Universal Measuring Device
UMG96L
Operating Instructions

Brief instructions see last page
Table of contents

The meaning of symbols 3
Hints for the user 3
Receipt control 3
Contents of delivery 3
Hints for maintenance 4
Service 4
Product description 5
Intended use 5
Functional description 5
Installation 6
Mounting place 6
Measuring and operating voltage 6
Current measurement 7
Sum current measurement 7
Connecting options 8
Putting into service 10
Installation 10
Attach measuring and operating voltage 10
Connect measuring current 11
Check phase assignment 11
Check current direction 11
Check measurement 11
Check phase power 11
Check sum power 11
Elimination of errors 12
Error messages 13
Usage and indication 14
Indication mode 14
Programming mode 14
Key functions 15
Table, measured value indication 16
Current transformer 18
Voltage transformer 19
Averaging times 20
Measured value indication 21
Measured value rotation time 21
Measured value selection 22
Delete minimum and maximum values 23
Delete energy 23
Working hours counter 24
LCD contrast 24
Software Release 25
User password 25
Uncertainty of measurement 26
Configuration data 28
Declaration of conformity 29
Safety guidelines 29
Test voltage 29
EMC requirements 29
Technical data 30
Ambient conditions 30
Measurement 30
Connectable cables 30
Dimensions 31
Connection example 31
Brief instructions 32
Change current transformer ratio 32
Call up measured values 32

All rights reserved. No part of this manual may be reproduced or duplicated without the written permission of the author. Any contraventions are punishable and will be prosecuted with all legal means.

No liability can be taken for the faultless condition of the manual or damage caused by the use of it. As failures cannot be avoided completely, we shall be very grateful for any advice. We are anxious to remove all failures as soon as possible. The mentioned software and hardware descriptions are registered trademarks in the most cases and are subject to the regulations by law. All registered trademarks are property of the corresponding companies and are fully recognized by us.

Issue Note
The meaning of symbols

The symbols, which are used in this manual, have the following meaning:

⚠️ Beware of dangerous electrical voltage.

⚠️ This symbol shall warn you about possible danger, which can occur during installation, putting into service and usage.

Hints for the user

This device may be inserted and used by qualified personnel only according to the safety regulations. Please follow the legal and safety regulations for the corresponding application while using the device.

Qualified personnel are persons, who are familiar with installation, mounting, putting into service and operation of the product and have qualifications according to their occupation, for example:

- Education or instruction resp. the right to switch on or off, ground or characterize current circuits or devices according to the standards of safety techniques.
- Education or instruction in care and use of safety equipment according to the standard safety techniques.

⚠️ Attention!

If the device is not used according to this manual, a safe use cannot be granted, and the instrument might cause danger.

⚠️ Attention!

If a UMG 96L is installed in panels of metal, the panel must be earthed.

Receipt control

In order to ensure a perfect and safe use of the device, a proper transport, expert storage, erection and mounting and careful usage and maintenance is required. In case that a safe operation can no longer be granted, the device has to be put out of service and has to be protected against unintentional putting into service.

A safe operation can no longer be assumed, if the device

- shows visible damage,
- does not work in spite of intact net supply,
- has been exposed to disadvantageous conditions for a longer time (e.g. storage beyond allowed climate without adaption to the room climate, dew etc.) or transport use (e.g. falling from great height, even without visible damage).

Please test the contents of delivery for completion, before starting the installation of the device.

Contents of delivery

1 pc. UMG96L,
2 pcs. fixing brackets,
1 pc. manual.

As an option, a seal with part no. 29.01.907 can be delivered.

All delivered options and versions are listed on the delivery papers.

⚠️ Attention!

This manual also describes options, which have not been delivered and do not belong to the contents of delivery.
Hints for maintenance
Before delivery the device is tested in various safety checks and marked with a seal. If the device is opened, these checks must be repeated. For instruments, which are opened outside the manufacturing works, no warranty is granted whatsoever.

Repairing and calibration
Repairing and calibration work can be carried out in the manufacturing works only.

Front foil
The cleaning of the front foil has to be effected with a soft cloth using a common cleansing agent. Acid or acidic agents are not allowed for cleaning.

Waste management
The UMG96L can be disposed and recycled as electronical waste according to the legal regulations.

Service
If there are questions, which are not described in this manual, please contact us directly. For an efficient handling we need the following information:
- Description of device (see type plate),
- Serial digit (see type plate),
- Software Release,
- Measuring and operating voltage and
detailed description of error.

You can reach us:
Monday until Thursday between 07:00 and 15:00
and Friday between 07:00 and 12:00

Janitza electronics GmbH
Vor dem Polstück 1
D-35633 Lahnau
Support: Tel. (0 64 41) 9642-22
Fax (0 64 41) 9642-30
e-mail: info@janitza.de
Internet: http://www.janitza.de
Functional description

The electronical three phase measurement system determines and digitalizes the effective values of voltages and currents in 50/60 Hz networks.

The operating voltage for operation of UMG96L is generated by the measuring voltage L1-N. A random test measurement is carried out each second at all current and voltage inputs. Measuring signal interruptions, which last longer than one second are safely recognized.

For each random test one period is scanned. From those sampled values the microprocessor calculates the electric quantities. These measured values are indicated within the programmable display. The energy as well as the minimum and maximum values are stored every 15 minutes whereas the programmed data are stored immediately in a non volatile memory (EEPROM).

The scanning frequency for all measuring inputs is calculated from the net frequency of phase 1. At a net frequency of 50Hz the scanning frequency is 2,5kHz and for 60Hz it is 3,0kHz.

Intended use

The UMG96L is suitable for fix mounting and the measurement of voltage, current, power etc. in low voltage switchgear. The measurement is designed for 3 phase systems with neutral conductor (TN and TT-mains).

The UMG96L is suitable for mounting in fix and weather protected panels. Conducting panels must be earthed.

Due to the high resistance against interference, the UMG 96L is suitable for continous and un-supervised operation.

As the UMG96L receives its power from phase L1 of the measuring voltage, at least phase L1 and the neutral conductor N must be connected.

The attached voltage must be within the range of the measuring and operation voltage shown on type plate.

Either ../5A or ../1A current transformers can be connected to the current measuring inputs.

The connection of the measuring and operating voltage is carried out on the back side of the UMG96L via all-insulated spring power clamps.

