Hauptmenü von <i>DIAGNOSE</i> aufgenommen sein. Siehe Kapitel "25.2.22.4. Aktivierung von Diagnosefunktionen").
ENTER	drücken	Das Menü wird angezeigt.
△/▽	LIMIT auswählen	
ENTER	drücken	Das obere und untere Temperaturlimit wird angezeigt. Das obere Limit <i>TEMP.MAX</i> ist bereits ausgewählt.
INPUT	drücken	Eingabemaske für oberes Temperaturlimit öffnen.

Taste	Aktion	Beschreibung
△/▼	+ Wert erhöhen	Oberes Temperaturlimit TEMP.MAX eingeben.
	Wechsel der Dezimalstelle	
OK	drücken	Wert bestätigen.
△/▽	TEMP.MIN auswählen	
INPUT	drücken	Werkseitig für unteres Temperaturlimit öffnen.
△/▼	+ Wert erhöhen	Unteres Temperaturlimit TEMP.MIN eingeben.
	Wechsel der Dezimalstelle	
OK	drücken	Wert bestätigen.
EXIT	drücken	Rückkehr ins Menü TEMP.CHECK.
EXIT	drücken	Rückkehr ins Hauptmenü <i>DIAGNOSE.</i>

Tabelle 91: TEMP.CHECK; Temperaturlimit festlegen.

STROKE.CHECK - Endlagenüberwachung

Mit der Funktion *STROKE.CHECK* werden die physikalischen Endlagen der Armatur überwacht. Auf diese Weise können Abnutzungserscheinungen am Ventilsitz erkannt werden.

Dazu wird für die untere Endlage (Position 0 %) und die obere Endlage (Position 100 %) ein Toleranzband angegeben. Überschreitet oder unterschreitet eine Endlage das Toleranzband wird eine Meldung ausgegeben.

- Dazu erfolgt ein Historieneintrag im Untermenü *HISTORY*. Beschreibung siehe "25.2.22.7. Historieneinträge im Untermenü HISTORY".
- Das Statussignal, das der Meldung zugeordnet ist, erscheint in kurzen Abständen auf dem Display. Siehe auch *D.MSG* und *CONFIG.MSG* in Kapitel "25.2.22.5" auf Seite 145.

Zusätzlich zur Überwachung gibt es einen Endlagenschleppzeiger. Dieser zeigt von den ermittelten Endlagen die minimalste und maximale Position an. Über die Taste CLEAR kann der Schleppzeiger zurückgesetzt werden.

Display STROKE.CHECK	Beschreibung der Funktionen
STROKE.CHECK	MAX zeigt die maximale Position des Schleppzeigers an
MAX 67.6 %	MIN zeigt die minimalste Position des Schleppzeigers an.
MIN 30. 9 % LIMIT HISTORY EXIT 29-9-1	Im Untermenü <i>LIMIT</i> kann das Toleranzband für die physikalischen Endlagen eingestellt werden. Bei der Unter- oder Überschreitung wird eine Meldung ausgegeben.
<u> </u>	Beispiel: Eingabe obere Endlage <i>TOL MAX</i> = 1 % Ist die Position kleiner als -1 % wird eine Meldung ausgegeben
	Eingabe untere Endlage <i>TOL ZERO</i> = 1 % Ist die Position größer als 101 % wird eine Meldung ausgegeben
	Im Untermenü <i>HISTORY</i> können die Historieneinträge der letzten 3 Meldungen angesehen und gelöscht werden.

Tabelle 92: STROKE.CHECK; Endlagenüberwachung

ACHTUNG!

Wurde im Menü *X.LIMIT* eine Hubbegrenzung eingestellt, ist die mechanische Endlagenüberwachung nur begrenzt aussagekräftig.

Die in der Prozessebene unter *POS* angezeigten Endlagen sind in diesem Fall nicht die physikalisch bedingten Endlagen. Sie sind daher nicht mit den im Menü *STROKE.CHECK* unter *MIN* und *MAX* angezeigten Endlagen vergleichbar.

Bedienstruktur:

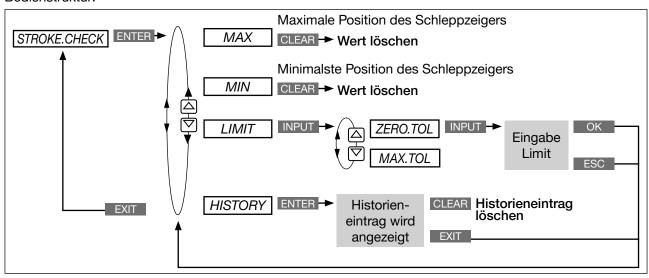


Abb. 96: Bedienstruktur STROKE.CHECK

Positionslimit für die Ausgabe von Meldungen festlegen

Taste	Aktion	Beschreibung
▲/▼	STROKE.CHECK auswählen	Dazu muss die Funktion <i>STROKE.CHECK</i> ins Hauptmenü von <i>DIAGNOSE</i> aufgenommen sein. Siehe Kapitel "25.2.22.4. Aktivierung von Diagnosefunktionen".
ENTER	drücken	Das Menü wird angezeigt.
△/▼	LIMIT auswählen	
ENTER	drücken	Die Untermenüs zur Eingabe der unteren und oberen Endlagentoleranz werden angezeigt. Das Untermenü zur Eingabe der unteren Endlagentoleranz ZERO.TOL ist bereits ausgewählt.
INPUT	drücken	Eingabemaske für untere Endlagentoleranz öffnen.
△/▼	+ Wert erhöhen	Untere Endlagentoleranz ZERO.TOL eingeben.
	Wechsel der Dezimalstelle	
OK	drücken	Wert bestätigen.
△/▽	MAX.TOL auswählen	
INPUT	drücken	Eingabemaske für obere Endlagentoleranz öffnen.
△/▼	+ Wert erhöhen	Obere Endlagentoleranz MAX.TOL eingeben.
	Wechsel der Dezimalstelle	

Taste	Aktion	Beschreibung
OK	drücken	Wert bestätigen.
EXIT	drücken	Rückkehr ins Menü STROKE.CHECK.
EXIT	drücken	Rückkehr ins Hauptmenü <i>DIAGNOSE.</i>

Tabelle 93: STROKE.CHECK; Endlagenüberwachung.

POS.MONITOR -Positionsüberwachung

Die Funktion POS.MONITOR überwacht die aktuelle Position des Antriebs.

Im Untermenü DEADBAND wird das Toleranzband für den Sollwert festgelegt.

Im Untermenü *COMP.TIME* (compensation time = Ausgleichszeit) wird ein Zeitraum für die Angleichung des Istwerts an den Sollwert vorgegeben.

Die Erfassung der Ausgleichszeit *COMP.TIME* beginnt, sobald der Sollwert konstant ist. Nach Ablauf der Ausgleichszeit beginnt die Überwachung.

Ist während der Überwachung die Regelabweichung (DEV) des Istwerts größer als das Toleranzband des Sollwerts, wird eine Meldung ausgegeben.

- Dazu erfolgt ein Historieneintrag im Untermenü *HISTORY*. Beschreibung siehe "25.2.22.7. Historieneintrage im Untermenü HISTORY".
- Das Statussignal, das der Meldung zugeordnet ist, erscheint in kurzen Abständen auf dem Display. Siehe auch *D.MSG* und *CONFIG.MSG* in Kapitel "25.2.22.5" auf Seite 145.

Display POS.MONITOR	Beschreibung der Funktionen
POS:MONITOR DEADBAND 2.0 %	Im Untermenü <i>DEADBAND</i> kann das werkseitig auf 2 % festgelegte Toleranzband des Sollwerts geändert werden.
COMP.TIME 10.0 sec HISTORY	In COMP.TIME (compensations time) wird die Ausgleichszeit eingestellt.
EXIT 29-11-1 INPUT	Im Untermenü <i>HISTORY</i> können die Historieneinträge der letzten 3 Meldungen angesehen und gelöscht werden.

Tabelle 94: POS.MONITOR; Positionsüberwachung

Schematische Darstellung

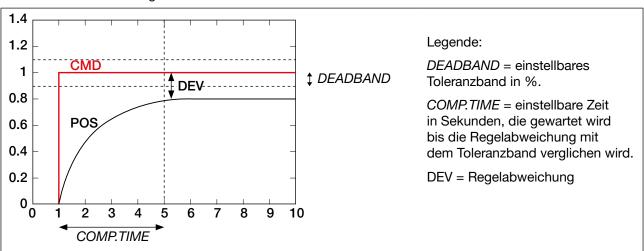


Abb. 97: POS.MONITOR; Schematische Darstellung Positionsüberwachung

Bedienstruktur:

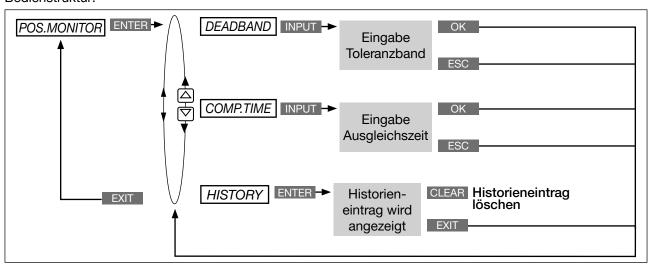


Abb. 98: Bedienstruktur POS.MONITOR

Toleranzband und Ausgleichszeit eingeben

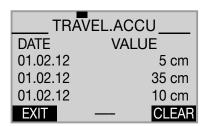
Taste	Aktion	Beschreibung
▲/▼	POS.MONITOR auswählen	(Dazu muss die Funktion POS.MONITOR ins Hauptmenü von DIAGNOSE aufgenommen sein. Siehe Kapitel "25.2.22.4. Aktivierung von Diagnosefunktionen").
ENTER	drücken	Das Menü wird angezeigt. DEADBAND ist bereits ausgewählt.
INPUT	drücken	Der voreingestellte Wert wird angezeigt.
△/▽	+ Wert erhöhen	Toleranzband eingeben.
	Wechsel der Dezimalstelle	
OK	drücken	Wert bestätigen.
△/▼	COMP.TIME auswählen	
INPUT	drücken	Der voreingestellte Wert wird angezeigt.
△/▼	+ Wert erhöhen	Ausgleichszeit eingeben.
	Wechsel der Dezimalstelle	
OK	drücken	Rückkehr ins Menü POS.MONITOR.
EXIT	drücken	Rückkehr ins Hauptmenü <i>DIAGNOSE.</i>

Tabelle 95: POS.MONITOR; Toleranzband und Ausgleichszeit festlegen.

PV.MONITOR - Prozessüberwachung (nur bei Typ 8793)

Die Funktion PV.MONITOR überwacht den Prozess-Istwert.

Das Bedienmenü ist identisch mit der zuvor beschriebenen Positionsüberwachung *POS.MONITOR*. Im Gegensatz dazu wird hier nicht die Position des Antriebs, sondern der Prozess überwacht.


25.2.22.7. Historieneinträge im Untermenü HISTORY

Jede Diagnosefunktion, die eine Meldung ausgeben kann, verfügt über das Untermenü HISTORY.

Mit dem Auslösen der Diagnosemeldung, wird ein Historieneintrag mit Datum und Wert erstellt. Die Historieneinträge der jeweiligen Diagnosefunktion können im Untermenü *HISTORY* angesehen und gelöscht werden.

Von jeder Diagnosemeldung werden maximal drei Historieneinträge gespeichert. Sind beim Auslösen einer Meldung bereits drei Historieneinträge vorhanden, wird der älteste Historieneintrag gelöscht.

Beispiel: Historie der Diagnosefunktion TRAVEL.ACCU

Beschreibung:

Links auf dem Display steht das Datum und rechts daneben der dazugehörige Wert.

Löschen der Historie:

Die Taste CLEAR gedrückt halten solange der Countdown (5...) läuft.

Über das Diagnosemenü *RESET.HISTORY* können die Historien aller Diagnosefunktionen gemeinsam gelöscht werden. Siehe Kapitel "25.2.22.5".

Löschen der Historien einer Diagnosefunktion am Beispiel TRAVEL.ACCU

Taste	Aktion	Beschreibung
△/▼	TRAVEL.ACCU auswählen	
ENTER	drücken	Das Menü wird angezeigt.
△/▽	HISTORY auswählen	
INPUT	drücken	Historieneinträge mit Datum und Wert werden angezeigt.
CLEAR	gedrückt halten solange Countdown (5) läuft	Die Historien der Diagnosefunktion TRAVEL.ACCU werden gelöscht.
EXIT	drücken	Rückkehr ins Menü TRAVEL.ACCU.
EXIT	drücken	Rückkehr ins Hauptmenü <i>DIAGNOSE</i> .

Tabelle 96: SERVICE.TIME; Zeitintervall für Meldung eingeben.

ACHTUNG!

Historieneinträge werden nur erstellt, wenn die Funktion *CLOCK* für die Anzeige in der Prozessebene aktiviert ist.

Um korrekte Historieneinträge zu erhalten, müssen Datum und Uhrzeit stimmen.

Nach einem Neustart müssen Datum und Uhrzeit neu eingestellt werden. Deshalb wechselt das Gerät nach einem Neustart sofort automatisch in das entsprechende Menü.

