User Manual
EXTECH'
A FLIR COMPANY

Power and Harmonics Analyzer Model PQ3350

EN 61010-2-032
 CAT III 600V
 Pollution Degree 2

Definition of Symbols:

Caution: Refer to Accompanying Documents

Caution: Risk of Electric Shock

Double Insulation

Over-voltage category III (CAT III): equipment in fixed installations.
WARNING: If the power analyzer is used in a manner not specified by the manufacturer, the protection provided by the clamp meter may be impaired.

Please read the following instructions before use

1. Do not operate this instrument in wet or dusty environments.
2. Do not operate this instrument in the presence of combustible or explosive gas
3. Do not touch exposed metal parts or unused terminals.
4. Consider the use of rubber gloves in operation.
5. Do not operate in excess of AC 500V (Phase to Neutral), or AC 600V (Phase to Phase)
6. Do not operate this instrument if it appears to be malfunctioning

Do not use the flexible current probe before reading the following instructions.

1. Do not install the flexible current probe around bare conductors carrying a voltage from 30 V to 600 V unless you are wearing protective clothing and glove suitable for high-voltage work.
2. Always inspect and check for any damage of the current probe assembly before usage. Do not use the flexible current probe if any damage is found.
3. Do not use the flexible current probe on circuit rated higher than 600 V in installation category III.
Preparation for use 11
Power Quality of a 3 Phase 4 Wire (3P4W) System 12
Power Quality of a 3 Phase 3 Wire (3P3W) System 13
Power Quality of a Single Phase (1P2W) System. 14
Power Quality of a 1 Phase 3 Wire (1P3W) System 15
Measurement of a System with CT or VT (PT) 16
Harmonic Analysis of Voltage or Current 17
Display the Phase Angle of Harmonics 18
Measurement of Maximum Demand 19
Waveform of Voltage and Current 19
Waveform for Voltage Only 20
Graphic Phase Diagram 20
Phase Sequence of a 3 Phase System. 22
Balanced and Unbalanced 3 Phase (3P3W, 3P4W) Power Source System 22
Balanced and Unbalanced 3 Phase (3P3W or 3P4W) Load System 23
Transient Capture (Dips, Swells, Outage) 24
Down Load Transient Data 26
Datalogging Power Data (3P4W, 3P3W, 1P2W, 1P3W) 26
Down Load Power Data. 26
Data Logging Harmonics Data 27
Down Load Harmonics Data 27
Clear Memory of Data. 27
HardCOPY of SCREEN 28
READ the SAVED SCREEN. 29
SET THE CT AND VT (PT) RATIO 30
SET THE TIME INTERVAL FOR MAXIMUM DEMAND. 31
SET THE SAMPLING TIME FOR DATALOGGING 32
SET THE CALENDER CLOCK 33
PROTOCOL (RS-232C INTERFACE). 33
SPECIFICATIONS $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ 34

FEATURES

- Analysis for 3P4W, 3P3W, 1P2W, 1P3W
- True RMS value (V_{123} and I_{123})
- Active Power (W, KW, MW, GW)
- Apparent and Reactive Power (KVA, KVAR)
- Power Factor (PF), Phase Angle (Φ)
- Energy (WH, KWH, KVARH, PFH)
- Current measurement from 0.1 mA to 3000 A , capable of analyzing IT standby power consumption to the maximum demand of a factory
- Display of 35 Parameters in One Screen (3P4W)
- Programmable CT (1 to 600) and PT (1 to 3000) Ratios
- Display of Overlapped Voltage and Current Waveform
- Maximum Demand (MD KW, MW, KVA, MVA) with Programmable Period
- Harmonic Analysis $\left(\mathrm{V}_{123}\right.$ and $\left.\mathrm{I}_{123}\right)$ to the $99^{\text {th }}$ Order
- Display of 50 Harmonics in one Screen with Waveform
- Display of Waveform with Peak Values (1024 Samples / Period)
- Analysis of Total Harmonic Distortion (THD-F)
- Graphic Phase Diagram with 3 Phase System Parameters
- Capture 28 Transient Events (Time + Cycles) with Programmable Threshold (\%)
- DIP, SWELL, and OUTAGE are included in transient events.
- 3 Phase Voltage or Current Unbalanced Ratio (VUR, IUR)
- 3 Phase Voltage or Current Unbalanced Factor (d0\%, d2\%)
- Calculated Unbalanced Current through Neutral Line (In)
- 512K Memory with Programmable Interval (Sampling time from 2 to 6000 seconds, data logging time from 4.7 hours to 1180 days for 3P4W system)
- Output of Waveform, Power Parameters and Harmonics on Command
- Large Dot Matrix LCD Display with Backlight
- Optical Isolated RS-232C Interface

5
PQ3350 V5.2 11/10

Panel Description

1. Input Terminal for Neutral Line (Voltage)
2. Voltage Input Teminals for Each Phase (V1, V2, V3)
3. External DC Input (The AC adaptor must be 600 V isolated)
4. Current Input Terminals for Each Phase ($11, \mathrm{I} 2,13$)
5. LCD Display
6. Indication of locations where SEC., CT, VT, and SETUP are displayed in LCD.
7. Buttons
8. RS-232C Window
9. Stand Holder
10. Stand
11. Battery Cover
12. Battery Compartment

ExT
Press this button to exit transient detection mode. Also used to exit the SETUP menu

Press this button to perform transient detection

HOLD
Press this button to hold the data displayed in LCD, press again to continue operation.
$\left(\begin{array}{l}\text { MAG. } \\ \text { M }\end{array}\right.$
Press this button to begin the measurement of harmonics in magnitude.
VI
$1+2 \downarrow 3$
Press this button to select V1, I1, V2, I2, V3, or I3 for harmonics analysis

Press this button for the voltage or current input range

Press to enter the Main Menu (also used to navigate menu items).

Press this button to increment value by one. Hold the button for two seconds or more to speed up the increment.

Press this button to decrement value by one.

In harmonic analysis mode, use these buttons to move the cursor left or right.

Press this button to start data logging. Press it again to stop data logging. The sampling interval is displayed in the LCD via the SEC indicator.

In the power mode, press this button to display the phase. In the harmonic analysis mode, press this button to display phase angle instead of magnitude.

Press this button to turn the back light on. Press it again to turn the back light off.

Press this button to begin measuring power.
POWER

Press this button to display the waveforms for voltage and current.

1.30 -1 12×3 - 122×3 (1) Press this button to turn the power on or off.

Current Probe (100A)

WARNING: All the current probes connected to the power analyzer must be of the same model and same range. Mixed models and different ranges selected will cause incorrect result of measurement.

1. Jaw Assembly
2. Trigger
3. Range Selector
4. 6 pin mini DIN connector

NOTE: To choose the 100A current probe, press the SETUP button to select CLAMP. When the CLAMP is reverse video, press the $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ button to select 100 .

Current Probe (1000A)

1. Jaw Assembly
2. Trigger
3. Range Selector
4. 6 pin mini DIN connector

[^0]
Flexible Current Probe (3000A or 1200A)

1. Control Box
2. Output Range Select Switch
3. Flexible Loop
4. Coupling Assembly

NOTE: To select the 3000A flexible current probe, press the SETUP button to select CLAMP. When the CLAMP is reverse video, press the $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ button to select 3000 .

NOTE: To select the 1200A flexible current probe, press the SETUP button to select CLAMP. When the CLAMP is reverse video, press the $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ button to select 1200 .