The measuring and operating voltages must be connected to the UMG 96L via a separation (switch or power switch) and an overcurrent protection fuse (2-10A) in the building installation. The separation (switch or power switch) must be near the UMG 96L and easily accessible.

Diagram. Generation of the operating voltage from measurement voltage.
Installation

Mounting place
The UMG96L is suitable for a fix insertion into low and medium voltage switchgear. Any mounting position is possible.

Measuring and operating voltage
The operating voltage of the UMG96L is generated by the measuring voltage. The measurement is designed for three phase systems with neutral conductor (TN and TT mains). The measuring and operating voltages must be connected to the UMG 96L via a separation (switch or power switch) and an overcurrent protection (2-10A) within the building installation. The connection of the measuring and operating voltages is carried out at the back side of the UMG 96L via shock protected spring clamps.

230V/400V Standard version
Phase L1 and the neutral conductor N must be connected, and the attached voltage must be within the range of the measuring and operating voltage.

120V/220V Special version
Phase L1 and the neutral conductor N must be connected, and the attached voltage must be within the range of the measuring and operating voltage.

60V/110V Special version
Phase L1 and the neutral conductor N must be connected, and the attached voltage must be within the range of the measuring and operating voltage.

- The connection wires for the operating voltage leading to the UMG96L must be suitable for voltages up to 300V against ground.

- The measuring and operating voltage has to be protected by a fuse, which must be in the range of 2A to 10A.

- A switch or power switch for the operating voltage must be provided within the building installation.

- The switch has to be near the instrument and easily accessible.

- The switch must be marked as separation for this instrument.

Attention!
The limits indicated in the technical data may not be exceeded, not even while checking and putting into service of the UMG 96L.

Attention!
Before the device is connected to voltage for the first time, it should be deposited the installation room for at least 2 hours, to create a temperature assimilation and avoid condensation and dew.
Current measurement
The current measurement is carried out via ../5A or ../1A current transformers. In case that the current has to be measured by an Ampere-meter in addition to the UMG96L, the Ampere-meter has to be connected in series to the UMG96L.

In mains with voltage up to 300VAC against ground, currents up to 5A can be connected and measured directly to the UMG 96L.

Example: Sum current transformer
A current measurement is carried out via one current transformer with a ratio of 1000/5A and another one with a ratio of 200/5A. The sum measurement is carried out with a sum transformer 5+5/5A.

The UMG96L has to be programmed as follows:

Primary current: 1000A + 200A = 1200A
Secondary current: 5A

Diagr. Connection example: UMG96L with Amperemeter in series.

Inaccuracy
The inaccuracy of the current measuring input is +- 1% of the measuring range (5A). Therefore, the inaccuracy of the current measurement is +-50mA.

Example: Inaccuracy
With a current transformer 200/5A, the measuring range is 200A. The inaccuracy is +-1% of 200A = +-2A.

Resolution
The maximum resolution of the current measuring inputs is 10mA. The indication changes in 0.01A steps.

Example: Resolution current transformer 200/5A
With a current transformer ratio of 200/5A, a resolution of 10mA*40 = 400mA is effected. The display changes in 0.4A steps.

Small currents
The minimum working current is 20mA. At short circuited or open current measurement input, the UMG 96L can indicate a small current. This current is within the range of the allowed measurement inaccuracy.

Sum current measurement
If the current measurement is carried out via two current transformers, the total transformer ratio must be set to the UMG96L.

Example: Sum current transformer
A current measurement is carried out via one current transformer with a ratio of 1000/5A and another one with a ratio of 200/5A. The sum measurement is carried out with a sum transformer 5+5/5A.

The UMG96L has to be programmed as follows:

Primary current: 1000A + 200A = 1200A
Secondary current: 5A

Attention!
Current transformers may not be handled in open condition of the secondary, as the secondary clamps can lead live voltage.

Attention!
Prior to connecting or exchanging the UMG 96L, the secondary clamps of the external current transformers have to be short circuited.

Attention!
The program allows current and voltage transformer ratio setting only, if the maximum phase power can reach up to 50.0MW and the sum power can reach a maximum value of 150.0MW.
Connecting options

Diagr.: Connection example 1
Four wire measurement with three current transformers.

Diagr.: Connection example 2.
Four wire measurement with two current transformers.

Diagr.: Connection example 3
Measurement with three voltage transformers and three current transformers.

Diagr.: Connection example 4
Measurement with three voltage transformers and two current transformers.
Diagr.: Connection example 5
Medium voltage measurement with three voltage transformers and three current transformers.

Diagr.: Connection example 6
Medium voltage measurement with three voltage transformers and two current transformers.

Diagr.: Connection example 7
Measurement in IT networks via three current transformers.

Diagr.: Connection example 8
Measurement in IT networks with three voltage transformers and three current transformers.
Putting into service
The putting into service of the UMG 96L should be carried out as follows:

Installation
The UMG96L is designed for mounting in low voltage distributions, which contain overvoltage in measurement category III. The UMG96L is suitable for installation in fixed and weather proof panels. Conducting panels must be earthed. Any mounting position is possible. For mounting on front panels or doors, the delivered fixing brackets have to be used.

Attach measuring and operating voltage
The allowed measuring and operating voltage of UMG 96L is indicated on the type plate.

Attention!
Measuring and operating voltage, which do not correspond to the indication on the type plate, can lead to malfunction and damage of the instrument.

The connection wires for measuring voltage leading to the UMG96L must be suitable for voltages up to 300V against ground and 520V phase to phase.

After connecting the stated measuring and operating voltage to the UMG 96L, all segments of the display appear. After approx. two seconds, the UMG 96L switches to the first measured value indication.

In case that no indication appears, please check, if the attached operating voltage is within the rated voltage range.

Program current and voltage transformers
When the device leaves the manufacturer, a current transformer of 5/5A is set.
The set voltage transformer ratio has to be changed only, if a voltage transformer is connected.
When connecting voltage transformers, please observe the allowed measuring and operating voltage stated on type plate!
Connect measuring current
The UMG96L is designed for the connection of ..//1A and ..//5A current transformers. With the current inputs, only alternating current but no direct current can be measured.

Attention!
Current transformers may not be handled in open condition, as there might be live voltage at the secondaries.

Please connect the current inputs one after the other, and compare the indicated current of the display with the actual current. Please note, that the current transformer ratio is set to 5/5A and has to be adapted to the existing current transformers.

