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Features
• High-performance, Low-power AVR® 8-bit Microcontroller
• Advanced RISC Architecture

– 130 Powerful Instructions – Most Single-clock Cycle Execution
– 32 x 8 General-purpose Working Registers
– Fully Static Operation
– Up to 8 MIPS Throughput at 8 MHz
– On-chip 2-cycle Multiplier

• Nonvolatile Program and Data Memories
– 32K Bytes of In-System Self-programmable Flash 

Endurance: 1,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program
– 1K Byte EEPROM

Endurance: 100,000 Write/Erase Cycles
– 2K Bytes Internal SRAM
– Programming Lock for Software Security

• JTAG (IEEE Std. 1149.1 Compliant) Interface
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
– Boundary-scan Capabilities According to the JTAG Standard

• Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture 

Mode
– Real-time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
– Byte-oriented 2-wire Serial Interface
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator

• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby 

and Extended Standby
• I/O and Packages

– 32 Programmable I/O Lines
– 40-pin PDIP and 44-lead TQFP

• Operating Voltages
– 2.7 - 5.5V (ATmega323L) 
– 4.0 - 5.5V (ATmega323)

• Speed Grades
– 0 - 4 MHz (ATmega323L)
– 0 - 8 MHz (ATmega323)
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Pin Configurations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

(XCK/T0) PB0
              (T1) PB1

(INT2/AIN0) PB2
   (OC0/AIN1) PB3
                (SS) PB4
            (MOSI) PB5
            (MISO) PB6
              (SCK) PB7
                   RESET
                       VCC
                       GND
                    XTAL2
                    XTAL1
             (RXD) PD0
             (TXD) PD1
            (INT0) PD2
            (INT1) PD3
          (OC1B) PD4
          (OC1A) PD5
              (ICP) PD6

PA0 (ADC0)
PA1 (ADC1)
PA2 (ADC2)
PA3 (ADC3)
PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
AGND
AVCC
PC7 (TOSC2)
PC6 (TOSC1)
PC5 (TDI)
PC4 (TDO)
PC3 (TMS)
PC2 (TCK)
PC1 (SDA)
PC0 (SCL)
PD7  (OC2)

1
2
3
4
5
6
7
8
9
10
11

33
32
31
30
29
28
27
26
25
24
23

(MOSI) PB5
(MISO) PB6
(SCK) PB7

RESET
VCC
GND

XTAL2
XTAL1

(RXD) PD0
(TXD) PD1
(INT0) PD2

PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
AGND
AVCC
PC7 (TOSC2)
PC6 (TOSC1)
PC5 (TDI)
PC4 (TDO)

44 43 42 41 40 39 38 37 36 35 34

12 13 14 15 16 17 18 19 20 21 22

(I
N

T
1)

P
D

3
(O

C
1B

)
P

D
4

(O
C

1A
)

P
D

5
(I

C
P

)
P

D
6

(O
C

2)
P

D
7

V
C

C
G

N
D

(S
C

L)
P

C
0

(S
D

A
)

P
C

1
(T

C
K

)
P

C
2

(T
M

S
)

P
C

3

P
B

4 
(S

S
)

P
B

3 
(A

IN
1/

O
C

0)
P

B
2 

((
A

IN
0/

IN
T

2)
P

B
1 

(T
1)

P
B

0 
(X

C
K

/T
0)

G
N

D
V

C
C

P
A

0 
(A

D
C

0)
P

A
1 

(A
D

C
1)

P
A

2 
(A

D
C

2)
P

A
3 

(A
D

C
3)

TQFP

PDIP
2 ATmega323(L)
1457E–11/01



ATmega323(L)
Overview The ATmega323 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATmega323 achieves throughputs approaching 1 MIPS per MHz allowing the sys-
tem designer to optimize power consumption versus processing speed.

Block Diagram Figure 1.  Block Diagram
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The AVR core combines a rich instruction set with 32 general-purpose working regis-
ters. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU),
allowing two independent registers to be accessed in one single instruction executed in
one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega323 provides the following features: 32K bytes of In-System Programmable
Flash, 1K bytes EEPROM, 2K bytes SRAM, 32 general purpose I/O lines, 32 general
purpose working registers, a JTAG interface for Boundary-Scan, On-Chip Debugging
support and programming, three flexible timer/counters with compare modes, internal
and external interrupts, a serial programmable USART, a byte oriented 2-wire Serial
Interface, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal
oscillator, an SPI serial port, and six software selectable power saving modes. The Idle
mode stops the CPU while allowing the SRAM, timer/counters, SPI port, and interrupt
system to continue functioning. The Power-down mode saves the register contents but
freezes the oscillator, disabling all other chip functions until the next interrupt or hard-
ware reset. In Power-save mode, the asynchronous timer continues to run, allowing the
user to maintain a timer base while the rest of the device is sleeping. The ADC Noise
Reduction Mode stops the CPU and all I/O modules except asynchronous timer and
ADC, to minimize switching noise during ADC conversions. In Standby mode, the crys-
tal/resonator oscillator is running while the rest of the device is sleeping. This allows
very fast start-up combined with low-power consumption. In Extended Standby mode,
both the main oscillator and the asynchronous timer continue to run. 

The device is manufactured using Atmel’s high-density nonvolatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed In-System
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the Application Flash memory. By com-
bining an 8-bit RISC CPU with In-System Programmable Flash on a monolithic chip, the
Atmel ATmega323 is a powerful microcontroller that provides a highly flexible and cost
effective solution to many embedded control applications.

The ATmega323 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit
emulators, and evaluation kits.

Pin Descriptions

VCC Digital supply voltage.

GND Digital ground.

Port A (PA7..PA0) Port A serves as the analog inputs to the A/D Converter.

Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port A output
buffers can sink 20 mA and can drive LED displays directly. When pins PA0 to PA7 are
used as inputs and are externally pulled low, they will source current if the internal pull-
up resistors are activated. The Port A pins are tri-stated when a reset condition
becomes active, even if the clock is not running.

Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers can sink 20 mA. As inputs, Port B pins that are externally
4 ATmega323(L)
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ATmega323(L)
pulled low will source current if the pull-up resistors are activated. The Port B pins are
tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega323 as listed
on page 135.

Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers can sink 20 mA. As inputs, Port C pins that are externally
pulled low will source current if the pull-up resistors are activated. The Port C pins are
tri-stated when a reset condition becomes active, even if the clock is not running.

Port C also serves the functions of the JTAG interface and other special features of the
ATmega323 as listed on page 142. If the JTAG interface is enabled, the pull-up resistors
on pins PC5 (TDI), PC3 (TMS) and PC2 (TCK) will be activated even if a reset occurs.

Port D (PD7..PD0) Port D is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally
pulled low will source current if the pull-up resistors are activated. The Port D pins are
tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega323 as listed
on page 147. 

RESET Reset input. A low level on this pin for more than 500 ns will generate a reset, even if the
clock is not running. Shorter pulses are not guaranteed to generate a reset.

XTAL1 Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting oscillator amplifier.

AVCC AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally
connected to VCC, even if the ADC is not used. If the ADC is used, it should be con-
nected to VCC through a low-pass filter. See page 124 for details on operation of the
ADC.

AREF AREF is the analog reference pin for the A/D Converter. For ADC operations, a voltage
in the range 2.56V to AVCC can be applied to this pin.

AGND Analog ground. If the board has a separate analog ground plane, this pin should be con-
nected to this ground plane. Otherwise, connect to GND.
5
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Clock Options The device has the following clock source options, selectable by Flash fuse bits as
shown:

Note: “1” means unprogrammed, “0” means programmed.

The various choices for each clocking option give different start-up times as shown in
Table 6 on page 27. 

Internal RC Oscillator The internal RC oscillator option is an On-chip oscillator running at a fixed frequency of
nominally 1 MHz. If selected, the device can operate with no external components. See
“Calibrated Internal RC Oscillator” on page 40 for information on calibrating this
oscillator.

Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip oscillator, as shown in Figure 2. Either a quartz
crystal or a ceramic resonator may be used. 

Figure 2.  Oscillator Connections

Table 1.  Device Clocking Options Select

Device Clocking Option  CKSEL3..0

External Crystal/Ceramic Resonator 1111 - 1010

External Low-frequency Crystal 1001 - 1000

External RC Oscillator 0111 - 0101

Internal RC Oscillator 0100 - 0010

External Clock 0001 - 0000

XTAL2

XTAL1

GND

C2

C1
6 ATmega323(L)
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ATmega323(L)
External Clock To drive the device from an external clock source, XTAL1 should be driven as shown in
Figure 3. 

Figure 3.  External Clock Drive Configuration

External RC Oscillator For timing insensitive applications, the external RC configuration shown in Figure 4 can
be used. For details on how to choose R and C, see Table 73 on page 209.

Figure 4.  External RC Configuration

Timer Oscillator For the Timer Oscillator pins, PC6(TOSC1) and PC7(TOSC2), the crystal is connected
directly between the pins. No external capacitors are needed. The oscillator is optimized
for use with a 32.768 kHz watch crystal. Applying an external clock source to
PC6(TOSC1) is not recommended.

XTAL2

XTAL1

GND
C

R

VCC

NC
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Architectural 
Overview

The fast-access register file concept contains 32 x 8-bit general-purpose working regis-
ters with a single clock cycle access time. This means that during one single clock cycle,
one Arithmetic Logic Unit (ALU) operation is executed. Two operands are output from
the register file, the operation is executed, and the result is stored back in the register
file – in one clock cycle.

Six of the 32 registers can be used as three 16-bits indirect address register pointers for
Data Space addressing – enabling efficient address calculations. One of the three
address pointers is also used as the address pointer for look up tables in Flash program
memory. These added function registers are the 16-bits X-, Y-, and Z-register.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations are also executed in the ALU. Figure 5
shows the ATmega323 AVR Enhanced RISC microcontroller architecture.

In addition to the register operation, the conventional memory addressing modes can be
used on the register file as well. This is enabled by the fact that the register file is
assigned the 32 lowest Data Space addresses ($00 - $1F), allowing them to be
accessed as though they were ordinary memory locations.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, Timer/Counters, A/D-converters, and other I/O functions. The I/O Memory
can be accessed directly, or as the Data Space locations following those of the register
file, $20 - $5F.
8 ATmega323(L)
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ATmega323(L)
Figure 5.  The ATmega323 AVR Enhanced RISC Architecture

The AVR uses a Harvard architecture concept – with separate memories and buses for
program and data. The program memory is executed with a single level pipelining. While
one instruction is being executed, the next instruction is pre-fetched from the program
memory. This concept enables instructions to be executed in every clock cycle. The pro-
gram memory is In-System Reprogrammable Flash memory.

With the jump and call instructions, the whole 16K address space is directly accessed.
Most AVR instructions have a single 16-bit word format. Every program memory
address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot program section (512
to 4K bytes, see page 172) and the Application Program section. Both sections have
dedicated Lock Bits for write and read/write protection. The SPM instruction that writes
into the Application Flash memory section is allowed only in the Boot program section.

During interrupts and subroutine calls, the return address program counter (PC) is
stored on the stack. The stack is effectively allocated in the general data SRAM, and
consequently the stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The 12-bit stack pointer SP is read/write accessible in the
I/O space.
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The 2K bytes data SRAM can be easily accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional
global interrupt enable bit in the status register. All interrupts have a separate interrupt
vector in the interrupt vector table. The interrupts have priority in accordance with their
interrupt vector position. The lower the interrupt vector address, the higher the priority.

Figure 6.  Memory Maps

$0000

$3FFF

Program Memory

Application Flash Section
 

Boot Flash Section
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1457E–11/01



ATmega323(L)
The General-purpose 
Register File

Figure 7 shows the structure of the 32 general-purpose working registers in the CPU.

Figure 7.  AVR CPU General-purpose Working Registers

Most register operating instructions in the instruction set have direct access to all regis-
ters, and most of them are single cycle instructions.

As shown in Figure 7, each register is also assigned a data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X, Y, and Z registers can be set to index any
register in the file.

The X-register, Y-register, and 
Z-register

The registers R26..R31 have some added functions to their general-purpose usage.
These registers are address pointers for indirect addressing of the Data Space. The
three indirect address registers X, Y, and Z are defined as:

Figure 8.  The X, Y, and Z Registers

In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment and decrement (see the descriptions for the different
instructions).

7 0 Addr.

R0 $00

R1 $01

R2 $02

…

R13 $0D

General R14 $0E

Purpose R15 $0F

Working R16 $10

Registers R17 $11

…

R26 $1A X-register low byte

R27 $1B X-register high byte

R28 $1C Y-register low byte

R29 $1D Y-register high byte

R30 $1E Z-register low byte

R31 $1F Z-register high byte

15 XH XL 0

X - register 70 0 7 0

R27 ($1B) R26 ($1A)

15 YH YL 0

Y - register 70 0 7 0

R29 ($1D) R28 ($1C)

15 ZH ZL 0

Z - register 70 0 7 0

R31 ($1F) R30 ($1E)
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The ALU – Arithmetic 
Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general-
purpose working registers. Within a single clock cycle, ALU operations between regis-
ters in the register file are executed. The ALU operations are divided into three main
categories – arithmetic, logical, and bit-functions. ATmega323 also provides a powerful
multiplier supporting both signed/unsigned multiplication and fractional format. See the
“Instruction Set” section for a detailed description.

The In-System 
Reprogrammable Flash 
Program Memory 

The ATmega323 contains 32K bytes On-chip In-System Reprogrammable Flash mem-
ory for program storage. Since all instructions are 16- or 32-bit words, the Flash is
organized as 16K x 16. The Flash Program memory space is divided in two sections,
Boot Program section and Application Program section. 

The Flash memory has an endurance of at least 1000 write/erase cycles. The
ATmega323 Program Counter (PC) is 14 bits wide, thus addressing the 16K program
memory locations. The operation of Boot Program section and associated Boot Lock
Bits for software protection are described in detail on page 172. See page 191 for a
detailed description on Flash data serial downloading using the SPI pins. See page 196
for details on serial downloading using the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see
the LPM – Load Program Memory instruction description).

See also page 13 for the different program memory addressing modes.

The SRAM Data Memory Figure 9 shows how the ATmega323 SRAM Memory is organized.

The lower 2144 Data Memory locations address the Register file, the I/O Memory, and
the internal data SRAM. The first 96 locations address the Register File + I/O Memory,
and the next 2048 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Dis-
placement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In
the register file, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode features a 63 address locations reach from the
base address given by the Y or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y, and Z are decremented and incremented.

The 32 general-purpose working registers, 64 I/O registers, and the 2048 bytes of inter-
nal data SRAM in the ATmega323 are all accessible through all these addressing
modes.
12 ATmega323(L)
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Figure 9.  SRAM Organization

The Program and Data 
Addressing Modes

The ATmega323 AVR Enhanced RISC microcontroller supports powerful and efficient
addressing modes for access to the program memory (Flash) and data memory (SRAM,
Register File, and I/O Memory). This section describes the different addressing modes
supported by the AVR architecture. In the figures, OP means the operation code part of
the instruction word. To simplify, not all figures show the exact location of the address-
ing bits.

Register Direct, Single 
Register Rd

Figure 10.  Direct Single Register Addressing

The operand is contained in register d (Rd).

Register File

R0
R1
R2

R29
R30
R31

I/O Registers
$00
$01
$02

...

$3D
$3E
$3F

...

$0000
$0001
$0002

$001D
$001E
$001F

$0020
$0021
$0022

...

$005D
$005E
$005F

...

Data Address Space

$0060
$0061

$085E
$085F

...

Internal SRAM
13
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Register Direct, Two Registers 
Rd and Rr

Figure 11.  Direct Register Addressing, Two Registers

Operands are contained in register r (Rr) and d (Rd). The result is stored in register d
(Rd).

I/O Direct Figure 12.  I/O Direct Addressing

Operand address is contained in 6-bits of the instruction word. n is the destination or
source register address.

Data Direct Figure 13.  Direct Data Addressing

A 16-bit Data Address is contained in the 16 LSBs of a two-word instruction. Rd/Rr
specify the destination or source register.

OP Rr/Rd

1631

15 0

16 LSBs

$0000

$085F

20 19

Data Space
14 ATmega323(L)
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Data Indirect with 
Displacement

Figure 14.  Data Indirect with Displacement

Operand address is the result of the Y- or Z-register contents added to the address con-
tained in 6 bits of the instruction word.

Data Indirect Figure 15.  Data Indirect Addressing

Operand address is the contents of the X, Y-, or the Z-register.

Data Indirect with Pre--
decrement

Figure 16.  Data Indirect Addressing With Pre-decrement

The X-, Y-, or the Z-register is decremented before the operation. Operand address is
the decremented contents of the X-, Y-, or the Z-register.

Data Space
$0000

$085F

Y OR Z - REGISTER

OP an

0

05610

15

15

Data Space
$0000

X, Y OR Z - REGISTER

015

$085F

Data Space
$0000

X, Y OR Z - REGISTER

015

-1

$085F
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Data Indirect with 
Post-increment

Figure 17.  Data Indirect Addressing With Post-increment

The X-, Y-, or the Z-register is incremented after the operation. Operand address is the
content of the X-, Y-, or the Z-register prior to incrementing.

Constant Addressing Using 
the LPM and SPM Instructions

Figure 18.  Code Memory Constant Addressing

Constant byte address is specified by the Z-register contents. The 15 MSBs select word
address (0 - 16K). For LPM, the LSB selects low byte if cleared (LSB = 0) or high byte if
set (LSB = 1). For SPM, the LSB should be cleared.

Indirect Program Addressing, 
IJMP and ICALL

Figure 19.  Indirect Program Memory Addressing

Data Space
$0000

X, Y OR Z - REGISTER

015

1

$085F

$3FFF

$3FFF
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ATmega323(L)
Program execution continues at address contained by the Z-register (i.e., the PC is
loaded with the contents of the Z-register).

Relative Program Addressing, 
RJMP and RCALL

Figure 20.  Relative Program Memory Addressing

Program execution continues at address PC + k + 1. The relative address k is from –
2048 to 2047.

The EEPROM Data 
Memory

The ATmega323 contains 1K bytes of data EEPROM memory. It is organized as a sep-
arate data space, in which single bytes can be read and written. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described on page 65 specifying the EEPROM Address Registers, the
EEPROM Data Register, and the EEPROM Control Register.

For SPI data downloading of the EEPROM, see page 191 for a detailed description.

Memory Access Times 
and Instruction 
Execution Timing

This section describes the general access timing concepts for instruction execution and
internal memory access.

The AVR CPU is driven by the System Clock Ø, directly generated from the selected
clock source for the chip. No internal clock division is used.

Figure 21 shows the parallel instruction fetches and instruction executions enabled by
the Harvard architecture and the fast-access register file concept. This is the basic pipe-
lining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figure 21.  The Parallel Instruction Fetches and Instruction Executions

$3FFF

1

System Clock Ø

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4
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Figure 22 shows the internal timing concept for the register file. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 22.  Single Cycle ALU Operation

The internal data SRAM access is performed in two System Clock cycles as described
in Figure 23.

Figure 23.  On-chip Data SRAM Access Cycles

I/O Memory The I/O space definition of the ATmega323 is shown in Table 2.

System Clock Ø

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

System Clock Ø

WR

RD

Data

Data

Address Address

T1 T2 T3 T4

Prev. Address

R
ea

d
W

rit
e

Table 2.  ATmega323 I/O Space

I/O Address (SRAM 
Address) Name Function

$3F ($5F) SREG Status Register

$3E ($5E) SPH Stack Pointer High

$3D ($5D) SPL Stack Pointer Low

$3C ($3C) OCR0 Timer/Counter0 Output Compare Register

$3B ($5B) GICR General Interrupt Control Register

$3A ($5A) GIFR General Interrupt Flag Register

$39 ($59) TIMSK Timer/Counter Interrupt Mask Register

$38 ($58) TIFR Timer/Counter Interrupt Flag Register

$37 ($57) SPMCR SPM Control Register
18 ATmega323(L)
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$36 ($56) TWCR 2-wire Serial Interface Control Register

$35 ($55) MCUCR MCU general Control Register

$34 ($54) MCUCSR MCU general Control and Status Register

$33 ($53) TCCR0 Timer/Counter0 Control Register

$32 ($52) TCNT0 Timer/Counter0 (8-bit)

$31 ($51)(1)
OSCCAL Oscillator Calibration Register

OCDR On-chip Debug Register

$30 ($50) SFIOR Special Function I/O Register

$2F ($4F) TCCR1A Timer/Counter1 Control Register A

$2E ($4E) TCCR1B Timer/Counter1 Control Register B

$2D ($4D) TCNT1H Timer/Counter1 High Byte

$2C ($4C) TCNT1L Timer/Counter1 Low Byte

$2B ($4B) OCR1AH Timer/Counter1 Output Compare Register A High Byte

$2A ($4A) OCR1AL Timer/Counter1 Output Compare Register A Low Byte

$29 ($49) OCR1BH Timer/Counter1 Output Compare Register B High Byte

$28 ($48) OCR1BL Timer/Counter1 Output Compare Register B Low Byte

$27 ($47) ICR1H T/C 1 Input Capture Register High Byte

$26 ($46) ICR1L T/C 1 Input Capture Register Low Byte

$25 ($45) TCCR2 Timer/Counter2 Control Register

$24 ($44) TCNT2 Timer/Counter2 (8-bit)

$23 ($43) OCR2 Timer/Counter2 Output Compare Register

$22 ($42) ASSR Asynchronous Mode Status Register

$21 ($41) WDTCR Watchdog Timer Control Register

$20 ($40)(2)
UBRRH USART Baud Rate Register High Byte

UCSRC USART Control and Status Register C

$1F ($3F) EEARH EEPROM Address Register High Byte

$1E ($3E) EEARL EEPROM Address Register Low Byte

$1D ($3D) EEDR EEPROM Data Register

$1C ($3C) EECR EEPROM Control Register

$1B ($3B) PORTA Data Register, Port A

$1A ($3A) DDRA Data Direction Register, Port A

$19 ($39) PINA Input Pins, Port A

$18 ($38) PORTB Data Register, Port B

$17 ($37) DDRB Data Direction Register, Port B

$16 ($36) PINB Input Pins, Port B

Table 2.  ATmega323 I/O Space (Continued)

I/O Address (SRAM 
Address) Name Function
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Notes: 1. When the OCDEN fuse is unprogrammed, the OSCCAL register is always accessed
on this address. Refer to the debugger specific documentation for details on how to
use the OCDR register.

2. Refer to the USART description for details on how to access UBRRH and UCSRC.

All ATmega323 I/Os and peripherals are placed in the I/O space. The I/O locations are
accessed by the IN and OUT instructions, transferring data between the 32 general-pur-
pose working registers and the I/O space. I/O registers within the address range $00 -
$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to
the instruction set chapter for more details. When using the I/O specific commands IN
and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O registers as
SRAM, $20 must be added to these addresses. All I/O register addresses throughout
this document are shown with the SRAM address in parentheses.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that the CBI
and SBI instructions will operate on all bits in the I/O register, writing a one back into any

$15 ($35) PORTC Data Register, Port C

$14 ($34) DDRC Data Direction Register, Port C

$13 ($33) PINC Input Pins, Port C

$12 ($32) PORTD Data Register, Port D

$11 ($31) DDRD Data Direction Register, Port D

$10 ($30) PIND Input Pins, Port D

$0F ($2F) SPDR SPI I/O Data Register

$0E ($2E) SPSR SPI Status Register

$0D ($2D) SPCR SPI Control Register

$0C ($2C) UDR USART I/O Data Register

$0B ($2B) UCSRA USART Control and Status Register A

$0A ($2A) UCSRB USART Control and Status Register B

$09 ($29) UBRRL USART Baud Rate Register Low Byte

$08 ($28) ACSR Analog Comparator Control and Status Register

$07 ($27) ADMUX ADC Multiplexer Select Register

$06 ($26) ADCSR ADC Control and Status Register

$05 ($25) ADCH ADC Data Register High

$04 ($24) ADCL ADC Data Register Low

$03 ($23) TWDR 2-wire Serial Interface Data Register

$02 ($22) TWAR 2-wire Serial Interface (Slave) Address Register

$01 ($21) TWSR 2-wire Serial Interface Status Register

$00 ($20) TWBR 2-wire Serial Interface Bit Rate Register

Table 2.  ATmega323 I/O Space (Continued)

I/O Address (SRAM 
Address) Name Function
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flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers
$00 to $1F only.

The I/O and peripherals control registers are explained in the following sections.

The Status Register – SREG The AVR status register – SREG – at I/O space location $3F ($5F) is defined as:

• Bit 7 - I: Global Interrupt Enable

The global interrupt enable bit must be set (one) for the interrupts to be enabled. The
individual interrupt enable control is then performed in separate control registers. If the
global interrupt enable register is cleared (zero), none of the interrupts are enabled inde-
pendent of the individual interrupt enable settings. The I-bit is cleared by hardware after
an interrupt has occurred, and is set by the RETI instruction to enable subsequent
interrupts.

• Bit 6 - T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T bit as source
and destination for the operated bit. A bit from a register in the register file can be copied
into T by the BST instruction, and a bit in T can be copied into a bit in a register in the
register file by the BLD instruction.

• Bit 5 - H: Half Carry Flag 

The half carry flag H indicates a half carry in some arithmetic operations. See the
“Instruction Set Description” for detailed information.

• Bit 4 - S: Sign Bit, S = N�⊕ V

The S-bit is always an exclusive or between the negative flag N and the two’s comple-
ment overflow flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 - V: Two’s Complement Overflow Flag

The two’s complement overflow flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

• Bit 2 - N: Negative Flag

The negative flag N indicates a negative result in an arithmetic or logic operation. See
the “Instruction Set Description” for detailed information.

• Bit 1 - Z: Zero Flag

The zero flag Z indicates a zero result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

• Bit 0 - C: Carry Flag

The carry flag C indicates a carry in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

Note that the status register is not automatically stored when entering an interrupt rou-
tine and restored when returning from an interrupt routine. This must be handled by
software.