WARNING: All the current probes connected to the power analyzer must be of the same model and same range. Mixed models and different ranges will yield incorrect measurement results.

NOTE: Pay special attention to the flexible current probe connecions.

1. Connect the flexible probe around the conductor.
2. Make sure the current flowing direction is in consistent with the arrow marked on the probe coupling. If the flexible current probe is connected in the right orientation, the correct phase will be displayed in the oscilloscope.
3. Keep the probe coupling more than 25 mm away from the conductor.

WARNING: Always wear appropriate gloves in operation.

NOTE: Select the correct CLAMP in the SETUP menu. When the current probe is connected to the power analyzer, the power analyzer will automatically detect the range selected. NOTE: Select the correct frequency (Hz) in the SETUP menu.

Preparation for use

a. Press SETUP button to enter setup screen. Press SETUP again to select the item for setting (the selected item will be displayed in reverse video).

After selecting the item, press $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ buttons to set up its value.
b. After finishing setting up, press EXIT button to leave setup mode.

1. Select the data for download:

H means harmonics;
Hin reverse video means HOLD screen data (if the data is the one you want, you can press
HOLD button to display the data, and press HOLD button again to exit);
\mathbf{P} means power data which can be a reference for downloading, the data in order is $0 \sim 84$.
2. Shows the total logged data in the analyzer: max. 85 logging data.
3. REC DATE: shows the starting logging time of the $1^{\text {st }}$ downloaded file.
4. Hz : set up the frequency $(50,60$ or AUTO) of the system.
5. PT: set up PT value.
6. CT: set up CT value.
7. SEC: set up the interval seconds of logged data.
8. CLAMP: set up the clamps selected (100A, 1000A or 3000A).
9. MD TIME: set up the time of Maximum Demand (1~60 minutes).
10. TRANS REF: set up the transient voltage (which will be automatically changed in accordance with PT).
. SDVP: set up upper and lower limits \% of transient voltage detection.
YEAR: Set up "year" of calendar clock.
MONTH: Set up "month" of calendar clock.
DATE: Set up "date" of calendar clock.
HOUR: Set up "hour" of calendar clock.
16. MINUTE: Set up "minute" of calendar clock.
17. SECOND: Second can be displayed only (it can not be adjusted).

Power Quality of a 3 Phase 4 Wire (3P4W) System

a. Turn the power on. Press the POWER and the $1 \Phi 3 \Phi$ buttons to select the 3P4W system. The type of system will be displayed at the left bottom corner in the LCD.
b. Connect the four test leads to the voltage teminals $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3$ and the V_{N} (Neutral) of the system.
c. Connect the test leads to L1, L2, and L3 of the 3P4W system.
d. Connect the three current probes to the power analyzer input terminal IL, IL, and I 3 .
e. Clamp on to the L1, L2, and L3 of the 3P4W system. Make sure the current flows from the front of the current probe to the back.
f. All of the system parameters will be shown in the LCD

For a description of each parameter, refer to section XIV. NOMENCLATURE.

Power Quality of a 3 Phase 3 Wire (3P3W) System

a. Turn the power on. Press the POWER and the 1Ф3Ф buttons to select the 3P3W system. The type of system will be displayed at the bottom right of the LCD.
b. Connect the four test leads to the voltage terminals $\mathrm{L} 1, \mathrm{~L} 2$, and L 3 of the system.
c. Connect the three current probes to the power analyzer input terminal $\mathrm{I} 1, \mathrm{I} 2$, and I 3 .
d. Clamp on to the $\mathrm{L} 1, \mathrm{~L} 2$, and L 3 . Make sure the current flows from the front of the current probe to the back.
e. All parameters of the system will be shown in the LCD

U12:		I1:799. 2 MA				
U23: 5 :1.4		[2!305.6mA				
0319379.6		[3:301. 0mA				
PR: 464.6 W GE: 527.4 UA DE:-249.7 UAR FFF: 0.6						
				$\begin{aligned} & \text { GH: } \\ & \text { 10: } \\ & \text { PiT: } \end{aligned}$	5.20	UARH

For a description of each parameter, refer to XIV. NOMENCLATURE.

1ф2W

a. Press POWER and then $1 \Phi 3 \Phi$ to select the 1P2W system. The type of system will be displayed at the bottom right of the LCD
b. Connect the test leads to the voltage terminals L 1 and V_{N} (Neutral) of the system.
c. Connect one current probe to the power analyzer input terminal II.
d. Clamp on to the L1. Make sure the current flows from the front of the current probe to the back (see arrow labeled on clamp probe).
e. All of the parameters of the system will be shown in the LCD

For a description of each parameter, refer to XIV. NOMENCLATURE.

Power Quality of a 1 Phase 3 Wire (1P3W) System

a. Tum the power on. Press the POWER and the $1 \Phi 3 \Phi$ buttons to select the 1P3W system. The type of system will be displayed at the bottom right of the LCD.
b. Connect the test leads to the voltage terminals $\mathrm{L} 1, \mathrm{~L} 2$ and V_{N} (Neutral) of the system.
c. Connect the two current probes to the power analyzer input teminal I 1 and I 2 .
d. Clamp on to the L1 and L2. Make sure the current flows from the front of the current probe to the back.
e. All of the system parameters will be shown in the LCD

For a description of each parameter, refer to XIV. NOMENCLATURE.

Measurement of a System with CT or VT (PT)

a. Tum the power on. Press the POWER and the $1 \Phi 3 \Phi$ buttons to select the $3 P 4 W$ system. The type of system will be displayed at the bottom right of the LCD.
b. Connect the four test leads to the secondary voltage terminals $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$ and the V_{N} (Neutral) of the system.
c. Clamp on to the secondary coils of $\mathrm{L} 1, \mathrm{~L} 2$, and L 3 . Make sure the current flows from the front of the current probe to the back (see the arrow label on the clamp probe).

d. Press SETUP to enter the SETUP menu.
e. Press SETUP several times until the CT symbol is highlighted.
f. Press the $\mathbf{\Delta}$ or Vbutton to increment or decrement the RATIO specified by the CT.

	Down Losd File: H 1: 19 REE DATE: 5-7-22 10:14:50 HZ: 50 VT: 1 SEC: 2 CLAPF: 100 MD TIHE: 15 TRANE REF: 110. 0 U SDUF: 54				
$\begin{aligned} & \text { 'resr } \\ & 2505 \end{aligned}$	Morth 7	DEt.e 22	Hour 13	Minute 22	Second 9

g. Press the SETUP button several times until the VT symbol is highlighted.
h. Press the $\boldsymbol{\Delta}$ or Vbutton to increment or decrement the RATIO specified by the VT.
i. All 35 system parameters will be shown in the LCD

For a description of each parameter, refer to XIV. NOMENCLATURE.