In case that the current transformer is short circuited on the secondary, the indicated current at the corresponding conductor at UMG 96L has to decrease to a value, that corresponds to the secondary current plus tolerance. The current indicated by UMG 96L, has to conform to the input current, under consideration of the current transformer and tolerance.

Check current direction
Short circuit two current transformers on the secondary. The real power in the connected phase has to be:
Positive (+) for consumption of real power and negative (-) for supply of real power (power station service).
In case that no real power is indicated, the assignment of voltages and currents may be wrong.

Check measurement
Provided that all voltage, current and power in the corresponding phase is indicated correctly, the sum power must be displayed correctly by UMG 96L either.

For verification, the sum power measured by UMG96L should be compared to the energy stated by the real and reactive energy counters of the supplier.

Check phase assignment
The assignment of the outer conductors to the current transformer is correct, if a current transformer is short circuited on the secondary, and the indicated current in the corresponding phase decreases to a value at the UMG96L, which corresponds to the secondary current plus tolerance.

Check sum power
Provided that all voltage, current and power in the corresponding phase is indicated correctly, the sum power must be displayed correctly by UMG 96L either.

If the apparent power is indicated correctly, but the real power has a “-” sign, the current transformer clamps are interchanged, or power is supplied to the energy supplier.
Elimination of errors

<table>
<thead>
<tr>
<th>Error</th>
<th>Reason</th>
<th>Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured value cannot be called up.</td>
<td>The indication has been deleted from measured value selection.</td>
<td>Add the required measured value indication to the measured value selection.</td>
</tr>
<tr>
<td>No current indication.</td>
<td>Corresponding voltage is not connected.</td>
<td>Connect corresponding voltage.</td>
</tr>
<tr>
<td>Current too small.</td>
<td>Current measurement in wrong phase</td>
<td>Check and correct connection.</td>
</tr>
<tr>
<td>Current incorrect.</td>
<td>Current measurement in wrong phase</td>
<td>Check and correct connection.</td>
</tr>
<tr>
<td></td>
<td>Current transformer programmed incorrectly. Measuring range exceeded.</td>
<td>Read ratio of current transformer and program accordingly.</td>
</tr>
<tr>
<td></td>
<td>The current peak at measuring input was exceeded caused by harmonic waves.</td>
<td>Insert a current transformer with a higher ratio.</td>
</tr>
<tr>
<td></td>
<td>The current at measuring input was below measuring range.</td>
<td>Insert a current transformer with a higher ratio.</td>
</tr>
<tr>
<td>Voltage L-N incorrect.</td>
<td>Measurement in wrong phase</td>
<td>Check and correct connection.</td>
</tr>
<tr>
<td>Voltage L-L too small / too high.</td>
<td>Voltage transformer ratio programmed incorrectly.</td>
<td>Read the voltage transformer ratio at the voltage transformer and program accordingly.</td>
</tr>
<tr>
<td></td>
<td>Phase conductors interchanged.</td>
<td>Check and correct connection.</td>
</tr>
<tr>
<td></td>
<td>N not connected.</td>
<td>Check and correct connection.</td>
</tr>
<tr>
<td></td>
<td>Voltage transformer ratio programmed incorrectly.</td>
<td>Read voltage transformer ratio at the voltage transformer and program accordingly.</td>
</tr>
<tr>
<td>Error</td>
<td>Reason</td>
<td>Elimination</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Phase shift ind/cap.</td>
<td>Current path is assigned to the wrong voltage path.</td>
<td>Check and correct connection.</td>
</tr>
<tr>
<td>Programmed data get lost.</td>
<td>The device was exposed to electro magnetical disturbance, which was higher than those mentioned in the technical data.</td>
<td>Improve external protection measures such as protection, filtering, earthing and local separation.</td>
</tr>
<tr>
<td>Real power too small / too high.</td>
<td>Current transformer ratio is programmed incorrectly. Current path is assigned to the wrong voltage path.</td>
<td>Read current transformer ratio and program accordingly. Check and correct connection.</td>
</tr>
<tr>
<td>Real power supply / consumption interchanged.</td>
<td>At least one current transformer connection is interchanged. Current path is assigned to the wrong voltage path.</td>
<td>Check and correct connection.</td>
</tr>
<tr>
<td>„Err“ in display.</td>
<td>See „error messages“</td>
<td>Check and correct connection.</td>
</tr>
<tr>
<td>The device does not operate in spite of the above.</td>
<td>Device defective.</td>
<td>Please send the device back to the producer with a detailed description of the error.</td>
</tr>
</tbody>
</table>

Error messages

While exceeding an allowed measured value range, the UMG 96L indicates the error message „Err“.

An exceeding of a measured value range arises, if at least one of the three existing current or voltage inputs or the frequency is out of the specified measuring range.

The symbols "V", "A" and „Hz” indicate, which measured value is out of range.

The phase is marked by the arrows upwards in which the exceeding occured.

⚠️ **Attention!**

Voltage and current beyond the specifications may destroy the device.
Usage and indication

The usage of the UMG96L is carried out via the keys one and two. Measured values and programming data are indicated on the liquid crystal display. You must distinguish between Indication mode and Programming mode.

By entering a password, you can avoid unintentional change of programming data.

Indication mode

In indication mode please scroll through the programmed measured value indications by using the keys 1 and 2. When the device is delivered, you can call up all measured values shown in table 1. For each measured value indication, up to three measured values are indicated. The measured value rotation allows to indicate all selected measured values on an alternate basis with a selectable changing time.

Programming mode

In programming mode the settings, which are necessary for the operation of the UMG96L, can be indicated and changed. Pressing the keys 1 and 2 simultaneously for about 1 second, you reach programming mode via the password indication. If no user password is programmed, you reach the first programming menu directly. The programming mode is marked with the text „PRG” in the display. With key 2 you can shift between the programming menus.

If you are in the programming mode and no keys are pressed for 60 seconds, or you press the keys 1 or 2 simultaneously for approx. 1 second, you return to the indication mode.

