1. baudrate 9600 , no parity, 8 data bits, 1 stop bit
2. for example, after sending A command, receive 45bytes from b/n 100518.

02	80	80	01	02	02	02	00	$E F$	$7 F$	$F F$	$7 F$	$F F$	$7 F$	$F F$	00
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00	00	00	00	00	00	00	$0 E$	00	00	00	$0 E$	03			

$1^{\text {rd }}$ BYTE must to be 02
$2^{\text {nd }}$ BYTE
$80=10000000$
bit 0=0 not in REC mode(it can't use in b/n100806)
bit 2 \& bit $1=00$ normal mode(no max/min)
bit $3=0$ that means not in the type of T1-T2
bit 4=0 not in REL mode
bit $5=0$ not in HOLD mode
bit $6=0$ battery is not low
bit 8=1 C
$3^{\text {rd }}$ BYTE:
06=00000110
bit $0=0$ Memory is not full (it can't use in b/n100806)
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7=1 1 in auto power off mode
It can't use from the fourth to the seventh.

In generally, the byte from $8^{\text {th }}$ to $15^{\text {th }}$ as below:
$8^{\text {th }}$ and $9^{\text {th }}$ byte is the value of channel $1,00 \mathrm{EF}$ is hex, decimal is 239 , divide by 10 is 23.9
$10^{\text {th }}$ and $11^{\text {th }}$: byte is the value of channel 2.
$12^{\text {th }}$ and $13^{\text {th }}$ byte is the value of channel 3 .
$14^{\text {th }}$ and $15^{\text {th }}$: byte is the value of channel 4 .

In the type of REL, the byte from $16^{\text {th }}$ to $23^{\text {th }}$.
In the type of MIN, the byte from $24^{\text {th }}$ to $31^{\text {th }}$.
In the type of MAX, the byte from $32^{\text {th }}$ to $39^{\text {th }}$.
$40^{\text {rd }}$ BYTE: In generally, per channel become OL , should be see the byte as below:
$0 E=00001110$
bit $0=0$ channel 1 is not $O L$
bit 1 =1 channel $\mathbf{2}$ is OL.
bit $\mathbf{2 = 1}$ channel $\mathbf{3}$ is $\mathbf{O L}$.
bit 3=1 channel 4 is $O L$.
bit 4 NO USEFUL
bit 5 NO USEFUL
bit 6 NO USEFUL
bit 7 NO USEFUL
$41^{\text {rd }}$ BYTE: In the type of REL, we need to see the byte if the channel show OL .As below:
$0 E=00001110$
bit $0=0$ channel 1 is not $O L$
bit $\mathbf{1 = 1}$ channel $\mathbf{2}$ is $\mathbf{O L}$
bit 2 =1 channel $\mathbf{3}$ is $O L$.
bit 3=1 channel 4 is $O L$.
bit 4 NO USEFUL
bit 5 NO USEFUL
bit 6 NO USEFUL
bit 7 NO USEFUL
$42^{\text {rd }}$ BYTE: In the type of MAX, we need to see the byte if the channel show OL .As below:
OE=00001110
bit $0=0$ channel 1 is not $O L$
bit $\mathbf{1 = 1}$ channel $\mathbf{2}$ is $\mathbf{O L}$
bit 2 =1 channel $\mathbf{3}$ is OL .
bit 3=1 channel 4 is OL.
bit 4 NO USEFUL
bit 5 NO USEFUL
bit 6 NO USEFUL
bit 7 NO USEFUL
;
$43^{\text {rd }}$ BYTE: In the type of MIN, we need to see the byte if the channel show OL .As below:
$0 E=00001110$
bit $0=0$ channel 1 is not $O L$
bit $\mathbf{1 = 1}$ channel $\mathbf{2}$ is $\mathbf{O L}$.
bit $\mathbf{2 = 1}$ channel $\mathbf{3}$ is $\mathbf{O L}$.
bit 3=1 channel 4 is OL.
bit 4 NO USEFUL
bit 5 NO USEFUL
bit 6 NO USEFUL
bit 7 NO USEFUL
$44^{\text {rd }}$ BYTE: the resolution of per channel as below:
$0 E=00001110$
bit $\mathbf{0}=\mathbf{0}$ channel 1 the figure out need to divide 10
bit $\mathbf{1}=\mathbf{1}$ channel $\mathbf{2}$ the figure out doesn't need to divide 10
bit $\mathbf{2 = 1}$ channel 3 the figure out doesn't need to divide 10
bit 3=1 channel 4 the figure out doesn't need to divide 10
bit 4 NO USEFUL
bit 5 NO USEFUL
bit 6 NO USEFUL
bit 7 NO USEFUL
$45^{\text {rd }}$ BYTE should be 03