Aktivieren und Einstellen von CLOCK siehe Kapitel "17.4.1 Einstellen von Datum und Uhrzeit:"

25.3 Manuelle Konfiguration von X.TUNE

Diese Funktion ist nur bei speziellen Anforderungen nötig.

Für Standardanwendungen ist die Funktion *X.TUNE* werkseitig voreingestellt. Siehe Kapitel "22.2 X.TUNE – Automatische Anpassung des Stellungsreglers" .

Für besondere Anforderungen kann die Funktion *X.TUNE*, wie nachfolgende beschrieben, manuell konfiguriert werden.

Öffnen des Menüs zur manuellen Konfiguration von X.TUNE

Taste	Aktion	Beschreibung
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.
△/▽	X.TUNE auswählen	
RUN	kurz drücken	Öffnen des Menüs <i>Manual.TUNE</i> . Die Menüpunkte zur manuellen Konfiguration von <i>X.TUNE</i> werden angezeigt.

X.TUNE; Öffnen des Menüs zur manuellen Konfiguration von X.TUNE

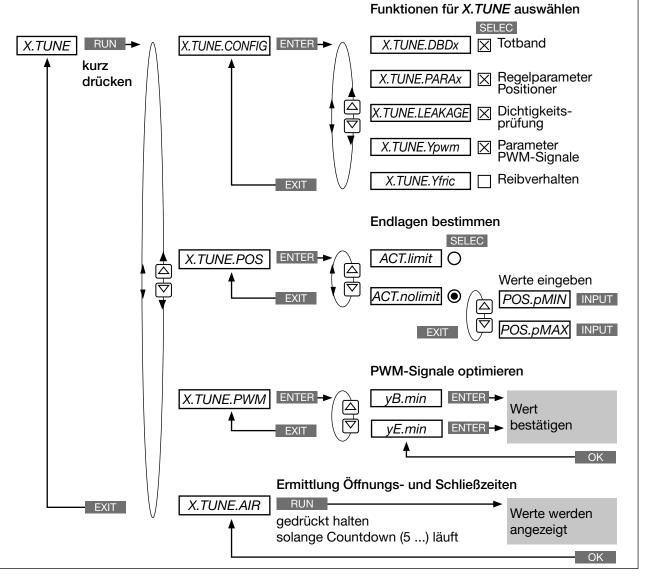


Abb. 99: Bedienstruktur für die manuelle Konfiguration von X.TUNE

25.3.1 Beschreibung des Menüs zur manuellen Konfiguration von X.TUNE

X.TUNE.CONFIG

Konfiguration der Funktion

X.TUNE

Festlegen welche Funktionen beim Ausführen der X.TUNE (automatischen Selbstoptimierung)

durchgeführt werden sollen.

M.TUNE.POS

Einstellung der Endlagen

- Angeben, ob der pneumatische Antrieb mecha-

nische Endlagen besitzt.

- Manuelle Vorgabe der Endlagen

Sind keine mechanischen Endlagen vorhanden, werden diese durch die X.TUNE nicht angefahren

und müssen manuell vorgegeben werden.

M.TUNE.PWM

Optimierung der PWM-Signale

Manuelles Optimieren der PWM-Signale

zur Ansteuerung der Belüftungsventile und

Entlüftungsventile.

Zur Optimierung müssen die Ventile belüftet und entlüftet werden. Ein Fortschrittsbalken zeigt auf dem Display die Geschwindigkeit an, mit der das

Ventil belüftet oder entlüftet wird.

Die Einstellung ist dann optimal, wenn sich der Fortschrittsbalken möglichst langsam

weiterbewegt.

M.TUNE.AIR

Ermittlung der Öffnungs- und Schließzeiten des Antriebs

Fortlaufende Ermittlung der Öffnungs- und

Schließzeiten des Antriebs.

X.TUNE.CONFIG - Konfiguration der Funktion X.TUNE 25.3.1.1.

In diesem Menü kann festgelegt werden, welche Funktionen beim automatischen Ausführen der Funktion X.TUNE ausgeführt werden sollen.

Festlegen der Funktionen in X.TUNE.CONFIG

Taste	Aktion	Beschreibung
△/▼	X.TUNE.CONFIG auswählen	
ENTER	drücken	Die Funktionen für die automatische Selbstparametrierung durch X.TUNE werden angezeigt.
▲/▼	Gewünschte Funktion auswählen	
SELEC	drücken	Die Funktion durch ankreuzen aktivieren ⊠ .
		Alle gewünschten Funktionen nacheinander über die Pfeiltasten ▲ / ▼ auswählen und durch ankreuzen ⊠ aktivieren.
EXIT	drücken	Rückkehr ins <i>Menü Manual.TUNE</i> .

Tabelle 97: X.TUNE.CONFIG; Festlegen der Funktionen für die automatische Selbstparametrierung durch X.TUNE

25.3.1.2. X.TUNE.POS - Einstellung der Endlagen

In diesem Menü wird festgelegt, ob der pneumatische Antrieb mechanische Endlagen besitzt oder nicht. Sind keine mechanischen Endlagen vorhanden, werden diese durch die *X.TUNE* nicht angefahren und müssen manuell vorgegeben werden.

Einstellung der Endlagen

Taste	Aktion	Beschreibung
△/▽	M.TUNE.POS auswählen	
ENTER	drücken	Die Auswahl für ACT.limit = mechanische Endlagen vorhanden ACT.nolimit = mechanische Endlagen nicht vorhanden wird angezeigt.
Bei vorha	ındenen mechanischen Endlag	gen
△/▼	ACT.limit auswählen	
SELEC	drücken	Die Auswahl ist durch einen gefüllten Kreis markiert.
EXIT	drücken	Rückkehr ins <i>Menü Manual.TUNE</i> .
Bei nicht	vorhandenen mechanischen E	Endlagen
△/▼	ACT.nolimit auswählen	
SELEC	drücken	Das Untermenü CAL.POS zur Eingabe der Endlagen wird geöffnet.
△/▼	POS.pMIN auswählen	
INPUT	drücken	Die Eingabemaske für den Wert der unteren Endlage wird geöffnet.
△/▼	OPN mehr öffnen mehr schließen	Untere Endlage des Ventils anfahren.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü CAL.POS.
△/▼	POS.pMAX auswählen	
INPUT	drücken	Die Eingabemaske für den Wert der oberen Endlage wird geöffnet.
△/▼	OPN mehr öffnen CLS mehr schließen	Obere Endlage des Ventils anfahren.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü CAL.POS.
EXIT	drücken	Rückkehr ins Menü <i>M.TUNE.POS.</i>
EXIT	drücken	Rückkehr ins Menü <i>Manual.TUNE</i> .

Tabelle 98: M.TUNE.POS; Einstellung der Endlagen

25.3.1.3. *M.TUNE.PWM* - Optimierung der PWM-Signale

In diesem Menü werden die PWM-Signale zur Ansteuerung der Belüftungsventile und Entlüftungsventile manuell optimiert.

Zur Optimierung wird der Antrieb belüftet und entlüftet. Ein Fortschrittsbalken zeigt auf dem Display die Position des Antriebs an und die Geschwindigkeit der Belüftung und Entlüftung.

Die Einstellung ist dann optimal, wenn sich der Fortschrittsbalken möglichst langsam weiterbewegt.

WARNUNG!

Gefahr durch unkontrollierte Ventilbewegung bei Ausführung der Funktion M.TUNE.PWM.

Beim Ausführen der Funktion M.TUNE.PWM unter Betriebsdruck besteht akute Verletzungsgefahr.

- ► X.TUNE.PWM niemals bei laufendem Prozess durchführen.
- ► Anlage gegen unbeabsichtigtes Betätigen sichern.

Optimierung der PWM-Signale

Taste	Aktion	Beschreibung
\triangle/∇	M.TUNE.PWM auswählen	
ENTER	drücken	Das Untermenü wird angezeigt. yB.min = Belüftungsventil yE.min = Entlüftungsventil
△/▼	yB.min auswählen	Untermenü zum Einstellen des PWM-Signals für das Belüftungsventil.
ENTER	drücken	Die Eingabemaske zum Einstellen des PWM-Signals wird geöffnet. Der Fortschrittsbalken zeigt die Geschwindigkeit der Belüftung an.
△/▼	Geschwindigkeit erhöhen	Geschwindigkeit so minimieren, dass sich der Fortschrittsbalken möglichst langsam von links nach rechts weiterbewegt.
	Geschwindigkeit verringern	Achtung! Die Geschwindigkeit nicht so weit minimieren, dass der Fortschrittsbalken in einer Position verharrt.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü M.TUNE.PWM.
▲/▼	yE.min auswählen	Untermenü zum Einstellen des PWM-Signals für das Entlüftungsventil.
ENTER	drücken	Die Eingabemaske zum Einstellen des PWM-Signals wird geöffnet. Der Fortschrittsbalken zeigt die Geschwindigkeit der Entlüftung an.
△/▼	Geschwindigkeit erhöhen	Geschwindigkeit so minimieren, dass sich der Fortschrittsbalken möglichst langsam von rechts nach links weiterbewegt.
	Geschwindigkeit verringern	Achtung! Die Geschwindigkeit nicht so weit minimieren dass der Fortschrittsbalken in einer Position verharrt.
OK	drücken	Übernahme und gleichzeitig Rückkehr ins Menü M.TUNE.PWM.
EXIT	drücken	Rückkehr ins Menü <i>Manual.TUNE</i> .

Tabelle 99: M.TUNE.PWM; Optimierung der PWM-Signale

25.3.1.4. M.TUNE.AIR - Ermittlung der Öffnungs- und Schließzeiten

Durch Ausführen dieser Funktion wird die Öffnungs- und Schließzeit des Ventils fortlaufend ermittelt.

Eine Veränderung des Versorgungsdrucks beeinflusst die Belüftungszeit, die sich auf diese Weise optimiert lässt.

Zur Einstellung können die Auswirkungen, die eine Veränderung des Versorgungsdrucks auf die Belüftungszeit hat, über die Funktion *M.TUNE.AIR* fortlaufend beobachtet werden.

Fortlaufende Ermittlung der Öffnungs- und Schließzeiten

Taste	Aktion	Beschreibung
△/▽	M.TUNE.AIR auswählen	
RUN	gedrückt halten solange Countdown (5) läuft	Die Zeiten für Belüftung und Entlüftung werden angezeigt. time.open = Belüftung time.close = Entlüftung
-	-	Zur Anpassung der Belüftungszeit den Versorgungsdruck ändern.
		Die dadurch geänderte Belüftungszeit wird fortlaufend angezeigt.
EXIT	drücken	Rückkehr ins Menü <i>Manual.TUNE.</i>
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.

Tabelle 100: M.TUNE.AIR; Fortlaufende Ermittlung der Öffnungs- und Schließzeiten

26 BEDIENSTRUKTUR UND WERKSEINSTELLUNG

Die werkseitigen Voreinstellungen sind in der Bedienstruktur jeweils rechts vom Menü in blauer Farbe dargestellt.

Beispiele:

○ /⊠	Werkseitig aktivierte oder ausgewählte Menüpunkte	
0/□	Werkseitig nicht aktivierte oder nicht ausgewählte Menüpunkte	
2 %, 10 sec,	Werkseitig eingestellte Werte	

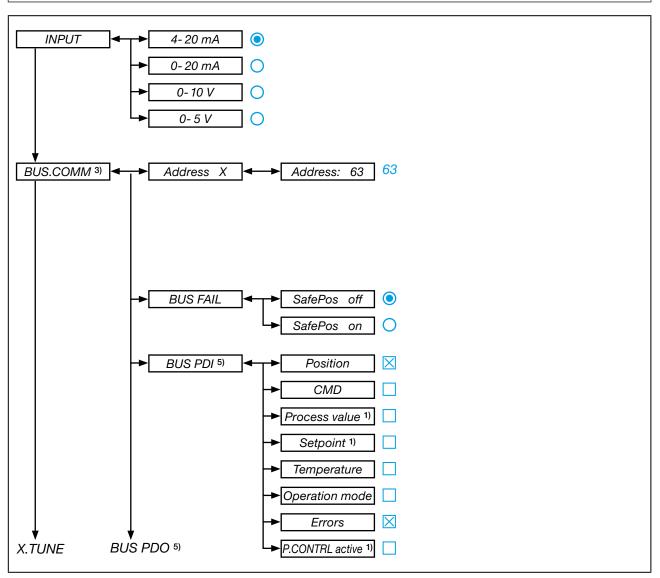


Abb. 100: Bedienstruktur - 1

- 1) nur Prozessregler Typ 8793
- 3) nur bei Feldbus
- 5) nur PROFIBUS DP

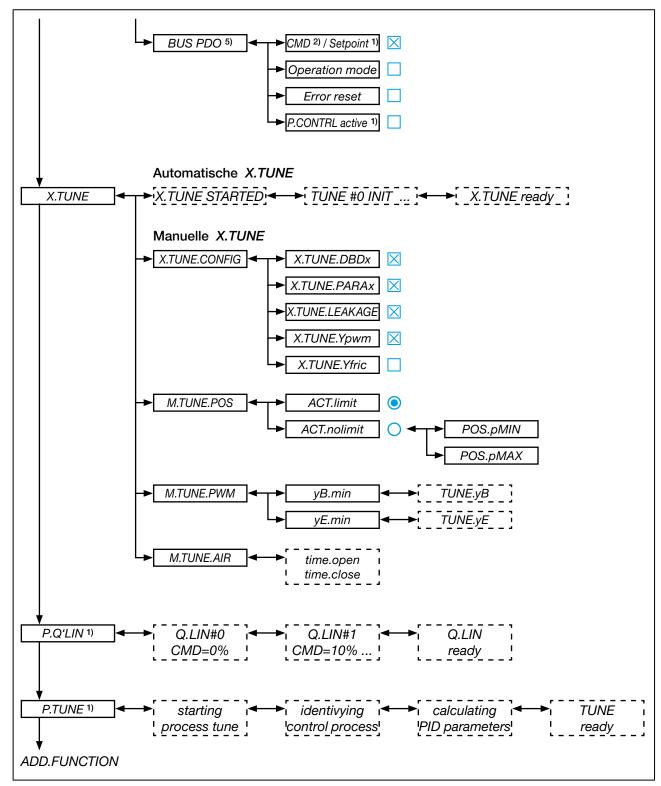


Abb. 101: Bedienstruktur - 2

¹⁾ nur Prozessregler Typ 8793

²⁾ nur bei Stellungsreglerbetrieb

⁵⁾ nur PROFIBUS DP

Abb. 102: Bedienstruktur - 3

¹⁾ nur Prozessregler Typ 8793

²⁾ nur bei Stellungsreglerbetrieb

⁶⁾ nur bei Signalart 4-20 mA und Pt 100

⁷⁾ Optional. Die Anzahl der Ausgänge ist von der Variante abhängig.