Programming menus:
- Current transformer,
- Voltage transformer,
- Averaging times,
- Measured value indications
 - Changing time,
 - Measured value selection,
 - Measured value rotation,
- Delete minimum and peak values,
- Delete energy,
- LCD contrast,
- Software Release,
- User password.
<table>
<thead>
<tr>
<th>Change mode</th>
<th>Indication mode</th>
<th>Password</th>
<th>Programming mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>simultaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td> </td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>simultaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td> </td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scroll</th>
<th>Measured values</th>
<th>Measured values</th>
<th>Measured values</th>
</tr>
</thead>
<tbody>
<tr>
<td>long</td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>short</td>
<td> </td>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programming</th>
<th>Programming menu</th>
<th>Confirm selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>long</td>
<td> </td>
<td>short digit +1</td>
</tr>
<tr>
<td>short</td>
<td> </td>
<td>long digit -1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programming</th>
<th>Program-</th>
<th>Confirm selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>long</td>
<td>Program-</td>
<td></td>
</tr>
<tr>
<td>short</td>
<td>Program-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programming</th>
<th>short value *10 (decimal point to the right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>long</td>
<td> </td>
</tr>
<tr>
<td>Table, measured value indication</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Measured values</td>
<td></td>
</tr>
<tr>
<td>L1-N Voltage</td>
<td></td>
</tr>
<tr>
<td>L2-N Voltage</td>
<td></td>
</tr>
<tr>
<td>L3-N Voltage</td>
<td></td>
</tr>
<tr>
<td>Mean values</td>
<td></td>
</tr>
<tr>
<td>L1 Current</td>
<td></td>
</tr>
<tr>
<td>L2 Current</td>
<td></td>
</tr>
<tr>
<td>L3 Current</td>
<td></td>
</tr>
<tr>
<td>Maximum values</td>
<td></td>
</tr>
<tr>
<td>L1-N Voltage</td>
<td></td>
</tr>
<tr>
<td>L2-N Voltage</td>
<td></td>
</tr>
<tr>
<td>L3-N Voltage</td>
<td></td>
</tr>
<tr>
<td>Minimum values</td>
<td></td>
</tr>
<tr>
<td>L1-N Voltage</td>
<td></td>
</tr>
<tr>
<td>L2-N Voltage</td>
<td></td>
</tr>
<tr>
<td>L3-N Voltage</td>
<td></td>
</tr>
<tr>
<td>Maximum values</td>
<td></td>
</tr>
<tr>
<td>L1 Real power</td>
<td></td>
</tr>
<tr>
<td>L2 Real power</td>
<td></td>
</tr>
<tr>
<td>L3 Real power</td>
<td></td>
</tr>
<tr>
<td>Minimum values</td>
<td></td>
</tr>
<tr>
<td>L1 Real power</td>
<td></td>
</tr>
<tr>
<td>L2 Real power</td>
<td></td>
</tr>
<tr>
<td>L3 Real power</td>
<td></td>
</tr>
<tr>
<td>Max. values</td>
<td></td>
</tr>
<tr>
<td>L1 Curr. mean val.</td>
<td></td>
</tr>
<tr>
<td>L2 Curr. mean val.</td>
<td></td>
</tr>
<tr>
<td>L3 Curr. mean val.</td>
<td></td>
</tr>
<tr>
<td>Maximum values</td>
<td></td>
</tr>
<tr>
<td>L1 Current</td>
<td></td>
</tr>
<tr>
<td>L2 Current</td>
<td></td>
</tr>
<tr>
<td>L3 Current</td>
<td></td>
</tr>
<tr>
<td>Mean value</td>
<td></td>
</tr>
<tr>
<td>Σ Current in N</td>
<td></td>
</tr>
<tr>
<td>Maximum value</td>
<td></td>
</tr>
<tr>
<td>Σ Measured value current in N</td>
<td></td>
</tr>
<tr>
<td>Minimum values</td>
<td></td>
</tr>
<tr>
<td>Σ Measured value current in N</td>
<td></td>
</tr>
<tr>
<td>Mean values</td>
<td></td>
</tr>
<tr>
<td>Σ Current in N</td>
<td></td>
</tr>
<tr>
<td>Maximum value</td>
<td></td>
</tr>
<tr>
<td>Σ Measured value current in N</td>
<td></td>
</tr>
<tr>
<td>Minimum values</td>
<td></td>
</tr>
<tr>
<td>Σ Measured value current in N</td>
<td></td>
</tr>
<tr>
<td>Mean values</td>
<td></td>
</tr>
<tr>
<td>Σ Real power</td>
<td></td>
</tr>
<tr>
<td>Maximum values</td>
<td></td>
</tr>
<tr>
<td>Σ Measured value real power</td>
<td></td>
</tr>
<tr>
<td>Minimum values</td>
<td></td>
</tr>
<tr>
<td>Σ Measured value real power</td>
<td></td>
</tr>
<tr>
<td>Max. values</td>
<td></td>
</tr>
<tr>
<td>L1 Curr. mean val.</td>
<td></td>
</tr>
<tr>
<td>L2 Curr. mean val.</td>
<td></td>
</tr>
<tr>
<td>L3 Curr. mean val.</td>
<td></td>
</tr>
<tr>
<td>Maximum values</td>
<td></td>
</tr>
<tr>
<td>L1 Real power</td>
<td></td>
</tr>
<tr>
<td>L2 Real power</td>
<td></td>
</tr>
<tr>
<td>L3 Real power</td>
<td></td>
</tr>
<tr>
<td>Minimum values</td>
<td></td>
</tr>
<tr>
<td>L1 Real power</td>
<td></td>
</tr>
<tr>
<td>L2 Real power</td>
<td></td>
</tr>
<tr>
<td>L3 Real power</td>
<td></td>
</tr>
<tr>
<td>Max. values</td>
<td></td>
</tr>
<tr>
<td>L1 Curr. mean val.</td>
<td></td>
</tr>
<tr>
<td>L2 Curr. mean val.</td>
<td></td>
</tr>
<tr>
<td>L3 Curr. mean val.</td>
<td></td>
</tr>
<tr>
<td>Maximum values</td>
<td></td>
</tr>
<tr>
<td>L1 Apparent power</td>
<td></td>
</tr>
<tr>
<td>L2 Apparent power</td>
<td></td>
</tr>
<tr>
<td>L3 Apparent power</td>
<td></td>
</tr>
<tr>
<td>Minimum values</td>
<td></td>
</tr>
<tr>
<td>L1 Apparent power</td>
<td></td>
</tr>
<tr>
<td>L2 Apparent power</td>
<td></td>
</tr>
<tr>
<td>L3 Apparent power</td>
<td></td>
</tr>
<tr>
<td>Max. values</td>
<td></td>
</tr>
<tr>
<td>L1 Curr. mean val.</td>
<td></td>
</tr>
<tr>
<td>L2 Curr. mean val.</td>
<td></td>
</tr>
<tr>
<td>L3 Curr. mean val.</td>
<td></td>
</tr>
<tr>
<td>Maximum values</td>
<td></td>
</tr>
<tr>
<td>L1 Apparent power</td>
<td></td>
</tr>
<tr>
<td>L2 Apparent power</td>
<td></td>
</tr>
<tr>
<td>L3 Apparent power</td>
<td></td>
</tr>
</tbody>
</table>
Mean values
L1 Reactive power
L2 Reactive power
L3 Reactive power