Bit 7 6 5 4 3 2 1 0

$3F ($5F) I T H S V N Z C SREG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
21
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The Stack Pointer – SP The ATmega323 Stack Pointer is implemented as two 8-bit registers in the I/O space
locations $3E ($5E) and $3D ($5D). As the ATmega323 data memory has $860 loca-
tions, 12 bits are used.

The Stack Pointer points to the data SRAM stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above $60. The Stack Pointer is decremented by one when
data is pushed onto the Stack with the PUSH instruction, and it is decremented by two
when the return address is pushed onto the Stack with subroutine call and interrupt. The
Stack Pointer is incremented by one when data is popped from the Stack with the POP
instruction, and it is incremented by two when data is popped from the Stack with return
from subroutine RET or return from interrupt RETI.

Reset and Interrupt 
Handling

The ATmega323 provides nineteen different interrupt sources. These interrupts and the
separate reset vector, each have a separate program vector in the program memory
space. All interrupts are assigned individual enable bits which must be set (one)
together with the I-bit in the Status Register in order to enable the interrupt. Depending
on the program counter value, interrupts may be disabled when Boot Lock bits BLB02 or
BLB12 are set. See the section “Boot Loader Support” on page 172 for details

The lowest addresses in the program memory space are automatically defined as the
Reset and Interrupt vectors. The complete list of vectors is shown in Table 3. The list
also determines the priority levels of the different interrupts. The lower the address the
higher is the priority level. RESET has the highest priority, and next is INT0 – the Exter-
nal Interrupt Request 0, etc. The interrupt vectors can be moved to the start of the boot
Flash section by setting the IVSEL bit in the General Interrupt Control Register (GICR).
See the GICR description on page 32 for details..

Bit 15 14 13 12 11 10 9 8

$3E ($5E) - - - - SP11 SP10 SP9 SP8 SPH
$3D ($5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Table 3.  Reset and Interrupt Vectors 

Vector No. Program Address(2) Source Interrupt Definition

1 $000(1) RESET
External Pin, Power-on Reset, 
Brown-out Reset and Watchdog 
Reset

2 $002 INT0 External Interrupt Request 0

3 $004 INT1 External Interrupt Request 1

4 $006 INT2 External Interrupt Request 2

5 $008 TIMER2 COMP Timer/Counter2 Compare Match

6 $00A TIMER2 OVF Timer/Counter2 Overflow

7 $00C TIMER1 CAPT Timer/Counter1 Capture Event

8 $00E TIMER1 COMPA Timer/Counter1 Compare Match A

9 $010 TIMER1 COMPB Timer/Counter1 Compare Match B
22 ATmega323(L)
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Notes: 1. When the BOOTRST fuse is programmed, the device will jump to the Boot Loader
address at reset, see “Boot Loader Support” on page 172.

2. When the IVSEL bit in GICR is set, interrupt vectors will be moved to the start of the
boot Flash section. The address of each interrupt vector will then be address in this
table plus the start address of the boot Flash section.

Table 4 shows reset and interrupt vectors placement for the various combinations of
BOOTRST and IVSEL settings.

Note: The Boot Reset Address is shown in Table 59 on page 172

The most typical and general program setup for the Reset and Interrupt Vector
Addresses in ATmega323 is:

Address Labels Code Comments

$000 jmp RESET ; Reset Handler

$002 jmp EXT_INT0 ; IRQ0 Handler

$004 jmp EXT_INT1 ; IRQ1 Handler

$006 jmp EXT_INT2 ; IRQ2 Handler

$008 jmp TIM2_COMP ; Timer2 Compare Handler

$00a jmp TIM2_OVF ; Timer2 Overflow Handler

$00c jmp TIM1_CAPT ; Timer1 Capture Handler

$00e jmp TIM1_COMPA ; Timer1 CompareA Handler

$010 jmp TIM1_COMPB ; Timer1 CompareB Handler

$012 jmp TIM1_OVF ; Timer1 Overflow Handler

$014 jmp TIM0_COMP ; Timer0 Compare Handler

$016 jmp TIM0_OVF ; Timer0 Overflow Handler

$018 jmp SPI_STC; ; SPI Transfer Complete Handler

10 $012 TIMER1 OVF Timer/Counter1 Overflow

11 $014 TIMER0 COMP Timer/Counter0 Compare Match

12 $016 TIMER0 OVF Timer/Counter0 Overflow

13 $018 SPI, STC Serial Transfer Complete

14 $01A USART, RXC USART, Rx Complete

15 $01C USART, UDRE USART Data Register Empty

16 $01E USART, TXC USART, Tx Complete

17 $020 ADC ADC Conversion Complete

18 $022 EE_RDY EEPROM Ready

19 $024 ANA_COMP Analog Comparator

20 $026 TWSI 2-wire Serial Interface

Table 4.  Reset and Interrupt Vectors Placement

BOOTRST IVSEL Reset address Interrupt Vectors Start Address

0 0 $0000 $0002

0 1 $0000 Boot Reset Address + $0002

1 0 Boot Reset Address $0002

1 1 Boot Reset Address Boot Reset Address + $0002

Table 3.  Reset and Interrupt Vectors  (Continued)

Vector No. Program Address(2) Source Interrupt Definition
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$01a jmp USART_RXC ; USART RX Complete Handler

$01c jmp USART_UDRE ; UDR Empty Handler

$01e jmp USART_TXC ; USART TX Complete Handler

$020 jmp ADC ; ADC Conversion Complete Interrupt Handler

$022 jmp EE_RDY ; EEPROM Ready Handler

$024 jmp ANA_COMP ; Analog Comparator Handler

$026 jmp TWSI ; 2-wire Serial Interface Interrupt Handler

;

$028 MAIN: ldi r16,high(RAMEND); Main program start

$029 out SPH,r16 ; Set stack pointer to top of RAM

$02a ldi r16,low(RAMEND)

$02b out SPL,r16

$02c <instr> xxx

... ... ...

When the BOOTRST fuse is unprogrammed, the boot section size set to 4K bytes and
the IVSEL bit in the GICR register is set before any interrupts are enabled, the most typ-
ical and general program setup for the Reset and Interrupt Vector Addresses are:

Address Labels Code Comments

$000 jmp RESET ; Reset handler
;

$002 MAIN: ldi r16,high(RAMEND); Main program start

$003 out SPH,r16 ; Set stack pointer to top of RAM

$004 ldi r16,low(RAMEND)

$005 out SPL,r16

$006 <instr> xxx

;

.org $3802

$3802 jmp EXT_INT0 ; IRQ0 Handler

$3804 jmp EXT_INT1 ; IRQ1 Handler

... ... ... ;

$3826 jmp TWSI ; 2-wire Serial Interface Interrupt Handler

When the BOOTRST fuse is programmed and the boot section size set to 4K bytes, the
most typical and general program setup for the Reset and Interrupt Vector Addresses
are:

Address Labels Code Comments

.org $002

$002 jmp EXT_INT0 ; IRQ0 Handler

$004 jmp EXT_INT1 ; IRQ1 Handler

... ... ... ;

$026 jmp TWSI ; 2-wire Serial Interface Interrupt Handler

;

$028 MAIN: ldi r16,high(RAMEND); Main program start

$029 out SPH,r16 ; Set stack pointer to top of RAM

$02a ldi r16,low(RAMEND)

$02b out SPL,r16

$02c <instr> xxx

;

.org $3800
$3800 jmp RESET ; Reset handler
… … … …
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When the BOOTRST fuse is programmed, the boot section size set to 4K bytes and the
IVSEL bit in the GICR register is set before any interrupts are enabled, the most typical
and general program setup for the Reset and Interrupt Vector Addresses are:

Address Labels Code Comments

$000 MAIN: ldi r16,high(RAMEND); Main program start

$001 out SPH,r16 ; Set stack pointer to top of RAM

$002 ldi r16,low(RAMEND)

$003 out SPL,r16

$004 <instr> xxx

;

.org $3800
$3800 jmp RESET ; Reset handler
$3802 jmp EXT_INT0 ; IRQ0 Handler

$3804 jmp EXT_INT1 ; IRQ1 Handler

... ... ... ;

$3826 jmp TWSI ; 2-wire Serial Interface Interrupt Handler

Reset Sources The ATmega323 has five sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on 
Reset threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for 
more than 500 ns.

• Watchdog Reset. The MCU is reset when the Watchdog timer period expires and 
the Watchdog is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the 
Brown-out Reset threshold (VBOT).

• JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset 
Register, one of the scan chains of the JTAG system.

During reset, all I/O registers are set to their initial values, and the program starts execu-
tion from the Reset Vector. The instruction placed at the Reset Vector must be a JMP –
absolute jump – instruction to the reset handling routine. If the program never enables
an interrupt source, the interrupt vectors are not used, and regular program code can be
placed at these locations. This is also the case if the Reset Vector is in the Application
section while the interrupt vectors are in the boot section or vice versa. The circuit dia-
gram in Figure 24 shows the reset logic. Table 5 and Table 6 define the timing and
electrical parameters of the reset circuitry.
25
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Figure 24.  Reset Logic

Notes: 1. Values are guidelines only. Actual values are TBD.
2. The Power-on Reset will not work unless the supply voltage has been below VPOT

(falling)

Table 5.  Reset Characteristics(1)

Symbol Parameter Condition Min Typ Max Units

VPOT

Power-on Reset Threshold 
Voltage (rising)

1.0 1.4 1.8 V

Power-on Reset Threshold 
Voltage (falling)(2)

0.4 0.6 0.8 V

VRST
RESET Pin Threshold 
Voltage

- - 0.85 VCC V

VBOT
Brown-out Reset 
Threshold Voltage

(BODLEVEL = 1) 2.4 2.7 3.2
V

(BODLEVEL = 0) 3.5 4.0 4.5 

MCU Control and Status
Register (MCUCSR)

Brown-Out
Reset Circuit

BODEN
BODLEVEL

Delay Counters

CKSEL[3:0]

CK
TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

DATA BUS

Clock
Generator

SPIKE
FILTER

100-500kΩ

JT
R

F

JTAG Reset
Register
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Notes: 1. On power-up, the start-up time is increased with Typ 0.6 ms.
2. “1” means unprogrammed, “0” means programmed.
3. For possible clock selections, see “Clock Options” on page 6.
4. When BODEN is programmed, add 100 µs.
5. When BODEN is programmed, add 25 µs.
6. Default value.

Table 6.  Reset Delay Selections(1) 

CKSEL(2)

Start-up Time, VCC = 
2.7V, BODLEVEL 
Unprogrammed

Start-up Time, VCC = 
4.0V, BODLEVEL 

Programmed Recommended Usage(3)

0000
4.2 ms + 6 CK 5.8 ms + 6 CK

Ext. Clock, Fast Rising 
Power

0001 30 µs + 6 CK(4) 10 µs + 6 CK(5) Ext. Clock, BOD Enabled

0010(6)
67 ms + 6 CK 92 ms + 6 CK

Int. RC Oscillator, Slowly 
Rising Power

0011
4.2 ms + 6 CK 5.8 ms + 6 CK

Int. RC Oscillator, Fast 
Rising Power

0100
30 µs + 6 CK(4) 10 µs + 6 CK(5) Int. RC Oscillator, BOD 

Enabled

0101
67 ms + 6 CK 92 ms + 6 CK

Ext. RC Oscillator, Slowly 
Rising Power

0110
4.2 ms + 6 CK 5.8 ms + 6 CK

Ext. RC Oscillator, Fast 
Rising Power

0111
30 µs + 6 CK(4) 10 µs + 6 CK(5) Ext. RC Oscillator, BOD 

Enabled

1000
67 ms + 32K CK 92 ms + 32K CK

Ext. Low-frequency 
Crystal

1001
67 ms + 1K CK 92 ms + 1K CK

Ext. Low-frequency 
Crystal

1010
67 ms + 16K CK 92 ms + 16K CK

Crystal Oscillator, Slowly 
Rising Power

1011
4.2 ms + 16K CK 5.8 ms + 16K CK

Crystal Oscillator, Fast 
Rising Power

1100
30 µs + 16K CK(4) 10 µs + 16K CK(5) Crystal Oscillator, BOD 

Enabled

1101
67 ms 1K CK 92 ms + 1K CK

Ceramic Resonator/Ext. 
Clock, Slowly Rising 
Power

1110
4.2 ms + 1K CK 5.8 ms + 1K CK

Ceramic Resonator, Fast 
Rising Power

1111
30 µs + 1K CK(4) 10 µs + 1K CK(5) Ceramic Resonator, BOD 

Enabled
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Table 6 shows the start-up times from reset. When the CPU wakes up from power-down
or power-save, only the clock counting part of the start-up time is used. The Watchdog
oscillator is used for timing the real-time part of the start-up time. The number WDT
oscillator cycles used for each time-out is shown in Table 7.

The frequency of the Watchdog oscillator is voltage dependent as shown in the Electri-
cal Characteristics section. The device is shipped with CKSEL = “0010” (Internal RC
Oscillator, slowly rising power).

Note: 1. The BODLEVEL fuse can be used to select start-up times even if the Brown-out
Detection is disabled (BODEN fuse unprogrammed).

Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detec-
tion level is defined in Table 5. The POR is activated whenever VCC is below the
detection level. The POR circuit can be used to trigger the start-up reset, as well as to
detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from power-on. Reach-
ing the Power-on Reset threshold voltage invokes a delay counter, which determines
the delay, for which the device is kept in RESET after VCC rise. The time-out period of
the delay counter can be defined by the user through the CKSEL fuses. The different
selections for the delay period are presented in Table 6. The RESET signal is activated
again, without any delay, when the VCC decreases below detection level.

Figure 25.  MCU Start-up, RESET Tied to VCC

Table 7.  Number of Watchdog Oscillator Cycles

BODLEVEL(1) VCC Condition Time-out Number of Cycles

Unprogrammed 2.7V 30 µs 8

Unprogrammed 2.7V 130 µs 32

Unprogrammed 2.7V 4.2 ms 1K

Unprogrammed 2.7V 67 ms 16K

Programmed 4.0V 10 µs 8

Programmed 4.0V 35 µs 32

Programmed 4.0V 5.8 ms 4K

Programmed 4.0V 92 ms 64K

VCC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST
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Figure 26.  MCU Start-up, RESET Extended Externally

External Reset An external reset is generated by a low level on the RESET pin. Reset pulses longer
than 500 ns will generate a reset, even if the clock is not running. Shorter pulses are not
guaranteed to generate a reset. When the applied signal reaches the Reset Threshold
Voltage – VRST on its positive edge, the delay timer starts the MCU after the Time-out
period tTOUT has expired.

Figure 27.  External Reset During Operation

Brown-out Detection ATmega323 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC
level during the operation. The BOD circuit can be enabled/disabled by the fuse
BODEN. When the BOD is enabled (BODEN programmed), and VCC decreases to a
value below the trigger level, the Brown-out Reset is immediately activated. When VCC
increases above the trigger level, the Brown-out Reset is deactivated after a delay. The
delay is defined by the user in the same way as the delay of POR signal, in Table 6. The
trigger level for the BOD can be selected by the fuse BODLEVEL to be 2.7V
(BODLEVEL unprogrammed), or 4.0V (BODLEVEL programmed). The trigger level has
a hysteresis of 50 mV to ensure spike free Brown-out Detection.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level
for longer than 9 µs for trigger level 4.0V, 21 µs for trigger level 2.7V (typical values).

VCC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST
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Figure 28.  Brown-out Reset During Operation

The hysteresis on VBOT: VBOT+ = VBOT + 25 mV, VBOT- = VBOT - 25 mV

Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of 1 CK cycle dura-
tion. On the falling edge of this pulse, the delay timer starts counting the Time-out period
tTOUT. Refer to page 63 for details on operation of the Watchdog Timer.

Figure 29.  Watchdog Reset During Operation

MCU Control and Status 
Register – MCUCSR

The MCU Control and Status Register contains control bits for general MCU functions,
and provides information on which reset source caused an MCU Reset.

• Bits 7 - JTD: JTAG interface disable

When this bit is cleared (zero), the JTAG interface is enabled if the JTAGEN fuse is pro-
grammed. If this bit is set (one), the JTAG interface is disabled. To avoid unintentional
disabling of the JTAG interface, the user software must write this bit as one twice within
four cycles to set the bit.

• Bit 6 - ISC2: Interrupt Sense Control 2

The asynchronous external interrupt 2 is activated by the external pin INT2 if the SREG
I-flag and the corresponding interrupt mask in the GICR are set. If ISC2 is cleared

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

CK

Bit 7 6 5 4 3 2 1 0

$34 ($54) JTD ISC2 - JTRF WDRF BORF EXTRF PORF MCUCSR
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
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(zero), a falling edge on INT2 activates the interrupt. If ISC2 is set (one) a rising edge on
INT2 activates the interrupt. Edges on INT2 are registered asynchronously. Pulses on
INT2 wider than 50 ns will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. When changing the ISC2 bit, an interrupt can occur. Therefore, it
is recommended to first disable INT2 by clearing its Interrupt Enable bit in the GICR reg-
ister. Then, the ISC2 bit can be changed. Finally, the INT2 interrupt flag should be
cleared by writing a logical one to its Interrupt Flag bit in the GIFR register before the
interrupt is re-enabled.

• Bit 5 - Res: Reserved Bit

This bit is a reserved bit in the ATmega323 and always reads as zero.

• Bit 4 - JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

• Bit 3 - WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 2 - BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 1 - EXTRF: External Reset Flag

This bit is set if an external reset occurs. The bit is reset by a Power-on Reset, or by writ-
ing a logic zero to the flag.

• Bit 0 - PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to
the flag.

To make use of the reset flags to identify a reset condition, the user should read and
then reset the MCUCSR as early as possible in the program. If the register is cleared
before another reset occurs, the source of the reset can be found by examining the reset
flags.

Internal Voltage Reference ATmega323 features an internal bandgap reference with a nominal voltage of 1.22V.
This reference is used for Brown-out Detection, and it can be used as an input to the
Analog Comparator or the ADC. The 2.56V reference to the ADC is generated from the
internal bandgap reference.

Voltage Reference Enable 
Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used.
The maximum start-up time is TBD. To save power, the reference is not always turned
on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODEN fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting 
the ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit, the user must always
allow the reference to start up before the output from the Analog Comparator is used.
The bandgap reference uses typically 10 µA, and to reduce power consumption in
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power-down mode, the user can avoid the three conditions above to ensure that the ref-
erence is turned off before entering power-down mode.

Interrupt Handling The ATmega323 has two 8-bit Interrupt Mask control registers: GICR – General Inter-
rupt Control register and TIMSK – Timer/Counter Interrupt Mask register. 

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared (zero) and all inter-
rupts are disabled. The user software can set (one) the I-bit to enable nested interrupts.
The I-bit is set (one) when a Return from Interrupt instruction – RETI – is executed.

When the Program Counter is vectored to the actual interrupt vector in order to execute
the interrupt handling routine, hardware clears the corresponding flag that generated the
interrupt. Some of the interrupt flags can also be cleared by writing a logic one to the flag
bit position(s) to be cleared.

If an interrupt condition occurs while the corresponding interrupt enable bit is cleared
(zero), the interrupt flag will be set and remembered until the interrupt is enabled, or the
flag is cleared by software.

If one or more interrupt conditions occur while the global interrupt enable bit is cleared
(zero), the corresponding interrupt flag(s) will be set and remembered until the global
interrupt enable bit is set (one), and will be executed by order of priority.

Note that external level interrupt does not have a flag, and will only be remembered for
as long as the interrupt condition is present.

Note that the status register is not automatically stored when entering an interrupt rou-
tine and restored when returning from an interrupt routine. This must be handled by
software.

Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is 4 clock cycles
minimum. After 4 clock cycles the program vector address for the actual interrupt han-
dling routine is executed. During this 4 clock cycle period, the Program Counter (14 bits)
is pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this
jump takes 3 clock cycles. If an interrupt occurs during execution of a multi-cycle instruc-
tion, this instruction is completed before the interrupt is served. If an interrupt occurs
when the MCU is in sleep mode, the interrupt execution response time is increased by 4
clock cycles.

A return from an interrupt handling routine takes 4 clock cycles. During these 4 clock
cycles, the Program Counter (2 bytes) is popped back from the Stack, the Stack Pointer
is incremented by 2, and the I flag in SREG is set. When AVR exits from an interrupt, it
will always return to the main program and execute one more instruction before any
pending interrupt is served.

The General Interrupt Control 
Register – GICR

l

• Bit 7 - INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is activated. The Interrupt Sense Control1 bits 1/0 (ISC11 and
ISC10) in the MCU general Control Register (MCUCR) define whether the external
interrupt is activated on rising and/or falling edge of the INT1 pin or level sensed. Activity
on the pin will cause an interrupt request even if INT1 is configured as an output. The

Bit 7 6 5 4 3 2 1 0

$3B ($5B) INT1 INT0 INT2 - - - IVSEL IVCE GICR
Read/Write R/W R/W R/W R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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corresponding interrupt of External Interrupt Request 1 is executed from the INT1 inter-
rupt vector. See also “External Interrupts” on page 36.

• Bit 6 - INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is activated. The Interrupt Sense Control0 bits 1/0 (ISC01 and
ISC00) in the MCU general Control Register (MCUCR) define whether the external
interrupt is activated on rising or falling edge of the INT0 pin or level sensed. Activity on
the pin will cause an interrupt request even if INT0 is configured as an output. The corre-
sponding interrupt of External Interrupt Request 0 is executed from the INT0 interrupt
vector. See also “External Interrupts” on page 36.

• Bit 5 - INT2: External Interrupt Request 2 Enable

When the INT2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is activated. The Interrupt Sense Control2 bit (ISC02) in the
MCU Control and Status Register (MCUCSR) defines whether the external interrupt is
activated on rising or falling edge of the INT2 pin. Activity on the pin will cause an inter-
rupt request even if INT2 is configured as an output. The corresponding interrupt of
External Interrupt Request 2 is executed from the INT2 interrupt vector. See also “Exter-
nal Interrupts” on page 36.

• Bits 4..2 - Res: Reserved bits

These bits are reserved bits in the ATmega323 and always read as zero.

• Bit 1 - IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the interrupt vectors are placed at the start of the
Flash memory. When this bit is set (one), the interrupt vectors are moved to the begin-
ning of the Boot Loader section of the Flash. The actual address to the start of the boot
Flash section is determined by the BOOTSZ fuses. Refer to the section “Boot Loader
Support” on page 172 for details. To avoid unintentional changes of interrupt vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Set the Interrupt Vector Change Enable (IVCE) bit. 

2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE. 

Interrupts will be automatically disabled while this sequence is executed. Interrupts are
disabled in the cycle IVCE is set, and they remain disabled until after the instruction fol-
lowing the write to IVSEL. If IVSEL is not written, interrupts remain disabled in four
cycles. The I-flag in the Status Register is unaffected by the automatic disabling.

Note: If Boot Lock bits BLB02 or BLB12 are set, changing the interrupt vector table will
change from what part of the program memory interrupts are allowed. Refer to the sec-
tion “Boot Loader Support” on page 172 for details on Boot Lock bits.

• Bit 0 - IVCE: Interrupt Vector Change Enable

The IVCE bit must be set to enable change of the IVSEL bit. IVCE is cleared by hard-
ware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will
disable interrupts, as explained in the IVSEL description above.
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The General Interrupt Flag 
Register – GIFR

• Bit 7 - INTF1: External Interrupt Flag1

When an event on the INT1 pin triggers an interrupt request, INTF1 becomes set (one).
If the I-bit in SREG and the INT1 bit in GICR are set (one), the MCU will jump to the cor-
responding interrupt vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always
cleared when INT1 is configured as a level interrupt.

• Bit 6 - INTF0: External Interrupt Flag0

When an event on the INT0 pin triggers an interrupt request, INTF0 becomes set (one).
If the I-bit in SREG and the INT0 bit in GICR are set (one), the MCU will jump to the cor-
responding interrupt vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always
cleared when INT0 is configured as a level interrupt.

• Bit 5 - INTF2: External Interrupt Flag2

When an event on the INT2 pin triggers an interrupt request, INTF2 becomes set (one).
If the I-bit in SREG and the INT2 bit in GICR are set (one), the MCU will jump to the cor-
responding interrupt vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it.

• Bits 4..0 - Res: Reserved Bits

These bits are reserved bits in the ATmega323 and always read as zero.

The Timer/Counter Interrupt 
Mask Register – TIMSK

• Bit 7 - OCIE2: Timer/Counter2 Output Compare Match Interrupt Enable

When the OCIE2 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match interrupt is enabled. The corresponding interrupt is
executed if a compare match in Timer/Counter2 occurs, i.e. when the OCF2 bit is set in
the Timer/Counter Interrupt Flag Register – TIFR.

• Bit 6 - TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter2 occurs, i.e. when the TOV2 bit is set in the Timer/Counter
Interrupt Flag Register – TIFR.

• Bit 5 - TICIE1: Timer/Counter1 Input Capture Interrupt Enable

When the TICIE1 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 Input Capture Event Interrupt is enabled. The corresponding interrupt is
executed if a capture triggering event occurs on PD6 (ICP), i.e., when the ICF1 bit is set
in the Timer/Counter Interrupt Flag Register – TIFR.

Bit 7 6 5 4 3 2 1 0

$3A ($5A) INTF1 INTF0 INTF2 - - - - - GIFR
Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$39 ($59) OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 TIMSK
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 4 - OCIE1A: Timer/Counter1 Output CompareA Match Interrupt Enable

When the OCIE1A bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 CompareA Match interrupt is enabled. The corresponding interrupt is
executed if a CompareA match in Timer/Counter1 occurs, i.e., when the OCF1A bit is
set in the Timer/Counter Interrupt Flag Register – TIFR.