Harmonic Analysis of Voltage or Current

(Normal Voltage without Distortion and Harmonics)

(Distorted Current with Harmonics)
a. Setup the analyzer for measurement of any power system (3P4W, 3P3W, 1P2W, or 1P3W). To view
the hammonic analysis of voltage or current, press the HARMO button.
b. Once the HARMO button is pressed, the waveform will be shown in the left-hand portion of the LCD, and the $1^{\text {t }}$ to $50^{\text {th }}$ order harmonics will be shown in the right-hand portion of the LCD.
c. The positive and negative peak values will be shown in the waveform (Vpk).
d. The true RMS value \& total harmonic distortion of voltage or current is shown under the waveform.
e. The cursor (\uparrow arrow) will point to the current order of harmonics. The frequency (HZ) will be displayed next to the cursor. The percentage of harmonics (\%) will be displayed below the cursor. The magnitude of the harmonics (V or A) or phase angle will be displayed next to the \%.
f. Press the SETUP button several times until HAR is highlighted.
g. To move the cursor to the next hamonic, use the $\langle\boldsymbol{C o} \boldsymbol{b}$ button.
h. To see the next page ($51^{\text {st }}$ to $99^{\text {th }}$ order) press the button to pass the $50^{\text {th }}$ order or press the button to pass the $1^{\text {st }}$ order.

NOTE: If the waveform is clipped at the peak or too small in the LCD, press the RANGE button to select HIGH or LOW range for a better display. The range indicator is the symbol after the unit of RMS value, L or H .

Display the Phase Angle of Harmonics

When the HARMO button is pressed the magnitude of each harmonic is displayed. To review the phase angle of each hamonic, press the PHASE button. The phase angle will be displayed next to the \% display icon. V1 does not trigger at exactly 0 degrees; it may be a few degrees after ' 0 '. The remaining signals (V2, $\mathrm{V} 3, \mathrm{II}, \mathrm{I} 2, \mathrm{I} 3$) are sampled when V 1 is triggered. In other words, the phase angles for $\mathrm{V} 2, \mathrm{~V} 3, \mathrm{I}, \mathrm{I} 2$, and I 3 are sampled with respect to V 1 . For example, if $\mathrm{V} 1,11$ have a phase difference of 30 degrees, they are displayed as V1 (2 degrees), I1 (32 degrees) in the harmonics analysis.

NOTE: If the waveform is clipped at the peak or too small in the LCD, press the RANGE button to select HIGH or LOW range for a better display. The range indicator is the symbol after the unit of RMS value, L or H .

Measurement of Maximum Demand

1. Set the time interval for maximum demand (refer to section V)
2. The analyzer will integrate the KW and KVA over the specified interval.
3. The maximum demand (MD) updates if new demand is greater than the previous value.

In the following example, the maximum demand is 527.4 VA and 527.4 W . The time interval for maximum demand is 2 minutes.

Waveform of Voltage and Current

Press this button to display the waveforms for voltage and current simultaneously.

1. 3.

-1>2>3
Press this to select different inputs (V1, I1), (V2, I2), or (V3, I3).

[^1]
Waveform for Voltage Only

Press this button to display the voltage waveform only. The true RMS value of voltage will be displayed at the bottom of the LCD.

1. 3.

Press this button to select V1, V2, or V3.

NOTE: The triggering point is the zero crossing point of V1 for V2 and V3.

NOTE: In the waveform mode, one period/cycle of 1024 data points is displayed.

Graphic Phase Diagram

Press this button to display the phase diagram.

The voltage and current signals are displayed in phase format (magnitude, angle).

V 1 is the reference. The V 1 angle is always 0 degrees.
The phase angles of $\mathrm{V} 2, \mathrm{~V} 3, \mathrm{I} 1, \mathrm{I} 2$, and I 3 are displayed with respect to V 1 .
V1, V2, V3, I1, I2, I3, V12, V23, and V31 are displayed in vector form graphically.
V1, V2, V3: Phase voltages in phase format with respect to V1
I1, I2, I3: Line currents in phase format with respect to V1.
IV : Calculated voltage and current of the neutral with respect to ground.
V12, V23, V31: Line voltage in phase format with respect to V1.
Ave: Average of line voltage V12, V23, and V31 and line current I1, I2, and I3
dV\%: Historical maximum \% value of (Max (V1, V2, V3) - Min (V1, V2, V3)) / Min (V1, V2, V3) * 100\%
VUR: Voltage (Unbalanced Ratio)
d02: The first number is Zero Sequence Unbalanced Ratio in \% (d0) of voltage; the second number is the Negative Sequence Unbalanced Ratio in \% (d2) of voltage. When VUR is displayed before d02, d02 represents the Zero and Negative Sequence Unbalanced Ratios for voltage.
REF: nominal voltage for transient detection reference
Sd\%: threshold in \% for transient detection with respect to nominal voltage (REF).

NOTE: The phase is drawn only when the reading exceeds 200 counts. If V is zero, the phase of the current will not be drawn.

Press this button to change the display from VUR to IUR
PHASE

- Current/Load Unbalance
dA\%: Historical max \% value of (Max (I1, I2, I3) - Min (11, I2, I3))/ Min (11, I2, I3) * 100%
IUR: Current Unbalance Ratio
d02: The first number is Zero Sequence Unbalanced Ratio in \% (d0) for current; the second number is the Negative Sequence Unbalanced Ratio in \% (d2) for current. When IUR is displayed before d02, d02 represents the Zero (d0) and Negative (d2) Sequence Unbalanced Ratios for current.
REF: Nominal voltage for transient detection reference
Sd\%: Threshold in \% for transient detection with respect to nominal voltage (REF).

NOTE: If the voltage of L1, L2, and L3 is not connected in the correct sequence, the analyzer will show L1-3-2 in the right top corner, and it will beep to warn of an incorrect phase sequence.
Phase Sequence of a 3 Phase System

Press this button to display the phase diagram.

In this mode, the analyzer also detects the phase sequence. If the voltage of $L 1, L 2$, and $L 3$ is not connected in the correct sequence, the analyzer will show L1-3-2 in the right top corner, and it will beep to warn of an incorrect phase sequence.
Balanced and Unbalanced 3 Phase (3P3W, 3P4W) Power Source System

Voltage Source Unbalance

In order to check if a system is balanced, press this button to display the phase diagram along with the VUR.

Balanced System

If a 3 phase power source system is balanced, the parameters should be as follows:
$\mathrm{V} 1=\mathrm{V} 2=\mathrm{V} 3$
$\mathrm{V} 12=\mathrm{V} 23=\mathrm{V} 31$
The phase angle of $\mathrm{V} 2=-120$; the phase angle of $\mathrm{V} 3=120$

Vn (voltage of neutral with respect to ground) $=0 \mathrm{~V}$
VUR $=0 \%$
d0\% = 0%
d2\% = 0\%

Unbalanced Systems

If the values differ from the numbers above, an unbalanced power source system may be the reason. The magnitude of the differences can be used as an indication of an unbalanced power source system. The larger the difference, the further unbalanced the system will be.

Balanced and Unbalanced 3 Phase (3P3W or 3P4W) Load System

Curtent Loud Unbatancs

In order to check if current of a system is balanced, press the button twice to display the phase diagram with the IUR displayed.

Balanced System

If a 3 phase load system is balanced, the parameters should be as follows:
$11=12=13$
The phase angle for I 2 and $\mathrm{I} 1(\mathrm{I} 2 \pm \mathrm{I} 1)= \pm 120$
The phase angles of 13 and $I 2(13 \pm 12)= \pm 120$
In (current of neutral) $=0 \mathrm{~A}$
IUR = 0\%
$\mathrm{d} 0 \%=0 \%$
$\mathrm{d} 2 \%=0 \%$

Unbalanced Systems

If the values differ from the numbers above, an unbalanced load system may be the reason. The magnitude of the difference can be used as an indication of an unbalanced power source system. The larger the difference, the more unbalanced the load will be.