Max. values (ind)
L1 Reac. power
L2 Reac. power
L3 Reac. power

Measured values
L1 Reactive power
L2 Reactive power
L3 Reactive power

Mean value
Sum reactive power

Max. value (ind)
Sum reactive power

Measured value
L1 cos(phi)
L2 cos(phi)
L3 cos(phi)

Measured value
Sum cos(phi)

Measured value
L1 Frequency

Measured value
(Consumption)
Sum real energy

Measured value
Sum reactive energy (ind)

Working hours counter
Current transformer

Current transformers with either 1A or 5A secondary can be connected to the UMG96L. A transformer ratio of 5A/5A is preset by the manufacturer. In programming mode the current transformer setting is marked by the symbol „CT“.

Programming

In programming mode please scroll to the current transformer ratio by pressing key 2. Confirm the selection by pressing key 1. The first digit of the primary current flashes and can be changed by pressing key 2. If key 1 pressed again the next digit will be selected and flashes now. If the entire digit flashes, the decimal point can be moved. Press key 2 shortly - The decimal point moves to the right. Press key 2 longer - The decimal point moves to the left. If no digit flashes anymore, you can shift to the indication of the voltage transformer.

Example: Sum current transformer

A current measurement is carried out via two current transformers, one with a ratio of 1000/5A and another transformer with a ratio of 200/5A. The sum measurement is carried out with a sum current transformer 5+5/5A. The UMG96L has to be programmed with the following values:

Primary current: 1000A + 200A = 1200A

Secondary current: 5A

Attention!

The program allows current and voltage transformer ratio setting only, if the maximum phase power can reach up to 50.0MW and the sum power can reach a maximum value of 150.0MW.
Voltage transformer

The phase to phase voltage (L-L) is indicated on display of the UMG 96L as secondary and primary voltage. The transformer ratio is calculated from the programmed primary and secondary voltage. In programming mode, the voltage transformer settings are marked by the symbol „VT“.

The standard version is preset by the manufacturer with a ratio of 400V/400V.

The secondary voltage is always indicated in „V“. The corresponding symbol „V“ is not displayed.

The primary voltage is indicated in „V“ or „kV“. The corresponding symbol is displayed in „V“ or „kV“.

<table>
<thead>
<tr>
<th>Version</th>
<th>Type plate</th>
<th>Setting range voltage transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard version</td>
<td>196 .. 255V</td>
<td>L-L secondary: 400V L-L primary: 100V .. 60kV (400V)</td>
</tr>
<tr>
<td>Special version</td>
<td>90 .. 160V</td>
<td>L-L secondary: 200V L-L primary: 100V .. 60kV (200V)</td>
</tr>
<tr>
<td>Special version</td>
<td>45 .. 80V</td>
<td>L-L secondary: 100V, 110V L-L primary: 100V .. 60kV (100V)</td>
</tr>
</tbody>
</table>

Programming

In programming mode, please scroll to the voltage transformer setting by pressing key 2. Confirm selection with key 1.

The first digit of the primary voltage flashes and can be changed by pressing key 2. If key 1 is pressed again the next digit will be selected and flashes. If the entire digit flashes, you can move the decimal point. If no digit flashes anymore, you may shift to indication and programming of the outputs by pressing key 2.

Example: Voltage transformer ratio 100V/10kV

Attention!

The program allows current and voltage transformer ratio setting only, if the maximum phase power can reach up to 50.0MW and the sum power can reach a maximum value of 150.0MW.
Averaging times
A mean value is calculated for the most at the current and power values. A common averaging time for the current measured values L1, L2, L3 and N, as well as one for power measured values, real power, apparent power and reactive power is programmable.

Presettings:
Averaging time of currents = 900 seconds
Averaging time of power = 900 seconds

The following averaging times are selectable:
5, 10, 30, 60, 300, 480, 900 seconds

Programming of averaging time

Averaging time for real power
In programming mode please scroll to the averaging time for power with key 2. Confirm selection by pressing key 1.

The averaging time flashes and can be changed by pressing key 2. Confirm changed averaging time with key 1.
The averaging time stops flashing. The averaging time for power has been programmed.
By using key 2 you can now shift to programming menu „Averaging time for current“.

Averaging time for Currents
In programming menu please scroll to the averaging time for currents. Confirm selection by pressing key 1.

The averaging time flashes and can be changed by pressing key 2. Confirm changed averaging time with key 1. The averaging time stops flashing. The averaging time for currents has been programmed. By using key 2 you can now shift to programming menu „Rotation time“.

Method of taking the mean
The used exponential method reaches at least 95% of the measured value after the set averaging time.

\[ME_n = ME_{n-1} + (MA - ME_{n-1}) / N \]

- \(ME_n \) = indicated mean value
- \(MA \) = measured value
- \(n \) = consecutive digit
- \(N \) = digit of measured values, of which mean values shall be built.

Example for the averaging time of current mean value, here 30 seconds.

Example for the averaging time of real power mean value, here 900 seconds.
Measured value indication
Once in a second all measured values are calculated and can be indicated on the display. Two methods are available for calling up the measured value indications (see table 1).
- The selection of measured value indications via the keys 1 and 2, herein called measured value selection.
- The automatically rotating indications of selected measured value indications, herein called measured value rotation.

A measured value rotation time has been programmed additionally for the measured value rotation.

All measured values for the measured value selection are preset by the manufacturer. For the automatic rotation nothing is preset by the manufacturer. The rotation time is preset with 0 seconds.