• Bit 3 - OCIE1B: Timer/Counter1 Output CompareB Match Interrupt Enable

When the OCIE1B bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 CompareB Match interrupt is enabled. The corresponding interrupt is
executed if a CompareB match in Timer/Counter1 occurs, i.e., when the OCF1B bit is
set in the Timer/Counter Interrupt Flag Register – TIFR.

• Bit 2 - TOIE1: Timer/Counter1 Overflow Interrupt Enable

When the TOIE1 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter1 occurs, i.e., when the TOV1 bit is set in the
Timer/Counter Interrupt Flag Register – TIFR. 

• Bit 1 - OCIE0: Timer/Counter0 Output Compare Match Interrupt Enable

When the OCIE0 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter0 Compare Match interrupt is enabled. The corresponding interrupt is
executed if a Compare0 match in Timer/Counter0 occurs, i.e., when the OCF0 bit is set
in the Timer/Counter Interrupt Flag Register – TIFR.

• Bit 0 - TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter0 occurs, i.e. when the TOV0 bit is set in the Timer/Counter
Interrupt Flag Register – TIFR.

The Timer/Counter Interrupt 
Flag Register – TIFR

• Bit 7 - OCF2: Output Compare Flag 2

The OCF2 bit is set (one) when a compare match occurs between the Timer/Counter2
and the data in OCR2 – Output Compare Register2. OCF2 is cleared by hardware when
executing the corresponding interrupt handling vector. Alternatively, OCF2 is cleared by
writing a logic one to the flag. When the I-bit in SREG, and OCIE2 (Timer/Counter2
Compare match Interrupt Enable), and the OCF2 are set (one), the Timer/Counter2
Compare match Interrupt is executed.

• Bit 6 - TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared
by hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV2 is cleared by writing a logic one to the flag. When the SREG I-bit, and TOIE2
(Timer/Counter2 Overflow Interrupt Enable),  and TOV2 are set (one), the
Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when
Timer/Counter2 changes counting direction at $00.

Bit 7 6 5 4 3 2 1 0

$38 ($58) OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 TIFR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 5 - ICF1: Input Capture Flag 1

The ICF1 bit is set (one) to f lag an input capture event, indicating that the
Timer/Counter1 value has been transferred to the input capture register – ICR1. ICF1 is
cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, ICF1 is cleared by writing a logic one to the flag. When the I-bit in SREG, and
TICIE1 (Timer/Counter1 Input Capture Interrupt Enable), and the ICF1 are set (one), the
Timer/Counter1 Capture Interrupt is executed.

• Bit 4 - OCF1A: Output Compare Flag 1A

The OCF1A bit is set (one) when a compare match occurs between the Timer/Counter1
and the data in OCR1A – Output Compare Register 1A. OCF1A is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCF1A is
cleared by writing a logic one to the flag. When the I-bit in SREG, and OCIE1A
(Timer/Counter1 Compare match InterruptA Enable), and the OCF1A are set (one), the
Timer/Counter1 Compare match A Interrupt is executed.

• Bit 3 - OCF1B: Output Compare Flag 1B

The OCF1B bit is set (one) when a compare match occurs between the Timer/Counter1
and the data in OCR1B – Output Compare Register 1B. OCF1B is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCF1B is
cleared by writing a logic one to the flag. When the I-bit in SREG, and OCIE1B
(Timer/Counter1 Compare match InterruptB Enable), and the OCF1B are set (one), the
Timer/Counter1 Compare match B Interrupt is executed.

• Bit 2 - TOV1: Timer/Counter1 Overflow Flag

The TOV1 is set (one) when an overflow occurs in Timer/Counter1. TOV1 is cleared by
hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV1 is cleared by writing a logic one to the flag. When the I-bit in SREG, and TOIE1
(Timer/Counter1 Overflow Interrupt Enable),  and TOV1 are set (one), the
Timer/Counter1 Overflow Interrupt is executed. In PWM mode, this bit is set when
Timer/Counter1 changes counting direction at $0000.

• Bit 1- OCF0: Output Compare Flag 0

The OCF0 bit is set (one) when a compare match occurs between the Timer/Counter0
and the data in OCR0 – Output Compare Register 0. OCF0 is cleared by hardware when
executing the corresponding interrupt handling vector. Alternatively, OCF0 is cleared by
writing a logic one to the flag. When the I-bit in SREG, and OCIE0 (Timer/Counter0
Compare match Interrupt Enable), and the OCF0 are set (one), the Timer/Counter0
Compare match Interrupt is executed.

• Bit 0 - TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared
by hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV0 is cleared by writing a logic one to the flag. When the SREG I-bit, and TOIE0
(Timer/Counter0 Overflow Interrupt Enable),  and TOV0 are set (one), the
Timer/Counter0 Overflow interrupt is executed. In PWM mode, this bit is set when
Timer/Counter0 changes counting direction at $00.

External Interrupts The external interrupts are triggered by the INT0, INT1 and INT2 pins. Observe that, if
enabled, the interrupts will trigger even if the INT0..2 pins are configured as outputs.
This feature provides a way of generating a software interrupt. The external interrupts
can be triggered by a falling or rising edge or a low level (INT2 is only an edge triggered
interrupt). This is set up as indicated in the specification for the MCU Control Register –
MCUCR and MCU Control and Status Register – MCUCSR. When the external interrupt
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is enabled and is configured as level triggered (only INT0/INT1), the interrupt will trigger
as long as the pin is held low.

MCU Control Register – 
MCUCR

The MCU Control Register contains control bits for general MCU functions.

• Bit 7- SE: Sleep Enable

The SE bit must be set (one) to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the pro-
grammers purpose, it is recommended to set the Sleep Enable (SE) bit just before the
execution of the SLEEP instruction.

• Bits 6..4 - SM2..0: Sleep Mode Select Bits 2, 1 and 0

These bits select between the six available sleep modes as shown in Table 8.

Note: 1. Standby Mode and Extended Standby Mode are only available with external crystals
or resonators.

• Bits 3, 2 - ISC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0

The External Interrupt 1 is activated by the external pin INT1 if the SREG I-flag and the
corresponding interrupt mask in the GICR are set. The level and edges on the external
INT1 pin that activate the interrupt are defined in Table 9. The value on the INT1 pin is
sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last
longer than one clock period will generate an interrupt. Shorter pulses are not guaran-
teed to generate an interrupt. If low level interrupt is selected, the low level must be held
until the completion of the currently executing instruction to generate an interrupt.

Bit 7 6 5 4 3 2 1 0

$37 ($57) SE SM2 SM1 SM0 ISC11 ISC10 ISC01 ISC00 MCUCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 8.  Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Extended Standby(1)

Table 9.  Interrupt 1 Sense Control

ISC11 ISC10 Description

0 0 The low level of INT1 generates an interrupt request.

0 1 Any logical change on INT1 generates an interrupt request.

1 0 The falling edge of INT1 generates an interrupt request.

1 1 The rising edge of INT1 generates an interrupt request.
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• Bit 1, 0 - ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the
corresponding interrupt mask are set. The level and edges on the external INT0 pin that
activate the interrupt are defined in Table 10. The value on the INT0 pin is sampled
before detecting edges. If edge or toggle interrupt is selected, pulses that last longer
than one clock period will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. If low level interrupt is selected, the low level must be held until
the completion of the currently executing instruction to generate an interrupt.

Sleep Modes To enter any of the six sleep modes, the SE bit in MCUCR must be set (one) and a
SLEEP instruction must be executed. The SM2, SM1 and SM0 bits in the MCUCR regis-
ter select which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save,
Standby or Extended Standby) will be activated by the SLEEP instruction. See Table 8
for a summary. If an enabled interrupt occurs while the MCU is in a sleep mode, the
MCU wakes up. The MCU is then halted for four cycles, executes the interrupt routine,
and resumes execution from the instruction following SLEEP. The contents of the regis-
ter file, SRAM, and I/O memory are unaltered when the device wakes up from sleep. If a
reset occurs during sleep mode, the MCU wakes up and executes from the Reset
vector. 

Idle Mode When the SM2..0 bits are set to 000, the SLEEP instruction makes the MCU enter Idle
Mode, stopping the CPU but allowing SPI, USART, Analog Comparator, ADC, 2-wire
Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue oper-
ating. This enables the MCU to wake up from external triggered interrupts as well as
internal ones like the Timer Overflow and USART Transmit Complete interrupts. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ACD-bit in the Analog Comparator Control and Sta-
tus register – ACSR. This will reduce power consumption in Idle Mode. If the ADC is
enabled, a conversion starts automatically when this mode is entered. 

ADC Noise Reduction Mode When the SM2..0 bits are set to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction Mode, stopping the MCU but allowing the ADC, the external interrupts,
the 2-wire Serial Interface address watch, Timer/Counter2 and the Watchdog to con-
tinue operating (if enabled). This improves the noise environment for the ADC, enabling
higher resolution measurements. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered. Apart form the ADC Conversion Complete interrupt,
only an external reset, a Watchdog Reset, a Brown-out Reset, a 2-wire Serial Interface
address match interrupt, or an external level interrupt on INT0 or INT1, or an external
edge interrupt on INT2, can wake up the MCU from ADC Noise Reduction Mode. A
Timer/Counter2 output compare or overflow event will wake up the MCU, but will not
generate an interrupt unless Timer/Counter2 is clocked asynchronously.

Table 10.  Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.
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In future devices this is subject to change. It is recommended for future code compatibil-
ity to disable Timer/Counter2 interrupts during ADC Noise Reduction mode if the
Timer/Counter2 is clocked synchronously.

Power-down Mode When the SM2..0 bits are 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external oscillator is stopped, while the external interrupts,
the 2-wire Serial Interface address watch, and the Watchdog continue operating (if
enabled). Only an external reset, a Watchdog Reset, an 2-wire Serial Interface address
match interrupt, an external level interrupt on INT0 or INT1, or an external edge interrupt
on INT2 can wake up the MCU.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. This makes the MCU
less sensitive to noise. The changed level is sampled twice by the Watchdog oscillator
clock, and if the input has the required level during this time, the MCU will wake up. The
period of the Watchdog oscillator is 1 µs (nominal) at 5.0V and 25°C. The frequency of
the Watchdog oscillator is voltage dependent as shown in the Electrical Characteristics
section.

When waking up from Power-down mode, there is a delay from the wake-up condition
occurs until the wake-up becomes effective. This allows the clock to restart and become
stable after having been stopped. The wake-up period is defined by the same CKSEL
fuses that define the reset time-out period, as seen in Table 6 on page 27.

Power-save Mode When the SM2..0 bits are 011, the SLEEP instruction forces the MCU into the Power-
save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, i.e., the AS2 bit in ASSR is set,
Timer/Counter2 will run during sleep. The device can wake up from either Timer Over-
f low or Output  Compare event from Timer/Counter2 i f  the corresponding
Timer/Counter2 interrupt enable bits are set in TIMSK, and the global interrupt enable
bit in SREG is set. 

If the asynchronous timer is NOT clocked asynchronously, Power-down mode is recom-
mended instead of Power-save mode because the contents of the registers in the
asynchronous timer should be considered undefined after wake-up in Power-save mode
if AS2 is 0.

Standby Mode When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected,
the SLEEP instruction forces the MCU into the Standby Mode. This mode is identical to
Power-down with the exception that the oscillator is kept running. From Standby Mode,
the device wakes up in only 6 clock cycles. 

Extended Standby Mode When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected,
the SLEEP instruction forces the MCU into the Extended Standby Mode. This mode is
identical to Power-save mode with the exception that the oscillator is kept running. From
Extended Standby Mode, the device wakes up in only 6 clock cycles.
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Calibrated Internal 
RC Oscillator

The calibrated internal oscillator provides a fixed 1.0 MHz (nominal) clock at 5V and
25°C. This clock may be used as the system clock. See the section “Clock Options” on
page 6 for information on how to select this clock as the system clock. This oscillator
can be calibrated by writing the calibration byte to the OSCCAL register. When this
oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the
Watchdog Timer and for the reset time-out. For details on how to use the pre-pro-
grammed calibration value, see the section “Calibration Byte” on page 183.

Oscillator Calibration Register 
– OSCCAL

• Bits 7..0 - CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the internal oscillator to remove pro-
cess variations from the oscillator frequency. When OSCCAL is zero, the lowest
available frequency is chosen. Writing non-zero values to this register will increase the
frequency of the internal oscillator. Writing $FF to the register gives the highest available
frequency. The calibrated oscillator is used to time EEPROM and Flash access. If
EEPROM or Flash is written, do not calibrate to more than 10% above the nominal fre-
quency. Otherwise, the EEPROM or Flash write may fail. Note that the Oscillator is
intended for calibration to 1.0MHz, thus tuning to other values is not guaranteed.

Special Function IO Register – 
SFIOR

• Bit 7..4 - Res: Reserved Bits

These bits are reserved bits in the ATmega323 and always read as zero.

• Bit 3 - ACME: Analog Comparator Multiplexer Enable

When this bit is set (one) and the ADC is switched off (ADEN in ADCSR is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is
cleared (zero), AIN1 is applied to the negative input of the Analog Comparator. For a
detailed description of this bit, see “Analog Comparator Multiplexed Input” on page 123. 

• Bit 2 - PUD: Pull-up Disable

When this bit is set (one), all pull-ups on all ports are disabled. If the bit is cleared (zero),
the pull-ups can be individually enabled as described in the chapter “I/O Ports” on page
134

Bit 7 6 5 4 3 2 1 0

$31 ($51) CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 11.  Internal RC Oscillator Frequency Range

OSCCAL Value Min Frequency (MHz) Max Frequency (MHz)

$00 0.5 1.0

$7F 0.7 1.5

$FF 1.0 2.0

Bit 7 6 5 4 3 2 1 0

$30 ($50) - - - - ACME PUD PSR2 PSR10 SFIOR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 1 - PSR2: Prescaler Reset Timer/Counter2

When this bit is set (one) the Timer/Counter2 prescaler will be reset. The bit will be
cleared by hardware after the operation is performed. Writing a zero to this bit will have
no effect. This bit will always be read as zero if Timer/Counter2 is clocked by the internal
CPU clock. If this bit is written when Timer/Counter2 is operating in asynchronous
mode, the bit will remain one until the prescaler has been reset. See “Asynchronous
Operation of Timer/Counter2” on page 52 for a detailed description of asynchronous
operation.

• Bit 0 - PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0

When this bit is set (one) the Timer/Counter1 and Timer/Counter0 prescaler will be
reset. The bit will be cleared by hardware after the operation is performed. Writing a
zero to this bit will have no effect. Note that Timer/Counter1 and Timer/Counter0 share
the same prescaler and a reset of this prescaler will affect both timers. This bit will
always be read as zero.
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Timer/Counters The ATmega323 provides three general-purpose Timer/Counters – two 8-bit T/Cs and
one 16-bit T/C. Timer/Counter2 can optionally be asynchronously clocked from an exter-
nal oscillator. This oscillator is optimized for use with a 32.768 kHz watch crystal,
enabling use of Timer/Counter2 as a Real Time Counter (RTC). Timer/Counters 0 and 1
have individual prescaling selection from the same 10-bit prescaler. Timer/Counter2 has
its own prescaler. Both these prescalers can be reset by setting the corresponding con-
trol bits in the Special Functions IO Register (SFIOR). These Timer/Counters can either
be used as a timer with an internal clock time-base or as a counter with an external pin
connection which triggers the counting.

Timer/Counter 
Prescalers

Figure 30.  Prescaler for Timer/Counter0 and Timer/Counter1

For Timer/Counters 0 and 1, the four different prescaled selections are: CK/8, CK/64,
CK/256, and CK/1024, where CK is the oscillator clock. For the two Timer/Counters 0
and 1, CK, external source, and stop can also be selected as clock sources. Setting the
PSR10 bit in SFIOR resets the prescaler. This allows the user to operate with a predict-
able prescaler. Note that Timer/Counter1 and Timer/Counter 0 share the same
prescaler and a prescaler reset will affect both Timer/Counters.

PSR10

Clear

TCK1 TCK0
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Figure 31.  Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named PCK2. PCK2 is by default connected to
the main system clock CK. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchro-
nously clocked from the PC6(TOSC1) pin. This enables use of Timer/Counter2 as a
Real Time Counter (RTC). When AS2 is set, pins PC6(TOSC1) and PC7(TOSC2) are
disconnected from Port C. A crystal can then be connected between the PC6(TOSC1)
and PC7(TOSC2) pins to serve as an independent clock source for Timer/Counter2.
The oscillator is optimized for use with a 32.768 kHz crystal. Applying an external clock
source to TOSC1 is not recommended. Setting the PSR2 bit in SFIOR resets the pres-
caler. This allows the user to operate with a predictable prescaler. 
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8-bit Timers/Counters 
T/C0 and T/C2

Figure 32 shows the block diagram for Timer/Counter0. Figure 33 shows the block dia-
gram for Timer/Counter2.

Figure 32.  Timer/Counter0 Block Diagram
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Figure 33.  Timer/Counter2 Block Diagram

The 8-bit Timer/Counter0 can select clock source from CK, prescaled CK, or an external
pin. 

The 8-bit Timer/Counter2 can select clock source from CK, prescaled CK, external
TOSC1 or prescaled external TOSC1. 

Both Timers/Counters can be stopped as described in section “Timer/Counter0 Control
Register – TCCR0” on page 46 and “Bit 7 - FOC0/FOC2: Force Output Compare” on
page 46.

The various status flags (overflow and compare match) are found in the Timer/Counter
Interrupt Flag Register – TIFR (see page 35). Control signals are found in the
Timer/Counter Control Register – TCCR0 and TCCR2. The interrupt enable/disable set-
tings are found in the Timer/Counter Interrupt Mask Register – TIMSK (see page 34).

When Timer/Counter0 is externally clocked, the external signal is synchronized with the
oscillator frequency of the CPU. To assure proper sampling of the external clock, the
minimum time between two external clock transitions must be at least one internal CPU
clock period. The external clock signal is sampled on the rising edge of the internal CPU
clock.

The 8-bit Timer/Counters feature both a high-resolution and a high-accuracy usage with
the lower prescaling opportunities. Similarly, the high-prescaling opportunities make the
Timer/Counter0 useful for lower speed functions or exact timing functions with infre-
quent actions.
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Timer/Counter0 and 2 can also be used as 8-bit Pulse Width Modulators. In this mode,
the Timer/Counter and the output compare register serve as a glitch-free, stand-alone
PWM with centered pulses. Refer to page 48 for a detailed description on this function.

Timer/Counter0 Control 
Register – TCCR0

Timer/Counter2 Control 
Register – TCCR2

• Bit 7 - FOC0/FOC2: Force Output Compare

Writing a logical one to this bit, forces a change in the compare match output pin PB3
(Timer/Counter0) and PD7 (Timer/Counter2) according to the values already set in
COMn1 and COMn0. If the COMn1 and COMn0 bits are written in the same cycle as
FOC0/FOC2, the new settings will not take effect until next compare match or Forced
Output Compare match occurs. The Force Output Compare bit can be used to change
the output pin without waiting for a compare match in the timer. The automatic action
programmed in COMn1 and COMn0 happens as if a Compare Match had occurred, but
no interrupt is generated and the Timer/Counters will not be cleared even if CTC0/CTC2
is set. The corresponding I/O pin must be set as an output pin for the FOC0/FOC2 bit to
have effect on the pin. The FOC0/FOC2 bits will always be read as zero. Setting the
FOC0/FOC2 bits has no effect in PWM mode.

• Bit 6 - PWM0/PWM2: Pulse Width Modulator Enable

When set (one) this bit enables PWM mode for Timer/Counter0 or Timer/Counter2. This
mode is described on page 48.

• Bits 5,4 - COM01, COM00/COM21, COM20: Compare Output Mode, Bits 1 and 0

The COMn1 and COMn0 control bits determine any output pin action following a com-
pare match in Timer/Counter0 or Timer/Counter2. Output pin actions affect pins
PB3(OC0) or PD7(OC2). This is an alternative function to an I/O port, and the corre-
sponding direction control bit must be set (one) to control an output pin. The control
configuration is shown in Table 12.

Notes: 1. In PWM mode, these bits have a different function. Refer to Table 15 for a
description.

2. n = 0 or 2

Bit 7 6 5 4 3 2 1 0

$33 ($53) FOC0 PWM0 COM01 COM00 CTC0 CS02 CS01 CS00 TCCR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$25 ($45) FOC2 PWM2 COM21 COM20 CTC2 CS22 CS21 CS20 TCCR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 12.  Compare Mode Select(1)

COMn1(2) COMn0 Description

0 0 Timer/Counter Disconnected from Output Pin OCn

0 1 Toggle the OCn Output Line.

1 0 Clear the OCn Output Line (to Zero).

1 1 Set the OCn Output Line (to One).
46 ATmega323(L)
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• Bit 3 - CTC0/CTC2: Clear Timer/Counter on Compare Match

When the CTC0 or CTC2 control bit is set (one), Timer/Counter0 or Timer/Counter2 is
reset to $00 in the CPU clock cycle following a compare match. If the control bit is
cleared, the Timer/Counter continues counting and is unaffected by a compare match.
When a prescaling of 1 is used, and the compare register is set to C, the timer will count
as follows if CTC0/CTC2 is set:

... | C-1 | C | 0 | 1 | ...

When the prescaler is set to divide by 8, the timer will count like this:

... | C-1, C-1, C-1, C-1, C-1, C-1, C-1, C-1 | C, C, C, C, C, C, C, C | 0, 0, 0, 0, 0, 0, 0, 0 |
1, 1, 1, ...

In PWM mode, this bit has a different function. If the CTC0 or CTC2 bit is cleared in
PWM mode, the Timer/Counter acts as an up/down counter. If the CTC0 or CTC2 bit is
set (one), the Timer/Counter wraps when it reaches $FF. Refer to page 48 for a detailed
description.

• Bits 2,1,0 - CS02, CS01, CS00/ CS22, CS21, CS20: Clock Select bits 2,1 and 0

The Clock Select bits 2,1 and 0 define the prescaling source of Timer/Counter0 and
Timer/Counter2.

The Stop condition provides a Timer Enable/Disable function. The prescaled modes are
scaled directly from the CK oscillator clock for Timer/Counter0 and PCK2 for
Timer/Counter2. If the external pin modes are used for Timer/Counter0, transitions on

Table 13.  Clock 0 Prescale Select

CS02 CS01 CS00 Description

0 0 0 Stop, the Timer/Counter0 is Stopped

0 0 1 CK

0 1 0 CK/8

0 1 1 CK/64

1 0 0 CK/256

1 0 1 CK/1024

1 1 0 External Pin PB0(T0), Falling Edge

1 1 1 External Pin PB0(T0), Rising Edge

Table 14.  Clock 2 Prescale Select

CS22 CS21 CS20 Description

0 0 0 Stop, the Timer/Counter2 is Stopped

0 0 1 PCK2

0 1 0 PCK2/8

0 1 1 PCK2 /32

1 0 0 PCK2/64

1 0 1 PCK2/128

1 1 0 PCK2/256

1 1 1 PCK2/1024
47
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PB0(T0) will clock the counter even if the pin is configured as an output. This feature
can give the user SW control of the counting.

Timer Counter0 – TCNT0

Timer/Counter2 – TCNT2

These 8-bit registers contain the value of the Timer/Counters.

Both Timer/Counters is realized as up or up/down (in PWM mode) counters with read
and write access. If the Timer/Counter is written to and a clock source is selected, it con-
tinues counting in the timer clock cycle following the write operation.

Timer/Counter0 Output 
Compare Register – OCR0

Timer/Counter2 Output 
Compare Register – OCR2

The output compare registers are 8-bit read/write registers. The Timer/Counter Output
Compare Registers contains the data to be continuously compared with the
Timer/Counter. Actions on compare matches are specified in TCCR0 and TCCR2. A
software write to the Timer/Counter Register blocks compare matches in the next
Timer/Counter clock cycle. This prevents immediate interrupts when initializing the
Timer/Counter.

A compare match will set the compare interrupt flag in the CPU clock cycle following the
compare event.

Timer/Counter 0 and 2 in PWM 
Mode

When PWM mode is selected, the Timer/Counter either wraps (overflows) when it
reaches $FF or it acts as an up/down counter. 

If the up/down mode is selected, the Timer/Counter and the Output Compare Registers
– OCR0 or OCR2 form an 8-bit, free-running, glitch-free and phase correct PWM with
outputs on the PB3(OC0/PWM0) or PD7(OC2/PWM2) pin. 

If the overflow mode is selected, the Timer/Counter and the Output Compare Registers
– OCR0 or OCR2 form an 8-bit, free-running and glitch-free PWM, operating with twice
the speed of the up/down counting mode. 

Bit 7 6 5 4 3 2 1 0

$32 ($52) MSB LSB TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$24 ($44) MSB LSB TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$3C ($5C) MSB LSB OCR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$23 ($43) MSB LSB OCR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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PWM Modes (Up/Down and 
Overflow)

The two different PWM modes are selected by the CTC0 or CTC2 bit in the
Timer/Counter Control Registers -TCCR0 or TCCR2 respectively. 

If CTC0/CTC2 is cleared and PWM mode is selected, the Timer/Counter acts as an
up/down counter, counting up from $00 to $FF, where it turns and counts down again to
zero before the cycle is repeated. When the counter value matches the contents of the
Output Compare Register, the PB3(OC0/PWM0) or PD7(OC2/PWM2) pin is set or
cleared according to the settings of the COMn1/COMn0 bits in the Timer/Counter Con-
trol Registers TCCR0 or TCCR2. 

If CTC0/CTC2 is set and PWM mode is selected, the Timer/Counters will wrap and start
counting from $00 after reaching $FF. The PB3(OC0/PWM0) or PD7(OC2/PWM2) pin
will be set or cleared according to the settings of COMn1/COMn0 on a Timer/Counter
overflow or when the counter value matches the contents of the Output Compare Regis-
ter. Refer to Table 15 for details.