Transient Capture (Dips, Swells, Outage)

1. Press to enter the PHASE DIAGRAM mode.
2. Press the SETUP button until TRANS REF in reverse video is shown in the LCD.

$\begin{aligned} & \text { Yeser } \\ & 2605 \end{aligned}$	$\frac{\text { Morth }}{7} \frac{22}{22}$	Hour 13	Minute 23	$\begin{gathered} \text { Second } \\ 5 \end{gathered}$

3. Press the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button to increment or decrement the nominal voltage for a reference. To exit, press the EXIT button.
4. Press the SETUP button several times until SDVP is shown in the right bottom comer of the LCD.
5. Press the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button to increment or decrement the threshold in \% (SDVP). To exit, press the

EXIT button.
6. Press the TRANSIENT button to start the "Transient Capture"
7. The backlight will switch off when the TRANSIENT button is pressed.
8. If the analyzer captures any transient events (DIP, SWELL, or OUTAGE), the backlight will switch on. Press the TRANSIENT button to review the recorded TRANSIENT events.
9. To exit TRANSIENT CAPTURE, press the EXIT TRANSIENT button.

Definition of SWELL, DIP, and OUTAGE:

SWELL:
Code for SWELL:

If the true RMS value of either phase ($\mathrm{V} 1, \mathrm{~V} 2$, or V 3) rises above the nominal value plus the threshold (REF
$+\mathrm{SD} \%$), it is regarded as SWELL. Code for SWELL is 1.
DIP:

$$
V_{\text {RNS }}<\left[V_{\mathrm{REF}}-\left(\mathrm{V}_{\mathrm{REF}} * \mathrm{SD} \%\right)\right]
$$

Code for DIP:
2
If the true RMS value of either phase ($\mathrm{V} 1, \mathrm{~V} 2$, or V 3) falls below the nominal value plus the threshold, it is regarded as DIP. The code for DIP is 2 .

OUTAGE:
Code for OUTAGE:
$V_{\text {RMS }}<30$ to 40 V
4

If the true RMS value of either phase is less than 30 to 40 V , it is regarded as OUTAGE. The code for OUTAGE is 4.
Code Table:

	SWELL	DIP	OUTAGE	COMMENT
CODE	1	2	4	Codes can be added together

DISPLAY FORMAT:

First column: Sequential number of events.
Second column: Elapsed time (the elapsed time format is DAYS, HOURS, MINUTES) 99 days 24 hours 60 minutes max
The third column: Number of cycles.
The fourth column: Code of transient events. There can be more than one transient condition occurring in one event.
NOTE: In the TRANSIENT CAPTURE mode, the analyzer takes 128 samples of each cycle for each phase continuously.
NOTE: When the user presses the TRANSIENT button to review the recorded events, the capture operation is paused until TRANSIENT is pressed again. The timer is also stopped when TRANSIENT is pressed. Therefore, the time stamp is not correct when the user presses the TRANSIENT button to resume operation.

NOTE: The analyzer can record up to 28 events. When the analyzer has recorded 28 events, it stops the capture operation, turns the backlight on, and displays the 28 transient events.

NOTE: The codes can be summed to indicate two or three conditions. For example, if the code is 6 , DIP and OUTAGE ($2+4$) have been added.

NOTE: The longest duration for a capture operation is 99 days. Use the external 12V DC power adaptor for long capture operation.
WARNING: Select 50 or 60 Hz for transient capture. If AUTO is selected for frequency, the unit will not
allow entrance to the TRANSIENT capture mode (an audible beep will sound).
Down Load Transient Data
When the TRANSIENT button is pressed to display CAPTURED EVENTS, the data is also output through the RS-232 interface simultaneously.
The data output is in the same format as the LCD display format (ASCII)
YEAR MONTH DAY HOUR MINUTE SECOND CT REF CODE
01 ELAPSED_TIME CYCLES CODE
02 ELAPSED_TIME CYCLES CODE
03 ELAPSED_TIME CYCLES CODE
04 ELAPSED_TIME CYCLES CODE
Datalogging Power Data (3P4W, 3P3W, 1P2W, 1P3W)

1. Set the datalogger sampling time (rate)
2. Press the POWER button to enter the power measurement mode.
3. Press the $1 \Phi 3 \Phi$ button to select the appropriate system (3P4W, 3P3W, 1P3W, or 1P2W).
4. Press the REO button to start logging. A REC symbol will display.
5. To stop logging, press the REC button again.

NOTE: To download data, send a CTRL+D command to the analyzer through RS-232C interface. WARNING: The sampling time could be longer than the set value if there is no input at V 1 .

Down Load Power Data

1. Press the SETUP button.
2. "Down Load File" will be shown in reverse video.
3. Press the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button to select the file number.
4. If the data stored in a selected file is power data, a leading symbol " P " will precede the file name
5. Press the EXIT button.
6. When a CTRL D command is received through the RS-232C port, it downloads stored power data.

NOTE: In the setup mode, the unit will not accept commands through the RS-232C port. To down load data, press the EXIT button to return to normal measurement mode.

Data Logging Harmonics Data

1. Set the sampling time (rate) for data logging
2. Press the HARMO button to enter the harmonics measurement mode.
3. Press the $\sqrt{ } \mathrm{V}$ button to select the desired input ($\mathrm{V} 1, \mathrm{I} 1, \mathrm{~V} 2, \mathrm{I} 2, \mathrm{~V} 3$, or I 3$)$.
4. Press the REO button to start data logging. A REC symbol will be displayed at the bottom of the LCD.
5. To stop data logging, press the REC button again.

WARNING: If there is no input at V 1 , the sampling rate could be longer than the programmed value.

Down Load Harmonics Data

1. Press the SETUP button.
2. "Down Load File" will be shown in reverse video.
3. Press the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button to select the file number.
4. If the data stored in a selected file is harmonics data, a leading symbol "H" will precede the file name.
5. Press the EXIT button.
6. When the unit receives a CTRL D command through the RS-232C port, it will down load previously saved harmonic data.

NOTE: In the setup mode, the unit will not accept any commands through the RS-232C port. To down load data, press the EXIT button to return to normal measurement mode.

Clear Memory of Data

To clear all data memory of the unit, hold the REC button and turn the power on.

HardCOPY of SCREEN

1. Press the HOLD button.
2. Press the REC button. It takes a few seconds to hardcopy the screen, and store the screen in an internal file. The LCD will show REC in reverse video when in operation. The number following REC is the file number.
3. Users can store up to 85 screens (if no power or harmonics data is stored).

READ the SAVED SCREEN

1. Press the SETUP button. 'DOWN LOAD FILE' is displayed in reverse video. If the data in the selected file is a hardcopy of the screen, a leading symbol of H is displayed in reverse video.
2. Press the $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ to select the saved screen.
3. Press the HOLD/READ button to restore the saved screen.

NOTE: If the data saved in a specific file is a HARDCOPY of a screen, a leading symbol of H is displayed in
reverse video.
NOTE: Hardcopy data can not be downloaded.

SET THE CT AND VT (PT) RATIO

Press the SETUP button several times until CT or VT is shown in reverse video.
Press the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button to increment or decrement the value by 1 . Holding the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button will speed up the process of incrementing or decrementing. To exit, press the EXIT button.