Measured value rotation time
Both methods are available simultaneously. The measured value rotation is programmed, if at least one measured value indication and one measured value rotation time bigger than 0 seconds is programmed. If no key is pressed for about 60 seconds, an automatical change to rotation mode will be carried out, and all programmed measured values will be indicated one after the other.

Setting range of measured value rotation time: 0 .. 250 seconds

If 0 seconds are programmed, no rotation will be carried out. Nevertheless, measured value indications which are not programmed in the measured value selection, can be used for measured value rotation.

Rotation time in seconds indicated

Abb.

Programming
In programming mode please scroll to the menu measured value rotation, by using key 2. Confirm selection with key 1.

The first digit of the rotation time flashes and can be changed by pressing key 2. By pressing key 1 again the next digit will be selected and flashes.
If no digit flashes anymore, you can shift to programming menu „Measured value selection“ by pressing key 2.
Measured value selection

All measured values stated in table 1 (see page 16 and 17) can either be displayed via keep 1 and 2 measured value selection or automatically measured value rotation.

All measured values for the measured value selection are preset by the manufacturer. For the automatical measured value rotation nothing is preset by the manufacturer.

The condition of the selection is indicated by the output symbols. These symbols have the following meaning:

Measured value selection
- K1 The indication can be reached via the keys.
- K2 The indication cannot be reached via keys.

Measured value rotation
- K2 The indication changes automatically.
- K2 The indication does not change automatically.

Programming

In programming mode please scroll to programming menu measured value indication by pressing key 2.

Confirm selection by pressing key 1.

The first measured value indicated stated in table 1 (see page 16 and 17) occurs.

A selection of the measured value indication is carried out by pressing the keys quickly.

Key 1 - Scroll to the right within the measured value indications.

Key 2 - Scroll downwards within the measured value indications.

For the selected measured value indication, it can now be determined whether it will be available for measured value selection and for automatic rotation.

The selection is carried out by an extended push on keys 1 or 2.

Key 1 - Measured value selection.

Key 2 - Automatic rotation.

Once the programming is finished, you return to indication mode by pressing keys 1 and 2 simultaneously.
Delete minimum and maximum values
In programming mode, „Deletion of minimum and maximum values“ is marked by arrows upwards and downwards. All minimum and maximum values will be deleted simultaneously in menu „Deletion of minimum and maximum values“.
An exception is the maximum value of the current mean value. The maximum value of the current mean value can also be deleted directly in indication menu by an extended pressing of key 2.

Delete
In programming mode please scroll to “Deletion of minimum and maximum values“ by pressing key 2.
With key 1 you can shift between the indicated digits 0 and 1. These digits have the following meaning:
0 = Minimum and maximum values not to be deleted.
1 = Minimum and maximum values to be deleted.

Leave menu “Deletion of minimum and maximum values“ by pressing key 2. In case that digit 1 was displayed, all minimum and maximum values were deleted.

Delete energy
The real and reactive energy can only be deleted together via the keys.

Delete
In programming mode please scroll to the menu “delete energy“ by using key 2.
By pressing key 1 you can shift between digits 0 and 1. These digits have the following meaning:
0 = Real and reactive energy not to be deleted.
1 = Real and reactive energy to be deleted.

Leave menu “Delete energy“ by pressing key 2. In case that digit 1 was displayed real and reaktive energy were deleted.
Working hours counter
The working hours counter detects the time, in which the UMG96L measures and indicates data. The time is measured with a resolution of 15 minutes and is indicated in hours. The working hours counter cannot be deleted.

![Display example: The UMG96L indicates 40201 working hours.](image)

LCD contrast
The favoured view for the LCD display is from below. The LCD contrast of the LCD display can be adapted by the user. The contrast setting is possible in the range from 0 to 7.

- 0 = very light
- 7 = very dark

Programming
In programming mode please scroll to LCD contrast by pressing key 2. Confirm selection with key 1.

The first digit of the contrast setting is flashing. Move to the right digit with key 1. Now you can change the digit with key 2. Afterwards you can shift to programming menu “user password” by pressing key 2.
Software Release
The internal software of the UMG96L will be improved and extended continuously. The software update is registered in the device by a specific number the so called software release. The software release cannot be changed by the user.

Example: In UMG96L, the software release 1.23 is installed.

User password
A user password can be programmed in order to avoid an unintentional change of programming data. Only after entering the correct password, a shifting into the following programming menus possible.

No user password by the manufacturer is preset (000). In this case, the password menu will be skipped and you reach the current transformer menu directly.

In case that a user password was programmed, a „000“ appears in the display of the password menu.

The first digit of the password menu flashes and can be changed with key 2. By pressing key 1, the next digit will be selected and flashes.

Only after the correct password was entered, you reach the programming menu for the current transformer.

In case that a changed password is not known anymore, the device must be sent back to the manufacturer.
Uncertainty of measurement

