Test rods of water hardness

Code 0107247
Dip the test a second-stems in water, then shake to knock off the remaining droplets. Leave on for a minute and see the color scale to read the result.
Store at a temperature below 30°. Close the bag immediately after use
$1^{\circ}=17.8 \mathrm{mg} / \mathrm{I} \mathrm{CaCO} 3$

Individual test

Of 0°	very soft
$>5^{\circ}$ of	fresh
$>10^{\circ} \mathrm{d}$	medium hardness
$>15^{\circ}$	hard enough
$>20^{\circ} \mathrm{d}$	hard
$>25^{\circ}$ of	very hard

Test rods of water hardness
Code 0107247
Dip the test a second-stems in water, then shake to knock off the remaining droplets. Leave on for a minute and see the color scale to read the result. Store at a temperature below 30°. Close the bag immediately after use. $1^{\circ}=17.8 \mathrm{mg} / \mathrm{ICaCO}$

Individual tes
Of $0^{\circ} \quad$ very soft $>5^{\circ}$ of
$>10^{\circ} \mathrm{d}$
fresh medium hardness
$>15^{\circ}$
hard enough
$>20^{\circ} \mathrm{d}$
hard
very hard

Test rods of water hardness

Code 0107247 7G
Dip the test a second-stems in water, then shake to knock off the remaining droplets. Leave on for a minute and see the color scale to read the result. Store at a temperature below 30°. Close the bag immediately after use $1^{\circ}=17.8 \mathrm{mg} / \mathrm{CaCO} 3$

Individual test
Of 0° very soft
$>5^{\circ}$ of
$>10^{\circ} \mathrm{d}$
$>15^{\circ}$
$>20^{\circ} \mathrm{d}$
fresh medium hardness
hard enough hard
$>25^{\circ}$ of
very hard

Test rods of water hardness
 Code 0107247
 7G

Dip the test a second-stems in water, then shake to knock off the remaining droplets Leave on for a minute and see the color scale to read the result. Store at a temperature below 30°. Close the bag immediately after use. $1^{\circ}=17.8 \mathrm{mg} / \mathrm{ICaCO} 3$

Individual test
Of 0°
$>5^{\circ}$ of
$>10^{\circ} \mathrm{d}$ fresh medium hardness
$>15^{\circ}$
hard enough
hard
very hard

Preparation of irrigation water: The hardness of the water partial carbonate causes spots independen sirables on the leaves and continuously increases the pH value to the roots. When the pH exceeds Of 10°, we recommend for the welfare of your plants decarbonation. The latter becomes necessary when the pH is greater than 15°. A hardness of $10^{\circ}=178 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water.
Decarbonation, softening: Transformation of gypsum calcium carbonate. The salt content Total not declining. Possible use to a hardness of 15°.
Preparation: Dilute 10 cm 3 of concentrated sulfuric acid per m3 of water per degree. As a safety, let a hardness of 3 to 5° in water. Each acid intake, mix water for 30 \min. and monitor the pH value.
Range of pH values set: 4.0 to 4.5 . Use a basin acid-resistant.
Deacidification: Caustic potash carbonate required to neutralize an acid is very water made from hydrated lime $\mathrm{Ca}(\mathrm{OH}) 2$.
Preparation: Hydrated lime 40 g / 20 liters of water. 20 liters of caustic potash carbonate / 1 m 3 of water. Mix the water for about 30 min .
Limit value for crops: Use rain water!
Highly sensitive crops: 5 to $8^{\circ} \mathrm{d} / \mathrm{KH}=90$ to $140 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water
Potted plants: 8 to $12^{\circ} \mathrm{d} / \mathrm{KH}=140$ to 210 mg CaCO3 / liter of water
Beds: $10-15^{\circ} / \mathrm{KH}=180$ to $270 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water

Preparation of irrigation water: The hardness of the water partial carbonate causes spots independent sirables on the leaves and continuously increases the pH value to the roots. When the pH exceeds Of 10°, we recommend for the welfare of your plants decarbonation. The latter becomes necessary when the pH is greater than 15°. A hardness of $10^{\circ}=178 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water.

Decarbonation, softening: Transformation of gypsum calcium carbonate. The salt content Total not declining. Possible use to a hardness of 15°
Preparation: Dilute 10 cm 3 of concentrated sulfuric acid per m 3 of water per degree. As a safety, let a hardness of 3 to 5° in water. Each acid intake, mix water for 30
min . and monitor the pH value.
Range of pH values set: 4.0 to 4.5 . Use a basin acid-resistant
Deacidification: Caustic potash carbonate required to neutralize an acid is very water
made from hydrated lime $\mathrm{Ca}(\mathrm{OH}) 2$.
Preparation: Hydrated lime 40 g / 20 liters of water. 20 liters of caustic potash carbonate / 1 m 3 of water Mix the water for about 30 min

Limit value for crops: Use rain water!
Highly sensitive crops: 5 to $8^{\circ} \mathrm{d} / \mathrm{KH}=90$ to $140 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water
Potted plants: 8 to $12^{\circ} \mathrm{d} / \mathrm{KH}=140$ to 210 mg CaCO3 / liter of water
Beds: $10-15^{\circ} / \mathrm{KH}=180$ to $270 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water

Preparation of irrigation water: The hardness of the water partial carbonate causes spots independent sirables on the leaves and continuously increases the pH value to the roots. When the pH exceeds Of 10°, we recommend for the welfare of your plants decarbonation. The latter becomes necessary when the pH is greater than 15°. A hardness of $10^{\circ}=178 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water.