Note: n = 0 or 2

Note that in PWM mode, the value to be written to the Output Compare Register is first
transferred to a temporary location, and then latched into the OCR when the
Timer/Counter reaches $FF. This prevents the occurrence of odd-length PWM pulses
(glitches) in the event of an unsynchronized OCR0 or OCR2 write. See Figure 34 and
Figure 35 for examples.

Table 15.  Compare Mode Select in PWM Mode 

CTCn COMn1 COMn0 Effect on Compare Pin Frequency

0 0 0 Not connected

0 0 1 Not connected

0 1 0 Cleared on compare match, up-counting. Set on 
compare match, down-counting (non-inverted 
PWM)

fTCK0/2/510

0 1 1 Cleared on compare match, down-counting. Set 
on compare match, up-counting (inverted PWM)

fTCK0/2/510

1 0 0 Not connected

1 0 1 Not connected

1 1 0 Cleared on compare match, set on overflow fTCK0/2/256

1 1 1 Set on compare match, cleared on overflow fTCK0/2/256
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Figure 34.  Effects of Unsynchronized OCR Latching in Up/Down Mode

Figure 35.  Effects of Unsynchronized OCR Latching in Overflow Mode

Note: n = 0 or 2 (Figure 34 and Figure 35)

During the time between the write and the latch operation, a read from the Output Com-
pare Registers will read the contents of the temporary location. This means that the
most recently written value always will read out of OCR0 and OCR2.

When the Output Compare Register contains $00 or $FF, and the up/down PWM mode
is selected, the output PB3(OC0/PWM0)/PD7(OC2/PWM2) is updated to low or high on
the next compare match according to the settings of COMn1/COMn0. This is shown in
Table 16. In overflow PWM mode, the output PB3(OC0/PWM0)/PD7(OC2/PWM2) is
held low or high only when the Output Compare Register contains $FF.

PWM Output OCn

PWM Output OCn
Unsynchronized OCn Latch

Synchronized OCn Latch

Compare Value changes
Counter Value
Compare Value

Glitch

Counter Value
Compare Value

Compare Value changes

PWM Output OCn

PWM Output OCn

Unsynchronized OCn Latch

Synchronized OCn Latch

Counter Value

Compare Value

Counter Value

Compare Value

Compare Value changes

Compare Value changes

Glitch
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Note: n = 0 or 2
In overflow PWM mode, the table above is only valid for OCRn = $FF.

In up/down PWM mode, the Timer Overflow Flag, TOV0 or TOV2, is set when the
counter advances from $00. In overflow PWM mode, the Timer Overflow Flag is set as
in normal Timer/Counter mode. Timer Overflow Interrupt0 and 2 operate exactly as in
normal Timer/Counter mode, i.e. they are executed when TOV0 or TOV2 are set pro-
vided that Timer Overflow Interrupt and global interrupts are enabled. This does also
apply to the Timer Output Compare flag and interrupt.

Asynchronous Status 
Register – ASSR 

• Bit 7..4 - Res: Reserved Bits

These bits are reserved bits in the ATmega323 and always read as zero.

• Bit 3 - AS2: Asynchronous Timer/Counter2

When AS2 is cleared (zero), Timer/Counter2 is clocked from the internal system clock,
CK. When AS2 is set (one), Timer/Counter2 is clocked from the TOSC1 pin. Pins PC6
and PC7 are connected to a crystal oscillator and cannot be used as general I/O pins.
When the value of this bit is changed, the contents of TCNT2, OCR2, and TCCR2 might
be corrupted.

• Bit 2 - TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes
set (one). When TCNT2 has been updated from the temporary storage register, this bit
is cleared (zero) by hardware. A logical zero in this bit indicates that TCNT2 is ready to
be updated with a new value.

• Bit 1 - OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2 is written, this bit becomes
set (one). When OCR2 has been updated from the temporary storage register, this bit is
cleared (zero) by hardware. A logical zero in this bit indicates that OCR2 is ready to be
updated with a new value.

• Bit 0 - TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2 is written, this bit becomes
set (one). When TCCR2 has been updated from the temporary storage register, this bit
is cleared (zero) by hardware. A logical zero in this bit indicates that TCCR2 is ready to
be updated with a new value.

Table 16.  PWM Outputs OCRn = $00 or $FF

COMn1 COMn0 OCRn Output PWMn

1 0 $00 L

1 0 $FF H

1 1 $00 H

1 1 $FF L

Bit 7 6 5 4 3 2 1 0

$22 ($22) - - - - AS2 TCN2UB OCR2UB TCR2UB ASSR

Read/Write R R R R R/W R R R

Initial Value 0 0 0 0 0 0 0 0
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• If a write is performed to any of the three Timer/Counter2 registers while its update 
busy flag is set (one), the updated value might get corrupted and cause an 
unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2, and TCCR2 are different. When reading
TCNT2, the actual timer value is read. When reading OCR2 or TCCR2, the value in the
temporary storage register is read.

Asynchronous Operation of 
Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the timer registers TCNT2, OCR2, and TCCR2 might be corrupted. A
safe procedure for switching clock source is:

1. Disable the Timer/Counter2 interrupts by clearing OCIE2 and TOIE2.

2. Select clock source by setting AS2 as appropriate.

3. Write new values to TCNT2, OCR2, and TCCR2.

4. To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and 
TCR2UB.

5. Clear the Timer/Counter2 interrupt flags.

6. Enable interrupts, if needed.

The oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an external
clock to the TOSC1 pin may result in incorrect Timer/Counter2 operation. The CPU
main clock frequency must be more than four times the oscillator frequency.

When writing to one of the registers TCNT2, OCR2, or TCCR2, the value is transferred
to a temporary register, and latched after two positive edges on TOSC1. The user
should not write a new value before the contents of the temporary register have been
transferred to its destination. Each of the three mentioned registers have their individual
temporary register, which means that e.g. writing to TCNT2 does not disturb an OCR2
write in progress. To detect that a transfer to the destination register has taken place,
the Asynchronous Status Register – ASSR has been implemented.

When entering Power-save or Extended Standby mode after having written to TCNT2,
OCR2, or TCCR2, the user must wait until the written register has been updated if
Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep
mode before the changes are effective. This is particularly important if the Output
Compare2 interrupt is used to wake up the device, since the output compare function is
disabled during writing to OCR2 or TCNT2. If the write cycle is not finished, and the
MCU enters sleep mode before the OCR2UB bit returns to zero, the device will never
receive a compare match interrupt, and the MCU will not wake up.

If Timer/Counter2 is used to wake the device up from Power-save or Extended Standby
mode, precautions must be taken if the user wants to re-enter one of these modes: The
interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-
entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the
device will fail to wake up. If the user is in doubt whether the time before re-entering
Power-save or Extended Standby mode is sufficient, the following algorithm can be
used to ensure that one TOSC1 cycle has elapsed:

1. Write a value to TCCR2, TCNT2 or OCR2.

2. Wait until the corresponding Update Busy flag in ASSR returns to zero.

3. Enter Power-save or Extended Standby mode.

When the asynchronous operation is selected, the 32.768 kHZ oscillator for
Timer/Counter2 is always running, except in Power-down and Standby modes. After a
52 ATmega323(L)
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power-up reset or wake-up from Power-down or Standby mode, the user should be
aware of the fact that this oscillator might take as long as one second to stabilize. The
user is advised to wait for at least one second before using Timer/Counter2 after power-
up or wake-up from Power-down or Standby mode. The contents of all Timer/Counter2
registers must be considered lost after a wake-up from Power-down or Standby mode
due to unstable clock signal upon start-up, no matter whether the oscillator is in use or a
clock signal is applied to the TOSC1 pin.

Description of wake up from Power-save or Extended Standby mode when the timer is
clocked asynchronously: When the interrupt condition is met, the wake up process is
started on the following cycle of the timer clock, that is, the timer is always advanced by
at least one before the processor can read the counter value. After wake-up, the MCU is
halted for four cycles, it executes the interrupt routine, and resumes execution from the
instruction following SLEEP.

During asynchronous operation, the synchronization of the interrupt flags for the asyn-
chronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore
advanced by at least one before the processor can read the timer value causing the set-
ting of the interrupt flag. The output compare pin is changed on the timer clock and is not
synchronized to the processor clock.

16-bit Timer/Counter1 Figure 36 shows the block diagram for Timer/Counter1.

Figure 36.  Timer/Counter1 Block Diagram

The 16-bit Timer/Counter1 can select clock source from CK, prescaled CK, or an exter-
nal pin. In addition it can be stopped as described in section “Timer/Counter1 Control
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Register B – TCCR1B” on page 56. The different status flags (overflow, compare match,
and capture event) are found in the Timer/Counter Interrupt Flag Register – TIFR. Con-
trol signals are found in the Timer/Counter1 Control Registers – TCCR1A and TCCR1B.
The interrupt enable/disable settings for Timer/Counter1 are found in the Timer/Counter
Interrupt Mask Register – TIMSK.

When Timer/Counter1 is externally clocked, the external signal is synchronized with the
oscillator frequency of the CPU. To assure proper sampling of the external clock, the
minimum time between two external clock transitions must be at least one internal CPU
clock period. The external clock signal is sampled on the rising edge of the internal CPU
clock.

The 16-bit Timer/Counter1 features both a high-resolution and a high-accuracy usage
with the lower prescaling opportunities. Similarly, the high-prescaling opportunities
makes the Timer/Counter1 useful for lower speed functions or exact timing functions
with infrequent actions.

The Timer/Counter1 supports two Output Compare functions using the Output Compare
Register 1 A and B (OCR1A and OCR1B) as the data sources to be compared to the
Timer/Counter1 contents. The Output Compare functions include optional clearing of
the counter on compareA match, and actions on the Output Compare pins on both com-
pare matches.

Timer/Counter1 can also be used as an 8, 9, or 10-bit Pulse Width Modulator. In this
mode the counter and the OCR1A/OCR1B registers serve as a dual glitch-free stand-
alone PWM with centered pulses. Alternatively, the Timer/Counter1 can be configured
to operate at twice the speed in PWM mode, but without centered pulses. Refer to page
59 for a detailed description of this function.

The Input Capture function of Timer/Counter1 provides a capture of the Timer/Counter1
contents to the Input Capture Register – ICR1, triggered by an external event on the
Input Capture Pin – ICP. The actual capture event settings are defined by the
Timer/Counter1 Control Register – TCCR1B. In addition, the Analog Comparator can be
set to trigger the Input Capture. Refer to the section, “The Analog Comparator”, for
details on this. The ICP pin logic is shown in Figure 37.

Figure 37.  ICP Pin Schematic Diagram

If the noise canceler function is enabled, the actual trigger condition for the capture
event is monitored over 4 samples, and all 4 must be equal to activate the capture flag.
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Timer/Counter1 Control 
Register A – TCCR1A

• Bits 7,6 - COM1A1, COM1A0: Compare Output Mode1A, bits 1 and 0

The COM1A1 and COM1A0 control bits determine any output pin action following a
compare match in Timer/Counter1. Any output pin actions affect pin OC1A – Output
CompareA. This is an alternative function to an I/O port, and the corresponding direction
control bit must be set (one) to control an output pin. The control configuration is shown
in Table 10.

• Bits 5,4 - COM1B1, COM1B0: Compare Output Mode1B, bits 1 and 0

The COM1B1 and COM1B0 control bits determine any output pin action following a
compare match in Timer/Counter1. Any output pin actions affect pin OC1B – Output
CompareB. This is an alternative function to an I/O port, and the corresponding direction
control bit must be set (one) to control an output pin. The control configuration is shown
in Table 10.

Note: X = A or B.

In PWM mode, these bits have a different function. Refer to Table 22 for a description.

• Bit 3 - FOC1A: Force Output Compare1A

Writing a logical one to this bit, forces a change in the compare match output pin PD5
according to the values already set in COM1A1 and COM1A0. If the COM1A1 and
COM1A0 bits are written in the same cycle as FOC1A, the new settings will not take
effect until next compare match or forced compare match occurs. The Force Output
Compare bit can be used to change the output pin without waiting for a compare match
in the timer. The automatic action programmed in COM1A1 and COM1A0 happens as if
a Compare Match had occurred, but no interrupt is generated and it will not clear the
timer even if CTC1 in TCCR1B is set. The corresponding I/O pin must be set as an out-
put pin for the FOC1A bit to have effect on the pin. The FOC1A bit will always be read as
zero. The setting of the FOC1A bit has no effect in PWM mode.

• Bit 2 - FOC1B: Force Output Compare1B

Writing a logical one to this bit, forces a change in the compare match output pin PD4
according to the values already set in COM1B1 and COM1B0. If the COM1B1 and
COM1B0 bits are written in the same cycle as FOC1B, the new settings will not take
effect until next compare match or forced compare match occurs. The Force Output
Compare bit can be used to change the output pin without waiting for a compare match
in the timer. The automatic action programmed in COM1B1 and COM1B0 happens as if
a Compare Match had occurred, but no interrupt is generated. The corresponding I/O
pin must be set as an output pin for the FOC1B bit to have effect on the pin. The FOC1B

Bit 7 6 5 4 3 2 1 0

$2F ($4F) COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B PWM11 PWM10 TCCR1A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17.  Compare 1 Mode Select

COM1X1 COM1X0 Description

0 0 Timer/Counter1 Disconnected from Output Pin OC1X

0 1 Toggle the OC1X Output Line.

1 0 Clear the OC1X Output Line (to Zero).

1 1 Set the OC1X Output Line (to One).
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bit will always be read as zero. The setting of the FOC1B bit has no effect in PWM
mode.

• Bits 1..0 - PWM11, PWM10: Pulse Width Modulator Select Bits

These bits select PWM operation of Timer/Counter1 as specified in Table 11. This mode
is described on page 59.

Timer/Counter1 Control 
Register B – TCCR1B

• Bit 7 - ICNC1: Input Capture1 Noise Canceler (4 CKs)

When the ICNC1 bit is cleared (zero), the input capture trigger noise canceler function is
disabled. The input capture is triggered at the first rising/falling edge sampled on the ICP
– input capture pin – as specified. When the ICNC1 bit is set (one), four successive sam-
ples are measures on the ICP – input capture pin, and all samples must be high/low
according to the input capture trigger specification in the ICES1 bit. The actual sampling
frequency is XTAL clock frequency.

• Bit 6 - ICES1: Input Capture1 Edge Select

While the ICES1 bit is cleared (zero), the Timer/Counter1 contents are transferred to the
Input Capture Register – ICR1 – on the falling edge of the input capture pin – ICP. While
the ICES1 bit is set (one), the Timer/Counter1 contents are transferred to the Input Cap-
ture Register – ICR1 – on the rising edge of the input capture pin – ICP.

• Bits 5, 4 - Res: Reserved bits

These bits are reserved bits in the ATmega323 and always read as zero.

• Bit 3 - CTC1: Clear Timer/Counter1 on Compare Match

When the CTC1 control bit is set (one), the Timer/Counter1 is reset to $0000 in the clock
cycle after a compareA match. If the CTC1 control bit is cleared, Timer/Counter1 contin-
ues counting and is unaffected by a compare match. When a prescaling of 1 is used,
and the compareA register is set to C, the timer will count as follows if CTC1 is set:

... | C-1 | C | 0 | 1 |...

When the prescaler is set to divide by 8, the timer will count like this:

... | C-1, C-1, C-1, C-1, C-1, C-1, C-1, C-1 | C, C, C, C, C, C, C, C | 0, 0, 0, 0, 0, 0, 0, 0
|1,1,1,1,1,1,1,1|...

In PWM mode, this bit has a different function. If the CTC1 bit is cleared in PWM mode,
the Timer/Counter1 acts as an up/down counter. If the CTC1 bit is set (one), the
Timer/Counter wraps when it reaches the TOP value. Refer to page 59 for a detailed
description.

Table 18.  PWM Mode Select

PWM11 PWM10 Description

0 0 PWM Operation of Timer/Counter1 is Disabled

0 1 Timer/Counter1 is an 8-bit PWM

1 0 Timer/Counter1 is a 9-bit PWM

1 1 Timer/Counter1 is a 10-bit PWM

Bit 7 6 5 4 3 2 1 0

$2E ($4E) ICNC1 ICES1 - - CTC1 CS12 CS11 CS10 TCCR1B
Read/Write R/W R/W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bits 2..0 - CS12, CS11, CS10: Clock Select1, Bit 2,1, and 0

The Clock Select1 bits 2, 1, and 0 define the prescaling source of Timer/Counter1.

The Stop condition provides a Timer Enable/Disable function. The prescaled modes are
scaled directly from the CK oscillator clock. If the external pin modes are used for
Timer/Counter1, transitions on PB1/(T1) will clock the counter even if the pin is config-
ured as an output. This feature can give the user SW control of the counting.

Timer/Counter1 – TCNT1H 
and TCNT1L

This 16-bit register contains the prescaled value of the 16-bit Timer/Counter1. To
ensure that both the high and low bytes are read and written simultaneously when the
CPU accesses these registers, the access is performed using an 8-bit temporary regis-
ter (TEMP). This temporary register is also used when accessing OCR1A, OCR1B, and
ICR1. If the main program and also interrupt routines perform access to registers using
TEMP, interrupts must be disabled during access from the main program and interrupt
routines.

TCNT1 Timer/Counter1 Write When the CPU writes to the high byte TCNT1H, the written data is placed in the TEMP
register. Next, when the CPU writes the low byte TCNT1L, this byte of data is combined
with the byte data in the TEMP register, and all 16-bits are written to the TCNT1
Timer/Counter1 register simultaneously. Consequently, the high byte TCNT1H must be
accessed first for a full 16-bit register write operation.

TCNT1 Timer/Counter1 Read When the CPU reads the low byte TCNT1L, the data of the low byte TCNT1L is sent to
the CPU and the data of the high byte TCNT1H is placed in the TEMP register. When
the CPU reads the data in the high byte TCNT1H, the CPU receives the data in the
TEMP register. Consequently, the low byte TCNT1L must be accessed first for a full 16-
bit register read operation.

Table 19.  Clock 1 Prescale Select 

CS12 CS11 CS10 Description

0 0 0 Stop, the Timer/Counter1 is Stopped.

0 0 1 CK

0 1 0 CK/8

0 1 1 CK/64

1 0 0 CK/256

1 0 1 CK/1024

1 1 0 External Pin T1, Falling Edge

1 1 1 External Pin T1, Rising Edge

Bit 15 14 13 12 11 10 9 8

$2D ($4D) MSB TCNT1H
$2C ($4C) LSB TCNT1L

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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The Timer/Counter1 is realized as an up or up/down (in PWM mode) counter with read
and write access. If Timer/Counter1 is written to and a clock source is selected, the
Timer/Counter1 continues counting in the timer clock cycle after it is preset with the writ-
ten value.

Timer/Counter1 Output 
Compare Register – OCR1AH 
and OCR1AL 

Timer/Counter1 Output 
Compare Register – OCR1BH 
and OCR1BL

The output compare registers are 16-bit read/write registers.

The Timer/Counter1 Output Compare Registers contain the data to be continuously
compared with Timer/Counter1. Actions on compare matches are specified in the
Timer/Counter1 Control and Status register. A software write to the Timer/Counter Reg-
ister blocks compare matches in the next Timer/Counter clock cycle. This prevents
immediate interrupts when initializing the Timer/Counter.

A compare match will set the compare interrupt flag in the CPU clock cycle following the
compare event.

Since the Output Compare Registers – OCR1A and OCR1B – are 16-bit registers, a
temporary register TEMP is used when OCR1A/B are written to ensure that both bytes
are updated simultaneously. When the CPU writes the high byte, OCR1AH or OCR1BH,
the data is temporarily stored in the TEMP register. When the CPU writes the low byte,
OCR1AL or OCR1BL, the TEMP register is simultaneously written to OCR1AH or
OCR1BH. Consequently, the high byte OCR1AH or OCR1BH must be written first for a
full 16-bit register write operation.

The TEMP register is also used when accessing TCNT1 and ICR1. If the main program
and also interrupt routines perform access to registers using TEMP, interrupts must be
disabled during access from the main program and interrupt routines.

Bit 15 14 13 12 11 10 9 8

$2B ($4B) MSB OCR1AH
$2A ($4A) LSB OCR1AL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

$29 ($49) MSB OCR1BH
$28 ($48) LSB OCR1BL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
58 ATmega323(L)
1457E–11/01



ATmega323(L)
Timer/Counter1 Input Capture 
Register – ICR1H and ICR1L

The input capture register is a 16-bit read-only register.

When the rising or falling edge (according to the input capture edge setting – ICES1) of
the signal at the input capture pin – ICP – is detected, the current value of the
Timer/Counter1 Register – TCNT1 – is transferred to the Input Capture Register – ICR1.
At the same time, the input capture flag – ICF1 – is set (one).

Since the Input Capture Register – ICR1 – is a 16-bit register, a temporary register
TEMP is used when ICR1 is read to ensure that both bytes are read simultaneously.
When the CPU reads the low byte ICR1L, the data is sent to the CPU and the data of
the high byte ICR1H is placed in the TEMP register. When the CPU reads the data in
the high byte ICR1H, the CPU receives the data in the TEMP register. Consequently,
the low byte ICR1L must be accessed first for a full 16-bit register read operation.

The TEMP register is also used when accessing TCNT1, OCR1A, and OCR1B. If the
main program and also interrupt routines accesses registers using TEMP, interrupts
must be disabled during access from the main program and interrupt routines.

Timer/Counter1 In PWM Mode When the PWM mode is selected, Timer/Counter1 and the Output Compare Register1A
– OCR1A and the Output Compare Register1B – OCR1B, form a dual 8, 9, or 10-bit,
free-running, glitch-free, and phase correct PWM with outputs on the PD5(OC1A) and
PD4(OC1B) pins. In this mode, the Timer/Counter1 acts as an up/down counter, count-
ing up from $0000 to TOP (see Table 21), where it turns and counts down again to zero
before the cycle is repeated. When the counter value matches the contents of the 8, 9,
or 10 least significant bits (depending on resolution) of OCR1A or OCR1B, the
PD5(OC1A)/PD4(OC1B) pins are set or cleared according to the settings of the
COM1A1/COM1A0 or COM1B1/COM1B0 bits in the Timer/Counter1 Control Register
TCCR1A. Refer to Table 17 on page 55 for details. 

Alternatively, the Timer/Counter1 can be configured to a PWM that operates at twice the
speed as in the mode described above. Then the Timer/Counter1 and the Output Com-
pare Register1A – OCR1A and the Output Compare Register1B – OCR1B, form a dual
8, 9, or 10-bit, free-running and glitch-free PWM with outputs on the PD5(OC1A) and
PD4(OC1B) pins..

Bit 15 14 13 12 11 10 9 8

$27 ($47) MSB ICR1H
$26 ($46) LSB ICR1L

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Table 20.  Timer TOP Values and PWM Frequency

CTC1 PWM11 PWM10 PWM Resolution Timer TOP Value Frequency

0 0 1 8-bit $00FF (255) fTCK1/510

0 1 0 9-bit $01FF (511) fTCK1/1022

0 1 1 10-bit $03FF(1023) fTCK1/2046

1 0 1 8-bit $00FF (255) fTCK1/256

1 1 0 9-bit $01FF (511) fTCK1/512

1 1 1 10-bit $03FF(1023) fTCK1/1024
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As shown in Table 20, the PWM operates at either 8, 9, or 10 bits resolution. Note the
unused bits in OCR1A, OCR1B, and TCNT1 will automatically be written to zero by
hardware. I.e. bit 9 to 15 will be set to zero in OCR1A, OCR1B, and TCNT1 if the 9-bit
PWM resolution is selected. This makes it possible for the user to perform read-modify-
write operations in any of the three resolution modes and the unused bits will be treated
as don’t care.

Note: X = A or B

Note that in the PWM mode, the 8, 9, or 10 least significant OCR1A/OCR1B bits
(depending on resolution), when written, are transferred to a temporary location. They
are latched when Timer/Counter1 reaches the value TOP. This prevents the occurrence
of odd-length PWM pulses (glitches) in the event of an unsynchronized OCR1A/OCR1B
write. See Figure 38 and Figure 39 for an example in each mode.

Table 21.  Timer TOP Values and PWM Frequency

PWM Resolution Timer TOP Value Frequency

8-bit $00FF (255) fTC1/510

9-bit $01FF (511) fTC1/1022

10-bit $03FF(1023) fTC1/2046

Table 22.  Compare1 Mode Select in PWM Mode

CTC1 COM1X1 COM1X0 Effect on OCX1

0 0 0 Not connected

0 0 1 Reserved

0 1 0 Cleared on compare match, up-counting. Set on 
compare match, down-counting (non-inverted PWM).

0 1 1 Cleared on compare match, down-counting. Set on 
compare match, up-counting (inverted PWM).

1 0 0 Not connected

1 0 1 Reserved

1 1 0 Cleared on compare match, set on overflow.

1 1 1 Set on compare match, cleared on overflow.
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Figure 38.  Effects of Unsynchronized OCR1 Latching.

Figure 39.  Effects of Unsynchronized OCR1 Latching in Overflow Mode

During the time between the write and the latch operation, a read from OCR1A or
OCR1B will read the contents of the temporary location. This means that the most
recently written value always will read out of OCR1A/B.

When the OCR1X contains $0000 or TOP, and the up/down PWM mode is selected, the
output OC1A/OC1B is updated to low or high on the next compare match according to
the settings of COM1A1/COM1A0 or COM1B1/COM1B0. This is shown in Table 23. In
overflow PWM mode, the output OC1A/OC1B is held low or high only when the Output
Compare Register contains TOP.

PWM Output OC1x

PWM Output OC1x
Unsynchronized OC1x Latch

Synchronized OC1x Latch

Note: x = A or B

PWM Output OC1x

PWM Output OC1x

Unsynchronized OC1x Latch

Synchronized OC1x Latch

Note: X = A or B
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In overflow PWM mode, the table above is only valid for OCR1X = TOP.