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Indicating range</th>
<th>Measuring range<sup>1)</sup></th>
<th>tolerance allowance<sup>2)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meas. and auxiliary volt. 195..255V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage L-N</td>
<td>0 .. 34kV</td>
<td>196 .. 255V</td>
<td>+1,0% rng</td>
</tr>
<tr>
<td>Voltage L-L</td>
<td>0 .. 60kV</td>
<td>340 .. 442V</td>
<td>-2,0% rng</td>
</tr>
<tr>
<td>Current</td>
<td>0,00 .. 9,99kA</td>
<td>0,02 .. 6,00A</td>
<td>+1,0% rng</td>
</tr>
<tr>
<td>Current in N</td>
<td>0,00 .. 9,99kA</td>
<td>0,06 .. 18,00A</td>
<td>+3,0% rng</td>
</tr>
<tr>
<td>Real power, consumption, sum</td>
<td>0,00W .. 150MW</td>
<td>3,9W .. 3,825kW</td>
<td>+1,5% rng</td>
</tr>
<tr>
<td>Real power, supply, sum</td>
<td>-0,00W .. -150MW</td>
<td>-3,9W .. -3,825kW</td>
<td>+1,5% rng</td>
</tr>
<tr>
<td>Apparent power, sum</td>
<td>0,00VA .. 150MVA</td>
<td>3,9VA .. 3,825kVA</td>
<td>+1,5% rng</td>
</tr>
<tr>
<td>Reactive power (Q0), sum</td>
<td>0,00var .. 150Mvar</td>
<td>3,9var .. 3,825kvar</td>
<td>+1,5% rng</td>
</tr>
<tr>
<td>Meas. and aux. volt. 90 .. 160V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage L-N</td>
<td>0 .. 34kV</td>
<td>90 .. 160V</td>
<td>+1,0% rng</td>
</tr>
<tr>
<td>Voltage L-L</td>
<td>0 .. 60kV</td>
<td>156 .. 277V</td>
<td>+2,0% rng</td>
</tr>
<tr>
<td>Current</td>
<td>0,00 .. 9,99kA</td>
<td>0,02 .. 6,00A</td>
<td>+1,0% rng</td>
</tr>
<tr>
<td>Current in N</td>
<td>0,00 .. 9,99kA</td>
<td>0,06 .. 18,00A</td>
<td>+3,0% rng</td>
</tr>
<tr>
<td>Real power, consumption, sum</td>
<td>0,00W .. 150MW</td>
<td>1,8W .. 2,4kW</td>
<td>+1,5% rng</td>
</tr>
<tr>
<td>Real power, supply, sum</td>
<td>-0,00W .. -150MW</td>
<td>-1,8W .. -2,4kW</td>
<td>+1,5% rng</td>
</tr>
<tr>
<td>Apparent power, sum</td>
<td>0,00VA .. 150MVA</td>
<td>1,8VA .. 2,4kVA</td>
<td>+1,5% rng</td>
</tr>
<tr>
<td>Reactive power (Q0), sum</td>
<td>0,00var .. 150Mvar</td>
<td>1,8var .. 2,4kvar</td>
<td>+1,5% rng</td>
</tr>
<tr>
<td>Meas. and aux. volt. 45 .. 80V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage L-N</td>
<td>0 .. 34kV</td>
<td>45 .. 80V</td>
<td>+1,0% rng</td>
</tr>
<tr>
<td>Voltage L-L</td>
<td>0 .. 60kV</td>
<td>78 .. 139V</td>
<td>+2,0% rng</td>
</tr>
<tr>
<td>Current</td>
<td>0,00 .. 9,99kA</td>
<td>0,02 .. 6,00A</td>
<td>+1,0% rng</td>
</tr>
<tr>
<td>Current in N</td>
<td>0,00 .. 9,99kA</td>
<td>0,06 .. 18,00A</td>
<td>+3,0% rng</td>
</tr>
<tr>
<td>Real power, consumption, sum</td>
<td>0,00W .. 150MW</td>
<td>0,9W .. 1,2kW</td>
<td>+1,5% rng</td>
</tr>
<tr>
<td>Real power, supply, sum</td>
<td>-0,00W .. -150MW</td>
<td>-0,9W .. -1,2kW</td>
<td>+1,5% rng</td>
</tr>
<tr>
<td>Apparent power, sum</td>
<td>0,00VA .. 150MVA</td>
<td>0,9VA .. 1,2kVA</td>
<td>+1,5% rng</td>
</tr>
<tr>
<td>Reactive power (Q0), sum</td>
<td>0,00var .. 150Mvar</td>
<td>0,9var .. 1,2kvar</td>
<td>+1,5% rng</td>
</tr>
<tr>
<td>cos((\phi))</td>
<td>0,00i .. 1.00 .. 0,00c</td>
<td>45,0 .. 65,0Hz</td>
<td>+1,5% rdg</td>
</tr>
<tr>
<td>Frequency (of voltage)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive energy, inductive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v^5 < 10)</td>
<td>0.999 999 9.99kvarh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v^5 < 100)</td>
<td>0.999 999 99.9kvarh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v^5 >= 100)</td>
<td>0.999 999 999kvarh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real energy, consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v^5 < 10)</td>
<td>0.999 999 9.99kWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v^5 < 100)</td>
<td>0.999 999 99.9kWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v^5 >= 100)</td>
<td>0.999 999 999kWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working hours counter</td>
<td>0..999 999 999h</td>
<td></td>
<td>+2Min./Day</td>
</tr>
</tbody>
</table>

⚠️ **Attention!**

The program allows current and voltage transformer ratio setting only, if the maximum phase power can reach up to 50.0MW and the sum power can reach a maximum value of 150.0MW.
These specifications presuppose a yearly calibration and a warm up time of 10 minutes.

Used abbreviations:
- rng = of measuring range
- rdg = of measured value

1) Measuring range with scale factor = 1, (Current transformer = 5/5A, 1/1A)
2) In the range of -10..18°C and 28..55°C, an additional error of +0,5‰ of measured value has to be considered per K.
3) If the measured apparent power is in the range of 1% .. 100% of the measuring range, cos(\(\phi\)) is indicated with an accuracy of +3%.
5) The maximum indication range and the resolution of real and reactive energy depends on

Transformer ratio \(v = vi \times vu \).
- \(vi \) = Transformer ratio of current transformer.
- \(vu \) = Transformer ratio of voltage transformer.

Example:
- 200/5A \(\rightarrow \) \(vi = 40 \)
- 1000/100V \(\rightarrow \) \(vu = 10 \)
- \(v = vi \times vu \)
- \(v = 40 \times 10 \)
- \(v = 400 \)

![Indication range and resolution for real and reactive energy](image-url)
Configuration data