⁸⁾ nur bei Typ 8793 Remote

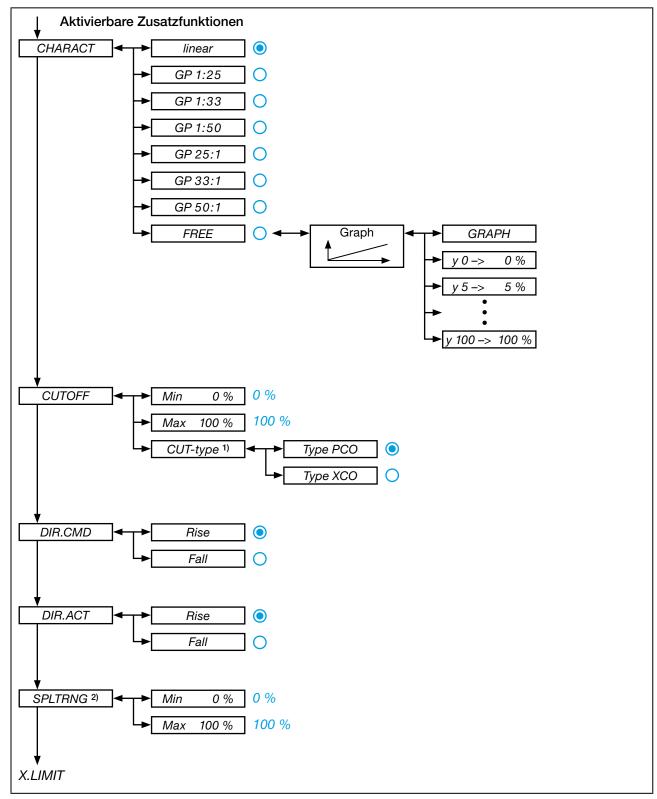


Abb. 103: Bedienstruktur - 4

¹⁾ nur Prozessregler Typ 8793

²⁾ nur bei Stellungsreglerbetrieb

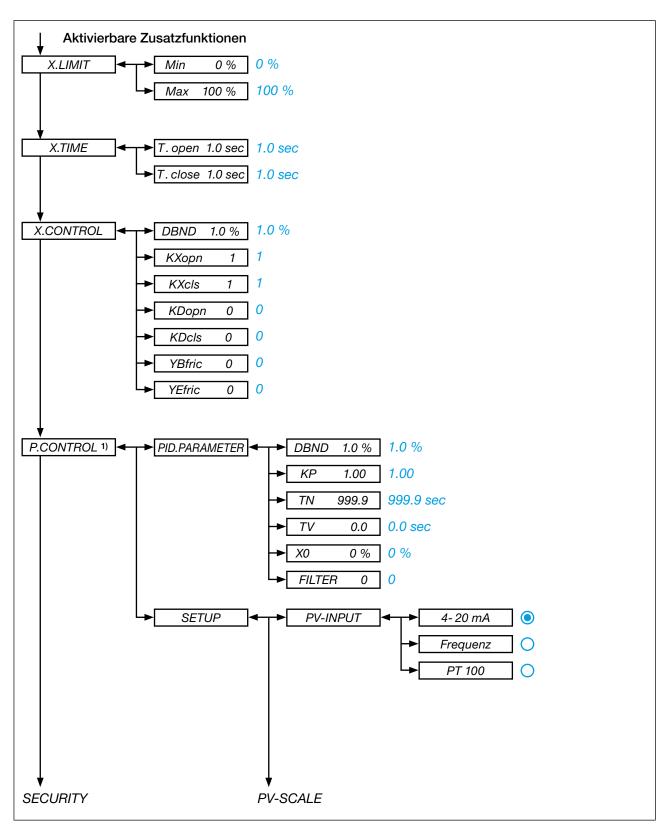


Abb. 104: Bedienstruktur - 5

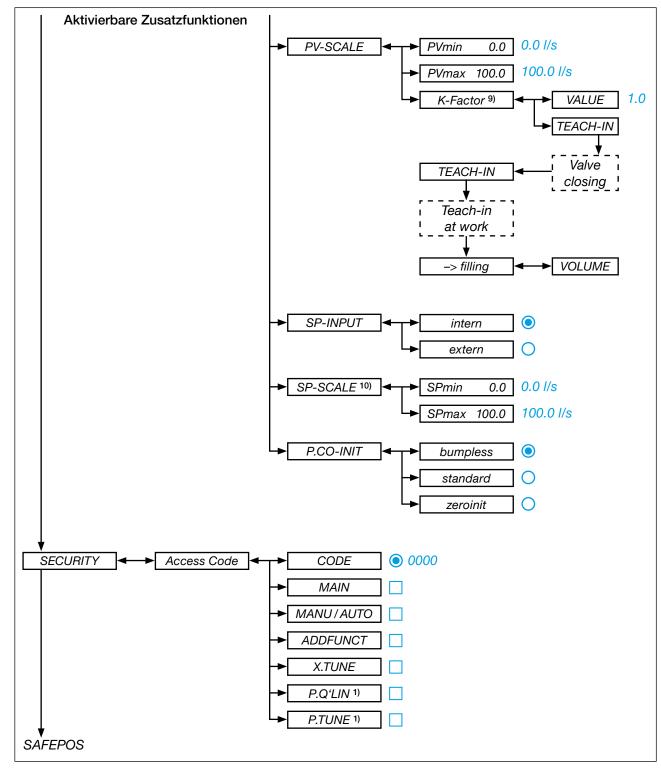


Abb. 105: Bedienstruktur - 6

¹⁾ nur Prozessregler Typ 8793

⁹⁾ nur bei Signalart Frequenz (P.CONTROL \rightarrow SETUP \rightarrow PV-INPUT \rightarrow Frequenz)

¹⁰⁾ nur Prozessregler Typ 8793 und bei externer Sollwertvorgabe (P.CONTROL → SETUP → SP-INPUT → extern)

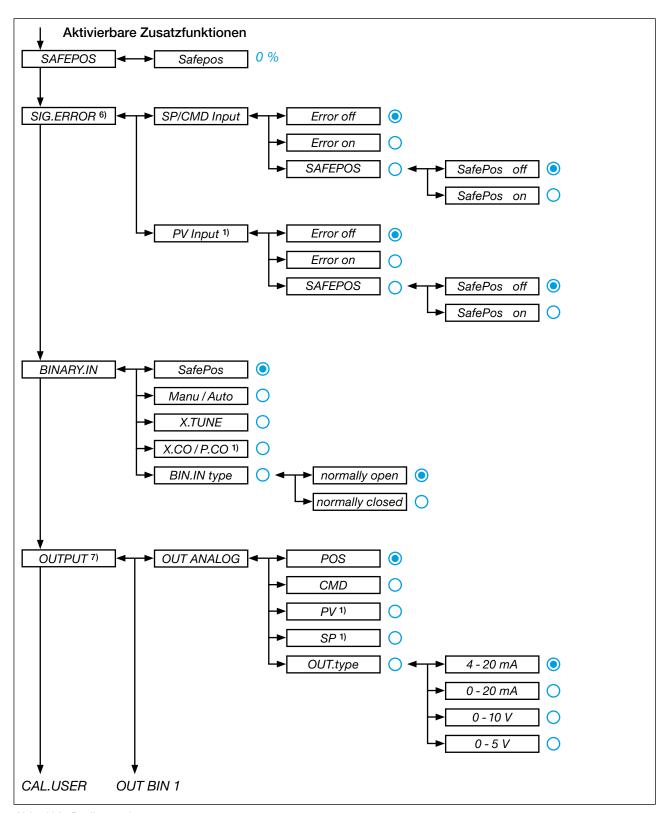


Abb. 106: Bedienstruktur - 7

¹⁾ nur Prozessregler Typ 8793

⁶⁾ nur bei Signalart 4-20 mA und Pt 100

⁷⁾ Optional. Die Anzahl der Ausgänge ist von der Variante abhängig.

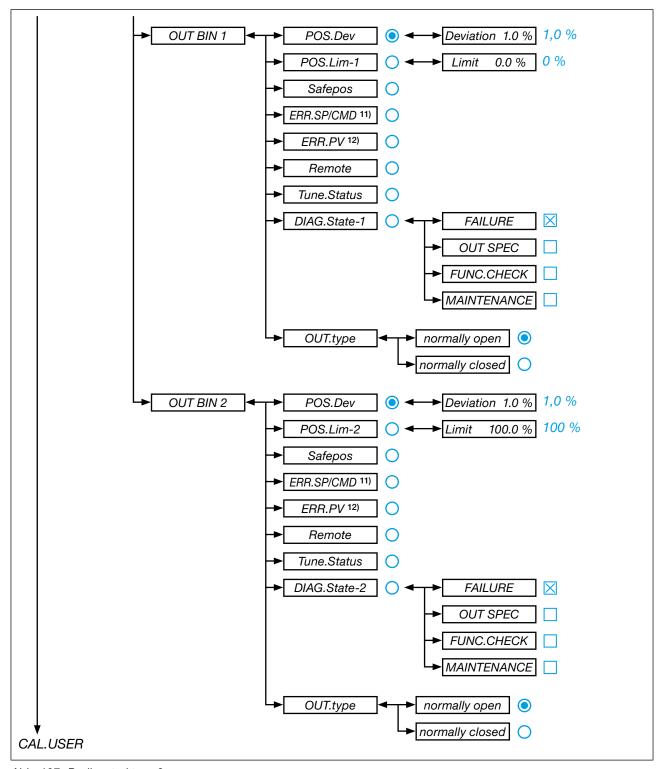


Abb. 107: Bedienstruktur - 8

¹¹⁾ nur wenn die Fehlererkennung für das Eingangssignal aktiviert ist (SIG.ERROR → SP/CMD Input oder PV-Input → Error on)

¹²⁾ nur Prozessregler Typ 8793 und wenn die Fehlererkennung für das Eingangssignal aktiviert ist (SIG.ERROR \rightarrow SP/CMD Input oder PV-Input \rightarrow Error on)

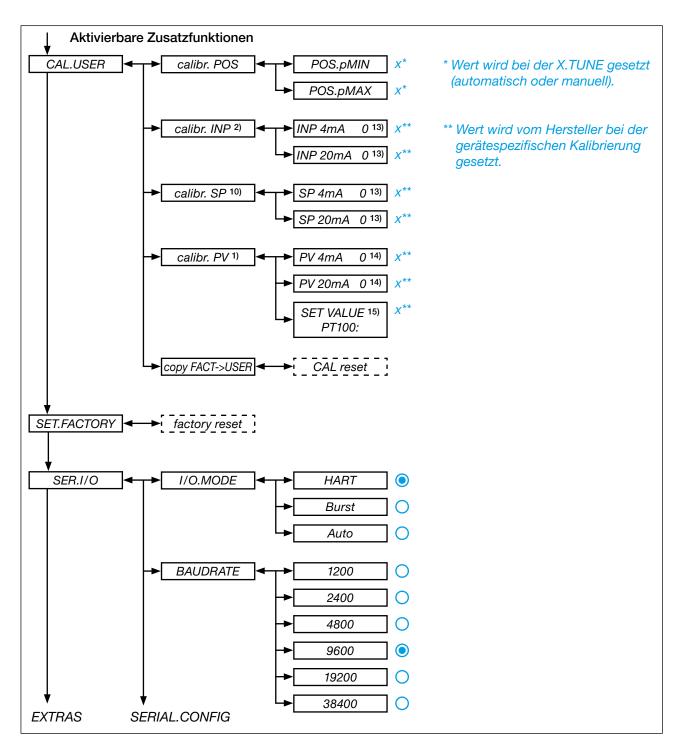


Abb. 108: Bedienstruktur - 9

- 1) nur Prozessregler Typ 8793
- 2) nur bei Stellungsreglerbetrieb
- 10) nur Prozessregler Typ 8793 und bei externer Sollwertvorgabe (P.CONTROL → SETUP → SP-INPUT → extern)
- 13) angezeigt wird die Signalart, die im Menü INPUT ausgewählt ist
- **14)** nur bei Signalart 4-20 mA (P.CONTROL → SETUP → PV-INPUT → 4-20 mA)
- **15**) nur bei Beschaltung mit Pt 100 (P.CONTROL → SETUP → PV-INPUT → PT 100)