In PWM mode, the Timer Overflow Flag1, TOV1, is set when the counter advances from
$0000. In overflow PWM mode, the Timer Overflow flag is set as in normal
Timer/Counter mode. Timer Overflow Interrupt1 operates exactly as in normal
Timer/Counter mode, i.e. it is executed when TOV1 is set provided that Timer Overflow
Interrupt1 and global interrupts are enabled. This also applies to the Timer Output
Compare1 flags and interrupts.

Table 23.  PWM Outputs OCR1X = $0000 or TOP

COM1X1 COM1X0 OCR1X Output OC1X

1 0 $0000 L

1 0 TOP H

1 1 $0000 H

1 1 TOP L
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Watchdog Timer The Watchdog Timer is clocked from a separate On-chip oscillator which runs at 1 Mhz.
This is the typical value at VCC = 5V. See characterization data for typical values at other
VCC levels. By controlling the Watchdog Timer prescaler, the Watchdog Reset interval
can be adjusted as shown in Table 24 on page 64. The WDR – Watchdog Reset –
instruction resets the Watchdog Timer. Eight different clock cycle periods can be
selected to determine the reset period. If the reset period expires without another
Watchdog Reset, the ATmega323 resets and executes from the reset vector. For timing
details on the Watchdog Reset, refer to page 30.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be
followed when the Watchdog is disabled. Refer to the description of the Watchdog Timer
Control Register for details.

Figure 40.  Watchdog Timer

The Watchdog Timer Control 
Register – WDTCR

• Bits 7..5 - Res: Reserved Bits

These bits are reserved bits in the ATmega323 and will always read as zero.

• Bit 4 - WDTOE: Watch Dog Turn-off Enable

This bit must be set (one) when the WDE bit is cleared. Otherwise, the Watchdog will
not be disabled. Once set, hardware will clear this bit to zero after four clock cycles.
Refer to the description of the WDE bit for a Watchdog disable procedure.

• Bit 3 - WDE: Watch Dog Enable

When the WDE is set (one) the Watchdog Timer is enabled, and if the WDE is cleared
(zero) the Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE
bit is set(one). To disable an enabled watchdog timer, the following procedure must be
followed:

1 MHz at VCC = 5V

OSCILLATOR

Bit 7 6 5 4 3 2 1 0

$21 ($41) - - - WDTOE WDE WDP2 WDP1 WDP0 WDTCR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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1. In the same operation, write a logical one to WDTOE and WDE. A logical one 
must be written to WDE even though it is set to one before the disable operation 
starts.

2. Within the next four clock cycles, write a logical 0 to WDE. This disables the 
Watchdog.

• Bits 2..0 - WDP2, WDP1, WDP0: Watch Dog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the
Watchdog Timer is enabled. The different prescaling values and their corresponding
Timeout Periods are shown in Table 24.

Table 24.  Watch Dog Timer Prescale Select

WDP2 WDP1 WDP0
Number of WDT 
Oscillator Cycles

Typical Time-out 
at VCC = 3.0V

Typical Time-out 
at VCC = 5.0V

0 0 0 16K cycles 47 ms 15 ms

0 0 1 32K cycles 94 ms 30 ms

0 1 0 64K cycles 0.19 s 60 ms

0 1 1 128K cycles 0.38 s 0.12 s

1 0 0 256K cycles 0.75 s 0.24 s

1 0 1 512K cycles 1.5 s 0.49 s

1 1 0 1,024K cycles 3.0 s 0.97 s

1 1 1 2,048K cycles 6.0 s 1.9 s
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EEPROM Read/Write 
Access

The EEPROM access registers are accessible in the I/O space.

The write access time is in the range of 1.9 - 3.8 ms, depending on the frequency of the
calibrated RC oscillator. See Table 25 for details. A self-timing function, however, lets
the user software detect when the next byte can be written. If the user code contains
code that writes the EEPROM, some precautions must be taken. In heavily filtered
power supplies, VCC is likely to rise or fall slowly on power-up/down. This causes the
device for some period of time to run at a voltage lower than specified as minimum for
the clock frequency used. CPU operation under these conditions is likely to cause the
program counter to perform unintentional jumps and possibly execute the EEPROM
write code. To secure EEPROM integrity, the user is advised to use an external under-
voltage reset circuit or the internal Brown-out Detector in this case.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.

The EEPROM Address 
Register – EEARH and EEARL

• Bits 15..10 - Res: Reserved Bits

These bits are reserved bits in the ATmega323 and will always read as zero.

• Bits 9..0 - EEAR9..0: EEPROM Address

The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address
in the 1K bytes EEPROM space. The EEPROM data bytes are addressed linearly
between 0 and 1023. The initial value of EEAR is undefined. A proper value must be
written before the EEPROM may be accessed.

The EEPROM Data Register – 
EEDR

• Bits 7..0 - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR register contains the data to be written to
the EEPROM in the address given by the EEAR register. For the EEPROM read opera-
tion, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

Bit 15 14 13 12 11 10 9 8

$1F ($3F) - - - - - - EEAR9 EEAR8 EEARH

$1E ($3E) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

$1D ($3D) MSB LSB EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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The EEPROM Control Register 
– EECR

• Bits 7..4 - Res: Reserved Bits

These bits are reserved bits in the ATmega323 and will always read as zero.

• Bit 3 - EERIE: EEPROM Ready Interrupt Enable

When the I bit in SREG and EERIE are set (one), the EEPROM Ready Interrupt is
enabled. When cleared (zero), the interrupt is disabled. The EEPROM Ready interrupt
generates a constant interrupt when EEWE is cleared (zero).

• Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set(one) setting EEWE will write data to the EEPROM at the
selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE
has been set (one) by software, hardware clears the bit to zero after four clock cycles.
See the description of the EEWE bit for an EEPROM write procedure.

• Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be set to write the value into
the EEPROM. The EEMWE bit must be set when the logical one is written to EEWE,
otherwise no EEPROM write takes place. The following procedure should be followed
when writing the EEPROM (the order of steps 2 and 3 is not essential):

1. Wait until EEWE becomes zero.

2. Write new EEPROM address to EEAR (optional).

3. Write new EEPROM data to EEDR (optional).

4. Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.

5. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

Caution: An interrupt between step 4 and step 5 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the global interrupt flag cleared during the 4 last steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared (zero) by hardware.
The user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.

• Bit 0 - EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR register, the EERE bit must be set. When the
EERE bit is cleared (zero) by hardware, requested data is found in the EEDR register.
The EEPROM read access takes one instruction, and there is no need to poll the EERE
bit. When EERE has been set, the CPU is halted for four cycles before the next instruc-
tion is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress, it is not possible to set the EERE bit, nor to change the EEAR register. 

Bit 7 6 5 4 3 2 1 0
$1C ($3C) - - - - EERIE EEMWE EEWE EERE EECR
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0
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The calibrated oscillator is used to time the EEPROM accesses. Table 25 lists the typi-
cal programming time for EEPROM access from the CPU.

Preventing EEPROM 
Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using the EEPROM, and the same design solutions
should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage for executing instructions is too low.

EEPROM data corruption can easily be avoided by following these design recommen-
dations (one is sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power sup-
ply voltage. This can be done by enabling the internal Brown-out Detector 
(BOD) if the operating voltage matches the detection level. If not, an external 
low VCC Reset Protection circuit can be used. If a reset occurs while a write 
operation is in progress, the write operation will be completed provided that 
the power supply is voltage is sufficient.

2. Keep the AVR core in Power-down Sleep Mode during periods of low VCC. 
This will prevent the CPU from attempting to decode and execute instruc-
tions, effectively protecting the EEPROM registers from unintentional writes.

3. Store constants in Flash memory if the ability to change memory contents 
from software is not required. Flash memory can not be updated by the CPU 
unless the boot loader software supports writing to the Flash and the Boot 
Lock bits are configured so that writing to the Flash memory from CPU is 
allowed. See “Boot Loader Support” on page 172 for details.

Table 25.  EEPROM Programming Time.

Symbol
Number of Calibrated 
RC Oscillator Cycles

Min Programming 
Time

Max Programming 
Time

EEPROM write (from 
CPU)

2048 1.9 ms 3.8 ms
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Serial Peripheral 
Interface – SPI

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer
between the ATmega323 and peripheral devices or between several AVR devices. The
ATmega323 SPI includes the following features:
• Full-duplex, 3-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

Figure 41.  SPI Block Diagram

The interconnection between master and slave CPUs with SPI is shown in Figure 42.
The PB7(SCK) pin is the clock output in the Master mode and the clock input in the
Slave mode. Writing to the SPI Data Register of the master CPU starts the SPI clock
generator, and the data written shifts out of the PB5(MOSI) pin and into the PB5(MOSI)
pin of the slave CPU. After shifting one byte, the SPI clock generator stops, setting the
end of transmission flag (SPIF). If the SPI interrupt enable bit (SPIE) in the SPCR regis-
ter is set, an interrupt is requested. The Slave Select input, PB4(SS), is set low to select
an individual slave SPI device. The two shift registers in the Master and the Slave can
be considered as one distributed 16-bit circular shift register. This is shown in Figure 42.
When data is shifted from the master to the slave, data is also shifted in the opposite
direction, simultaneously. During one shift cycle, data in the master and the slave is
interchanged.

S
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S
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Figure 42.  SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive
direction. This means that bytes to be transmitted cannot be written to the SPI Data
Register before the entire shift cycle is completed. When receiving data, however, a
received character must be read from the SPI Data Register before the next character
has been completely shifted in. Otherwise, the first byte is lost. 

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is
overridden according to Table 26.

Note: See “Alternate Functions of Port B” on page 137 for a detailed description of how to
define the direction of the user defined SPI pins.

SS Pin Functionality When the SPI is configured as a master (MSTR in SPCR is set), the user can determine
the direction of the SS pin. If SS is configured as an output, the pin is a general output
pin which does not affect the SPI system. If SS is configured as an input, it must be held
high to ensure Master SPI operation. If the SS pin is driven low by peripheral circuitry
when the SPI is configured as a master with the SS pin defined as an input, the SPI sys-
tem interprets this as another master selecting the SPI as a slave and starting to send
data to it. To avoid bus contention, the SPI system takes the following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a slave. As a 
result of the SPI becoming a slave, the MOSI and SCK pins become inputs.

2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in 
SREG is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in master mode, and there exists a
possibility that SS is driven low, the interrupt should always check that the MSTR bit is
still set. If the MSTR bit has been cleared by a slave select, it must be set by the user to
re-enable SPI master mode.

When the SPI is configured as a slave, the SS pin is always input. When SS is held low,
the SPI is activated, and MISO becomes an output if configured so by the user. All other
pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive,
which means that it will not receive incoming data. Note that the SPI logic will be reset

Table 26.  SPI Pin Overrides

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input

MSB MASTER LSB

8 BIT SHIFT REGISTER

MSB MASTER LSB

8 BIT SHIFT REGISTER
MISO

MOSI

SPI
CLOCK GENERATOR

SCK

SS

MISO

MOSI

SCK

SS
VCC
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once the SS pin is driven high. If the SS pin is driven high during a transmission, the SPI
will stop sending and receiving immediately and both data received and data sent must
be considered as lost.

Data Modes There are four combinations of SCK phase and polarity with respect to serial data,
which are determined by control bits CPHA and CPOL. The SPI data transfer formats
are shown in Figure 43 and Figure 44.

Figure 43.  SPI Transfer Format with CPHA = 0 and DORD = 0

Note: * Not defined but normally MSB of character just received.

Figure 44.  SPI Transfer Format with CPHA = 1 and DORD = 0

Note: * Not defined but normally LSB of previously transmitted character.

SPI Control Register – SPCR

• Bit 7 - SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR register is set
and the if the global interrupt enable bit in SREG is set.

• Bit 6 - SPE: SPI Enable

When the SPE bit is set (one), the SPI is enabled. This bit must be set to enable any SPI
operations.

• Bit 5 - DORD: Data Order

When the DORD bit is set (one), the LSB of the data word is transmitted first.

When the DORD bit is cleared (zero), the MSB of the data word is transmitted first.

Bit 7 6 5 4 3 2 1 0

$0D ($2D) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 4 - MSTR: Master/Slave Select

This bit selects Master SPI mode when set (one), and Slave SPI mode when cleared
(zero). If SS is configured as an input and is driven low while MSTR is set, MSTR will be
cleared, and SPIF in SPSR will become set. The user will then have to set MSTR to re-
enable SPI master mode.

• Bit 3 - CPOL: Clock Polarity

When this bit is set (one), SCK is high when idle. When CPOL is cleared (zero), SCK is
low when idle. Refer to Figure 43 and Figure 44 for additional information.

• Bit 2 - CPHA: Clock Phase

Refer to Figure 43 and Figure 44 for the functionality of this bit.

• Bits 1,0 - SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a master. SPR1 and
SPR0 have no effect on the slave. The relationship between SCK and the Oscillator
Clock frequency fck is shown in Table 27. 

The SPI Status Register – 
SPSR

• Bit 7 - SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF bit is set (one) and an interrupt is gener-
ated if SPIE in SPCR is set (one) and global interrupts are enabled. If SS is an input and
is driven low when the SPI is in master mode, this will also set the SPIF flag. SPIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, the SPIF bit is cleared by first reading the SPI status register with SPIF set
(one), then accessing the SPI Data Register (SPDR).

• Bit 6 - WCOL: Write COLlision flag

The WCOL bit is set if the SPI data register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared (zero) by first reading the SPI Status Register
with WCOL set (one), and then accessing the SPI Data Register.

• Bit 5..1 - Res: Reserved Bits

These bits are reserved bits in the ATmega323 and will always read as zero.

Table 27.  Relationship Between SCK and the Oscillator Frequency 

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fck/4

0 0 1 fck/16

0 1 0 fck/64

0 1 1 fck/128

1 0 0 fck/2

1 0 1 fck/8

1 1 0 fck/32

1 1 1 fck /64

Bit 7 6 5 4 3 2 1 0

$0E ($2E) SPIF WCOL - - - - - SPI2X SPSR
Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 0 - SPI2X: Double SPI Speed Bit

When this bit is set (one) the SPI speed (SCK Frequency) will be doubled when the SPI
is in master mode (see Table 27). This means that the minimum SCK period will be 2
CPU clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to
work at fck/4 or lower.

The SPI interface on the ATmega323 is also used for program memory and EEPROM
downloading or uploading. See page 191 for serial programming and verification.

The SPI Data Register – SPDR

The SPI Data Register is a read/write register used for data transfer between the regis-
ter file and the SPI Shift register. Writing to the register initiates data transmission.
Reading the register causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

$0F ($2F) MSB LSB SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined
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USART The Universal Synchronous and Asynchronous serial Receiver and Transmitter
(USART) is a highly flexible serial communication device. The main features are:
• Full Duplex Operation (Independent Serial Receive and Transmit Registers)
• Asynchronous or Synchronous Operation
• Master or Slave Clocked Synchronous Operation
• High Resolution Baud Rate Generator
• Supports Serial Frames with 5, 6, 7, 8 or 9 Data Bits and 1 or 2 Stop Bits
• Odd or Even Parity Generation and Parity Check Supported by Hardware
• Data OverRun Detection
• Framing Error Detection
• Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
• Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
• Multi-processor Communication Mode
• Double Speed Asynchronous Communication Mode

Overview A simplified block diagram of the USART transmitter is shown in Figure 45. CPU acces-
sible I/O registers and I/O pins are shown in bold.

Figure 45.  USART Block Diagram

The dashed boxes in the block diagram separates the three main parts of the USART
(listed from the top): clock generation, transmitter and receiver. Control registers are
shared by all units. The clock generation logic consists of synchronization logic for exter-
nal clock input used by synchronous slave operation, and the baud rate generator. The
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XCK (transfer clock) pin is only used by synchronous transfer mode. The transmitter
consists of a single write buffer, a serial shift register, parity generator and control logic
for handling different serial frame formats. The write buffer allows a continuous transfer
of data without any delay between frames. The receiver is the most complex part of the
USART module due to its clock and data recovery units. The recovery units are used for
asynchronous data reception. In addition to the recovery units, the receiver includes a
parity checker, control logic, a shift register and a two level receive buffer (UDR). The
receiver supports the same frame formats as the transmitter, and can detect frame
error, data overrun and parity errors.

ATmega323 USART Pin 
Specification

Table 28 shows the ATmega323 specific USART pin placement.

As XCK is placed on PB0, DDR_XCK in the following refers to DDB0.

About Code Examples This USART documentation contains simple code examples that briefly show how to
use the USART. These code examples assume that the part specific header file is
included before compilation. Be aware that not all C compiler vendors include bit defini-
tions in the header files, and that interrupt handling in C is compiler dependent. Please
confirm with the C compiler documentation.

AVR USART vs. AVR 
UART – Compatibility

The USART is fully compatible with the AVR UART regarding:

• Bit locations inside all USART registers

• Baud Rate Generation

• Transmitter Operation

• Transmit Buffer Functionality

• Receiver Operation

However, the receive buffering has two improvements that will affect the compatibility in
some special cases:

• A second buffer register has been added. The two buffer registers operates as a 
circular FIFO buffer. Therefore the UDR must only be read once for each incoming 
data! More important is the fact that the error flags (FE and DOR) and the 9th data 
bit (RXB8) are buffered with the data in the receive buffer. Therefore the status bits 
must always be read before the UDR register is read. Otherwise the error status will 
be lost since the buffer state is lost.

• The receiver shift register can now act as a third buffer level. This is done by 
allowing the received data to remain in the serial shift register (see Figure 45) if the 
buffer registers are full, until a new start bit is detected. The USART is therefore 
more resistant to data overrun (DOR) error conditions.

The following control bits have changed name, but have same functionality and register
location:

• CHR9 is changed to UCSZ2

• OR is changed to DOR

Table 28.  ATmega323 Specific USART Pin Placement

USART Pin Name Corresponding ATmega323 Pin

RxD PD0

TxD PD1

XCK PB0
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Clock Generation The clock generation logic generates the base clock for the transmitter and receiver.
The USART supports four modes of clock operation: normal asynchronous, double
speed asynchronous, master synchronous and slave synchronous mode. The UMSEL
bit in USART Control and Status Register C (UCSRC) selects between asynchronous
and synchronous operation. Double speed (asynchronous mode only) is controlled by
the U2X found in the UCSRA register. When using synchronous mode (UMSEL = 1), the
Data Direction Register for the XCK pin (DDR_XCK) controls whether the clock source
is internal (master mode) or external (slave mode). The XCK pin is only active when
using synchronous mode.

Figure 46 shows a block diagram of the clock generation logic.

Figure 46.  Clock Generation Logic, Block Diagram

Signal description:

txclk Transmitter clock. (Internal Signal)

rxclk Receiver base clock. (Internal Signal)

xcki Input from XCK pin (internal Signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (Internal Signal). Used for 
synchronous master operation.

fosc XTAL pin frequency (System Clock).

Internal Clock Generation – 
The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master
modes of operation. The description in this section refers to Figure 46.

The USART Baud Rate Register (UBRR) and the down-counter connected to it function
as a programmable prescaler or baud rate generator. The down-counter, running at sys-
tem clock (fosc), is loaded with the UBRR value each time the counter has counted
down to zero or when the UBRRL register is written. A clock is generated each time the
counter reaches zero. This clock is the baud rate generator clock output (=
fosc/(UBRR+1)). The transmitter divides the baud rate generator clock output by 2, 8 or
16 depending on mode. The baud rate generator output is used directly by the receiver’s
clock and data recovery units. However, the recovery units use a state machine that
uses 2, 8 or 16 states depending on mode set by the state of the UMSEL, U2X and
DDR_XCK bits.
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Table 29 contains equations for calculating the baud rate (in bits per second) and for
calculating the UBRR value for each mode of operation using an internally generated
clock source.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps). 
BAUD Baud rate (in bits per second, bps) 
fOSC System oscillator clock frequency 
UBRR Contents of the UBRRH and UBRRL registers, (0-4095)
Some examples of UBRR values for some system clock frequency are found in Table
36 (see page 98).

Double Speed Operation 
(U2X)

The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only
has effect for the asynchronous operation. Set this bit to zero when using synchronous
operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively
doubling the transfer rate for asynchronous communication. Note however that the
receiver will in this case only use half the number of samples (reduced from 16 to 8) for
data sampling and clock recovery, and therefore a more accurate baud rate setting and
system clock are required when this mode is used. For the transmitter, there are no
downsides.

External Clock External clocking is used by the synchronous slave modes of operation. The description
in this section refers to Figure 46 for details.

External clock input from the XCK pin is sampled by a synchronization register to mini-
mize the chance of meta-stability. The output from the synchronization register must
then pass through an edge detector before it can be used by the transmitter and
receiver. This process introduces a two CPU clock period delay and therefore the maxi-
mum external XCK clock frequency is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recom-
mended to add some margin to avoid possible loss of data due to frequency variations.

Synchronous Clock Operation When synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock
input (slave) or clock output (master). The dependency between the clock edges and
data sampling or data change is the same. The basic principle is that data input (on
RxD) is sampled at the opposite XCK clock edge of the edge the data output (TxD) is
changed.

Table 29.  Equations for Calculating Baud Rate Register Setting

Operating Mode
Equation for Calculating 

Baud Rate(1)
Equation for Calculating 

UBRR Value

Asynchronous Normal Mode 
(U2X = 0)

Asynchronous Double Speed 
Mode (U2X = 1)

Synchronous Master Mode

BAUD
fOSC

16 UBRR 1+( )
----------------------------------------= UBRR

fOSC
16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRR 1+( )
------------------------------------= UBRR

fOSC
8BAUD
--------------------- 1–=

BAUD
fOSC

2 UBRR 1+( )
------------------------------------= UBRR

fOSC
2BAUD
--------------------- 1–=

fXCK
fOSC

4
-----------<
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Figure 47.  Synchronous Mode XCK Timing

The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and
which is used for data change. As Figure 47 shows, when UCPOL is zero the data will
be changed at falling XCK edge and sampled at rising XCK edge. If UCPOL is set, the
data will be changed at rising XCK edge and sampled at falling XCK edge.

Frame Formats A serial frame is defined to be one character of data bits with synchronization bits (start
and stop bits), and optionally a parity bit for error checking. The USART accept all 30
combinations of the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8 or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next
data bits, up to a total of nine, are succeeding, ending with the most significant bit. If
enabled, the parity bit is inserted after the data bits, before the stop bits. When a com-
plete frame is transmitted, it can be directly followed by a new frame, or the
communication line can be set to a idle (high) state. Figure 48 illustrates the possible
combinations of the frame formats. Bits inside brackets are optional.

Figure 48.  Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxD or TxD). 
An IDLE line must be high.

The frame format used by the USART is set by the UCSZ2:0, UPM1:0 and USBS bits in
UCSRB and UCSRC. The receiver and transmitter uses the same setting. Note that

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 1

UCPOL = 0

Sample

Sample

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME
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changing the setting of any of these bits will corrupt all ongoing communication for both
the receiver and transmitter. 

The USART Character SiZe (UCSZ2:0) bits select the number of data bits in the frame.
The USART Parity Mode (UPM1:0) bits enable and set the type of parity bit. The selec-
tion between one or two stop bits is done by the USART Stop Bit Select (USBS) bit. The
receiver ignores the second stop bit. An FE (Frame Error) will therefore only be detected
in the cases where the first stop bit is zero.

Parity Bit Calculation The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is
used, the result of the exclusive or is inverted. The relation between the parity bit and
data bits is as follows:

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial
frame.

USART Initialization The USART has to be initialized before any communication can take place. The initial-
ization process normally consists of setting the baud rate, setting frame format and
enabling the transmitter or the receiver depending on the usage. For interrupt driven
USART operation, the global interrupt flag should be cleared (and interrupts globally dis-
abled) when doing the initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that
there are no ongoing transmissions during the period the registers are changed. The
TXC flag can be used to check that the transmitter has completed all transfers, and the
RXC flag can be used to check that there are no unread data in the receive buffer. Note
that the TXC flag must be cleared before each transmission (before UDR is written) if it
is used for this purpose.

The following simple USART initialization code examples show one assembly and one
C function that is equal in functionality. The examples assume asynchronous operation
using polling (no interrupts enabled) and a fixed frame format. The baud rate is given as
a function parameter. For the assembly code, the baud rate parameter is assumed to be
stored in the r17:r16 registers. When the function writes to the UCSRC register, the
URSEL bit (MSB) must be set due to the sharing of I/O location by UBRRH and
UCSRC.

Peven dn 1– … d3 d2 d1 d0 0
Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1– … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕

=
=
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Note: 1. The example code assumes that the part specific header file is included.

More advanced initialization routines can be made that include frame format as parame-
ters, disable interrupts and so on. However, many applications use a fixed setting of the
baud and control registers, and for these types of applications the initialization code can
be placed directly in the main routine, or be combined with initialization code for other
I/O modules.

Data Transmission – The 
USART Transmitter

The USART transmitter is enabled by setting the Transmit Enable (TXEN) bit in the
UCSRB register. When the transmitter is enabled, the normal port operation of the TxD
pin is overridden by the USART and given the function as the transmitter’s serial output.
The baud rate, mode of operation and frame format must be set up once before doing
any transmissions. If synchronous operation is used, the clock on the XCK pin will be
overridden and used as transmission clock.

Sending Frames with 5 to 8 
Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be trans-
mitted. The CPU can load the transmit buffer by writing to the UDR I/O location. The
buffered data in the transmit buffer will be moved to the shift register when the shift reg-
ister is ready to send a new frame. The shift register is loaded with new data if it is in idle
state (no ongoing transmission) or immediately after the last stop bit of the previous
frame is transmitted. When the shift register is loaded with new data, it will transfer one
complete frame at the rate given by the baud register, U2X bit or by XCK depending on
mode of operation.