<table>
<thead>
<tr>
<th>Description</th>
<th>Display</th>
<th>Setting range</th>
<th>Presettings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current transf., primary</td>
<td>CT</td>
<td>1A .. 10,0kA</td>
<td>5A</td>
</tr>
<tr>
<td>Current transf., secondary</td>
<td>CT</td>
<td>1A, 5A</td>
<td>5A</td>
</tr>
<tr>
<td>Voltage transf., primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type plate, 196 .. 255V</td>
<td>VT</td>
<td>100V .. 60.0kV</td>
<td>400V</td>
</tr>
<tr>
<td>Type plate, 90 .. 160V</td>
<td>VT</td>
<td>100V .. 60.0kV</td>
<td>200V</td>
</tr>
<tr>
<td>Type plate, 45 .. 80V</td>
<td>VT</td>
<td>100V .. 60.0kV</td>
<td>100V</td>
</tr>
<tr>
<td>Voltage transformer, sec.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type plate, 196 .. 255V</td>
<td>VT</td>
<td>400V (not changeable)</td>
<td>400V</td>
</tr>
<tr>
<td>Type plate, 90 .. 160V</td>
<td>VT</td>
<td>200V, 220V</td>
<td>200V</td>
</tr>
<tr>
<td>Type plate, 45 .. 80V</td>
<td>VT</td>
<td>100V, 110V</td>
<td>100V</td>
</tr>
<tr>
<td>Averaging time, current</td>
<td></td>
<td>5, 10, .. 900Sec.</td>
<td>900Sec.</td>
</tr>
<tr>
<td>Averaging time, power</td>
<td></td>
<td>5, 10, .. 900Sec.</td>
<td>900Sec.</td>
</tr>
<tr>
<td>Measured value rotation</td>
<td></td>
<td>0 .. 250 seconds</td>
<td>0 = no rotation</td>
</tr>
<tr>
<td>Measured value selection</td>
<td></td>
<td>All indications</td>
<td>all indications</td>
</tr>
<tr>
<td>LCD contrast</td>
<td></td>
<td>0 .. 7</td>
<td>3</td>
</tr>
<tr>
<td>Software Release</td>
<td></td>
<td>not changeable</td>
<td>x.xx</td>
</tr>
<tr>
<td>User password</td>
<td></td>
<td>000 .. 999</td>
<td>„000“ = no password</td>
</tr>
<tr>
<td>Working hours counter</td>
<td></td>
<td>not changeable</td>
<td>0h</td>
</tr>
</tbody>
</table>
Declaration of conformity
The UMG96L fulfills the protection guidelines of:
Guideline 89/336/EWG in combination with DIN EN61326 (2002-03) as well as
Guideline 73/23/EWG and 93/68/EWG in combination with EN 61010-1 (2002-08)

Safety guidelines
Safety requirements for electrical equipment for measurement, control, and laboratory use

Test voltage
Enclosure against measuring inputs : 2kV AC
Between the inputs for measuring and auxiliary voltage and the current inputs exists a functional
separation of 2000V AC.

EMC requirements
Electromagnetic emission : DIN EN61326:2002-03, table 4, class B
Electromagnetic immunity
Enclosure
: ESD test, IEC61000-4-2:2001 (4kV/8kV)
 : Electromagnetic RF-field, IEC61000-4-3:2002 (10V/m)
 : Netfrequent magnetic field, IEC61000-4-8:2000 (120A/m)
AC-power line
 : AC-Power variation and dropout, IEC61000-4-11:2000
 : Fast transients (Burst), IEC61000-4-4:2001 (2kV)
 : Powerful pulse (Surge), IEC61000-4-5:2000 (1kV L- N)
 : RF induced on lines, IEC61000-4-6:2000 (3V)
Current transformer inputs
 : Fast transients (Burst), IEC61000-4-4:2001 (2kV)
 : Powerful pulse (Surge), IEC61000-4-5:2000 (1kV)
 : RF induced on lines, IEC61000-4-6:2000 (3V)
Technical data

Weight
- 250g

Calorific value
- 2,2MJ (610Wh)

Ambient conditions
- **Measurement category**: III (Measurement within building installation)
- **Pollution degree**: 2
- **Protection class**: II = with protective earth
- **Ambient temperature**: -10°C .. +55°C
- **Storage temperature**: -20°C .. +70°C
- **Humidity**: 15% up to 95% without dew
- **Protection class**
 - Front: IP50 according to IEC60529
 - Front with seal (Option): IP65 according to IEC60529
 - Back side: IP20 according to IEC60529
- **Mounting position**: random
- **Operating height**: 0 .. 2000m over sea level

Measurement
Measuring inputs
- **Measuring rate**: 1 measurement per second
- **Rated pulse voltage**: 4kV
- **Signal frequency**: 45Hz .. 1000Hz
- **Scanning frequency**: 2.5kHz/3.0kHz (Net frequency 50Hz/60Hz)

Measuring and operating voltage
- **Measuring and operating voltage**: see type plate
- **Fuse**: 2A .. 10A (medium time lag type)
- **Frequency of fundamental**: 45Hz .. 65Hz
- **Power consumption**: ca. 2.5VA

230V/400V Standard version
- **Range L-N**: 196 .. 255V AC
- **Range L-L**: 340 .. 442V AC

120V/220V Special version
- **Range L-N**: 90 .. 160V AC
- **Range L-L**: 156 .. 277V AC

60V/120V Special version
- **Range L-N**: 45 .. 80V AC
- **Range L-L**: 78 .. 139V AC

Current measurement
- **Power consumption**: approx. 0,2VA
- **Rated current at ../5A (../1A)**: 5A (1A)
 - Minimum working current: 20mA
 - Current limit at ../1A: 1,2A (sinus shape)
 - Current limit at ../5A: 6A (sinus shape)
- **Overload**: 150A for 2 Sec.

Accuracy class of energy measurement
- class 2

Connectable cables
- **One wire, multiple-wire, fine wire**: 0,08 - 2,5mm²
- **Pin contacts**: 1,5mm², only one conductor may be connected per terminal!
Dimensions
Cut out: 92+0,8 x 92+0,8 mm

Fixing angles

Panel max. 6

Diagr. Side view

Diagr. Back view

All dimensions in mm

Connection example

UMG96L

Voltage Measurement
see type plate

Current measurement
0,02 .. 5A

Connection example 1
Four wire measurement with three current transformers.
Brief instructions

Change current transformer ratio

Shift to programming mode
If you are in the indication mode please press the keys 1 and 2 simultaneously for approx. 1 second. Now you reach programming mode.
The symbols for programming mode PRG and for the current transformer CT appear.
Confirm selection with key 1.
The first digit of the primary flashes.

Change primary current:
Change the flashing digit with key 2.
Select the next digit to be changed by pressing key 1.
The selected digit flashes.
If the entire number flashes, the decimal point can be moved.

Change secondary current:
Only 1A or 5A can be set as secondary current.
Select secondary current with key 1.
Change flashing digit with key 2.

Leave programming mode:
Press both keys simultaneously for approx. 1 second.
The current transformer setting will be stored and you return to indication mode.

Call up measured values

Shift to indication mode
If you are in programming mode please press the keys 1 and 2 simultaneously for approx. 1 second. Now you reach the indication mode.
The symbol PRG for programming mode does not appear in the display and the first measured value indication, e.g. for the voltage appears.

Key 2
With key 2 you scroll between the different measured value indications for current, voltage, power etc.

Key 1
With key 1 you scroll between the mean values, maximum values etc., related to the corresponding measured value.