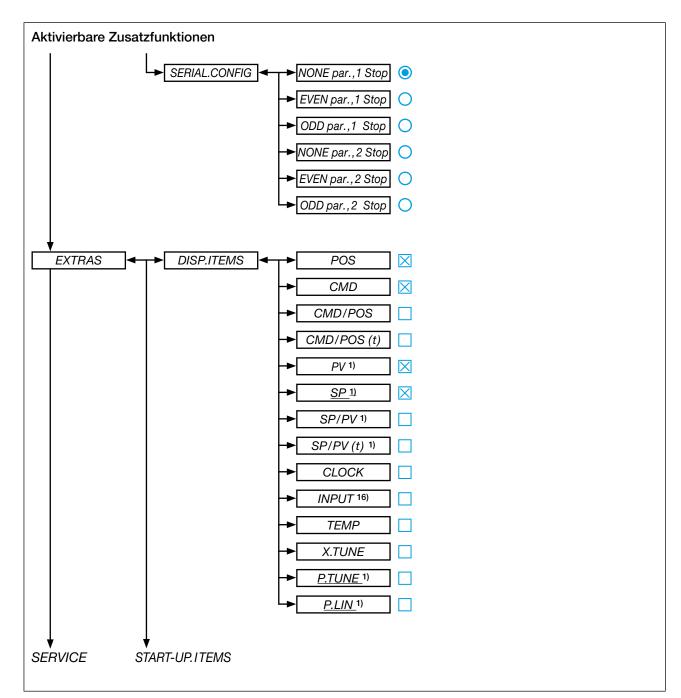


Abb. 109: Bedienstruktur - 10

16) nicht bei Feldbus

nur Prozessregler Typ 8793

Abb. 110: Bedienstruktur - 11

nur Prozessregler Typ 8793

⁸⁾ nur bei Typ 8793 Remote

¹⁶⁾ nicht bei Feldbus

¹⁸⁾nur bei NAMUR-Variante

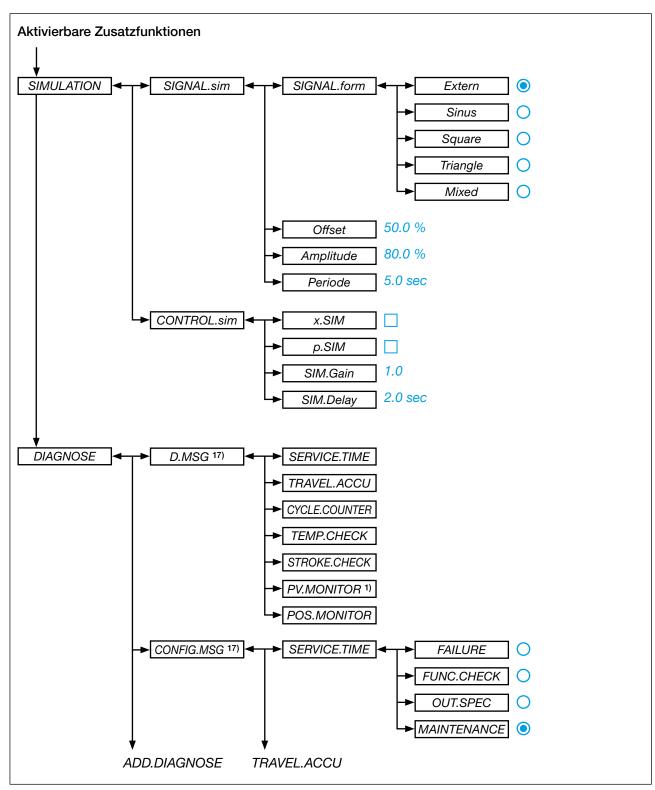


Abb. 111: Bedienstruktur - 12

¹⁾ nur Prozessregler Typ 8793

¹⁷⁾ im Untermenü sind nur die aktivierten Diagnosefunktionen aufgelistet

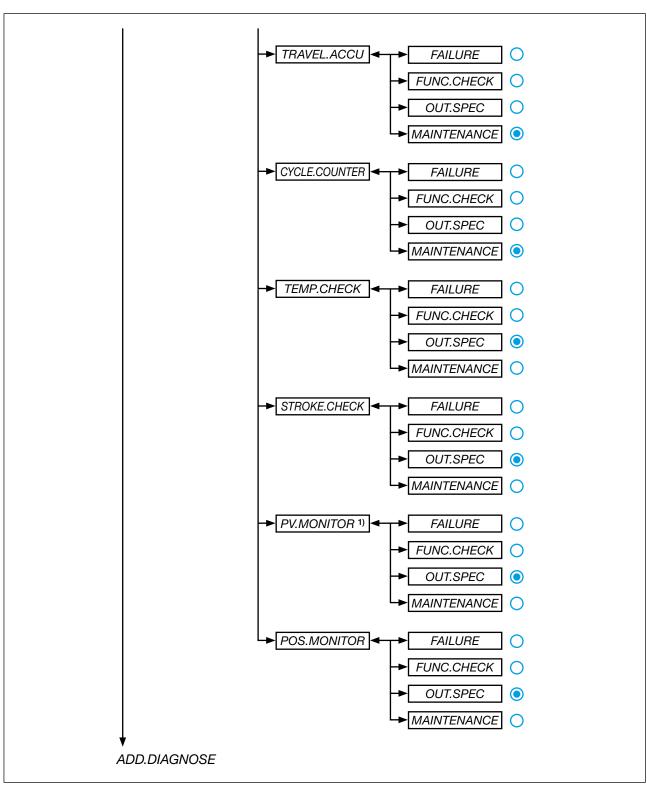


Abb. 112: Bedienstruktur - 13

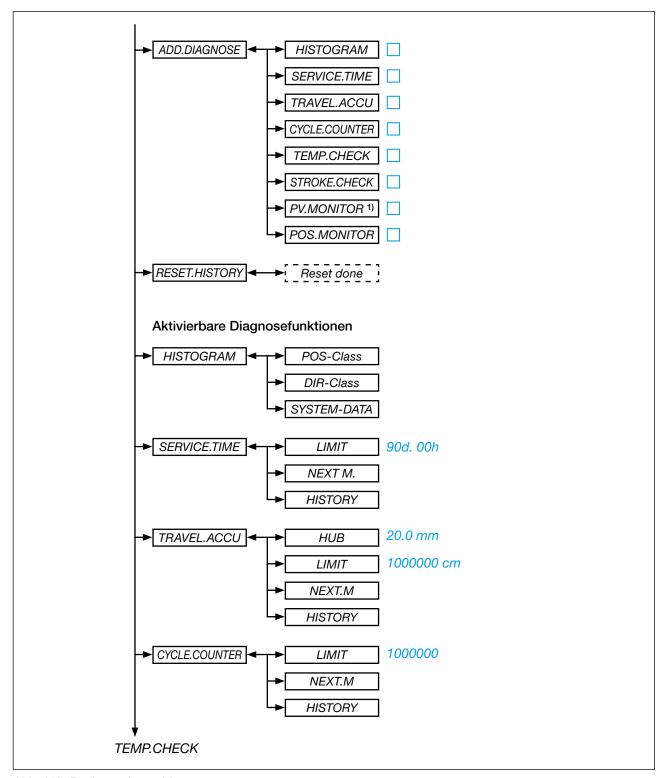


Abb. 113: Bedienstruktur - 14

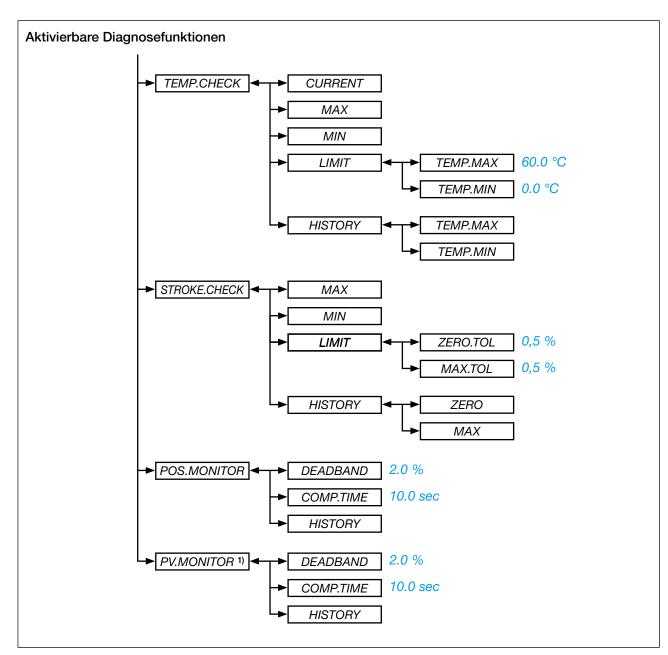


Abb. 114: Bedienstruktur - 15

27 PROFIBUS DP

27.1 Technische Daten

Der Protokollablauf entspricht der Norm DIN 19245 Teil 3.

GSD-Datei BUER0C1E.gsd
Bitmap-Dateien BUER0C1E.bmp

PNO-ID 0C1E Hex

Baudrate Max. 12 Mbaud

(wird vom Typ 8792/8793 automatisch eingestellt)

Sync- und Freeze-Mode Werden nicht unterstützt

Diagnosetelegramm Keine gerätebezogene Diagnose

Parametertelegramm Keine Anwenderparameter

Die Konfiguration der Prozessdaten erfolgt im Typ 8792/8793 und im PROFIBUS Master. Maximal können 10 Prozesswerte (Summe *INPUT* und *OUTPUT*) übertragen werden.

27.2 Schnittstellen

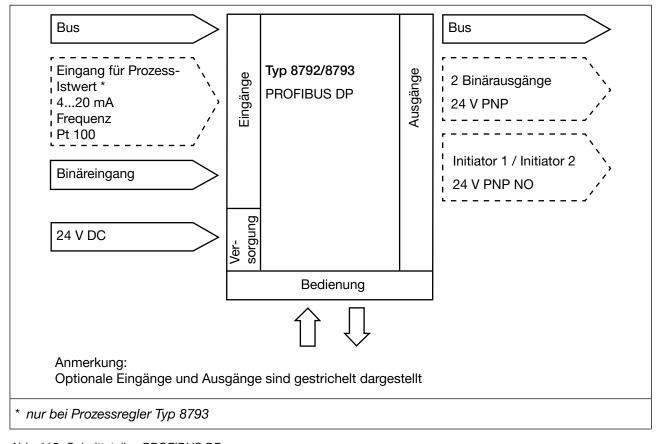


Abb. 115: Schnittstellen PROFIBUS DP

PROFIBUS DP

27.3 Wechsel des Betriebszustands

Der Wechsel zwischen den Betriebszuständen HAND und AUTOMATIK ist beim PROFIBUS DP auf zwei Arten möglich:

- Eingabe über die Tastatur am Gerät:
 In der Prozessebene mit der Tastenfunktion MANU und AUTO.
- Der Betriebszustand wird über den Bus (unter *PDO MODE*) an das Gerät übertragen. In diesem Fall ist das Umschalten über die Tastatur am Gerät nicht mehr möglich.

27.4 Sicherheitsposition bei Ausfall des Busses

Es wird die Position angefahren, die dem zuletzt übertragenen Sollwert entspricht (Default-Einstellung). Weitere Einstellungsmöglichkeiten (siehe Kapitel "27.8.3 BUS.COMM – Einstellungen am Typ 8792/8793").

27.5 Bus-Zustandsanzeige

Die Bus-Zustandsanzeige erfolgt über das Display am Gerät.

Displayanzeige	Gerätezustand	Erläuterung	Problembeseitigung
BUS offline (wird ca. alle 3 Sekunden angezeigt)	Offline	Gerät hat keine Verbindung zum Bus.	 Busanschluss inkl. Steckerbelegung überprüfen. Betriebsspannung und Busanschluss der anderen Teilnehmer überprüfen.

Tabelle 101: Bus-Zustandsanzeige; PROFIBUS DP

27.6 Abweichungen der Feldbusgeräte zu Geräten ohne Feldbus

Für den Typ 8792/8793 mit PROFIBUS DP haben folgende Kapitel dieser Bedienungsanleitung keine Gültigkeit.

Abschnitt "Installation" Kapitel "14 Elektrischer Anschluss - Variante Rundsteckverbinder

(Multipolvariante)"

Kapitel "15 Elektrischer Anschluss - Variante Klemmen für

Kabelverschraubung"

• Abschnitt "Inbetriebnahme" Kapitel "22.1 INPUT – Einstellung des Eingangssignals"

Abschnitt "Zusatzfunktionen"
 Kapitel "25.2.5 SPLTRNG – Signalbereichsaufteilung (Split range)"

Kapitel "25.2.15 CAL.USER - Kalibrierung von Istwert und Sollwert"

- Menüpunkt calibr. INP, Kalibrierung des Stellungs-Sollwerts

- Menüpunkt calibr.SP, Kalibrierung des Prozess-Sollwerts

27.7 Elektrische Anschlüsse

GEFAHR!