Assembly Code Example(1)

USART_Init:

; Set baud rate

out UBRRH, r17

out UBRRL, r16

; Enable receiver and transmitter

ldi r16, (1<<RXEN)|(1<<TXEN)

out UCSRB,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<URSEL)|(1<<USBS)|(3<<UCSZ0)

out UCSRC,r16

ret

C Code Example(1)

void USART_Init( unsigned int baud )

{

/* Set baud rate */

UBRRH = (unsigned char)(baud>>8);

UBRRL = (unsigned char)baud;

/* Enable receiver and transmitter */

UCSRB = (1<<RXEN)|(1<<TXEN);

/* Set frame format: 8data, 2stop bit */

UCSRC = (1<<URSEL)|(1<<USBS)|(3<<UCSZ0);

}
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The following code examples show a simple USART transmit function based on polling
of the Data Register Empty (UDRE) flag. When using frames with less than eight bit, the
most significant bits written to the UDR are ignored. The USART has to be initialized
before the function can be used. For the assembly code, the data to be sent is assumed
to be stored in Register R16.

Note: 1. The example code assumes that the part specific header file is included.

The function simply waits for the transmit buffer to be empty by checking the UDRE flag,
before loading it with new data to be transmitted. If the data register empty interrupt is
utilized, the interrupt routine writes the data into the buffer.

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRA,UDRE

rjmp USART_Transmit

; Put data (r16) into buffer, sends the data

out UDR,r16

ret

C Code Example

void USART_Transmit( unsigned char data )

{

/* Wait for empty transmit buffer */

while ( !( UCSRA & (1<<UDRE)) ) {};

/* Put data into buffer, sends the data */

UDR = data;

}
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Sending Frames with 9 Data 
Bit

If 9 bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8 bit in
UCSRB before the low byte of the character written to UDR. The following code exam-
ples show a transmit function that handles 9 bit characters. For the assembly code, the
data to be sent is assumed to be stored in Registers R17:R16.

Note: 1. These transmit functions are written to be general functions. They can be optimized if
the contents of the UCSRB is static. I.e. only the TXB8 bit of the UCSRB register is
used after initialization.

The ninth bit can be used for indicating an address frame when using multi processor
communication mode or for other protocol handling as for example synchronization.

Transmitter Flags and 
Interrupts

The USART transmitter has two flags that indicate its state: USART Data Register
Empty (UDRE) and Transmit Complete (TXC). Both flags can be used for generating
interrupts.

The Data Register Empty (UDRE) flag indicates whether the transmit buffer is ready to
receive new data. This bit is set when the transmit buffer is empty, and cleared when the
transmit buffer contains data to be transmitted that has not yet been moved into the shift
register. For compatibility with future devices, always set this bit to zero when writing the
UCSRA register.

When the Data Register empty Interrupt Enable (UDRIE) bit in UCSRB is set, the
USART Data Register Empty Interrupt will be executed as long as UDRE is set (pro-
vided that global interrupts are enabled). UDRE is cleared by writing UDR. When
interrupt-driven data transmission is used, the data register empty Interrupt routine must
either write new data to UDR in order to clear UDRE or disable the data register empty
interrupt, otherwise a new interrupt will occur once the interrupt routine terminates.

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRA,UDRE

rjmp USART_Transmit

; Copy 9th bit from r17 to TXB8

cbi UCSRB,TXB8

sbrc r17,0

sbi UCSRB,TXB8

; Put LSB data (r16) into buffer, sends the data

out UDR,r16

ret

C Code Example

void USART_Transmit( unsigned int data )

{

/* Wait for empty transmit buffer */

while ( !( UCSRA & (1<<UDRE))) ) {};

/* Copy 9th bit to TXB8 */

UCSRB &= ~(1<<TXB8);

if ( data & 0x0100 )

UCSRB |= (1<<TXB8);

/* Put data into buffer, sends the data */

UDR = data;

}
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The Transmit Complete (TXC) flag bit is set one when the entire frame in the transmit
shift register has been shifted out and there are no new data currently present in the
transmit buffer. The TXC flag bit is automatically cleared when a transmit complete inter-
rupt is executed, or it can be cleared by writing a one to its bit location. The TXC flag is
useful in half-duplex communication interfaces (like the RS485 standard), where a
transmitting application must enter receive mode and free the communication bus
immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIE) bit in UCSRB is set, the USART
Transmit Complete Interrupt will be executed when the TXC flag becomes set (provided
that global interrupts are enabled). When the transmit complete interrupt is used, the
interrupt handling routine does not have to clear the TXC flag, this is done automatically
when the interrupt is executed.

Parity Generator The parity generator calculates the parity bit for the serial frame data. When parity bit is
enabled (UPM1 = 1), the transmitter control logic inserts the parity bit between the last
data bit and the first stop bit of the frame that is sent.

Disabling the Transmitter The disabling of the transmitter (setting the TXEN to zero) will not become effective until
ongoing and pending transmissions are completed, i.e. when the transmit shift register
and transmit buffer register does not contain data to be transmitted. When disabled, the
transmitter will no longer override the TxD pin.
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Data Reception – The 
USART Receiver

The USART receiver is enabled by setting the Receive Enable (RXEN) bit in the
UCSRB register. When the receiver is enabled, the normal pin operation of the RxD pin
is overridden by the USART and given the function as the receiver’s serial input. The
baud rate, mode of operation and frame format must be set up once before any serial
reception can be done. If synchronous operation is used, the clock on the XCK pin will
be used as transfer clock.

Receiving Frames with 5 to 8 
Data Bits

The receiver starts data reception when it detects a valid start bit. Each bit that follows
the start bit will be sampled at the baud rate or XCK clock, and shifted into the receive
shift register until the first stop bit of a frame is received. A second stop bit will be
ignored by the receiver. When the first stop bit is received, i.e. a complete serial frame is
present in the receive shift register, the contents of the shift register will be moved into
the receive buffer. The receive buffer can then be read by reading the UDR I/O location.

The following code example shows a simple USART receive function based on polling
of the Receive Complete (RXC) flag. When using frames with less than eight bits the
most significant bits of the data read from the UDR will be masked to zero. The USART
has to be initialized before the function can be used.

Note: 1. The example code assumes that the part specific header file is included.

The function simply waits for data to be present in the receive buffer by checking the
RXC flag, before reading the buffer and returning the value.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDR

ret

C Code Example

unsigned char USART_Receive( void )

{

/* Wait for data to be received */

while ( !(UCSRA & (1<<RXC)) ) {};

/* Get and return received data from buffer */

return UDR;

}
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Receiving Frames with 9 Data 
Bits

If 9 bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8 bit in
UCSRB before reading the low bits from the UDR. This rule applies to the FE, DOR and
PE status flags as well. Read status from UCSRA, then data from UDR. Reading the
UDR I/O location will change the state of the receive buffer FIFO and consequently the
TXB8, FE, DOR and PE bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both
nine bit characters and the status bits.

Note: 1. The example code assumes that the part specific header file is included.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r18, UCSRA

in r17, UCSRB

in r16, UDR

; If error, return -1

andi r18,(1<<FE)|(1<<DOR)|(1<<PE)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example

unsigned int USART_Receive( void )

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while ( !(UCSRA & (1<<RXC)) ) {};

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRA;

resh = UCSRB;

resl = UDR;

/* If error, return -1 */

if ( status & (1<<FE)|(1<<DOR)|(1<<PE) )

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}
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The receive function example reads all the I/O registers into the register file before any
computation is done. This gives an optimal receive buffer utilization since the buffer
location read will be free to accept new data as early as possible.

Receive Compete Flag and 
Interrupt

The USART receiver has one flag that indicates the receiver state.

The Receive Complete (RXC) flag indicates if there are unread data present in the
receive buffer. This flag is one when unread data exist in the receive buffer, and zero
when the receive buffer is empty (i.e. does not contain any unread data). If the receiver
is disabled (RXEN = 0), the receive buffer will be flushed and consequently the RXC bit
will become zero.

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART
Receive Complete Interrupt will be executed as long as the RXC flag is set (provided
that global interrupts are enabled). When interrupt-driven data reception is used, the
receive complete routine must read the received data from UDR in order to clear the
RXC flag, otherwise a new interrupt will occur once the interrupt routine terminates.

Receiver Error Flags The USART receiver has three error flags: Frame Error (FE), Data OverRun (DOR) and
Parity Enable (PE). All can be accessed by reading UCSRA. Common for the error flags
is that they are located in the receive buffer together with the frame for which they indi-
cate the error status. Due to the buffering of the error flags, the UCSRA must be read
before the receive buffer (UDR), since reading the UDR I/O location changes the buffer
read location. Another equality for the error flags is that they can not be altered by soft-
ware doing a write to the flag location. However, all flags must be set to zero when the
UCSRA is written for upward compatibility of future USART implementations. None of
the error flags can generate interrupts.

The Frame Error (FE) flag indicates the state of the first stop bit of the next readable
frame stored in the receive buffer. The FE flag is zero when the stop bit was correctly
read (as one), and the FE flag will be one when the stop bit was incorrect (zero). This
flag can be used for detecting out-of-sync conditions, detecting break conditions and
protocol handling. The FE flag is not affected by the setting of the USBS bit in UCSRC
since the receiver ignores all, except for the first, stop bits. For compatibility with future
devices, always set this bit to zero when writing to UCSRA.

The Data OverRun (DOR) flag indicates data loss due to a receiver buffer full condition.
A data overrun occurs when the receive buffer is full (two characters), it is a new charac-
ter waiting in the receive shift register, and a new start bit is detected. If the DOR flag is
set there was one or more serial frame lost between the frame last read from UDR, and
the next frame read from UDR. For compatibility with future devices, always set this bit
to zero when writing to UCSRA. The DOR flag is cleared when the frame received was
successfully moved from the shift register to the receive buffer.

The Parity Error (PE) flag indicates that the next frame in the receive buffer did have an
parity error when received. If parity check is not enabled the PE bit will always be read
zero. For compatibility with future devices, always set this bit to zero when writing to
UCSRA. For more details see “Parity Bit Calculation” on page 78 and “Parity Checker”
on page 85.

Parity Checker The parity checker is active when the high USART Parity Mode (UPM1) bit is set. Type
of parity check to be performed (odd or even) is selected by the UPM0 bit. When
enabled, the parity checker calculates the parity of the data bits in incoming frames and
compares the result with the parity bit from the serial frame. The result of the check is
stored in the receive buffer together with the received data and stop bits. The Parity
Error (PE) flag can then be read by software to check if the frame had a parity error.
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The PE bit is set if the next character that can be read from the receive buffer had a par-
ity error when received and the parity checking was enabled at that point (UPM1 = 1).
This bit is valid until the receive buffer (UDR) is read.

Disabling the Receiver In contrast to the transmitter, disabling the of the receiver will be immediate. Data from
ongoing receptions will therefore be lost. When disabled (i.e. the RXEN is set to zero)
the receiver will no longer override the normal function of the RxD port pin. The receiver
buffer FIFO will be flushed when the receiver is disabled. Remaining data in the buffer
will be lost

Flushing the Receive Buffer The receiver buffer FIFO will be flushed when the receiver is disabled, i.e. the buffer will
be emptied of its contents. Unread data will be lost. If the buffer has to be flushed during
normal operation, due to for instance an error condition, read the UDR I/O location until
the RXC flag is cleared. The following code example shows how to flush the receive
buffer.

Note: 1. The example code assumes that the part specific header file is included.

Asynchronous Data 
Reception

The USART includes a clock recovery and a data recovery unit for handling asynchro-
nous data reception. The clock recovery logic is used for synchronizing the internally
generated baud rate clock to the incoming asynchronous serial frames at the RxD pin.
The data recovery logic samples and low pass filters each incoming bit, thereby improv-
ing the noise immunity of the receiver. The asynchronous reception operational range
depends on the accuracy of the internal baud rate clock, the rate of the incoming
frames, and the frame size in number of bits.

Asynchronous Clock 
Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Fig-
ure 49 illustrates the sampling process of the start bit of an incoming frame. The sample
rate is 16 times the baud rate for normal mode, and 8 times the baud rate for double
speed mode. The horizontal arrows illustrate the synchronization variation due to the
sampling process. Note the larger time variation when using the double speed mode
(U2X = 1) of operation. Samples denoted zero are samples done when the RxD line is
idle (i.e. no communication activity).

Assembly Code Example(1)

USART_Flush:

sbis UCSRA, RXC

ret

in r16, UDR

rjmp USART_Flush

C Code Example

void USART_Flush( void )

{

unsigned char dummy;

while ( UCSRA & (1<<RXC) ) dummy = UDR;

}
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Figure 49.  Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD
line, the start bit detection sequence is initiated. Let sample 1 denote the first zero-sam-
ple as shown in the figure. The clock recovery logic then uses samples 8, 9 and 10 for
normal mode, and samples 4, 5 and 6 for double speed mode (indicated with sample
numbers inside boxes on the figure), to decide if a valid start bit is received. If two or
more of these three samples have logical high levels (the majority wins), the start bit is
rejected as a noise spike and the receiver starts looking for the next high to low-transi-
tion. If however, a valid start bit is detected, the clock recovery logic is synchronized and
the data recovery can begin. The synchronization process is repeated for each start bit.

Asynchronous Data Recovery When the receiver clock is synchronized to the start bit, the data recovery can begin.
The data recovery unit uses a state machine that has 16 states for each bit in normal
mode and 8 states for each bit in double speed mode. Figure 50 shows the sampling of
the data bits and the parity bit. Each of the samples is given a number that is equal to
the state of the recovery unit.

Figure 50.  Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of
the logic value to the three samples in the center of the received bit. The center samples
are emphasized on the figure by having the sample number inside boxes. The majority
voting process is done as follows: If two or all three samples have high levels, the
received bit is registered to be a logic 1. If two or all three samples have low levels, the
received bit is registered to be a logic 0. This majority voting process act as a low pass
filter for the incoming signal on the RxD pin. The recovery process is then repeated until
a complete frame is received. Including the first stop bit. Note that the receiver only uses
the first stop bit of a frame.

Figure 51 shows the sampling of the stop bit and the earliest possible beginning of the
start bit of the next frame.
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Figure 51.  Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If
the stop bit is registered to have a logic 0 value, the frame error (FE) flag will be set. 

A new high to low transition indicating the start bit of a new frame can come right after
the last of the bits used for majority voting. For normal speed mode, the first low level
sample can be at point marked (A) in Figure 51. For double speed mode the first low
level must be delayed to (B). (C) marks a stop bit of full length. The early start bit detec-
tion influences the operational range of the receiver.

Asynchronous Operational 
Range

The operational range of the receiver is dependent of the mismatch between the
received bit rate and the internally generated baud rate. If the transmitter is sending
frames at too fast or too slow bit rates, or the internally generated baud rate of the
receiver does not have exact base frequency, the receiver will not be able to synchro-
nize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and
internal receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for normal speed mode and S = 8 for double speed mode.

SF First sample number used for majority voting. SF = 8 for normal speed and SF = 4
for double speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed and SM =
5 for double speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.
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Table 30 and Table 31 list the maximum receiver baud rate error that can be tolerated.
Note that normal speed mode has higher toleration of baud rate variations.

The recommendations of the maximum receiver baud rate error was made under the
assumption that the receiver and transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The receiver’s system
clock (XTAL) will always have some minor instability over the supply voltage range and
the temperature range. When using a crystal to generate the system clock, this is rarely
a problem, but for a resonator the system clock may differ more than 2% depending of
the resonators tolerance. The second source for the error is more controllable. The baud
rate generator can not always do an exact division of the system frequency to get the
baud rate wanted. In this case an UBRR value that gives an acceptable low error can be
used if possible.

Multi-processor 
Communication Mode

Setting the Multi-Processor Communication Mode (MPCM) bit in UCSRA enables a fil-
tering function of incoming frames received by the USART receiver. Frames that do not
contain address information will be ignored and not put into the receive buffer. This
effectively reduces the number of incoming frames that has to be handled by the CPU,
in a system with multiple MCUs that communicate via the same serial bus. The transmit-
ter is unaffected by the MPCM setting, but has to be used differently when it is a part of
a system utilizing the Multi-processor Communication Mode.

Table 30.  Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode
(U2X = 0)

D #
(Data+Parity Bit) Rslow (%) Rfast (%)

Max Total
Error (%)

Recommended Max 
Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ± 3.0

6 94.12 105.79 +5.79/-5.88 ± 2.5

7 94.81 105.11 +5.11/-5.19 ± 2.0

8 95.36 104.58 +4.58/-4.54 ± 2.0

9 95.81 104.14 +4.14/-4.19 ± 1.5

10 96.17 103.78 +3.78/-3.83 ± 1.5

Table 31.  Recommended Maximum Receiver Baud Rate Error for Double Speed Mode
(U2X = 1)

D
# (Data+Parity 

Bit) Rslow (%) Rfast (%)
Max Total
Error (%)

Recommended 
Max Receiver 

Error (%)

5 94.12 105.66 +5.66/-5.88 ± 2.5

6 94.92 104.92 +4.92/-5.08 ± 2.0

7 95.52 104.35 +4.35/-4.48 ± 1.5

8 96.00 103.90 +3.90/-4.00 ± 1.5

9 96.39 103.53 +3.53/-3.61 ± 1.5

10 96.70 103.23 +3.23/-3.30 ± 1.0
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If the receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop
bit indicates if the frame contain data or address information. If the receiver is set up for
frames with 9 data bits, then the 9th bit (RXB8) is used for identifying address and data
frames. When the frame type bit (the first stop or the 9th bit) is one, the frame contains
an address. When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication Mode enables several slave MCUs to receive data
from a master MCU. This is done by first decoding an address frame to find out which
MCU has been addressed. If a particular slave MCU has been addressed, it will receive
the following data frames as normal, while the other slave MCUs will ignore the received
frames until another address frame is received.

Using MPCM For an MCU to act as a master MCU, it can use a 9 bit character frame format (UCSZ =
7). The 9th bit (TXB8) must be set when an address frame (TXB8 = 1) or cleared when
a data frame (TXB = 0) is being transmitted. The slave MCUs must in this case be set to
use a 9 bit character frame format. 

The following procedure should be used to exchange data in Multi-processor Communi-
cation Mode:

1. All slave MCUs are in Multi-processor Communication Mode (MPCM in UCSRA 
is set).

2. The master MCU sends an address frame, and all slaves receive and read this 
frame. In the slave MCUs, the RXC flag in UCSRA will be set as normal.

3. Each slave MCU reads the UDR register and determines if it has been selected. 
If so, it clears the MPCM bit in UCSRA, otherwise it waits for the next address 
byte and keeps the MPCM setting.

4. The addressed MCU will receive all data frames until a new address frame is 
received. The other slave MCUs, which still have the MPCM bit set, will ignore 
the data frames.

5. When the last data frame is received by the addressed MCU, the addressed 
MCU sets the MPCM bit and waits for a new address frame from master. The 
process then repeats from 2.

Using any of the 5 to 8 bit character frame formats is possible, but impractical since the
receiver must change between using n and n+1 character frame formats. This makes
full-duplex operation difficult since the transmitter and receiver uses the same character
size setting. If 5 to 8 bit character frames are used, the transmitter must be set to use
two stop bit (USBS = 1) since the first stop bit is used for indicating the frame type.

Do not use read-modify-write instructions (SBI and CBI) to set or clear the MPCM bit.
The MPCM bit shares the same I/O location as the TXC flag and this might accidentally
be cleared when using SBI or CBI instructions.
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Accessing 
UBRRH/UCSRC 
Registers

The UBRRH register shares the same I/O location as the UCSRC register. Therefore
some special consideration must be taken when accessing this I/O location.

Write Access When doing a write access of this I/O location, the high bit of the value written, the
USART Register Select (URSEL) bit, controls which one of the two registers that will be
written. If URSEL is zero during a write operation, the UBRRH value will be updated. If
URSEL is one, the UCSRC setting will be updated.

The following code examples show how to access the two registers.

Note: 1. The example code assumes that the part specific header file is included.

As the code examples illustrate, write accesses of the two registers are relatively unaf-
fected of the sharing of I/O location. 

Assembly Code Examples(1)

...

; Set UBRRH to 2

ldi r16,0x02

out UBRRH,r16

...

; Set the USBS and the UCSZ1 bit to one, and

; the remaining bits to zero.

ldi r16,(1<<URSEL)|(1<<USBS)|(1<<UCSZ1)

out UCSRC,r16

...

C Code Examples

...

/* Set UBRRH to 2 */

UBRRH = 0x02;

...

/* Set the USBS and the UCSZ1 bit to one, and */

/* the remaining bits to zero. */

UCSRC = (1<<URSEL)|(1<<USBS)|(1<<UCSZ1)

...
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Read Access Doing a read access to the UBRRH or the UCSRC register is a more complex operation.
However, in most applications, it is rarely necessary to read any of these registers.

The read access is controlled by a timed sequence. Reading the I/O location once
returns the UBRRH register contents. If the register location was read in previous sys-
tem clock cycle, reading the register in the current clock cycle will return the UCSRC
contents. Note that the timed sequence for reading the UCSRC is an atomic operation.
Interrupts must therefore be disabled during the read operation.

The following code example shows how to read the UCSRC register contents.

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example returns the UCSRC value in r16.

Reading the UBRRH contents is not an atomic operation and therefore it can be read as
an ordinary register, as long as the previous instruction did not access the register
location.

Assembly Code Example(1)

USART_ReadUCSRC:

; Save global interrupt flag

in r17,SREG

; Disable interrupts

cli

; Read UCSRC

in r16,UBRRH

in r16,UCSRC

; Restore global interrupt flag

out SREG,r17

ret

C Code Example

unsigned char USART_ReadUCSRC( void )

{

unsigned char sreg, ucsrc;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read UCSRC */

ucsrc = UBRRH;

ucsrc = UCSRC;

/* Restore global interrupt flag */

SREG = sreg;

return ucsrc;

}
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USART Register 
Description

USART I/O Data Register – 
UDR

The USART Transmit Data Buffer register and USART Receive Data Buffer registers
share the same I/O address referred to as USART Data Register or UDR. The transmit
data buffer register (TXB) will be the destination for data written to the UDR register
location. Reading the UDR register location will return the contents of the receive data
buffer register (RXB). 

For 5,6 or 7-bit characters the upper unused bits will be ignored by the transmitter and
set to zero by the receiver.

The transmit buffer can only be written when the UDRE flag in the UCSRA register is
set. Data written to UDR when the UDRE flag is not set, will be ignored by the USART
transmitter. When data is written to the transmit buffer, and the transmitter is enabled,
the transmitter will load the data into the transmit shift register when the shift register is
empty. Then the data will be serially transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever
the receive buffer is accessed. Due to this behavior of the receive buffer, do not use
read modify write instructions (SBI and CBI) on this location. Be careful when using bit
test instructions (SBIC and SBIS), since these also will change the state of the FIFO.

USART Control and Status 
Register A – UCSRA

• Bit 7 - RXC: USART Receive Complete

This flag bit is one when there are unread data in the receive buffer and zero when the
receive buffer is empty (i.e. does not contain any unread data). If the receiver is dis-
abled, the receive buffer will be flushed and consequently the RXC bit will become zero.
The RXC flag can be used to generate a Receive Complete interrupt (see description of
the RXCIE bit).

• Bit 6 - TXC: USART Transmit Complete

This flag bit is set one when the entire frame in the Transmit Shift register has been
shifted out and there are no new data currently present in the transmit buffer (UDR). The
TXC flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXC flag can generate a Transmit
Complete interrupt (see description of the TXCIE bit).

• Bit 5 - UDRE: USART Data Register Empty

The UDRE flag indicates if the transmit buffer (UDR) is ready to receive new data. If
UDRE is one the buffer is empty and therefore ready be written. The UDRE flag can
generate a Data Register Empty interrupt (see description of the UDRIE bit).

UDRE is set (one) after a reset to indicate that the transmitter is ready.

Bit 7 6 5 4 3 2 1 0

$0C ($2C) Read RXB[7:0] UDR (Read)
$0C ($2C) Write TXB[7:0] UDR (Write)
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$0B ($2B) RXC TXC UDRE FE DOR PE U2X MPCM UCSRA
Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
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• Bit 4 - FE: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when
received. I.e. when the first stop bit of the next character in the receive buffer is zero.
This bit is valid until the receive buffer (UDR) is read. The FE bit is zero when the stop
bit of received data is one. Always set this bit to zero when writing to UCSRA.

• Bit 3 - DOR: Data OverRun

This bit is set if a data overrun condition is detected. A data overrun occur when the
receive buffer is full (two characters), it is a new character waiting in the receive shift
register, and a new start bit is detected. Always set this bit to zero when writing to
UCSRA.

• Bit 2 - PE: Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received
and the parity checking was enabled at that point (UPM1 = 1). This bit is valid until the
receive buffer (UDR) is read. Always set this bit to zero when writing to UCSRA.

• Bit 1 - U2X: Double the USART Transmission Speed

Setting this bit only has effect for the asynchronous operation. Set this bit to zero when
using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8 effectively
doubling the transfer rate for asynchronous communication.

• Bit 0 - MPCM: Multi-processor Communication Mode

Setting this bit enables the Multi-processor Communication Mode. When the MPCM bit
is set, all the incoming frames received by the USART receiver that do not contain
address information will be ignored. The transmitter is unaffected by the MPCM setting.
For more detailed information see “Multi-processor Communication Mode” on page 89.

USART Control and Status 
Register B – UCSRB

• Bit 7 - RXCIE: RX Complete Interrupt Enable

Setting this bit to one enables interrupt on the RXC flag. A USART Receive Complete
interrupt will be generated only if the RXCIE bit is set, the global interrupt flag in SREG
is set and the RXC bit in UCSRA is set.

• Bit 6 - TXCIE: TX Complete Interrupt Enable

Setting this bit to one enables interrupt on the TXC flag. A USART Transmit Complete
interrupt will be generated only if the TXCIE bit is set, the global interrupt flag in SREG is
set and the TXC bit in UCSRA is set.

• Bit 5 - UDRIE: USART Data Register Empty Interrupt Enable

Setting this bit to one enables interrupt on the UDRE flag. A Data Register Empty inter-
rupt will be generated only if the UDRIE bit is set, the global interrupt flag in SREG is set
and the UDRE bit in UCSRA is set.