The CT ratio range is 1 to 600 . The VT ratio range is 1 to 3000 . Once the CT or VT (PT) is set, the voltage and current readings are as follows:

CURRENT (displayed) $=$ CURRENT (measured) \times CT Ratio
VOLTAGE $($ displayed $)=$ VOLTAGE $($ measured $) \times$ VT Ratio

SET THE TIME INTERVAL FOR MAXIMUM DEMAND

Press the SETUP button until MD TIME is displayed in reverse video.
Press the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button to increment or decrement the value by 1 .
Holding the $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ button will speed up the process of incrementing or decrementing. To exit, press the EXIT button.

The MD (max. demand) time interval range is 1 to 60 minutes. Once the time interval is set, the unit will calculate the maximum demand and average demand in watts (W) or VA. To toggle between W and VA, press the POWER button.

SET THE SAMPLING TIME FOR DATA LOGGING

	```Didm Lodd File: H 1:19 REC DATE: 5- 7-22 10:14:50 HE: 5V UT: 1 CT: 1 SEC: 2 CLAMF: 160 MD TIME: 15 TRAKS REF: 110.0 u SDUP: \(5 \%\)```			
$\begin{aligned} & \text { TEEr } \\ & \text { 2505 } \end{aligned}$	$\frac{\text { Morth }}{7} \quad 22$	Hour 13	Minute $22$	$\frac{\text { Second }}{25}$

Press the SETUP button several times until SEC is displayed in reverse video.
Press the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button to increment or decrement the value by 2 .
Holding the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button will speed up the process of incrementing or decrementing.
To exit, press the EXIT button.

## SET THE CALENDER CLOCK



1. Press the SETUP button to select (Year, Month, Date, Hour, and Minute).
2. Press the $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ to increment or decrement the number.

Note: The 'seconds' field cannot be adjusted.

## PROTOCOL (RS-232C INTERFACE)

RS-232C Interface:
Baud Rate 19200
Data bits 8
Stop bit 1
No Parity

## SPECIFICATIONS $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$

## AC Watt

( 50 or 60 Hz , PF 0.5 to 1, CT = 1, Voltage $>$ AC 20V, Current $>$ AC 40 mA for 1 A range, Current $>A C 0.4 \mathrm{~A}$ for 10 A range, Current $>A C 4 \mathrm{~A}$ for 100 A range, and continuous waveform)
Model PQ3350 + PQ3110 (100A)

Range (0 to 100 A$)$	Resolution	Accuracy of Readings
$5.0-999.9 \mathrm{~W}$	0.1 W	$\pm 1 \% \pm 0.8 \mathrm{~W}$
$1.000-9.999 \mathrm{KW}$	0.001 KW	$\pm 1 \% \pm 8 \mathrm{~W}$
$10.00-99.99 \mathrm{KW}$	0.01 KW	$\pm 1 \% \pm 80 \mathrm{~W}$
$100.0-999.9 \mathrm{KW}$	0.1 KW	$\pm 1 \% \pm 0.8 \mathrm{KW}$
$1000-9999 \mathrm{KW}$	1 KW	$\pm 1 \% \pm 8 \mathrm{KW}$

( 50 or 60 Hz , PF 0.5 to 1, CT = 1, Voltage > AC 20V, Current > AC 4A for 100A range, Current > AC 40A for 1000A, and continuous waveform)
Model PQ3350 + PQ3120 (1000A)

Range $(0$ to 1000 A$)$	Resolution	Accuracy of Readings 2
$5.0-999.9 \mathrm{~W}$	0.1 W	$\pm 1 \% \pm 0.8 \mathrm{~W}$
$1.000-9.999 \mathrm{KW}$	0.001 KW	$\pm 1 \% \pm 8 \mathrm{~W}$
$10.00-99.99 \mathrm{KW}$	0.01 KW	$\pm 1 \% \pm 80 \mathrm{~W}$
$100.0-999.9 \mathrm{KW}$	0.1 KW	$\pm 1 \% \pm 0.8 \mathrm{KW}$
$1000-9999 \mathrm{KW}$	1 KW	$\pm 1 \% \pm 8 \mathrm{KW}$
$0.000-9.999 \mathrm{MW}$	0.001 MW	$\pm 1 \% \pm 80 \mathrm{KW}$

( 50 or 60 Hz , PF 0.5 to 1, CT = 1, Voltage > AC 5V, Current > AC 5A for A range, and continuous waveform. Conductor is located at the center of flexible loop. Position sensitivity is $2 \%$ of range. External field effect of $<40 \mathrm{~A} / \mathrm{m}$ and 200 mm from the coupling is $1 \%$ of range. Temperature coefficient is $0.02 \%$ of reading $/{ }^{\circ}$ C)

Model PQ3350 + PQ3220/PQ3210 (3000A/1200A)

Range (0 to	Resolution	Accuracy of Readings ${ }^{3}$	
3000 A 1200 A$)$		$>20 \mathrm{~V}$ and $>30 \mathrm{~A}$	$<20 \mathrm{~V}$ or $<30 \mathrm{~A}$
$10.0-999.9 \mathrm{~W}$	0.1 W	$\pm 1 \%$ of range	$\pm 2 \%$ of range
$1.000-9.999 \mathrm{KW}$	0.001 KW	$\pm 1 \%$ of range	$\pm 2 \%$ of range
$10.00-99.99 \mathrm{KW}$	0.01 KW	$\pm 1 \%$ of range	$\pm 2 \%$ of range
$100.0-999.9 \mathrm{KW}$	0.1 KW	$\pm 1 \%$ of range	$\pm 2 \%$ of range
$1000-9999 \mathrm{KW}$	1 KW	$\pm 1 \%$ of range	$\pm 2 \%$ of range

${ }^{1,2,3}$ For $C T \neq 1$, the accuracy in percentage is the same ( $\pm 1 \%$ ). But the additional digits should be multiplied by the CT ratio.

For example, $\pm 0.8 \mathrm{~W}$ becomes $\pm 0.8 \mathrm{~W}$ * CT ratio

Range of CT (Current Transformer) Ratio: 1 to 600
AC Apparent Power (VA, from 0.000VA to 9999 KVA):

$$
V A=V \text { r.m.s. } \times \text { A r.m.s }
$$

## AC Reactive Power (VAR, from 0.000 VAR to 9999 KVAR):

$$
V A R=\sqrt{ }\left(V A^{2}-W^{2}\right)
$$

## AC Active Energy (mWH, WH, or KWH, from 0 mWH to $999,999 \mathrm{KWH}$ )

$\mathrm{WH}=\mathrm{W}$ * Time (in hours)

## AC Current

( 50 or 60 Hz , Auto Range, True RMS, Crest Factor < 4, CT=1)
Model PQ3350+PQ3110 (Overload Protection AC 200A)

Range	Resolution	Accuracy of Readings 4
$0.04-1 \mathrm{~A}$	0.001 A	$\pm 0.5 \% \pm 0.05 \mathrm{~A}$
$0.4-10 \mathrm{~A}$	0.01 A	$\pm 0.5 \% \pm 0.05 \mathrm{~A}$
$4-100 \mathrm{~A}$	0.1 A	$\pm 1.0 \% \pm 0.5 \mathrm{~A}$

Model PQ3350+PQ3120 (Overload Protection AC 2000A)

Range	Resolution	Accuracy of Readings 5
10.00 A	$0.001 \mathrm{~A} / 0.01 \mathrm{~A}$	-
$4 \mathrm{~A}-100.0 \mathrm{~A}$	$0.01 \mathrm{~A} / 0.1 \mathrm{~A}$	$\pm 0.5 \% \pm 0.5 \mathrm{~A}$