Verletzungsgefahr durch Stromschlag.

- ▶ Vor Eingriffen in das Gerät oder die Anlage, Spannung abschalten und gegen Wiedereinschalten sichern.
- ▶ Die geltenden Unfallverhütungs- und Sicherheitsbestimmungen für elektrische Geräte beachten.

WARNUNG!

Verletzungsgefahr bei unsachgemäßer Installation.

▶ Die Installation darf nur autorisiertes Fachpersonal mit geeignetem Werkzeug durchführen.

Verletzungsgefahr durch ungewolltes Einschalten der Anlage und unkontrollierten Wiederanlauf.

- ► Anlage gegen unbeabsichtigtes Betätigen sichern.
- ► Nach der Installation einen kontrollierten Wiederanlauf gewährleisten.

HINWEIS!

Die elektromagnetische Verträglichkeit (EMV) ist nur dann gewährleistet, wenn das Gerät korrekt an einen Erdungspunkt angeschlossen wird.

Zum Anschluss der Technischen Erde (TE) befindet sich außen am Antriebsgehäuse ein TE-Anschluss.

→ Den TE-Anschluss über ein möglichst kurzes Kabel (Maximallänge 30 cm) mit dem Erdungspunkt verbinden.

27.7.1 Anschlussbild Typ 8792

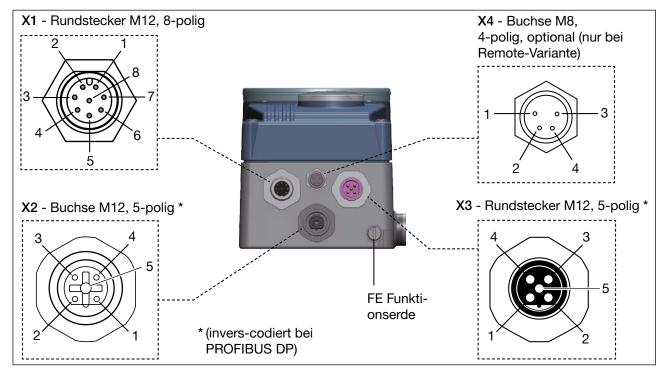


Abb. 116: Anschluss PROFIBUS DP, Positioner Typ 8792

27.7.2 Anschlussbild Typ 8793

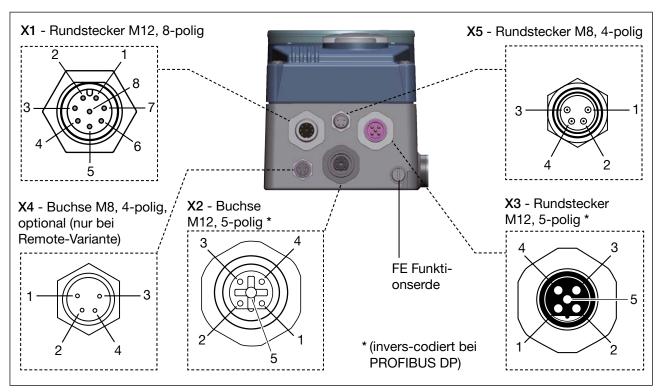


Abb. 117: Anschluss PROFIBUS DP, Prozessregler Typ 8793

27.7.3 X1 - Rundstecker M12, 8-polig

Pin	Belegung	Geräteseitig	Äußere Beschaltung / Signalpegel		
1	nicht belegt				
2	nicht belegt				
Betrie	ebsspannung				
3	GND	3 0	1 24 V DC ± 10 %		
4	+24 V	4 0	max. Restwelligkeit 10 %		
Einga	Eingangssignale der Leitstelle (z.B. SPS)				
5	Binäreingang +	5 0	-+ 05 V (log. 0) 1030 V (log. 1)		
6	Binäreingang –	6 o	-GND (identisch mit Pin 3)		
Ausg	Ausgangssignale zur Leitstelle (z.B. SPS) - (nur belegt bei Option Binärausgang)				
7	Binärausgang 1 (bezogen auf Pin 3)	7 o	-024 V		
8	Binärausgang 2 (bezogen auf Pin 3)	8 0	-024 V		

Tabelle 102: Pin-Belegung; X1 - Rundstecker M12, 8-polig, PROFIBUS DP

27.7.4 X2/X3 - Buchse/Rundstecker M12, 5-polig - Busanschluss

Pin	Belegung	Äußere Beschaltung / Signalpegel
1	VP+5	Versorgung der Abschlusswiderstände
2	RxD/TxD-N	Empfangs-/Sendedaten -N, A-Leitung
3	DGND	Datenübertragungspotential (Masse zu 5 V)
4	RxD/TxD-P	Empfangs-/Sendedaten -P, B-Leitung
5	Schirm	Schirm / Schutzerde

Tabelle 103: Pin-Belegung; X2/X3 - Buchse/Rundstecker M12, 5-polig - Busanschluss, PROFIBUS DP

27.7.5 X4 - Buchse M8, 4-polig, optional - Remote Sensor (nur bei Remote-Variante)

Anschluss des digitalen, berührungslosen Wegaufnehmers Typ 8798:

Pin	Belegung	egung Geräteseitig		Äußere Beschaltung	
1	Versorgung Sensor +	S+	0	+ —	
2	Versorgung Sensor –	S-	0	_	Remote Sensor
3	Serielle Schnittstelle, A-Leitung	Α	o	A-Leitung ——	Typ 8798 digital
4	Serielle Schnittstelle; B-Leitung	В	o	B-Leitung ——	

Tabelle 104: Pin-Belegung; X4 - Buchse M8, 4-polig - digitaler, berührungsloser Wegaufnehmer Typ 8798

Anschluss eines analogen, potentiometrischen Wegaufnehmers:

Pin	Belegung	Geräteseitig	Äußere Beschaltung
1	Potentiometer 1	1 0	
2	Schleifkontakt 2	2 0	Potentio- meter
3	Potentiometer 3	3 0	
4	nicht belegt		

Tabelle 105: Pin-Belegung; X4 - Buchse M8, 4-polig - analoger, potentiometrischer Wegaufnehmer

PROFIBUS DP

27.7.6 X5 - Rundstecker M8, 4-polig - Prozess-Istwert (bei Typ 8793)

Eingangs- typ*	Pin	Ader- farbe **	Belegung	DIP- Schalter***	Geräteseitig	Äußere Beschaltung
420 mA	1	braun	+24 V Versorgung Transmitter		1 0	
- intern versorgt	2	weiß	Ausgang von Transmitter			ransmitter
versorgt	3	blau	GND (identisch mit GND Betriebsspannung	Schalter links	3 0 4	GND
	4	schwarz	Brücke nach GND (Pin 3)		4 0	
420 mA	1	braun	nicht belegt		,	
- extern versorgt	2	weiß	Prozess-Ist +	0	2 0	420 mA
Voisoigt	3	blau	nicht belegt	Schalter rechts		
	4	schwarz	Prozess-Ist –	recins	4 0	GND 420 mA
Frequenz	1	braun	+24 V Versorgung Sensor		1 0	+24 V
-intern versorgt	2	weiß	Takt-Eingang +		2 0	Takt +
versorgt	3	blau	Takt-Eingang – (GND)	Schalter links	3 o ——	Takt – GND (identisch mit GND Betriebsspannung)
	4	schwarz	nicht belegt			
Frequenz	1	braun	nicht belegt			
- extern versorgt	2	weiß	Takt-Eingang +	0	2 0	Takt +
Versorge	3	blau	Takt-Eingang –	Schalter	3 •	Takt –
	4	schwarz	nicht belegt	rechts		
Pt 100	1	braun	nicht belegt		2 o	
(siehe Hinweis unten)	2	weiß	Prozess-Ist 1 (Stromspeisung)	Schalter	_	Pt 100
uniteri)	3	blau	Prozess-Ist 3 (GND)	rechts	3 0	
	4	schwarz	Prozess-Ist 2 (Kompensation)		4 o	

^{*} Über Software einstellbar (siehe Kapitel "24.2.1 PV-INPUT – Signalart für den Prozess-Istwert festlegen")

Tabelle 106: Pin-Belegung; X5 - Rundstecker M8, 4-polig - Prozess-Istwert-Eingangs, PROFIBUS DP

Den Sensor Pt 100 aus Leitungskompensationsgründen über 3 Leitungen anschließen. Pin 3 und Pin 4 unbedingt am Sensor brücken.

^{**} Die Aderfarben beziehen sich auf das als Zubehör erhältliche Anschlusskabel (918 718).

^{***} Der Schalter befindet sich im Innern des Geräts auf der Platine (siehe "Abb. 25: Lage des Schalters; Symbole für Schalterstellung" auf Seite 53).

27.8 Inbetriebnahme des PROFIBUS DP

27.8.1 Sicherheitshinweise

WARNUNG!

Verletzungsgefahr bei unsachgemäßem Betrieb.

Nicht sachgemäßer Betrieb kann zu Verletzungen, sowie Schäden am Gerät und seiner Umgebung führen

- ► Vor der Inbetriebnahme muss gewährleistet sein, dass der Inhalt der Bedienungsanleitung dem Bedienpersonal bekannt ist und vollständig verstanden wurde.
- Die Sicherheitshinweise und die bestimmungsgemäße Verwendung müssen beachtet werden.
- ▶ Nur ausreichend geschultes Personal darf die Anlage/das Gerät in Betrieb nehmen.

Vor der Inbetriebnahme die fluidische Installation (siehe Kapitel "13") und die elektrische Installation (Kapitel "27.7") des Typs 8792/8793 und des Ventils ausführen.

27.8.2 Ablauf der Inbetriebnahme

Für die Inbetriebnahme des Typs 8792/8793 PROFIBUS DP sind folgende Grundeinstellungen nötig:

Gerätetyp	Reihen- folge	Art der Grundeinstellung	Einstellung über	Beschreibung in Kapitel
8792 und 8793	1	Gerät an die örtlichen Bedingungen anpassen	X.TUNE	" <u>22.2"</u>
nur bei 8793 (Prozessre- gelung)	2	Prozessregler aktivieren.	ADD.FUNCTION	"23"
	3 4	Einstellungen am Typ 8792/8793: Geräteadresse eingeben. Sicherheitsposition aktivieren oder deaktivieren.	BUS.COMM	"27.8.3"
8792 und 8793	5	Konfiguration über die Steuerung (PROFIBUS DP Master): Konfiguration der Prozesswerte 1. <i>PDI:</i> Prozessdaten Input 2. <i>PDO:</i> Prozessdaten Output.	PROFIBUS DP Master mittels GSD-Datei und spezieller Software	"27.8.4"

Tabelle 107: Ablauf der Inbetriebnahme bei PROFIBUS DP

27.8.3 *BUS.COMM -* Einstellungen am Typ 8792/8793

Im Menü BUS.COMM zur Inbetriebnahme des PROFIBUS DP folgende Menüpunkte einstellen:

Address 0 Geräteadresse eingeben (Wert zwischen 0 und 126)

BUS FAIL Anfahren der Sicherheitsposition aktivieren oder deaktivieren

Auswahl SafePos off

— Der Antrieb bleibt in der Position stehen, die dem zuletzt übertragenen Sollwert entspricht (Default-Einstellung).

Auswahl SafePos on — Das Verhalten des Antriebs bei einem Fehler in der Buskommunikation ist von der Aktivierung der Zusatzfunktion SAFEPOS abhängig. Siehe Kapitel "25.2.11 SAFEPOS – Eingabe der Sicherheitsposition".

SAFEPOS aktiviert: Der Antrieb fährt in die Sicherheitsposition, die in der Zusatzfunktion SAFEPOS

vorgegeben ist.

SAFEPOS deaktiviert: Der Antrieb fährt in die Sicherheitsendlage die er bei Ausfall der elektrischen

und pneumatischen Hilfsenergie einnehmen würde. Siehe Kapitel "10.9 Sicherheitsendlagen nach Ausfall der elektrischen bzw. pneumatischen Hilfsenergie"

Vorgehensweise:

Taste	Aktion	Beschreibung	
MENU	ca. 3 s drücken	Wechsel von Prozessebene ⇒ Einstellebene.	
△/▼	BUS.COMM auswählen	Auswahl im Hauptmenü (MAIN).	
ENTER	drücken	Die Untermenüpunkte zur Grundeinstellung stehen nun zur Auswahl.	
Gerätead	resse einstellen		
△/▽	Address auswählen		
INPUT	drücken	Die Eingabemaske wird geöffnet.	
▲/▼	Wert erhöhen Wert verringern	Geräteadresse eingeben (Wert zwischen 0 und 126).	
OK	drücken	Rückkehr in BUS.COMM.	
Sicherhei	tsposition deaktivieren / aktivie	eren	
△/▼	BUS FAIL auswählen		
ENTER	drücken	Die Menüpunkte zum Deaktivieren und Aktivieren der Sicherheitsposition werden angezeigt.	
△/▼	Menüpunkt auswählen	SafePos off = deaktiviert	
		SafePos on = aktiviert	
SELEC	drücken	Die Auswahl ist nun durch einen gefüllten Kreis markiert.	
EXIT	drücken	Rückkehr in BUS.COMM.	
EXIT	drücken	Rückkehr ins Hauptmenü (MAIN).	
EXIT	drücken	Wechsel von Einstellebene ⇒ Prozessebene.	