• Bit 4 - RXEN: Receiver Enable

Setting this bit to one enables the USART receiver. The receiver will override normal
port operation for the RxD pin when enabled. Disabling the receiver will flush the receive
buffer invalidating the FE, DOR and PE flags.

Bit 7 6 5 4 3 2 1 0

$0A ($2A) RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 UCSRB
Read/Write R/W R/W R/W R/W R/W R/W R W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 3 - TXEN: Transmitter Enable

Setting this bit to one enables the USART transmitter. The transmitter will override nor-
mal port operation for the TxD pin when enabled. The disabling of the transmitter
(setting the TXEN to zero) will not become effective until ongoing and pending transmis-
sions are completed, i.e. when the transmit shift register and transmit buffer register
does not contain data to be transmitted. When disabled the transmitter will no longer
override the TxD port.

• Bit 2 - UCSZ2: Character Size

The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits
(character size) in a frame the receiver and transmitter use. 

• Bit 1 - RXB8: Receive Data Bit 8

RXB8 is the 9th data bit of the received character when operating with serial frames with
9 data bits. Must be read before reading the low bits from UDR.

• Bit 0 - TXB8: Transmit Data Bit 8

TXB8 is the 9th data bit in the character to be transmitted when operating with serial
frames with 9 data bits. Must be written before writing the low bits to UDR.

USART Control and Status 
Register C – UCSRC

The UCSRC register shares the same I/O location as the UBRRH register. See the
“Accessing UBRRH/UCSRC Registers” on page 91 section which describes how to
access this register.

• Bit 7 - URSEL: Register Select

This bit selects between accessing the UCSRC or the UBRRH register. It is read as one
when reading UCSRC. The URSEL must be one when writing the UCSRC.

• Bit 6 - UMSEL: USART Mode Select

This bit selects between asynchronous and synchronous mode of operation.

• Bit 5:4 - UPM1:0: Parity Mode

This bit enable and set type of parity generation and check. If enabled, the transmitter
will automatically generate and send the parity of the transmitted data bits within each
frame. The receiver will generate a parity value for the incoming data and compare it to
the UPM0 setting. If a mismatch is detected, the PE flag in UCSRA will be set.

Bit 7 6 5 4 3 2 1 0

$20 ($40) URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL UCSRC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 0 0 0 0 1 1 0

Table 32.  USART Mode

UMSEL Mode

0 Asynchronous Operation

1 Synchronous Operation
95
1457E–11/01



• Bit 3 - USBS: Stop Bit Select

This bit selects number of stop bits to be inserted by the transmitter. The receiver
ignores this setting.

• Bit 2:1 - UCSZ1:0: Character Size

The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits
(character size) in a frame the receiver and transmitter uses.

• Bit 0 - UCPOL: Clock Polarity

This bit is used for synchronous mode only. Set this bit to zero when asynchronous
mode is used. The UCPOL bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCK).

Table 33.  Parity Mode

UPM1 UPM0 Parity Mode

0 0 Disabled

0 1 (Reserved)

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 34.  Stop Bit Select

USBS Stop Bit(s)

0 1-bit

1 2-bit

Table 35.  Character Size

UCSZ2 UCSZ1 UCSZ0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

UCPOL
Transmitted Data Changed (Output 
of TxD Pin)

Received Data Sampled (Input on 
RxD Pin)

0 Falling XCK Edge Rising XCK Edge

1 Rising XCK Edge Falling XCK Edge
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USART Baud Rate Registers – 
UBRRL and UBRRHs

The UBRRH register shares the same I/O location as the UCSRC register. See the
“Accessing UBRRH/UCSRC Registers” on page 91 section which describes how to
access this register.

• Bit 15 - URSEL: Register Select

This bit selects between accessing the UBRRH or the UCSRC register. It is read as zero
when reading UBRRH. The URSEL must be zero when writing the UBRRH.

• Bit 14:12 - Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit
must be set to zero when UBRRH is written.

• Bit 11:0 - UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the
4 most significant bits, and the UBRRL contains the 8 least significant bits of the USART
baud rate. Ongoing transmissions by the transmitter and receiver will be corrupted if the
baud rate is changed. Writing UBRRL will trigger an immediate update of the baud rate
prescaler.

Examples of Baud Rate 
Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for
asynchronous operation can be generated by using the UBRR settings in Table 36.
UBRR values which yield an actual baud rate differing less than 0.5% from the target
baud rate, are bold in the table. Higher error ratings are acceptable, but the receiver will
have less noise resistance when the error ratings are high, especially for large serial
frames (see “Asynchronous Operational Range” on page 88). The error values are cal-
culated using the following equation:

Bit 15 14 13 12 11 10 9 8

$20 ($40) URSEL - - - UBRR[11:8] UBRRH
$09 ($29) UBRR[7:0] UBRRL

7 6 5 4 3 2 1 0

Read/Write R/W R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Error[%]
BaudRateClosest Match

BaudRate
-------------------------------------------------------- 1–
�
� � 100%•=
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Table 36.  Examples of UBRR Settings for Commonly Used Oscillator Frequencies –
UBRR = 0, Error = 0.0%

Baud 
Rate 
(bps)

fosc = 1.0000 MHz fosc = 1.8432 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

14.4K 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

19.2K 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

28.8K 1 8.5% 3 8.5% 3 0.0% 7 0.0%

38.4K 1 -18.6% 2 8.5% 2 0.0% 5 0.0%

57.6K 0 8.5% 1 8.5% 1 0.0% 3 0.0%

76.8K – – 1 -18.6% 1 -25.0% 2 0.0%

115.2K – – 0 8.5% 0 0.0% 1 0.0%

230.4K – – – – – – 0 0.0%

250K – – – – – – – –

Max 62.5 Kbps 125 Kbps 115.2 Kbps 230.4 Kbps

Baud 
Rate 
(bps)

fosc = 2.0000 MHz fosc = 3.6864 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error

2400 51 0.2% 103 0.2% 95 0.0% 191 0.0%

4800 25 0.2% 51 0.2% 47 0.0% 95 0.0%

9600 12 0.2% 25 0.2% 23 0.0% 47 0.0%

14.4K 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

19.2K 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

28.8K 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

38.4K 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

57.6K 1 8.5% 3 8.5% 3 0.0% 7 0.0%

76.8K 1 -18.6% 2 8.5% 2 0.0% 5 0.0%

115.2K 0 8.5% 1 8.5% 1 0.0% 3 0.0%

230.4K – – – – 0 0.0% 1 0.0%

250K – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – 0 -7.8%

Max 125 Kbps 250 Kbps 230.4 Kbps 460.8 Kbps
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Baud 
Rate 
(bps)

fosc = 4.0000 MHz fosc = 7.3728 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error

2400 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4K 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2K 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8K 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4K 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6K 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8K 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2K 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4K 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250K 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – 0 -7.8%

Max 250 Kbps 0.5 Mbps 460.8 Kpbs 921.6 Kbps

Baud 
Rate 
(bps)

fosc = 8.0000 MHz

U2X = 0 U2X = 1

UBRR Error UBRR Error

2400 207 0.2% 416 -0.1%

4800 103 0.2% 207 0.2%

9600 51 0.2% 103 0.2%

14.4K 34 -0.8% 68 0.6%

19.2K 25 0.2% 51 0.2%

28.8K 16 2.1% 34 -0.8%

38.4K 12 0.2% 25 0.2%

57.6K 8 -3.5% 16 2.1%

76.8K 6 -7.0% 12 0.2%

115.2K 3 8.5% 8 -3.5%

230.4K 1 8.5% 3 8.5%

250K 1 0.0% 3 0.0%

0.5M 0 0.0% 1 0.0%

1M - - 0 0.0%

Max 0.5 Mbps 1 Mbps

Table 36.  Examples of UBRR Settings for Commonly Used Oscillator Frequencies –
UBRR = 0, Error = 0.0% (Continued)
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2-wire Serial Interface 
(Byte Oriented)

The 2-wire Serial Interface supports bi-directional serial communication. It is designed
primarily for simple but efficient integrated circuit (IC) control. The system is comprised
of two lines, SCL (Serial Clock) and SDA (Serial Data) that carry information between
the ICs connected to them. Various communication configurations can be designed
using this bus. Figure 52 shows a typical 2-wire Serial Bus configuration. Any device
connected to the bus can be master or slave. Note that all AVR devices connected to
the bus must be powered to allow any bus operation.

Figure 52.  2-wire Serial Bus Configuration

The 2-wire Serial Interface supports Master/Slave and Transmitter/Receiver operation
at up to 400 kHz bus clock rate. The 2-wire Serial Interface has hardware support for 7
bit addressing. When the 2-wire Serial Interface is enabled (TWEN in TWCR is set), a
glitch filter is enabled for the input signals from the pins PC0 (SCL) and PC1 (SDA), and
the output from these pins is slew-rate controlled. The 2-wire Serial Interface is byte ori-
ented. The operation of the 2-wire Serial Bus is shown as a pulse diagram in Figure 53,
including the START and STOP conditions and generation of ACK signal by the bus
receiver.

Figure 53.  2-wire Serial Bus Timing Diagram

The block diagram of the 2-wire Serial Interface is shown in Figure 54.

Device 1 Device 2 Device 3 Device n.......

V
CC

R1 R2

SCL

SDA

SDA

SCL

MSB R/W
BIT

STOP CONDITION

START
CONDITION

REPEATED START CONDIT

1 2 7 8 9 1 2 8 9
ACK ACK

ACKNOWLEDGE
FROM RECEIVER
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Figure 54.  Block diagram of the 2-wire Serial Interface

The CPU interfaces with the 2-wire Serial Interface via the following five I/O registers:
the 2-wire Serial Interface Bit Rate Register (TWBR), the 2-wire Serial Interface Control
Register (TWCR), the 2-wire Serial Interface Status Register (TWSR), the 2-wire Serial
Interface Data Register (TWDR), and the 2-wire Serial Interface Address Register
(TWAR, used in slave mode).

The 2-wire Serial Interface Bit 
Rate Register – TWBR

ACK
INPUT

OUTPUT

INPUT

OUTPUT

START/STOP
AND SYNC

ARBITRATION

TIMING
AND

CONTROL

SERIAL CLOCK
GENERATOR

STATE MACHINE
AND

STATUS DECODER

DATA SHIFT
REGISTER

ADDRESS REGISTER
AND

COMPARATOR

TWAR

SDA

SCL

TWDR

CONTROL
REGISTER

STATUS
REGISTER

STATUS
TWCR

TWSR

A
V

R
 8

-B
IT

 D
A

T
A

 B
U

S

Bit 7 6 5 4 3 2 1 0

$00 ($20) TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bits 7..0 - 2-wire Serial Interface Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a
frequency divider which generates the SCL clock frequency in the master modes
according to the following equation:

• Bit Rate = SCL frequency

• fCK = CPU Clock frequency

• TWBR = Contents of the 2-wire Serial Interface Bit Rate Register

• tA = Bus alignment adjustment
Note: Both the receiver and the transmitter can stretch the low period of the SCL line when

waiting for user response, thereby reducing the average bit rate.

TWBR should be set to a value higher than 7 to ensure correct 2-wire Serial Bus func-
tionality. The bus alignment adjustment is automatically inserted by the 2-wire Serial
Interface, and ensures the validity of setup and hold times on the bus for any TWBR
value higher than 7. This adjustment may vary from 200 ns to 600 ns depending on bus
loads and drive capabilities of the devices connected to the bus.

The 2-wire Serial Interface 
Control Register – TWCR

• Bit 7 - TWINT: 2-wire Serial Interface Interrupt Flag

This bit is set by hardware when the 2-wire Serial Interface has finished its current job
and expects application software response. If the I-bit in the SREG and TWIE in the
TWCR register are set (one), the MCU will jump to the interrupt vector at address $026.
While the TWINT flag is set, the bus SCL clock line low period is stretched. The TWINT
flag must be cleared by software by writing a logic one to it. Note that this flag is not
automatically cleared by hardware when executing the interrupt routine. Also note that
clearing this flag starts the operation of the 2-wire Serial Interface, so all accesses to the
2-wire Serial Interface Address Register – TWAR, 2-wire Serial Interface Status Register
– TWSR, and 2-wire Serial Interface Data Register – TWDR must be complete before
clearing this flag.

• Bit 6 - TWEA: 2-wire Serial Interface Enable Acknowledge Flag

TWEA flag controls the generation of the acknowledge pulse. If the TWEA bit is set, the
ACK pulse is generated on the 2-wire Serial Bus if the following conditions are met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in master receiver or slave receiver mode. 

By setting the TWEA bit low, the device can be virtually disconnected from the 2-wire
Serial Bus temporarily. Address recognition can then be resumed by setting the TWEA
bit again.

• Bit 5 - TWSTA: 2-wire Serial Bus START Condition Flag

The TWSTA flag is set by the application when it desires to become a master on the 2-
wire Serial Bus. The 2-wire Serial Interface hardware checks if the bus is available, and
generates a START condition on the bus if it is free. However, if the bus is not free, the

Bit Rate
fCK

16 2(TWBR) + tAfCK+
-----------------------------------------------------------=

Bit 7 6 5 4 3 2 1 0

$36 ($56) TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE TWCR
Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
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2-wire Serial Interface waits until a STOP condition is detected, and then generates a
new START condition to claim the bus Master status.

• Bit 4 - TWSTO: 2-wire Serial Bus STOP Condition Flag

TWSTO is a stop condition flag. In Master mode setting the TWSTO bit in the control
register will generate a STOP condition on the 2-wire Serial Bus. When the STOP condi-
tion is executed on the bus, the TWSTO bit is cleared automatically. In slave mode
setting the TWSTO bit can be used to recover from an error condition. No stop condition
is generated on the bus then, but the 2-wire Serial Interface returns to a well-defined
unaddressed slave mode and releases the SCL and SDA lines to a high impedance
state.

• Bit 3 - TWWC: 2-wire Serial Bus Write Collision Flag

The TWWC bit is set when attempting to write to the 2-wire Serial Interface Data Regis-
ter – TWDR when TWINT is low. This flag is cleared by writing the TWDR register when
TWINT is high.

• Bit 2 - TWEN: 2-wire Serial Interface Enable Bit

The TWEN bit enables 2-wire Serial Interface operation. If this bit is cleared (zero), the
bus outputs SDA and SCL are set to high impedance state, and the input signals are
ignored. The interface is activated by setting this bit (one).

• Bit 1 - Res: Reserved Bit

This bit is a reserved bit in the ATmega323 and will always read as zero.

• Bit 0 - TWIE: 2-wire Serial Interface Interrupt Enable

When this bit is enabled, and the I-bit in SREG is set, the 2-wire Serial Interface interrupt
will be activated for as long as the TWINT flag is high.

The TWCR is used to control the operation of the 2-wire Serial Interface. It is used to
enable the 2-wire Serial Interface, to initiate a master access by applying a START con-
dition to the bus, to generate a receiver acknowledge, to generate a stop condition, and
to control halting of the bus while the data to be written to the bus are written to the
TWDR. It also indicates a write collision if data is attempted written to TWDR while the
register is inaccessible.

The 2-wire Serial Interface 
Status Register – TWSR

• Bits 7..3 - TWS: 2-wire Serial Interface Status

These 5 bits reflect the status of the 2-wire Serial Interface logic and the 2-wire Serial
Bus.

• Bits 2..0 - Res: Reserved bits

These bits are reserved in ATmega323 and will always read as zero

The TWSR is read only. It contains a status code which reflects the status of the 2-wire
Serial Interface logic and the 2-wire Serial Bus. There are 26 possible status codes.
When TWSR contains $F8, no relevant state information is available and no 2-wire
Serial Interface interrupt is requested. A valid status code is available in TWSR one
CPU clock cycle after the 2-wire Serial Interface interrupt flag (TWINT) is set by hard-
ware and is valid until one CPU clock cycle after TWINT is cleared by software. Table 37
to Table 44 give the status information for the various modes.

Bit 7 6 5 4 3 2 1 0

$01 ($21) TWS7 TWS6 TWS5 TWS4 TWS3 - - - TWSR
Read/Write R R R R R R R R

Initial Value 1 1 1 1 1 0 0 0
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The 2-wire Serial Interface 
Data Register – TWDR

• Bits 7..0 - TWD: 2-wire Serial Interface Data Register 

These eight bits constitute the next data byte to be transmitted, or the latest data byte
received on the 2-wire Serial Bus.

In transmit mode, TWDR contains the next byte to be transmitted. In receive mode, the
TWDR contains the last byte received. It is writable while the 2-wire Serial Interface is
not in the process of shifting a byte. This occurs when the 2-wire Serial Interface inter-
rupt flag (TWINT) is set by hardware. Note that the data register cannot be initialized by
the user before the first interrupt occurs. The data in TWDR remain stable as long as
TWINT is set. While data is shifted out, data on the bus is simultaneously shifted in.
TWDR always contains the last byte present on the bus, except after a wake up from
ADC Noise Reduction Mode, Power-down mode, or Power-save mode by the 2-wire
Serial Interface interrupt. For example, in the case of a lost bus arbitration, no data is
lost in the transition from Master to Slave. Handling of the ACK flag is controlled auto-
matically by the 2-wire Serial Interface logic, the CPU cannot access the ACK bit
directly.

The 2-wire Serial Interface 
(Slave) Address Register – 
TWAR

• Bits 7..1 - TWA: 2-wire Serial Interface (Slave) Address Register 

These seven bits constitute the slave address of the 2-wire Serial Bus unit.

• Bit 0 - TWGCE: 2-wire Serial Interface General Call Recognition Enable bit 

This bit enables, if set, the recognition of the General Call given over the 2-wire Serial
Bus.

The TWAR should be loaded with the 7-bit slave address (in the seven most significant
bits of TWAR) to which the 2-wire Serial Interface will respond when programmed as a
slave transmitter or receiver, and not needed in the master modes. The LSB of TWAR is
used to enable recognition of the general call address ($00). There is an associated
address comparator that looks for the slave address (or general call address if enabled)
in the received serial address. If a match is found, an interrupt request is generated.

2-wire Serial Interface 
Modes

The 2-wire Serial Interface can operate in four different modes:

• Master Transmitter

• Master Receiver

• Slave Receiver

• Slave Transmitter

Data transfer in each mode of operation is shown in Figure 55 to Figure 58. These fig-
ures contain the following abbreviations:

S: START condition

R: Read bit (high level at SDA)

Bit 7 6 5 4 3 2 1 0

$03 ($23) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

$02 ($22) TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0
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W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 55 to Figure 58, circles are used to indicate that the 2-wire Serial Interface
interrupt flag is set. The numbers in the circles show the status code held in TWSR. At
these points, actions must be taken by the application to continue or complete the 2-wire
Serial Bus transfer. The 2-wire Serial Bus transfer is suspended until the 2-wire Serial
Interface interrupt flag is cleared by software.

The 2-wire Serial Interface interrupt flag is not automatically cleared by hardware when
executing the interrupt routine. Software has to clear the flag to continue the 2-wire
transfer. Also note that the 2-wire Serial Interface starts execution as soon as this bit is
cleared, so that all access to TWAR, TWDR, and TWSR must have been completed
before clearing this flag.

When the 2-wire Serial Interface interrupt flag is set, the status code in TWSR is used to
determine the appropriate software action. For each status code, the required software
action and details of the following serial transfer are given in Table 37 to Table 44.

Master Transmitter Mode In the master transmitter mode, a number of data bytes are transmitted to a slave
receiver (see Figure 55). Before master transmitter mode can be entered, the TWCR
must be initialized as follows:

TWEN must be set to enable the 2-wire Serial Interface, TWSTA and TWSTO must be
cleared.

The master transmitter mode may now be entered by setting the TWSTA bit. The 2-wire
Serial Interface logic will then test the 2-wire Serial Bus and generate a START condi-
tion as soon as the bus becomes free. When a START condition is transmitted, the 2-
wire Serial Interface interrupt flag (TWINT) is set by hardware, and the status code in
TWSR will be $08. TWDR must then be loaded with the slave address and the data
direction bit (SLA+W). Clearing the TWINT bit in software will continue the transfer. The
TWINT flag is cleared by writing a logic one to the flag.

When the slave address and the direction bit have been transmitted and an acknowl-
edgement bit has been received, TWINT is set again and a number of status codes in
TWSR are possible. Possible status codes in master mode are $18, $20, or $38. The
appropriate action to be taken for each of these status codes is detailed in Table 37. The
data must be loaded when TWINT is high only. If not, the access will be discarded, and
the Write Collision bit – TWWC will be set in the TWCR register. This scheme is
repeated until the last byte is sent and the transfer is ended by generating a STOP con-
dition or a repeated START condition. A STOP condition is generated by setting
TWSTO, a repeated START condition is generated by setting TWSTA and TWSTO.

After a repeated START condition (state $10) the 2-wire Serial Interface can access the
same slave again, or a new slave without transmitting a STOP condition. Repeated
START enables the master to switch between slaves, master transmitter mode and
master receiver mode without loosing control over the bus.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 0 X 0 0 0 1 0 X
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Assembly code illustrating operation of the master transmitter mode is given at the end
of the TWI section.

Master Receiver Mode In the master receiver mode, a number of data bytes are received from a slave transmit-
ter (see Figure 56). The transfer is initialized as in the master transmitter mode. When
the START condition has been transmitted, the TWINT flag is set by hardware. The soft-
ware must then load TWDR with the 7-bit slave address and the data direction bit
(SLA+R). The transfer will then continue when the TWINT flag is cleared by software.

When the slave address and the direction bit have been transmitted and an acknowl-
edgement bit has been received, TWINT is set again and a number of status codes in
TWSR are possible. Possible status codes in master mode are $40, $48, or $38. The
appropriate action to be taken for each of these status codes is detailed in Table .
Received data can be read from the TWDR register when the TWINT flag is set high by
hardware. This scheme is repeated until the last byte has been received and a STOP
condition is transmitted by writing a logic one to the TWSTO bit in the TWCR register.

After a repeated START condition (state $10), the 2-wire Serial Interface may switch to
the master transmitter mode by loading TWDR with SLA+W or access a new slave as
master receiver or transmitter.

Assembly code illustrating operation of the master receiver mode is given at the end of
the TWI section.

Slave Receiver Mode In the slave receiver mode, a number of data bytes are received from a master transmit-
ter (see Figure 57). To initiate the slave receiver mode, TWAR and TWCR must be
initialized as follows:

The upper 7 bits are the address to which the 2-wire Serial Interface will respond when
addressed by a master. If the LSB is set, the 2-wire Serial Interface will respond to the
general call address ($00), otherwise it will ignore the general call address.

TWEN must be set to enable the 2-wire Serial Interface. The TWEA bit must be set to
enable the acknowledgement of the device’s own slave address or the general call
address. TWSTA and TWSTO must be cleared.

When TWAR and TWCR have been initialized, the 2-wire Serial Interface waits until it is
addressed by its own slave address (or the general call address if enabled) followed by
the data direction bit which must be “0” (write) for the 2-wire Serial Interface to operate
in the slave receiver mode. After its own slave address and the write bit have been
received, the 2-wire Serial Interface interrupt flag is set and a valid status code can be
read from TWSR. The status code is used to determine the appropriate software action.
The appropriate action to be taken for each status code is detailed in Table 42. The
slave receiver mode may also be entered if arbitration is lost while the 2-wire Serial
Interface is in the master mode (see states $68 and $78).

If the TWEA bit is reset during a transfer, the 2-wire Serial Interface will return a “Not
Acknowledge” (“1”) to SDA after the next received data byte. While TWEA is reset, the
2-wire Serial Interface does not respond to its own slave address. However, the 2-wire
Serial Bus is still monitored and address recognition may resume at any time by setting
TWEA. This implies that the TWEA bit may be used to temporarily isolate the 2-wire
Serial Interface from the 2-wire Serial Bus.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE
Value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 0 1 0 0 0 1 0 X
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In ADC Noise Reduction Mode, Power-down mode, and Power-save mode, the clock
system to the 2-wire Serial Interface is turned off. If the slave receive mode is enabled,
the interface can still acknowledge a general call and its own slave address by using the
2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and the
2-wire Serial Interface will hold the SCL clock will low during the wake up and until the
TWINT flag is cleared.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte
present on the bus when waking up from these Sleep Modes.

Assembly code illustrating operation of the slave receiver mode is given at the end of
the TWI section.

Slave Transmitter Mode In the slave transmitter mode, a number of data bytes are transmitted to a master
receiver (see Figure 58). The transfer is initialized as in the slave receiver mode. When
TWAR and TWCR have been initialized, the 2-wire Serial Interface waits until it is
addressed by its own slave address (or the general call address if enabled) followed by
the data direction bit which must be “1” (read) for the 2-wire Serial Interface to operate in
the slave transmitter mode. After its own slave address and the read bit have been
received, the 2-wire Serial Interface interrupt flag is set and a valid status code can be
read from TWSR. The status code is used to determine the appropriate software action.
The appropriate action to be taken for each status code is detailed in Table 43. The
slave transmitter mode may also be entered if arbitration is lost while the 2-wire Serial
Interface is in the master mode (see state $B0).

If the TWEA bit is reset during a transfer, the 2-wire Serial Interface will transmit the last
byte of the transfer and enter state $C0 or state $C8. the 2-wire Serial Interface is
switched to the not addressed slave mode, and will ignore the master if it continues the
transfer. Thus the master receiver receives all “1” as serial data. While TWEA is reset,
the 2-wire Serial Interface does not respond to its own slave address. However, the 2-
wire Serial Bus is still monitored and address recognition may resume at any time by
setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the 2-
wire Serial Interface from the 2-wire Serial Bus.

Assembly code illustrating operation of the slave receiver mode is given at the end of
the TWI section.

Miscellaneous States There are two status codes that do not correspond to a defined 2-wire Serial Interface
state, see Table 37.

Status $F8 indicates that no relevant information is available because the 2-wire Serial
Interface interrupt flag (TWINT) is not set yet. This occurs between other states, and
when the 2-wire Serial Interface is not involved in a serial transfer.