$40 \mathrm{~A}-1000.0 \mathrm{~A}$	$0.1 \mathrm{~A} / 1 \mathrm{~A}$	$\pm 0.5 \% \pm 5 \mathrm{~A}$

Model PQ3350+PQ3220 (Overload Protection AC 3000A)

Range	Resolution	Accuracy of Readings ${ }^{\circ}$
$0-300.0 \mathrm{~A}$	0.1 A	$\pm 1 \%$ of range
$300.0-3000 \mathrm{~A}$	$0.1 \mathrm{~A} / 1 \mathrm{~A}$	$\pm 1 \%$ of range

Model PQ3350+PQ3210 (Overload Protection AC 1200A)

Range	Resolution	Accuracy of Readings $^{\circ}$
$0-120.0 \mathrm{~A}$	0.1 A	$\pm 1 \%$ of range
$120.0-1200 \mathrm{~A}$	$0.1 \mathrm{~A} / 1 \mathrm{~A}$	$\pm 1 \%$ of range

${ }^{4,5,6}$ For $C T \neq 1$, the accuracy in percentage is the same ( $\pm 0.5 \%$ ). But the additional digits should be multiplied by the CT ratio.
For example,
$\pm 0.5 \mathrm{~A}$ becomes $\pm 0.5 \mathrm{~A}$ * CT ratio

## AC Voltage

( 50 or 60 Hz , Auto Range, True RMS, Crest Factor < 4, Input Impedance $10 \mathrm{M} \Omega$, VT (PT) $=1$, Overload Protection AC 800V)

Range	Resolution	Accuracy of Readings ${ }^{\prime}$
$20.0 \mathrm{~V}-500.0 \mathrm{~V}$ (Phase to Neutral)	0.1 V	$\pm 0.5 \% \pm 5 \mathrm{dgts}$
$20.0 \mathrm{~V}-600.0 \mathrm{~V}$ (Phase to Phase)		$\pm 0.5 \% \pm 5 \mathrm{dgts}$

${ }^{7}$ For VT (PT) $\neq 1$, the accuracy in percentage is the same $( \pm 0.5 \%)$. But the additional digits should be multiplied by the VT ratio.
For example, $\pm 5$ digits becomes $\pm 5$ digits *VT (PT) ratio

## Harmonics of AC Voltage in Percentage

( 1 to $99^{\text {th }}$ order, minimum voltage at the 50 or $60 \mathrm{~Hz}>\mathrm{AC} 80 \mathrm{~V}$. If the voltage is 0 at 50 or 60 Hz , all the percentage (\%) display is 0 .)

Range	Resolution	Accuracy
$1-20^{\text {II }}$	$0.1 \%$	$\pm 2 \%$
$n n$		$\pm 4 \%$ of reading $\pm 2.0 \%$
		$\pm 6 \%$ of reading $\pm 2.0 \%$

## Harmonics of AC Voltage in Magnitude

(1 to $99^{\text {th }}$ order, minimum voltage at the 50 or $60 \mathrm{~Hz}>\mathrm{AC} 80 \mathrm{~V}, \mathrm{VT}=1$ )

Range	Resolution	Accuracy
$1-20^{\text {II }}$	0.1 V	$\pm 2 \% \pm 0.5 \mathrm{~V}$
$2 n n$		$\pm 4 \%$ of reading $\pm 0.5 \mathrm{~V}$
		$\pm 6 \%$ of reading $\pm 0.5 \mathrm{~V}$

## Harmonics of AC Current in Percentage

( 1 to $99^{\text {th }}$ order. Min. current at 50 or 60 Hz is: model PQ3350+PQ3110 $>10 \%$ of the range; model PQ3350+PQ3120 > 20A; model PQ3350+PQ3220/PQ3210 > 30A. If the current is 0 at 50 or 60 Hz , all the percentage (\%) display is 0 )
Model PQ3350+PQ3110

Range	Resolution	Accuracy
1-10 ${ }^{\text {II }}$	0.1\%	$\pm 0.2 \%$ of reading $\pm 1 \%$
11-20 ${ }^{\text {II }}$		$\pm 2 \%$ of reading $\pm 1 \%$
21-50"1(A range)		$\pm 5 \%$ of reading $\pm 1 \%$
21-50"1(mA range)		$\pm 10 \%$ of reading $\pm 1 \%$
51-99"'		$\pm 35 \%$ of reading $\pm 1 \%$

Model PQ3350+PQ3120

Range	Resolution	Accuracy
$1-20^{n \prime}$	$0.1 \%$	$\pm 2 \%$
$n n$		$\pm 4 \%$ of reading $\pm 2.0 \%$
		$\pm 6 \%$ of reading $\pm 2.0 \%$

Model PQ3350 + PQ3220/PQ3210

Range	Resolution	Accuracy
$1-20^{\text {II }}$	$0.1 \%$	$\pm 2 \%$
$21^{5 l}-50^{\text {II }}$	$0.1 \%$	$\pm 6 \%$
$51^{\text {sl }}-99^{\text {II }}$	$0.1 \%$	$\pm 10 \%$

## Harmonics of AC Current in Magnitude

( 1 to $99^{\text {th }}$ order. Min. current at the 50 or 60 Hz : model PQ3350+PQ3110 $>10 \%$ of the range; model PQ3350+PQ3120 > 20A. CT=1)
Model PQ3350+PQ3110

Range	Resolution	Accuracy
1-10 ${ }^{\text {II }}$	$0.1 \mathrm{~mA} / 0.1 \mathrm{~A}$	$\pm 0.2 \%$ of reading $\pm 7 \mathrm{dgts}$
11-20 ${ }^{\text {¹ }}$		$\pm 2 \%$ of reading $\pm 7 \mathrm{dgts}$
21-50"1 (A range)		$\pm 5 \%$ of reading $\pm 7$ dgts
21-50' ${ }^{\text {II }}$ (mA range)		$\pm 10 \%$ of reading $\pm 7$ dgts
51-99"'		$\pm 35 \%$ of reading $\pm 7$ dgts

Model PQ3350+PQ3120

Range	Resolution	Accuracy
$1-20^{\prime \prime \prime}$	0.1 A	$\pm 2 \%$ of reading $\pm 0.4 \mathrm{~A}$
$n n$		$\pm 4 \%$ of reading $\pm 0.4 \mathrm{~A}$
		$\pm 6 \%$ of reading $\pm 0.4 \mathrm{~A}$
$50-99^{\prime \prime \prime}$		

(1 to $99^{\text {th }}$ order, min. current at the 50 or 60 Hz , True RMS <300A)
Model PQ3350+PQ3220/PQ3210

Range $(0-300 \mathrm{~A})$	Resolution	Accuracy
$1-20^{\text {II }}$	$0.1 \%$	$\pm 2 \%$ of reading $\pm 4 \mathrm{~A}$
$21^{\text {sII }}-50^{\text {II }}$	$0.1 \%$	$\pm 4 \%$ of reading $\pm 4 \mathrm{~A}$
$51^{\text {s }}-99^{\text {II }}$	$0.1 \%$	$\pm 6 \%$ of reading $\pm 4 \mathrm{~A}$

( 1 to $99^{\text {th }}$ order, min. current at the 50 or $60 \mathrm{~Hz}, 3000 \mathrm{~A}>$ True RMS $>300 \mathrm{~A}$ )
Model PQ3350+PQ3220/PQ3210

Range (300 $-3000 \mathrm{~A})$	Resolution	Accuracy
$1-20^{\text {Il }}$	$0.1 \%$	$\pm 2 \%$ of reading $\pm 40 \mathrm{~A}$
$21^{5 l}-50^{\text {II }}$	$0.1 \%$	$\pm 4 \%$ of reading $\pm 40 \mathrm{~A}$
$51^{s l}-99^{\text {Il }}$	$0.1 \%$	$\pm 6 \%$ of reading $\pm 40 \mathrm{~A}$
37		PQ3350 V5.2 $11 / 10$

## Power Factor (PF)

Model PQ3350+PQ3110 or PQ3350+PQ3120

Range	Resolution	Accuracy
$0.00-1.00$	0.01	$\pm 0.04$

Model PQ3350+PQ3220/PQ3210

Range	Resolution	Accuracy	
		$>20 \mathrm{~V}$ and $>30 \mathrm{~A}$	$<20 \mathrm{~V}$ or $<30 \mathrm{~A}$
$0.000-1.000$	0.001	$\pm 0.04$	$\pm 0.1$

Phase Angle ( $\Phi$ )
Model PQ3350+PQ3110 or PQ3350+PQ3120

Range	Resolution	Accuracy
$-180^{\circ}$ to $180^{\circ}$	$0.1^{\circ}$	$\pm 1^{\circ}$

Model PQ3350+PQ3220/PQ3210 ( $\Phi$, V > 20V, A > 30A)

Range	Resolution	Accuracy
$-180^{\circ}$ to $180^{\circ}$	$0.1^{\circ}$	$\pm 2^{\circ}$