Tabelle 108: BUS.COMM; Einstellungen

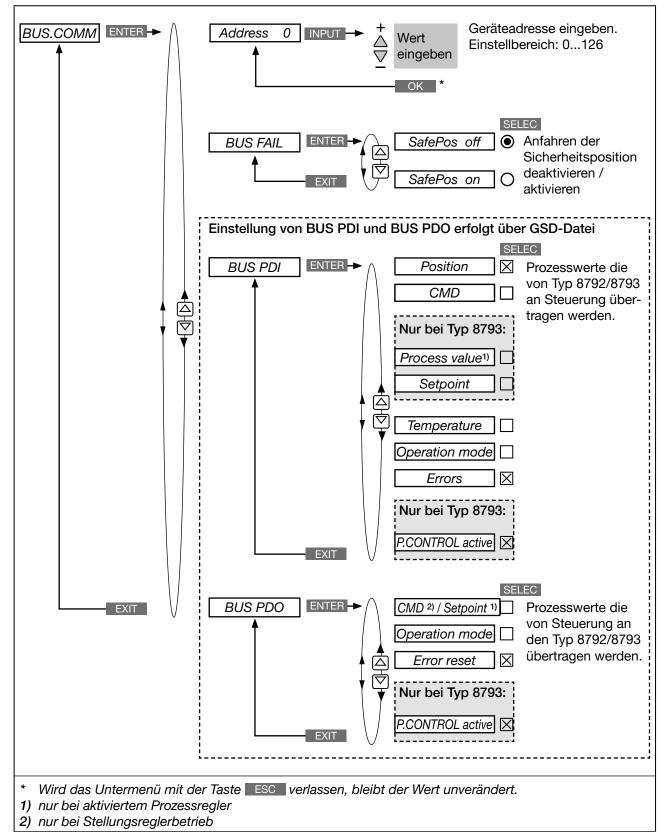


Abb. 118: Bedienstruktur - BUS.COMM; PROFIBUS DP

27.8.4 Konfiguration über die Steuerung (PROFIBUS DP Master)

Für die Konfiguration sind folgende Komponenten erforderlich:

- Eine für die Konfiguration geeignete Software. Zum Beispiel Step7 von Siemens die kurze Beschreibung dazu finden Sie im nachfolgenden Kapitel "27.9 Konfiguration mit Siemens Step7".
- GSD-Datei (Download von der Bürkert Homepage:)

27.8.5 Ergänzende Literatur zur Konfiguration des PROFIBUS DP

Für ausführlichere Informationen gibt es auf der Bürkert Homepage ergänzende Anleitungen:

 "Konfiguration am PROFIBUS mittels GSD-Datei" www.buerkert.de → Typ 8792 oder Typ 8793 → Config. PROFIBUS by GSD-file

27.8.6 Konfiguration der Prozesswerte

→ Zuerst die PDI (Prozessdaten Input) eingegeben.

PDI: Process Data Input (vom Typ 8792/8793 zur Steuerung)

Name	Beschreibung	Kennung
PDI:POS	Istposition (Position)	GSD-Datei: PDI:POS
	Istwert Positioner in ‰. Wertebereich 01000. Werte < 0 bzw. > 1000 sind möglich, wenn z.B. Autotune nicht richtig durchgelaufen ist.	Kennung (HEX): 41, 40, 00
PDI:CMD	Sollposition (Command)	GSD-Datei: PDI:CMD
	Sollwert Positioner in ‰. Wertebereich 01000.	Kennung (HEX): 41, 40, 01
PDI:PV	Prozess-Istwert (Process Value)	GSD-Datei: PDI:PV
	Istwert Prozessregler in physikalischer Einheit (wie im Menü <i>P.CONTROL</i> → <i>SETUP</i> → <i>PV-INPUT</i> bzw. <i>PV-SCALE</i> eingestellt), max. Wertebereich -9999999, je nach interner Skalierung.	Kennung (HEX): 41, 40, 02
PDI:SP	Prozess-Sollwert (Setpoint)	GSD-Datei: PDI:SP
	Sollwert Prozessregler in physikalischer Einheit (wie im Menü <i>P.CONTROL</i> → <i>SETUP</i> → <i>SP-INPUT</i> bzw. <i>SP-SCALE</i> eingestellt), max. Wertebereich -9999999, je nach interner Skalierung.	Kennung (HEX): 41, 40, 03
PDI:TEMP	Gerätetemperatur (Temperature)	GSD-Datei: PDI:TEMP
	Temperatur in 0,1 °C wird auf der CPU-Platine mittels Sensor erfasst, Wertebereich -550 (-55 °C)+1250 (+125 °C).	Kennung (HEX): 41, 40, 04

Name	Beschreibung	Kennung
PDI:MODE	Betriebszustand (Operation Mode)	GSD-Datei: PDI:MODE
	Betriebszustand:	
	0: AUTO	
	1: MANU	
	2: XTUNE	
	9: P.QLIN	
	10: P.TUNE	
	12: BUSSAFEPOS	Kennung (HEX): 41, 00, 05
PDI:ERR	Fehler (Error)	GSD-Datei: PDI:ERR
	Gibt die Nummer des Prozesswertes (Output) an, der nicht geschrieben wurde. Der Wert bleibt solange erhalten, bis er mit <i>PDO:ERR</i> gelöscht wird.	
	HEX	
	14 PDO:CMD / SP	
	16 PDO:MODE	Kennungen (HEX): 41, 00, 06
PDI:	0: Positioner	GSD-Datei: PDI:PCONact
PCONact	1: Prozessregler	Kennung (HEX): 41, 00, 0A

Tabelle 109: Process Data Input, PROFIBUS DP

PDI:PV und PDI:SP sind nur bei Typ 8793 (Prozessregler) auswählbar und nur bei aktiviertem Prozessregler sinnvoll.

PDI:PCONact ist nur bei Typ 8793 (Prozessregler) auswählbar.

→ Anschließend die Prozessdaten Output eingegeben.

PDO: Process Data Output (Von der Steuerung zum Typ 8792/8793)

Name	Beschreibung	Kennung
PDO:CMD	bei Positioner Typ 8792: Sollposition (Input)	GSD-Datei: PDO:CMD/SP
/SP	Sollwert Positioner in ‰. Wertebereich 01000. Bei zu kleinem oder zu großem Wert wird der letzte gültige Wert verwendet und in <i>ERR</i> mit HEX 14 angezeigt. bei Prozessregler Typ 8793: Prozess-Sollwert (Setpoint) Sollwert Prozessregler in physikalischer Einheit (wie im Menü <i>P.CONTROL</i> → <i>SETUP</i> → <i>SP-INPUT</i> bzw. <i>SP-SCALE</i> eingestellt), max. Wertebereich -9999999, je nach interner Skalierung. Bei zu kleinem oder zu großem Wert wird der letzte gültige Wert verwendet und in <i>ERR</i> mit HEX 14 angezeigt.	Kennungen (HEX): 81, 40, 14

Name	Beschreibung	Kennung
PDO:MODE	Betriebszustand (Operation Mode)	GSD-Datei: PDO:MODE
	Wertebereich 0 , 1 oder 12:	Kennungen (HEX): 81, 00, 16
	0: AUTO / 1: MANU / 12: BUSSAFEPOS	
	Bei zu kleinem oder zu großem Wert wird der letzte gültige Wert verwendet und in <i>ERR</i> mit HEX 16 angezeigt.	
PDO:ERR	Fehleranzeige rücksetzen	GSD-Datei: PDO:ERR
	Ist der Wert > 0, wird ERR zurückgesetzt.	Kennungen (HEX): 81, 00, 17
PDO:	0: Positioner	GSD-Datei: PDO:CONact
CONact	1: Prozessregler	Kennungen (HEX): 81, 00, 19

Tabelle 110: Process Data Output, PROFIBUS DP

27.9 Konfiguration mit Siemens Step7

27.9.1 Beispiel 1 für einen Positioner (Typ 8792): Übertragung von Sollwert und Istwert

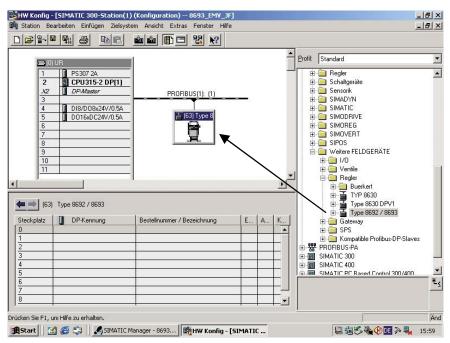


Abb. 119: Screenshot PROFIBUS

→ Den Slave Typ 8792/8793 per Drag-and-drop an den Busstrang ziehen.

Abb. 120: Screenshot Positioner

→ Die Module PDI:POS und PDO:CMD/SP per Drag-and-drop in den Slave Typ 8792/8793 ziehen.

27.9.2 Beispiel 2 für einen Prozessregler (Typ 8793): Übertragung mehrerer Prozesswerte

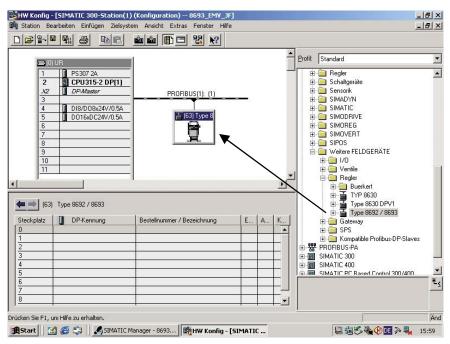


Abb. 121: Screenshot PROFIBUS

→ Den Slave Typ 8792/8793 per Drag-and-drop an den Busstrang ziehen.

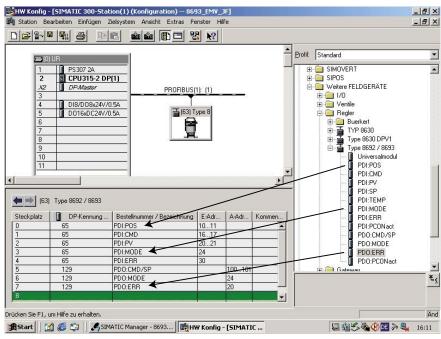


Abb. 122: Screenshot Prozessregler

→ Die Module per Drag-and-drop in den Slave Typ 8792/8793 ziehen.

28 WARTUNG

Wenn für den Betrieb die Anweisungen dieser Anleitung beachtet werden ist der Typ 8792/8793 wartungsfrei.

29 FEHLERMELDUNGEN UND STÖRUNGEN

29.1 Fehlermeldungen auf dem Display

29.1.1 Allgemeine Fehlermeldungen

Anzeige	Fehlerursachen	Abhilfe
min	Minimaler Eingabewert ist erreicht.	Wert nicht weiter verkleinern.
max	Maximaler Eingabewert ist erreicht.	Wert nicht weiter vergrößern.
CMD error	Signalfehler	Signal überprüfen.
	Sollwert Positioner (Stellungsregler).	
SP error	Signalfehler	Signal überprüfen.
	Sollwert Prozessregler.	
PV error	Signalfehler	Signal überprüfen.
	Istwert Prozessregler.	
PT100 error	Signalfehler	Signal überprüfen.
	Istwert Pt 100.	
invalid Code	Falscher Zugangscode.	Richtiger Zugangscode eingeben.
EEPROM fault	EEPROM defekt.	Nicht möglich, Gerät defekt.

Tabelle 111: Allgemeine Fehlermeldungen

Wartung

29.1.2 Fehler-und Warnmeldungen bei der Durchführung der Funktion *X.TUNE*

Anzeige	Fehlerursachen	Abhilfe
TUNE err/break	Manueller Abbruch der Selbstoptimierung durch Drücken der EXIT Taste.	
X.TUNE locked	Die Funktion <i>X.TUNE</i> ist gesperrt.	Zugangscode eingeben.
X.TUNE ERROR 1	Keine Druckluft angeschlossen.	Druckluft anschließen.
X.TUNE ERROR 2	Druckluftausfall während der Autotune (X.TUNE).	Druckluftversorgung kontrollieren.
X.TUNE ERROR 3	Antrieb bzw. Stellsystem-Entlüftungsseite undicht.	nicht möglich, Gerät defekt.
X.TUNE ERROR 4	Stellsystem-Belüftungsseite undicht.	nicht möglich, Gerät defekt.
X.TUNE ERROR 5	Der Drehbereich des Wegaufnehmers von 150° wird überschritten.	Anbau der Welle des Wegaufnehmers an den Antrieb korrigieren (siehe <i>Kapitel</i> "12.2" und "12.3").
X.TUNE ERROR 6	Die Endlagen für <i>POS-MIN</i> und <i>POS-MAX</i> sind zu nahe zusammen.	Druckluftversorgung kontrollieren.
X.TUNE ERROR 7	Falsche Zuordnung POS-MIN und POS-MAX.	Zur Ermittlung von POS-MIN und POS-MAX den Antrieb jeweils in die auf dem Display dargestellte Richtung fahren.
X.TUNE WARNING 1**	Potentiometer ist nicht optimal an den Antrieb gekoppelt. Durch optimale Ankopplung kann eine größere Genauigkeit bei der Wegmessung erreicht werden. Den Tipps für einen optimierten Betrieb. L	Mittelstellung wie in Kapitel "12.2.4 Hebel- mechanismus ausrichten" beschrieben einstellen.