Decarbonation, softening: Transformation of gypsum calcium carbonate. The salt content
Total not declining. Possible use to a hardness of 15°
Preparation: Dilute 10 cm 3 of concentrated sulfuric acid per m3 of water per degree. As a
safety, let a hardness of 3 to 5° in water. Each acid intake, mix water for 30
min . and monitor the pH value.
Range of pH values set: 4.0 to 4.5 . Use a basin acid-resistant.
Deacidification: Caustic potash carbonate required to neutralize an acid is very water
made from hydrated lime $\mathrm{Ca}(\mathrm{OH}) 2$.
Preparation: Hydrated lime $40 \mathrm{~g} / 20$ liters of water. 20 liters of caustic potash carbonate / 1 m 3 of water.
Mix the water for about 30 min .
Limit value for crops: Use rain water!
Highly sensitive crops: 5 to $8^{\circ} \mathrm{d} / \mathrm{KH}=90$ to $140 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water
Potted plants: 8 to $12^{\circ} \mathrm{d} / \mathrm{KH}=140$ to 210 mg CaCO3 / liter of water
Beds: $10-15^{\circ} / \mathrm{KH}=180$ to $270 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water

Preparation of irrigation water: The hardness of the water partial carbonate causes spots independent sirables on the leaves and continuously increases the pH value to the roots. When the pH exceeds Of 10°, we recommend for the welfare of your plants decarbonation. The latter becomes necessary when the pH is greater than 15°. A hardness of $10^{\circ}=178 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water.

Decarbonation, softening: Transformation of gypsum calcium carbonate. The salt content
Total not declining. Possible use to a hardness of 15°.
Preparation: Dilute 10 cm 3 of concentrated sulfuric acid per m 3 of water per degree. As a safety, let a hardness of 3 to 5° in water. Each acid intake, mix water for 30
min . and monitor the pH value.
Range of pH values set: 4.0 to 4.5 . Use a basin acid-resistant.
Deacidification: Caustic potash carbonate required to neutralize an acid is very water
made from hydrated lime $\mathrm{Ca}(\mathrm{OH}) 2$.
Preparation: Hydrated lime 40 g / 20 liters of water. 20 liters of caustic potash carbonate / 1 m 3 of water. Mix the water for about 30 min

Limit value for crops: Use rain water!
Highly sensitive crops: 5 to $8^{\circ} \mathrm{d} / \mathrm{KH}=90$ to 140 mg CaCO 3 / liter of water
Potted plants: 8 to $12^{\circ} \mathrm{d} / \mathrm{KH}=140$ to 210 mg CaCO3 / liter of water
Beds: $10-15^{\circ} / \mathrm{KH}=180$ to 270 mg CaCO / liter of water

Test rods of water hardness

Code 0107247
Dip the test a second-stems in water, then shake to knock off the remaining droplets. Leave on for a minute and see the color scale to read the result.
Store at a temperature below 30°. Close the bag immediately after use
$1^{\circ}=17.8 \mathrm{mg} / \mathrm{I} \mathrm{CaCO} 3$

Shade char

Individual test
Of 0°
$>5^{\circ}$ of
$>10^{\circ} \mathrm{d}$
$>15^{\circ}$
$>20^{\circ} \mathrm{d}$
$>25^{\circ}$ of
very soft
fresh
medium hardness
hard enough hard
very hard

Preparation of irrigation water: The hardness of the water partial carbonate causes spots independent sirables on the leaves and continuously increases the pH value to the roots. When the pH exceeds Of 10°, we recommend for the welfare of your plants decarbonation. The latter becomes necessary when the pH is greater than 15°. A hardness of $10^{\circ}=178 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water.
Decarbonation, softening: Transformation of gypsum calcium carbonate. The salt content Total not declining. Possible use to a hardness of 15°.
Preparation: Dilute 10 cm 3 of concentrated sulfuric acid per m 3 of water per degree. As a safety, let a hardness of 3 to 5° in water. Each acid intake, mix water for 30 min . and monitor the pH value.
Range of pH values set: 4.0 to 4.5 . Use a basin acid-resistant.
Deacidification: Caustic potash carbonate required to neutralize an acid is very water
made from hydrated lime $\mathrm{Ca}(\mathrm{OH}) 2$.
Preparation: Hydrated lime 40 g / 20 liters of water. 20 liters of caustic potash carbonate / 1 m 3 of water. Mix the water for about 30 min .
Limit value for crops: Use rain water!
Highly sensitive crops: 5 to $8^{\circ} \mathrm{d} / \mathrm{KH}=90$ to $140 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water
Potted plants: 8 to $12^{\circ} \mathrm{d} / \mathrm{KH}=140$ to $210 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water
Beds: $10-15^{\circ} / \mathrm{KH}=180$ to $270 \mathrm{mg} \mathrm{CaCO} 3 /$ liter of water