$0^{\circ}$ to $360^{\circ}$	$0.1^{\circ}$	$\pm 2^{\circ}$

## Peak Value

of ACV (peak value > 20V) or ACA (peak value: model PQ3350+PQ3110> 10\% of the range; model PQ3350+PQ3120> 20A; model PQ3350+PQ3220/PQ3210> 30A), VT=1

Range	Sampling Time	Accuracy of Reading
50 Hz	$19 \mu \mathrm{~s}$	$\pm 5 \% \pm 30$ digits
60 Hz	$16 \mu \mathrm{~s}$	$\pm 5 \% \pm 30$ digits

## Crest Factor (C.F.)

of ACV (peak value $>20 \mathrm{~V}$ ) or ACA (peak value: model PQ3350+PQ3110> 10\% of the range; model PQ3350+PQ3120> 20A; model PQ3350+PQ3220/PQ3210> 30A), VT=1

Range	Resolution	Accuracy of Readings
$1.00-99.99$	0.01	$\pm 5 \% \pm 30$ digits

## Frequency

in AUTO mode
Model PQ3350+PQ3110 or PQ3350+PQ3120

Range	Resolution	Accuracy of Reading
$45-65 \mathrm{~Hz}$	0.1 Hz	0.1 Hz

## Frequency

of $\operatorname{ACV}(\mathrm{RMS}$ value $>10 \mathrm{~V}$ ) or ACA (RMS value $>30 \mathrm{~A}$ )
Model PQ3350+PQ3220/PQ3210

Range	Resolution	Accuracy
$45-65 \mathrm{~Hz}$	0.1 Hz	$\pm 0.2 \mathrm{~Hz}$

## Total Harmonic Distortion

(THD-F with respect to the fundamental frequency, min. value at 50 or 60 Hz is voltage > AC 80V and current is: model PQ3350+PQ3110> $10 \%$ of the range; model PQ3350+PQ3120> 20A; model PQ3350+PQ3220/PQ3210> 30A. Calculation is done over 1 to $50^{\text {th }}$ Harmonics. If the voltage or current is 0 at 50 or 60 Hz , all the percentage (\%) display is 0 ).
Model PQ3350 + PQ3110

Range	Resolution	Accuracy
0.0-20.0\%	0.1\%	$\pm 1 \%$
20.0-100\%		$\pm 3 \%$ of reading $\pm 5 \%$
100-999.9\%		$\pm 10 \%$ of reading $\pm 10 \%$

Model PQ3350 + PQ3120

Range	Resolution	Accuracy
$0.0-20 \%$		$\pm 2 \%$
$20-100 \%$	$0.1 \%$	$\pm 6 \%$ of reading $\pm 1 \%$
		$\pm 10 \%$ of reading $\pm 1 \%$

Model PQ3350 + PQ3220/PQ3210

Range	Resolution	Accuracy
$0.0-20 \%$	$0.1 \%$	$\pm 2 \%$
$20-100 \%$	$0.1 \%$	$\pm 6 \%$ of reading $\pm 5 \%$
$100-999.9 \%$	$0.1 \%$	$\pm 10 \%$ of reading $\pm 10 \%$

## GENERAL SPECIFICATIONS

PQ3350 Analyzer	
Indoors Use	
Battery Type:	1.5V SUM-3 $\times 8$
External DC Input:	Use only power supply adapter Model PHAPSA
Display:	Dot Matrix LCD (240x128) with backlight
LCD Update Rate:	1 time / second
Power Consumption:	140 mA (approx.)
No. Of Samples:	1024 samples / period
Data Logging Files:	85
Max. File Capacity:	17474 records (3P4W, 3P3W)
	26210 records (1P3W)
	52420 records (1P2W)
	4096 records (50 Harmonics / record)
Sampling Time:	2 to 3000 seconds for data logging
Low battery Indication:	B
Overload Indication:	OL
Operating Temperature:	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Operating Humidity:	less than $85 \%$ relative
Storage Temperature:	$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Storage Humidity:	less than $75 \%$ relative
Dimension:	$257(\mathrm{~L}) \times 155(\mathrm{~W}) \times 57(\mathrm{H}) \mathrm{mm}$
	$10.1{ }^{\prime \prime}(\mathrm{L}) \times 6.1{ }^{\prime \prime}(\mathrm{W}) \times 2.3^{\prime \prime}(\mathrm{H})$
Weight:	1160 g (Batteries included)
Accessories:	test leads (3 meter long) $\times 4$
	Probes (PQ3110 or PQ3120 or PQ3220 or PQ3210)
	$\times 3$
	Alligator clips $\times 4$
	Carrying bag $\times 1$
	40 PQ3350 V5.2 11/10

Users manual x 1
Batteries $1.5 \mathrm{~V} \times 8$
Software CD x 1
Software users manual x 1
USB to RS232 cable x 1

## Model PQ3120 1000A Current Probe

Conductor Size:	$2.2^{\prime \prime}(55 \mathrm{~mm}), 2.5^{\prime \prime} \times 1.0^{\prime \prime}(64 \times 24 \mathrm{~mm})$ bus bar
Range Selection:	Manual $(10 \mathrm{~A}, 100 \mathrm{~A}, 1000 \mathrm{~A})$
Dimensions:	$244 \mathrm{~mm}(\mathrm{~L}) \times 97 \mathrm{~mm}(\mathrm{~W}) \times 46 \mathrm{~mm}(\mathrm{H}) 9.6^{\prime \prime}(\mathrm{L}) \times 3.8^{\prime \prime}(\mathrm{W}) \times 1.8^{\prime \prime}(\mathrm{H})$
Weight:	$1.3 \mathrm{lbs} .(600 \mathrm{~g})$
Operating Temperature:	14 to $122^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
Operating Humidity:	$<85 \%$ relative humidity
Altitude:	$<2000$ meters
Storage Temperature:	-4 to $140^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Storage Humidity:	$<75 \%$ relative

## PQ3110 100A Current Probe

Conductor Size:	$1.2^{\prime \prime}(30 \mathrm{~mm})$ approx.
Range Selection:	Manual $(1 \mathrm{~A}, 10 \mathrm{~A}, 100 \mathrm{~A})$
Dimensions:	$210 \mathrm{~mm}(\mathrm{~L}) \times 62 \mathrm{~mm}(\mathrm{~W}) \times 36 \mathrm{~mm}(\mathrm{H})$
	$8.3^{\prime \prime}(\mathrm{L}) \times 2.5^{\prime \prime}(\mathrm{W}) \times 1.4^{\prime \prime}(\mathrm{H})$
Weight:	$7 \mathrm{oz} .(200 \mathrm{~g})$
Operating Temperature:	14 to $122^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
Operating Humidity:	$<85 \%$ relative humidity
Altitude:	$<2000$ meters
Storage Temperature:	-4 to $140^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Storage Humidity:	$<75 \%$ relative

## Model PQ3220 3000A Flexible Current Probe

Probe Length:	24" (610mm)
Range Selection:	Manual (300A, 3000A)
Minimum Bending Diameter	$1.37{ }^{\prime \prime}$ (35mm)
Connector Diameter	0.9 " (23mm)
Cable Diameter	0.55 " (14mm)
Cable Length	67\%/1700mm (probe to box)
	$67 \% 170 \mathrm{~mm}$ (box to output)
Dimensions (box):	$5.1{ }^{\prime \prime}(\mathrm{L}) \times 3.1{ }^{\prime \prime}(\mathrm{W}) \times 1.7^{\prime \prime}(\mathrm{H})$
	130 mm (L) $\times 80 \mathrm{~mm}$ (W) $\times 43 \mathrm{~mm}$ (H)
Weight:	14.4 oz. (410g)