^{**} Warnhinweise geben Tipps für einen optimierten Betrieb. Das Gerät ist auch bei Nichtbeachtung dieses Warnhinweises betriebsbereit. Warnhinweise werden nach einigen Sekunden automatisch ausgeblendet.

Tabelle 112: Fehler- und Warnmeldung bei X.TUNE

29.1.3 Fehlermeldungen bei der Durchführung der Funktion P.Q'LIN

Anzeige	Fehlerursachen	Abhilfe
TUNE err/break	Manueller Abbruch der Selbstoptimierung durch Drücken der EXIT Taste.	
P.Q LIN ERROR 1	Keine Druckluft angeschlossen.	Druckluft anschließen.
	Keine Änderung der Prozessgröße.	Prozess kontrollieren, ggf. Pumpe einschalten bzw. das Absperrventil öffnen.
		Prozesssensor überprüfen.
P.Q LIN ERROR 2	Aktuelle Stützstelle des Ventilhubs wurde nicht erreicht, da	
	Druckluftausfall während P.Q'LIN.	Druckluftversorgung kontrollieren.
	keine Autotune (<i>X.TUNE</i>) durchgeführt wurde.	Autotune (X.TUNE) durchführen.

Tabelle 113: Fehlermeldung bei P.Q.'LIN; Prozessregler Typ 8793

29.1.4 Fehlermeldung bei der Durchführung der Funktion P.TUNE

Anzeige	Fehlerursachen	Abhilfe
TUNE err/break	Manueller Abbruch der Selbstoptimierung durch Drücken der EXIT Taste.	
P.TUNE ERROR 1	Keine Druckluft angeschlossen.	Druckluft anschließen.
	Keine Änderung der Prozessgröße.	Prozess kontrollieren, ggf. Pumpe einschalten bzw. das Absperrventil öffnen.
		Prozesssensor überprüfen.

Tabelle 114: Fehlermeldung bei P.TUNE; Prozessregler Typ 8793

29.1.5 Fehlermeldungen bei Feldbus-Geräten

Anzeige	Fehlerursachen	Abhilfe
MFI fault	Feldbusplatine defekt.	Nicht möglich, Gerät defekt.

Tabelle 115: Fehlermeldung bei Feldbusgeräten

Bei PROFIBUS:

Displayanzeige	Gerätezustand	Erläuterung	Problembeseitigung
BUS offline wird ca. alle	Offline	Gerät hat keine Verbindung zum Bus.	Busanschluss inkl. Steckerbelegung überprüfen.
3 Sekunden angezeigt			Elektrische Versorgung und Busanschluss der anderen Teilnehmer überprüfen.

Tabelle 116: Fehlermeldung PROFIBUS

29.2 Sonstige Störungen

Problem	mögliche Ursachen	Abhilfe
POS = 0 (bei CMD > 0 %) bzw. POS = 100 %, (bei CMD < 100 %).	Dichtschließfunktion (CUTOFF) ist unbeabsichtigt aktiviert.	Dichtschließfunktion deaktivieren.
PV = 0 (bei $SP > 0$) bzw. PV = PV (bei $SP > SP$).		
Nur bei Geräten mit Binärausgang:	Binärausgang:	Anschluss Binärausgang
Binärausgang schaltet nicht.	• Strom > 100 mA	überprüfen.
	Kurzschluss	
Nur bei Geräten mit Prozessregler:	Menüpunkt P.CONTROL steht im	Menüpunkt P.CONTROL
Gerät arbeitet nicht als Regler,	Hauptmenü. Daher arbeitet das Gerät als Prozessregler und erwartet einen	aus dem Hauptmenü entfernen. Siehe Kapitel
trotz korrekt vorgenommener	Prozess-Istwert am entsprechenden	"19.1.2 Deaktivieren von
Einstellungen.	Eingang.	Zusatzfunktionen"

Tabelle 117: Sonstige Störungen

30 VERPACKUNG, TRANSPORT

HINWEIS!

Transportschäden.

Unzureichend geschützte Geräte können durch den Transport beschädigt werden.

- Gerät vor Nässe und Schmutz geschützt in einer stoßfesten Verpackung transportieren.
- ► Eine Überschreitung bzw. Unterschreitung der zulässigen Lagertemperatur vermeiden.

31 LAGERUNG

HINWEIS!

Falsche Lagerung kann Schäden am Gerät verursachen.

- ► Gerät trocken und staubfrei lagern.
- ► Lagertemperatur -20 ... +65 °C.

32 ENTSORGUNG

→ Entsorgen Sie das Gerät und die Verpackung umweltgerecht.

HINWEIS!

Umweltschäden durch von Medien kontaminierte Geräteteile.

► Geltende Entsorgungsvorschriften und Umweltbestimmungen einhalten.

Beachten Sie die nationalen Abfallbeseitigungsvorschriften.

33 AUSWAHLKRITERIEN FÜR STETIGVENTILE

Von entscheidender Bedeutung für ein optimales Regelverhalten und das Erreichen des gewünschten Maximaldurchflusses sind folgende Kriterien:

- die richtige Wahl des Durchflussbeiwerts, der im Wesentlichen durch die Nennweite des Ventils definiert wird;
- eine gute Abstimmung der Ventilnennweite auf die Druckverhältnisse unter Berücksichtigung der übrigen Strömungswiderstände in der Anlage.

Auslegungsrichtlinien können auf der Basis des Durchflussbeiwerts (k_v -Wert) gegeben werden. Der k_v -Wert bezieht sich auf genormte Bedingungen in Bezug auf Druck, Temperatur und Medieneigenschaften.

Der k_v -Wert bezeichnet die Durchflussmenge von Wasser durch ein Bauelement in m^3/h bei einer Druckdifferenz von $\Delta p = 1$ bar und T = 20 °C.

Bei Stetigventilen wird zusätzlich der " k_{vs} -Wert" verwendet. Dieser gibt den k_v -Wert bei voller Öffnung des Stetigventils an.

In Abhängigkeit von den vorgegebenen Daten sind für die Auswahl des Ventils die folgenden beiden Fälle zu unterscheiden:

 a) Bekannt sind die Druckwerte p1 und p2 vor und nach dem Ventil, bei denen der gewünschte maximale Durchfluss Q_{max} erreicht werden soll:

Der erforderliche k_{vs}-Wert ergibt sich zu:

$$k_{vs} = Q_{max} \cdot \sqrt{\frac{\Delta p_0}{\Delta p}} \cdot \sqrt{\frac{\rho}{\rho_0}}$$
 (1)

Dabei bedeuten:

k_{vs} Durchflussbeiwert des Stetigventils bei voller Öffnung [m³/h]

Q____ maximaler Volumendurchfluss [m³/h]

 $\Delta p_0 = 1$ bar; Druckverlust am Ventil entsprechend der Definition des k_v-Werts

 ρ_n = 1000 kg/m³; Dichte von Wasser (entsprechend der Definition des k_v-Werts)

Δp Druckverlust am Ventil [bar]

ρ Dichte des Mediums [kg/m³]

- b) Bekannt sind die Druckwerte am Eingang und Ausgang der Gesamtanlage (p₁ und p₂), bei denen der gewünschte maximale Durchfluss Q_{max} erreicht werden soll:
 - 1. Schritt: Berechnung des Durchflussbeiwerts der Gesamtanlage $k_{\text{\tiny Vges}}$ nach Gleichung (1).
 - Schritt: Ermittlung des Durchflusses durch die Anlage ohne das Stetigventil (z.B. durch "Kurzschließen" der Leitung am Einbauort des Stetigventils).
 - 3. Schritt: Berechnung des Durchflussbeiwerts der Anlage ohne das Stetigventil (k_{va}) nach Gleichung (1).
 - 4. Schritt: Berechnung des erforderlichen k_{vs}-Werts des Stetigventils nach Gleichung (2):

$$k_{vs} = \sqrt{\frac{1}{\frac{1}{k_{Vges}^2} - \frac{1}{k_{Va}^2}}}$$
 (2)

Der k_{vs} -Wert des Stetigventils sollte mindestens den Wert haben, der sich nach der für die Applikation zutreffenden Gleichung (1) oder (2) errechnet, er sollte jedoch keinesfalls sehr weit darüber liegen.

Die bei Schaltventilen oft benutzte Faustregel "Etwas größer schadet in keinem Fall" kann bei Stetigventilen das Regelverhalten stark beeinträchtigen.

Eine praxisgerechte Festlegung der Obergrenze für den k_{vs} -Wert des Stetigventils ist über die sogenannte Ventilautorität Ψ möglich:

$$\psi = \frac{(\Delta p)_{v_0}}{(\Delta p)_0} = \frac{k_{v_a}^2}{k_{v_a}^2 + k_{v_s}^2}$$
 (3)

 $(\Delta p)_{v_0}$ Druckabfall über das voll geöffnete Ventil

(Δp)₀ Druckabfall über die gesamte Anlage

Bei einer Ventilautorität Ψ < 0,3 ist das Stetigventil überdimensioniert.

Bei voller Öffnung des Stetigventils ist in diesem Fall der Strömungswiderstand wesentlich kleiner als der der übrigen fluidischen Komponenten in der Anlage. Das heißt, nur im unteren Öffnungsbereich herrscht die Ventilstellung in der Betriebskennlinie vor. Aus diesem Grund wird die Betriebskennlinie stark deformiert.

Durch Auswahl einer progressiven (gleichprozentigen) Übertragungskennlinie zwischen Stellungssollwert und Ventilhub kann dies teilweise kompensiert und die Betriebskennlinie in gewissen Grenzen linearisiert werden. Die Ventilautorität Ψ sollte jedoch auch bei Verwendung einer Korrekturkennlinie > 0,1 sein.

Das Regelverhalten (Regelgüte, Ausregelzeit) ist bei Verwendung einer Korrekturkennlinie stark vom Betriebspunkt abhängig.

34 EIGENSCHAFTEN VON PID-REGLERN

Ein PID-Regler besitzt einen Proportional-, einen Integral- und einen Differentialanteil (P-, I- und D-Anteil).

34.1 P-Anteil

Funktion:

$$Y = Kp \cdot Xd$$

Kp ist der Proportionalbeiwert (Verstärkungsfaktor). Er ergibt sich als Verhältnis von Stellbereich ΔY zu Proportionalbereich ΔXd .

Kennlinie und Sprungantwort des P-Anteils eines PID-Reglers

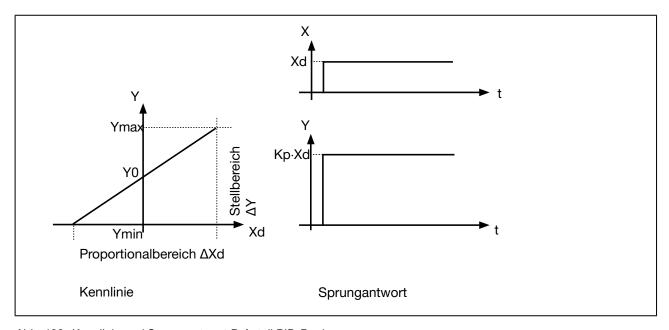


Abb. 123: Kennlinie und Sprungantwort P-Anteil PID-Regler

Eigenschaften

Ein reiner P-Regler arbeitet theoretisch unverzögert, d.h. er ist schnell und damit dynamisch günstig. Er hat eine bleibende Regeldifferenz, d.h. er regelt die Auswirkungen von Störungen nicht vollständig aus und ist damit statisch relativ ungünstig.

34.2 I-Anteil

Funktion:

$$Y = \frac{1}{T_i} \int X \, d \, d \, t \qquad (5)$$

Ti ist die Integrier- oder Stellzeit. Sie ist die Zeit, die vergeht, bis die Stellgröße den gesamten Stellbereich durchlaufen hat.

Kennlinie und Sprungantwort des I-Anteils eines PID-Reglers

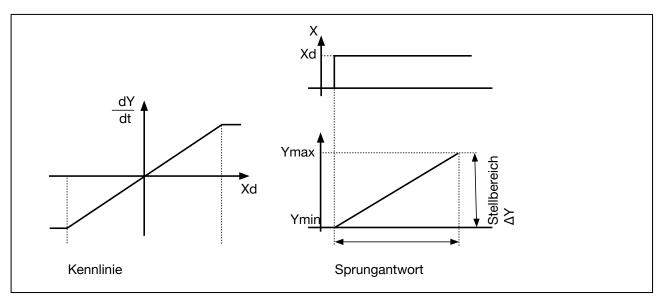


Abb. 124: Kennlinie und Sprungantwort I-Anteil PID-Regler

Eigenschaften

Ein reiner I-Regler beseitigt die Auswirkungen auftretender Störungen vollständig. Er besitzt also ein günstiges statisches Verhalten. Er arbeitet aufgrund seiner endlichen Stellgeschwindigkeit langsamer als der P-Regler und neigt zu Schwingungen. Er ist also dynamisch relativ ungünstig.

34.3 D-Anteil

Funktion:

$$Y = K d \cdot \frac{d X d}{d t}$$
 (6)

Kd ist der Differenzierbeiwert. Je größer Kd ist, desto stärker ist der D-Einfluss.

Kennlinie und Sprungantwort des D-Anteils eines PID-Reglers

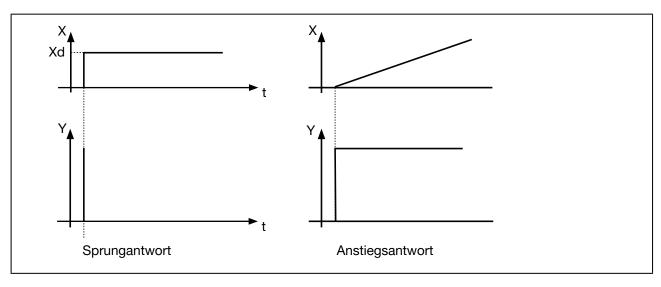


Abb. 125: Kennlinie und Sprungantwort D-Anteil PID-Regler

Eigenschaften

Ein Regler mit D-Anteil reagiert auf Änderungen der Regelgröße und kann dadurch auftretende Regeldifferenzen schneller abbauen.

34.4 Überlagerung von P-, I- und D-Anteil

Funktion:

$$Y = K p \cdot X d + \frac{1}{T i} \int X d d t + K d \frac{d X d}{d t}$$
 (7)

Mit $Kp \cdot Ti = Tn$ und Kd/Kp = Tv ergibt sich für die **Funktion des PID-Reglers**:

$$Y = K p \cdot (X d + \frac{1}{T n} \int X d dt + T v \frac{d X d}{dt})$$
 (8)

Kp Proportionalbeiwert / Verstärkungsfaktor

Tn Nachstellzeit

(Zeit, die benötigt wird, um durch den I-Anteil eine gleich große Stellgrößenänderung zu erzielen, wie sie infolge des P-Anteils entsteht)

Tv Vorhaltzeit

(Zeit, um die eine bestimmte Stellgröße aufgrund des D-Anteils früher erreicht wird als bei einem reinen P-Regler)

Sprungantwort und Anstiegsantwort des PID-Reglers

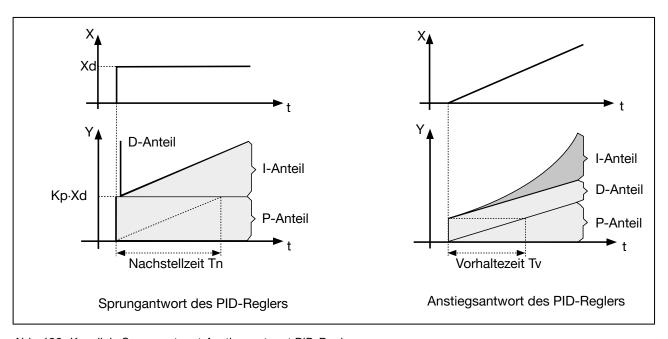


Abb. 126: Kennlinie Sprungantwort Anstiegsantwort PID-Regler

34.5 Realisierter PID-Regler

34.5.1 D-Anteil mit Verzögerung

Im Prozessregler Typ 8793 ist der D-Anteil mit einer Verzögerung T realisiert.

Funktion:

$$T \cdot \frac{dY}{dt} + Y = K d \cdot \frac{dX d}{dt}$$
 (9)

Überlagerung von P-, I- und DT- Anteil

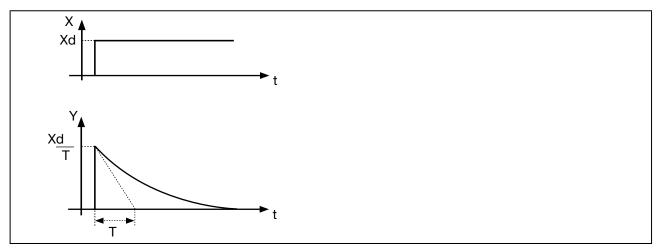


Abb. 127: Kennlinie Überlagerung von P-, I- und DT- Anteil

34.5.2 Funktion des realen PID-Reglers

$$T \cdot \frac{dY}{dt} + Y = K p (X d + \frac{1}{Tn} \int X ddt + T v \frac{dX d}{dt}$$
 (10)

Überlagerung von P-, I- und DT- Anteil

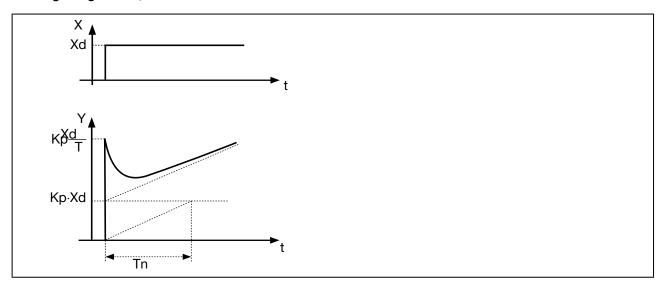


Abb. 128: Kennlinie Sprungantwort des realen PID-Reglers

35 EINSTELLREGELN FÜR PID-REGLER

Das Regelsystem Typ 8793 ist mit einer Selbstoptimierungsfunktion für die Struktur und Parameter des integrierten Prozessreglers ausgestattet. Die ermittelten PID-Parameter können über das Bedienmenü eingesehen und auf empirischem Weg beliebig nachoptimiert werden.

In der regelungstechnischen Literatur werden eine Reihe von Einstellregeln angegeben, mit denen auf experimentellem Wege eine günstige Einstellung der Reglerparameter ermittelt werden kann. Um dabei Fehleinstellungen zu vermeiden, sind stets die Bedingungen zu beachten, unter denen die jeweiligen Einstellregeln aufgestellt worden sind. Neben den Eigenschaften der Regelstrecke und des Reglers selbst spielt dabei eine Rolle, ob eine Störgrößenänderung oder eine Führungsgrößenänderung ausgeregelt werden soll.

35.1 Einstellregeln nach Ziegler und Nichols (Schwingungsmethode)

Bei dieser Methode erfolgt die Einstellung der Reglerparameter auf der Basis des Verhaltens des Regelkreises an der Stabilitätsgrenze. Die Reglerparameter werden dabei zunächst so eingestellt, dass der Regelkreis zu schwingen beginnt. Aus dabei auftretenden kritischen Kennwerten wird auf eine günstige Einstellung der Reglerparameter geschlossen. Voraussetzung für die Anwendung dieser Methode ist natürlich, dass der Regelkreis in Schwingung gebracht werden darf.

Vorgehensweise

- → Regler als P-Regler einstellen (d.h. Tn = 999, Tv = 0), Kp zunächst klein wählen
- → gewünschten Sollwert einstellen
- → Kp solange vergrößern, bis die Regelgröße eine ungedämpfte Dauerschwingung ausführt.

Der an der Stabilitätsgrenze eingestellte Proportionalitätsbeiwert (Verstärkungsfaktor) wird als K_{krit} bezeichnet. Die sich dabei ergebende Schwingungsdauer wird T_{krit} genannt.

Verlauf der Regelgröße an der Stabilitätsgrenze

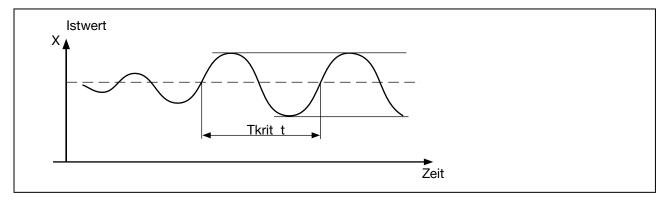


Abb. 129: Verlauf der Regelgröße PID

Aus K_{krit} und T_{krit} lassen sich dann die Reglerparameter gemäß folgender Tabelle berechnen.

Einstellung der Parameter nach Ziegler und Nichols

Reglertyp	Einstellung der Parameter			
P-Regler	Kp = 0,5 K _{krit}			
PI-Regler	Kp = 0,45 K _{krit}	Tn = 0,85 T _{krit}	-	
PID-Regler	Kp = 0,6 K _{krit}	$Tn = 0.5 T_{krit}$	$Tv = 0.12 T_{krit}$	

Tabelle 118: Einstellung der Parameter nach Ziegler und Nichols

Die Einstellregeln von Ziegler und Nichols sind für P-Strecken mit Zeitverzögerung erster Ordnung und Totzeit ermittelt worden. Sie gelten allerdings nur für Regler mit Störverhalten und nicht für solche mit Führungsverhalten.

35.2 Einstellregeln nach Chien, Hrones und Reswick (Stellgrößensprung-Methode)

Bei dieser Methode erfolgt die Einstellung der Reglerparameter auf der Basis des Übergangsverhaltens der Regelstrecke. Es wird ein Stellgrößensprung von 100 % ausgegeben. Aus dem Verlauf des Istwerts der Regelgröße werden die Zeiten Tu und Tg abgeleitet.

Verlauf der Regelgröße nach einem Stellgrößensprung ΔY

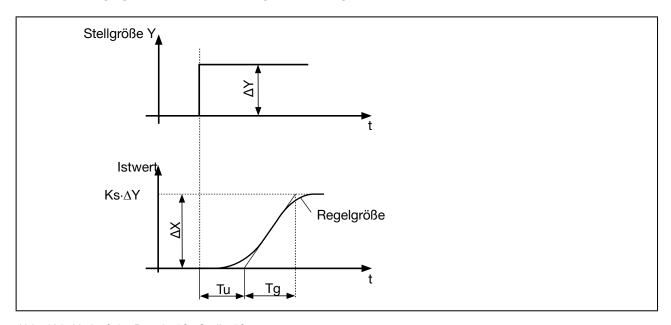


Abb. 130: Verlauf der Regelgröße Stellgrößensprung

Vorgehensweise

- → Regler auf Betriebszustand HAND (MANU) schalten
- → Stellgrößensprung ausgeben und Regelgröße mit einem Schreiber aufnehmen
- → Bei kritischen Verläufen (z.B. bei Überhitzungsgefahr) rechtzeitig abschalten.

Es ist zu beachten, dass bei thermisch trägen Systemen der Istwert der Regelgröße nach dem Abschalten weiter steigen kann.

In der folgenden "Tabelle 119" sind die Einstellwerte für die Reglerparameter in Abhängigkeit von Tu, Tg und Ks für Führungs- und Störverhalten sowie für einen aperiodischen Regelvorgang und einen Regelvorgang mit 20 % Überschwingen angegeben. Sie gelten für Strecken mit P-Verhalten, mit Totzeit und mit Verzögerung erster Ordnung.

Einstellung der Parameter nach Chien, Hrones und Reswick

	Einstellung der	Parameter		
Reglertyp	bei aperiodischem Regelvorgang		bei Regelvorgang	
	(0 % Überschwingen)		mit 20 % Überschwingen	
	Führung	Störung	Führung	Störung
P-Regler	$Kp = 0.3 \cdot \frac{Tg}{Tu \cdot Ks}$	$Kp = 0.3 \cdot \frac{Tg}{Tu \cdot Ks}$	$Kp = \frac{Tg}{0.7 \cdot Tu \cdot Ks}$	$Kp = 0.7 \cdot \frac{Tg}{Tu \cdot Ks}$
PI-Regler	$Kp = 0.35 \cdot \frac{Tg}{Tu \cdot Ks}$	$Kp = 0.6 \cdot \frac{Tg}{Tu \cdot Ks}$	$Kp = 0.6 \cdot \frac{Tg}{Tu \cdot Ks}$	$Kp = 0.7 \cdot \frac{Tg}{Tu \cdot Ks}$
	Tn = 1,2 · Tg	Tn = 4 · Tu	Tn = Tg	Tn = 2,3 · Tu
PID-Regler	$Kp = 0.6 \cdot \frac{Tg}{Tu \cdot Ks}$	$Kp = 0.95 \cdot \frac{Tg}{Tu \cdot Ks}$	$Kp = 0.95 \cdot \frac{Tg}{Tu \cdot Ks}$	$\begin{array}{ccc} Kp = & & \underline{Tg} \\ 1,2 \cdot & & \overline{Tu \cdot Ks} \end{array}$
	Tn = Tg	Tn = 2,4 · Tu	Tn = 1,35 · Tg	Tn = 2 · Tu
	$T v = 0.5 \cdot Tu$	T v = 0,42 · Tu	T v = 0,47 · Tu	T v = 0,42 · Tu

Tabelle 119: Einstellung der Parameter nach Chien, Hrones und Reswick

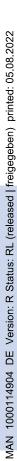
Der Proportionalitätsfaktor Ks der Regelstrecke ergibt sich zu:

$$K s = \frac{\Delta X}{\Delta Y} \qquad (11)$$

36 TABELLE FÜR IHRE EINSTELLUNGEN AM POSITIONER

36.1 Einstellungen der freiprogrammierten Kennlinie

Stützstelle	Ventilhub [%]			
(Stellungs- sollwert in %)	Datum:	Datum:	Datum:	Datum:
0				
5				
10				
15				
20				
25				
30				
35				
40				
45				
50				
55				
60				
65				
70				
75				
80				
85				
90				
95				
100				



37 TABELLE FÜR IHRE EINSTELLUNGEN AM PROZESSREGLER TYP 8793

37.1 Eingestellte Parameter des Prozessreglers

	Datum:	Datum:	Datum:	Datum:
KP				
TN				
TV				
X0				
DBND				
DP				
PVmin				
PVmax				
SPmin				
SPmax				
UNIT				
K-Factor				
FILTER				
INP				