Operating Temperature:	14 to $122^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
Operating Humidity:	$<85 \%$ relative humidity
Altitude:	< 2000 meters
Storage Temperature:	-4 to $140^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Storage Humidity:	< $85 \%$ relative
Model PQ3210 1200A Flexible Current Probe	
Probe Length:	18" (460mm)
Range Selection:	Manual (120A, 1200A)
Minimum Bending Diameter	$1.37{ }^{\prime \prime}(35 \mathrm{~mm})$
Connector Diameter	0.9" (23mm)
Cable Diameter	0.55 " (14mm)
Cable Length	$67 \% 1700 \mathrm{~mm}$ (probe to box)
	$67 / 1700 \mathrm{~mm}$ (box to output)
Dimensions (box):	$5.1{ }^{\prime \prime}(\mathrm{L}) \times 3.1{ }^{\prime \prime}(\mathrm{W}) \times 1.7^{\prime \prime}(\mathrm{H})$
	130 mm (L) $\times 80 \mathrm{~mm}$ (W) $\times 43 \mathrm{~mm}$ (H)
Weight:	13.8 oz. (390g)
Operating Temperature:	14 to $122{ }^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
Operating Humidity:	< 85\% relative humidity
Altitude:	< 2000 meters
Storage Temperature:	-4 to $140^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Storage Humidity:	< $85 \%$ relative

## BATTERY REPLACEMENT



When the low battery symbol is displayed on the LCD, replace the batteries.

1. Turn power off and remove all of the test leads and current probes from the unit.
2. Remove the screw on the battery cover.
3. Lift and remove the battery cover.
4. Remove the old batteries.
5. Insert eight (8) new 1.5V 'AA' batteries.
6. Replace the battery cover and secure the screw.

## MAINTENANCE \& CLEANING

Service not covered in this manual should only be performed by qualified personnel. Repairs should only be performed by qualified personnel. Periodically wipe the case with a damp cloth and detergent; do not use abrasives or solvents.

NOMENCLATURE
V12, V23, V31: Line Voltage
V1, V2, V3: Phase Voltage
11, L2, , I3: Line Current
P1, P2, P3: True Power (W) of Each Phase
S1, S2, S3: Apparent (VA) Power of Each Phase
Q1, Q2, Q3: Reactive Power (VAR) of Each Phase
PE:Total System Power (W)
SE: Total System Apparent Power (VA)
QE: Total Reactive Power (VAR)
PFE: Total System Power Factor (PF)
PF1, PF2, PF3: Power Factor of Each Phase
PFH: Long Term Average Power Factor (WH/SH)
Ф1, Ф2, Ф3: Phase Angle of Each Phase
WH:Watt Hours
SH:VA hours
QH: VAR hours
HZ : Selected Frequency 50,60 or Auto.
MD: Maximum Demand in W and VA over Specified Interval
3P4W:3 Phase 4Wire System
3P3W: 3 Phase 3Wire System
1P2W: Single Phase 2 Wire System
1P3W: Single Phase 3 Wire System
SEC: sampling interval (0 to 3000 seconds) for data logging
CT: Current Transformer Ratio from 1 to 600
VT: Voltage Transformer Ratio from 1 to 3000

EXTECH INSTRUMENTS CORPORATION warrants this instrument to be free of defects in parts and workmanship for one year from date of shipment (a six month limited warranty applies to sensors and cables). If it should become necessary to return the instrument for service during or beyond the warranty period, contact the Customer Senvice Department at (781) 890-7440 ext. 210 for authorization or visit our website uww.extech.com for contact information. A Return Authorization (RA) number must be issued before any product is returned to Extech. The sender is responsible for shipping charges, freight, insurance and proper packaging to prevent damage in transit. This warranty does not apply to defects resulting from action of the user such as misuse, improper wiring, operation outside of specification, improper maintenance or repair, or unauthorized modification. Extech specifically disclaims any implied warranties or merchantability or fitness for a specific purpose and will not be liable for any direct, indirect, incidental or consequential damages. Extech's total liability is limited to repair or replacement of the product. The warranty set forth above is inclusive and no other warranty, whether writen or oral, is expressed or implied.

## Calibration and Repair Services

Extech offers repair and calibration services for the products we sell. Extech also provides NIST certification for most products. Call the Customer Service Department for information on calibration services available for this product. Extech recommends that annual calibrations be performed to verify meter performance and accuracy.

色

## Support line (781) 890-7440

Technical support: Extension 200; E-mail: support@extech.com
Repair \& Returns: Extension 210; E-mail: repair@extech.com
Product specifications subject to change without notice
For the latest version of this User's Guide, Software updates, and other
up-to-the-minute product information, visit our website: www.extech.com
Extech Instruments Corporation, 285 Bear Hill Rd., Waltham, MA 02451

Copyright © 2010 Extech Instruments Corporation
All rights reserved including the right of reproduction in whole or in part in any form.


[^0]:    NOTE: To select the1000A current probe, press the SETUP button to select CLAMP. When the CLAMP is reverse video, press the $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ button to select 1000 .

[^1]:    NOTE: The triggering point is the zero crossing point of V 1 for $\mathrm{V} 2, \mathrm{~V} 3, \mathrm{I} 2$, and I 3 . The triggering point for 11 is its own zero crossing point in case V 1 is not present.

    NOTE: In the waveform display mode, one period/cycle of 1024 data points is displayed.