Status $00 indicates that a bus error has occurred during a 2-wire Serial Bus transfer. A
bus error occurs when a START or STOP condition occurs at an illegal position in the
format frame. Examples of such illegal positions are during the serial transfer of an
address byte, a data byte or an acknowledge bit. When a bus error occurs, TWINT is
set. To recover from a bus error, the TWSTO flag must set and TWINT must be cleared
by writing a logic one to it. This causes the 2-wire Serial Interface to enter the not
addressed slave mode and to clear the TWSTO flag (no other bits in TWCR are
affected). The SDA and SCL lines are released and no STOP condition is transmitted.
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Table 37.  Miscellaneous States

Status Code
(TWSR)

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by 2-wire Serial Interface HardwareTo/from TWDR
To TWCR

STA STO TWINT TWEA

$08 A START condition has been
transmitted

Load SLA+W X 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

$10 A repeated START condition
has been transmitted

Load SLA+W or 

Load SLA+R

X

X

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to master receiver mode

$18 SLA+W has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will 
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

$20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will 
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

$28 Data byte has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will 
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

$30 Data byte has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will 
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

$38 Arbitration lost in SLA+W or
data bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not addressed 
slave mode entered
A START condition will be transmitted when the bus be-
comes free
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Figure 55.  Formats and States in the Master Transmitter Mode

Assembly Code Example – 
Master Transmitter Mode

;The slave being addressed has address 0x64. The code examples also assumes
some sort of error handling routine named ERROR.

;Part specific include file and TWI include file must be included.

; <Initialize registers, including TWAR, TWBR and TWCR>

ldi r16, (1<<TWSTA) | (1<<TWEN)

out TWCR, r16 ; Send START condition

wait1: in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16,TWINT ; the START condition has been transmitted

rjmp wait1

in r16, TWSR ; Check value of TWI Status Register.

cpi r16, START ; If status different from START go to ERROR

brne ERROR

S SLA W A DATA A P

$08 $18 $28

S SLA W

$10

A P

$20

P

$30

A or A

$38

A

Other master
continues A or A

$38

Other master
continues

R

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MT

MR

Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus
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ldi r16, 0xc8 ; Load SLA+W into TWDR register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of address

wait2: in r16, TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; SLA+W has been transmitted, and ACK/NACK has

rjmp wait2 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MT_SLA_ACK ; different from MT_SLA_ACK, go to ERROR

brne ERROR

ldi r16, 0x33 ; Load data (here, data=0x33) into TWDR
; register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of data

wait3: in r16, TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; data has been transmitted, and ACK/NACK has

rjmp wait3 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MT_DATA_ACK ; different from MT_DATA_ACK, go to ERROR

brne ERROR

ldi r16, 0x44 ; Load data (here, data = 0x44) into TWDR
; register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of data

;<send more data bytes if needed>

wait4: in r16, TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; data has been transmitted, and ACK/NACK has

rjmp wait4 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MT_DATA_ACK ; different from MT_DATA_ACK, go to ERROR

brne ERROR

ldi r16, (1<<TWINT) | (1<<TWSTO) | (1<<TWEN)

out TWCR, r16 ; Transmit STOP condition
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Table 38.  Miscellaneous States

Status Code
(TWSR)

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
hardware

Application Software Response

Next Action Taken by 2-wire Serial Interface HardwareTo/from TWDR
To TWCR

STA STO TWINT TWEA

$08 A START condition has been
transmitted

Load SLA+R X 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

$10 A repeated START condition
has been transmitted

Load SLA+R or 

Load SLA+W

X

X

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to master transmitter mode\

$38 Arbitration lost in SLA+R or
NOT ACK bit

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not addressed 
slave mode will be entered
A START condition will be transmitted when the bus
becomes free

$40 SLA+R has been transmitted;
ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

$48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO flag will 
be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

$50 Data byte has been received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

$58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO flag will 
be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset
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Figure 56.  Formats and States in the Master Receiver Mode

Assembly Code Example – 
Master Receiver Mode

;Part specific include file and TWI include file must be included.

; <Initialize registers TWAR and TWBR>

ldi r16, (1<<TWINT) | (1<<TWSTA) | (1<<TWEN)

out TWCR, r16 ;Send START condition

wait5:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; the START condition has been transmitted

rjmp wait5

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, START ; different from START, go to ERROR

brne ERROR

ldi r16, 0xc9 ; Load SLA+R into TWDR register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of SLA+R

wait6:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; SLA+R has been transmitted, and ACK/NACK has

rjmp wait6 ; been received

S SLA R A DATA A

$08 $40 $50

S SLA R

$10

A P

$48

A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus

PDATA A

$58

A
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in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MR_SLA_ACK ; different from MR_SLA_ACK, go to ERROR

brne ERROR

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start reception of
; data. Setting TWEA causes ACK to be returned
; after reception of data byte

wait7:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; data has been received and ACK returned

rjmp wait7

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MR_DATA_ACK ; different from MR_DATA_ACK, go to ERROR

brne ERROR

in r16, TWDR ; Input received data from TWDR.

nop ;<do something with received data>

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start reception of
; data. Setting TWEA causes ACK to be returned
;after reception of data byte

;<Receive more data bytes if needed>

;receive next to last data byte.

wait8:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; data has been received and ACK returned

rjmp wait8

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MR_DATA_ACK ; different from MR_DATA_ACK, go to ERROR

brne ERROR

in r16, TWDR ; Input received data from TWDR.

nop ;<do something with received data>

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start reception of
; data. Not setting TWEA causes NACK to be
; returned after reception of next data byte
; receive last data byte. Signal this to slave
; by returning NACK

wait9:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; data has been received and NACK returned

rjmp wait9

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MR_DATA_NACK ; different from MR_DATA_NACK, go to ERROR

brne ERROR
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in r16, TWDR ; Input received data from TWDR.

nop ;<do something with received data>

ldi r16, (1<<TWINT) | (1<<TWSTO) | (1<<TWEN)

out TWCR, r16 ; Send STOP signal

Table 39.  Miscellaneous States

Status Code
(TWSR)

Status of the 2-wire Serial Bus
and 2-wire Serial Interface Hard-
ware

Application Software Response

Next Action Taken by 2-wire Serial Interface HardwareTo/from TWDR
To TWCR

STA STO TWINT TWEA

$60 Own SLA+W has been received;
ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

$68 Arbitration lost in SLA+R/W as
master; own SLA+W has been 
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

$70 General call address has been 
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

$78 Arbitration lost in SLA+R/W as
master; General call address has
been received; ACK has been 
returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

$80 Previously addressed with own
SLA+W; data has been received;
ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

$88 Previously addressed with own
SLA+W; data has been received;
NOT ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

$90 Previously addressed with 
general call; data has been re-
ceived; ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

$98 Previously addressed with 
general call; data has been 
received; NOT ACK has been 
returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

$A0 A STOP condition or repeated
START condition has been 
received while still addressed as
slave

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free
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Figure 57.  Formats and States in the Slave Receiver Mode

Assembly Code Example – 
Slave Receiver Mode

;Part specific include file and TWI include file must be included.

; <Initialize registers TWAR and TWBR>

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Enable TWI in Slave Receiver Mode

; <Receive START condition and SLA+W>

wait10:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; START followed by SLA+W has been received

rjmp wait10

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, SR_SLA_ACK ; different from SR_SLA_ACK, go to ERROR

brne ERROR

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start reception of
; first data byte. Setting TWEA indicates that

S SLA W A DATA A

$60 $80

$88

A

$68

Reception of the own
slave address and one or
more data bytes.  All are
acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Reception of the general call
address and one or more data
bytes

Last data byte received is
not acknowledged

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus

P or SDATA A

$80 $A0

P or SA

A DATA A

$70 $90

$98

A

$78

P or SDATA A

$90 $A0

P or SA

General Call

Arbitration lost as master and
addressed as slave by general call

DATA A
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; ACK should be returned after receiving first
; data byte

wait12:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; data has been received and ACK returned

rjmp wait12

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, SR_DATA_ACK ; different from SR_DATA_ACK, go to ERROR

brne ERROR

in r16, TWDR ; Input received data from TWDR.

nop ;<do something with received data>

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start reception of
; data. Not setting TWEA causes NACK to be
; returned after reception of next data byte

wait13:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; data has been received and NACK returned

rjmp wait13

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, SR_DATA_NACK ; different from SR_DATA_NACK, go to ERROR

brne ERROR

in r16, TWDR ; Input received data from TWDR.

nop ;<do something with received data>

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start reception of
; data. Setting TWEA causes TWI unit to enter
; not addressed slave mode with recognition of
; own SLA

;<Wait for next data transmission or do something else>
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Table 40.  Miscellaneous States

Status Code
(TWSR)

Status of the 2-wire Serial Bus
and 2-wire Serial Interface Hard-
ware

Application Software Response

Next Action Taken by 2-wire Serial Interface HardwareTo/from TWDR
To TWCR

STA STO TWINT TWEA

$A8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be re-
ceived

$B0 Arbitration lost in SLA+R/W as
master; own SLA+R has been 
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be re-
ceived

$B8 Data byte in TWDR has been 
transmitted; ACK has been 
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be re-
ceived

$C0 Data byte in TWDR has been 
transmitted; NOT ACK has been 
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

$C8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free
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Figure 58.  Formats and States in the Slave Transmitter Mode

Assembly Code Example – 
Slave Transmitter Mode

; Part specific include file and TWI include file must be included.

; <Initialize registers, including TWAR, TWBR and TWCR>

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Enable TWI in Slave Transmitter Mode

; <Receive START condition and SLA+R>

wait14:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; SLA+R has been received, and ACK/NACK has

rjmp wait14 ; been returned

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, ST_SLA_ACK ; different from ST_SLA_ACK, go to ERROR

brne ERROR

ldi r16, 0x33 ; Load data(here, data=0x33)into TWDR register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of data. Setting TWEA indicates that ACK
; should be received when transfer finished

; <Send more data bytes if needed>

wait15:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; data has been transmitted, and ACK/NACK has

rjmp wait15 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, ST_DATA_ACK ; different from ST_DATA_ACK, go to ERROR

brne ERROR

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the
own slave address
and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = '0')

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A
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ldi r16, 0x44 ; Load data(here, data=0x44)into TWDR register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of data. Setting TWEA indicates that ACK
; should be received when transfer finished

wait16:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; data has been transmitted, and ACK/NACK has

rjmp wait16 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, ST_DATA_ACK ; different from ST_DATA_ACK, go to ERROR

brne ERROR

ldi r16, 0x55 ; Load data(here, data=0x55)into TWDR register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of data. Not setting TWEA indicates that
; NACK should be received after data byte
; Master signalling end of transmission)

wait17:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; data has been transmitted, and ACK/NACK has

rjmp wait17 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, ST_LAST_DATA ; different from ST_LAST_DATA, go to ERROR

brne ERROR

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Continue address recognition in Slave
; Transmitter mode

TWI Include File ;***** General Master status codes *****

.equ START =$08 ;START has been transmitted

.equ REP_START =$10 ;Repeated START has been transmitted

;***** Master Transmitter status codes *****

.equ MT_SLA_ACK =$18 ;SLA+W has been transmitted and ACK received

.equ MT_SLA_NACK =$20 ;SLA+W has been transmitted and NACK received

.equ MT_DATA_ACK =$28 ;Data byte has been transmitted and ACK
;received

Table 41.  Miscellaneous States

Status Code
(TWSR)

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by 2-wire Serial Interface HardwareTo/from TWDR
To TWCR

STA STO TWINT TWEA

$F8 No relevant state information
available; TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

$00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
tion is sent on the bus. In all cases, the bus is released 
and TWSTO is cleared.
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.equ MT_DATA_NACK =$30 ;Data byte has been transmitted and NACK
;received

.equ MT_ARB_LOST =$38 ;Arbitration lost in SLA+W or data bytes

;***** Master Receiver status codes *****

.equ MR_ARB_LOST =$38 ;Arbitration lost in SLA+R or NACK bit

.equ MR_SLA_ACK =$40 ;SLA+R has been transmitted and ACK received

.equ MR_SLA_NACK =$48 ;SLA+R has been transmitted and NACK received

.equ MR_DATA_ACK =$50 ;Data byte has been received and ACK returned

.equ MR_DATA_NACK =$58 ;Data byte has been received and NACK
;transmitted

;***** Slave Transmitter status codes *****

.equ ST_SLA_ACK =$A8 ;Own SLA+R has been received and ACK returned

.equ ST_ARB_LOST_SLA_ACK=$B0 ;Arbitration lost in SLA+R/W as Master. Own
;SLA+W has been received and ACK returned

.equ ST_DATA_ACK =$B8 ;Data byte has been transmitted and ACK
;received

.equ ST_DATA_NACK =$C0 ;Data byte has been transmitted and NACK
;received

.equ ST_LAST_DATA =$C8 ;Last byte in I2DR has been transmitted
;(TWEA = “0”), ACK has been received

;***** Slave Receiver status codes *****

.equ SR_SLA_ACK =$60 ;SLA+R has been received and ACK returned

.equ SR_ARB_LOST_SLA_ACK=$68;Arbitration lost in SLA+R/W as Master. Own
;SLA+R has been received and ACK returned

.equ SR_GCALL_ACK =$70 ;General call has been received and ACK
;returned

.equ SR_ARB_LOST_GCALL_ACK=$78;Arbitration lost in SLA+R/W as Master.
;General Call has been received and ACK
;returned

.equ SR_DATA_ACK =$80 ;Previously addressed with own SLA+W. Data byte
;has been received and ACK returned

.equ SR_DATA_NACK =$88 ;Previously addressed with own SLA+W. Data byte
;has been received and NACK returned

.equ SR_GCALL_DATA_ACK=$90 ;Previously addressed with General Call.Data
;byte has been received and ACK returned

.equ SR_GCALL_DATA_NACK=$98 ;Previously addressed with General Call. Data
;byte has been received and NACK returned

.equ SR_STOP =$A0 ;A STOP condition or repeated START condition
;has been received while still addressed as a
;slave

;***** Miscellaneous States *****

.equ NO_INFO =$F8 ;No relevant state information; TWINT = “0”

.equ BUS_ERROR =$00 ;Bus error due to illegal START or STOP
;condition
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The Analog 
Comparator

The analog comparator compares the input values on the positive pin PB2 (AIN0) and
negative pin PB3 (AIN1). When the voltage on the positive pin PB2 (AIN0) is higher than
the voltage on the negative pin PB3 (AIN1), the Analog Comparator Output, ACO, is set
(one). The comparator’s output can be set to trigger the Timer/Counter1 Input Capture
function. In addition, the comparator can trigger a separate interrupt, exclusive to the
Analog Comparator. The user can select Interrupt triggering on comparator output rise,
fall or toggle. A block diagram of the comparator and its surrounding logic is shown in
Figure 59.

Figure 59.  Analog Comparator Block Diagram

Note: See Figure 60 on page 125.

The Analog Comparator 
Control and Status Register – 
ACSR

• Bit 7 - ACD: Analog Comparator Disable

When this bit is set(one), the power to the analog comparator is switched off. This bit
can be set at any time to turn off the analog comparator. This will reduce power con-
sumption in active and idle mode. When changing the ACD bit, the Analog Comparator
Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can
occur when the bit is changed.

• Bit 6 - ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap voltage of nominally 1.22 ± 0.10 V replaces the
positive input to the Analog Comparator. When this bit is cleared, AIN0 is applied to the
positive input of the Analog Comparator. See “Internal Voltage Reference” on page 31.

• Bit 5 - ACO: Analog Comparator Output

ACO is directly connected to the comparator output.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

1)

Bit 7 6 5 4 3 2 1 0

$08 ($28) ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
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• Bit 4 - ACI: Analog Comparator Interrupt Flag

This bit is set (one) when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator Interrupt routine is executed if the ACIE
bit is set (one) and the I-bit in SREG is set (one). ACI is cleared by hardware when exe-
cuting the corresponding interrupt handling vector. Alternatively, ACI is cleared by
writing a logic one to the flag.

• Bit 3 - ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is set (one) and the I-bit in the Status Register is set (one), the ana-
log comparator interrupt is activated. When cleared (zero), the interrupt is disabled.

• Bit 2 - ACIC: Analog Comparator Input Capture Enable

When set (one), this bit enables the Input Capture function in Timer/Counter1 to be trig-
gered by the analog comparator. The comparator output is in this case directly
connected to the Input Capture front-end logic, making the comparator utilize the noise
canceler and edge select features of the Timer/Counter1 Input Capture interrupt. When
cleared (zero), no connection between the analog comparator and the Input Capture
function is given. To make the comparator trigger the Timer/Counter1 Input Capture
interrupt, the TICIE1 bit in the Timer Interrupt Mask Register (TIMSK) must be set (one).

• Bits 1,0 - ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator inter-
rupt. The different settings are shown in Table 42.

When changing the ACIS1/ACIS0 bits, The Analog Comparator Interrupt must be dis-
abled by clearing its Interrupt Enable bit in the ACSR register. Otherwise an interrupt
can occur when the bits are changed.

Table 42.  ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge

1 1 Comparator Interrupt on Rising Output Edge
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Analog Comparator 
Multiplexed Input

It is potor, as shown in Table . If ACME is cleared (zero) or ADEN is set (one), PB3
(AIN1) is applied to the negative input to the Analog Comparator. t

Table 43.  Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7
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Analog to Digital 
Converter

Features • 10-bit Resolution
• 0.5 LSB Integral Non-linearity
• ±2 LSB Absolute Accuracy
• 65 - 260 µs Conversion Time
• Up to 15 kSPS at Maximum Resolution
• Up to 76 kSPS at 8-bit Resolution
• Eight Multiplexed Single Ended Input Channels
• Optional Left Adjustment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• Selectable 2.56V ADC Reference Voltage
• Free Run or Single Conversion Mode
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

The ATmega323 features a 10-bit successive approximation ADC. The ADC is con-
nected to an 8-channel Analog Multiplexer which allows each pin of Port A to be used as
input for the ADC.

The ADC contains a Sample and Hold Amplifier which ensures that the input voltage to
the ADC is held at a constant level during conversion. A block diagram of the ADC is
shown in Figure 60.

The ADC has two separate analog supply voltage pins, AVCC and AGND. AGND must
be connected to GND, and the voltage on AVCC must not differ more than ±0.3V from
VCC. See the paragraph ADC Noise Canceling Techniques on how to connect these
pins.

Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The 2.56V
reference may be externally decoupled at the AREF pin by a capacitor for better noise
performance. See “Internal Voltage Reference” on page 31 for a description of the inter-
nal voltage reference.
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Figure 60.  Analog to Digital Converter Block Schematic

Operation The ADC converts an analog input voltage to a 10-bit digital value through successive
approximation. The minimum value represents AGND and the maximum value repre-
sents the voltage on the AREF pin minus 1 LSB. Optionally, AVCC or an internal 2.56V
reference voltage may be connected to the AREF pin by writing to the REFSn bits in the
ADMUX register. The internal voltage reference may thus be decoupled by an external
capacitor at the AREF pin to improve noise immunity.

The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the
eight ADC input pins ADC7..0, as well as AGND and a fixed bandgap voltage reference
of nominally 1.22 V (VBG), can be selected as single ended inputs to the ADC. 

The ADC can operate in two modes – Single Conversion and Free Running Mode. In
Single Conversion Mode, each conversion will have to be initiated by the user. In Free
Running Mode, the ADC is constantly sampling and updating the ADC Data Register.
The ADFR bit in ADCSR selects between the two available modes.
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The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSR. Voltage reference
and input channel selections will not go into effect until ADEN is set. The ADC does not
consume power when ADEN is cleared, so it is recommended to switch off the ADC
before entering power saving sleep modes.

A conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.
This bit stays high as long as the conversion is in progress and will be set to zero by
hardware when the conversion is completed. If a different data channel is selected while
a conversion is in progress, the ADC will finish the current conversion before performing
the channel change.

The ADC generates a 10-bit result, which are presented in the ADC data registers,
ADCH and ADCL. By default, the result is presented right adjusted, but can optionally
be presented left adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8 bit precision is required, it is sufficient to
read ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content
of the data registers belongs to the same conversion. Once ADCL is read, ADC access
to data registers is blocked. This means that if ADCL has been read, and a conversion
completes before ADCH is read, neither register is updated and the result from the con-
version is lost. When ADCH is read, ADC access to the ADCH and ADCL registers is re-
enabled. 

The ADC has its own interrupt which can be triggered when a conversion completes.
When ADC access to the data registers is prohibited between reading of ADCH and
ADCL, the interrupt will trigger even if the result is lost.

Prescaling and 
Conversion Timing

Figure 61.  ADC Prescaler

The successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to achieve maximum resolution. If a lower resolution than 10 bits is
required, the input clock frequency to the ADC can be higher than 200 kHz to achieve a
higher sampling rate. See “ADC Characteristics – Preliminary Data(1)” on page 133 for
more details. The ADC module contains a prescaler, which divides the system clock to
an acceptable ADC clock frequency. 

The ADPS bits in ADCSR are used to generate a proper ADC clock input frequency
from any XTAL frequency above 100 kHz. The prescaler starts counting from the
moment the ADC is switched on by setting the ADEN bit in ADCSR. The prescaler
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keeps running for as long as the ADEN bit is set, and is continuously reset when ADEN
is low.

When initiating a conversion by setting the ADSC bit in ADCSR, the conversion starts at
the following rising edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles. In certain situations, the ADC needs
more clock cycles to initialization and minimize offset errors. Extended conversions take
25 ADC clock cycles and occur as the first conversion after the ADC is switched on
(ADEN in ADCSR is set). Additionally, when changing voltage reference, the user may
improve accuracy by disregarding the first conversion result after the reference or MUX
setting was changed.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal
conversion and 13.5 ADC clock cycles after the start of an extended conversion. When
a conversion is complete, the result is written to the ADC data registers, and ADIF is set.
In single conversion mode, ADSC is cleared simultaneously. The software may then set
ADSC again, and a new conversion will be initiated on the first rising ADC clock edge. In
Free Running Mode, a new conversion will be started immediately after the conversion
completes, while ADSC remains high. Using Free Running Mode and an ADC clock fre-
quency of 200 kHz gives the lowest conversion time with a maximum resolution, 65 µs,
equivalent to 15 kSPS. For a summary of conversion times, see Table 43.

Figure 62.  ADC Timing Diagram, Extended Conversion (Single Conversion Mode)

Figure 63.  ADC Timing Diagram, Single Conversion

Sign and MSB of result

LSB of result

ADC clock

ADSC

Sample & hold

ADIF

ADCH

ADCL

Cycle number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

Extended Conversion
Next
Conversion

3

MUX and REFS
update

MUX and REFS
update

Conversion
complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of result

LSB of result

ADC clock

ADSC

ADIF

ADCH

ADCL

Cycle number 1 2

One Conversion Next Conversion

3

Sample & hold

MUX and REFS
update

Conversion
complete

MUX and REFS
update
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Figure 64.  ADC Timing Diagram, Free Run Conversion

ADC Noise Canceler 
Function

The ADC features a noise canceler that enables conversion during ADC Noise Reduc-
tion mode (see “Sleep Modes” on page 38) to reduce noise induced from the CPU core
and other I/O peripherals. If other I/O peripherals must be active during conversion, this
mode works equivalently for Idle mode. To make use of this feature, the following proce-
dure should be used:

1. Make sure that the ADC is enabled and is not busy converting. Single Conver-
sion Mode must be selected and the ADC conversion complete interrupt must be 
enabled.

ADEN = 1

ADSC = 0

ADFR = 0

ADIE = 1

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conver-
sion once the CPU has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC inter-
rupt will wake up the CPU and execute the ADC Conversion Complete interrupt 
routine.

The ADC Multiplexer Selection 
Register – ADMUX

Table 44.  ADC Conversion Time

Condition
Sample & Hold (Cycles from 

Start of Conversion)
Conversion 

Time (Cycles)
Conversion 
Time (µs)

Extended Conversion 13.5 25 125 - 500

Normal Conversions 1.5 13 65 - 260

11 12 13

Sign and MSB of result

LSB of result

ADC clock

ADSC

ADIF

ADCH

ADCL

Cycle number
1 2

One Conversion Next Conversion

3 4

Conversion
complete

Sample & hold

MUX and REFS
update

Bit 7 6 5 4 3 2 1 0

$07 ($27) REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 7,6 - REFS1..0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 22. If these bits
are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSR is set). The user should disregard the first conversion result
after changing these bits to obtain maximum accuracy. The internal voltage reference
options may not be used if an external reference voltage is being applied to the AREF
pin.

•  Bit 5 - ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC data
register. If ADLAR is cleared, the result is right adjusted. If ADLAR is set, the result is left
adjusted. Changing the ADLAR bit will affect the ADC data register immediately, regard-
less of any ongoing conversions. For a complete description of this bit, see “The ADC
Data Register – ADCL and ADCH” on page 131.

• Bits 4..0 - MUX4..MUX0: Analog Channel Selection Bits

The value of these bits selects which combination of analog inputs are connected to the
ADC. See Table 46 for details. If these bits are changed during a conversion, the
change will not go in effect until this conversion is complete (ADIF in ADCSR is set).

Table 45.  Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Reserved

1 1 Internal 2.56V Voltage Reference with external capacitor at 
AREF pin

Table 46.  Input Channel Selections

MUX4..0 Single-ended Input

00000 ADC0

00001 ADC1

00010 ADC2

00011 ADC3

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000..11101 Reserved

11110 1.22V (VBG)

11111 0V (AGND)
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The ADC Control and Status 
Register – ADCSR

• Bit 7 - ADEN: ADC Enable

Writing a logical “1” to this bit enables the ADC. By clearing this bit to zero, the ADC is
turned off. Turning the ADC off while a conversion is in progress, will terminate this
conversion.

• Bit 6 - ADSC: ADC Start Conversion

In Single Conversion Mode, a logical “1” must be written to this bit to start each conver-
sion. In Free Running Mode, a logical “1” must be written to this bit to start the first
conversion. The first time ADSC has been written after the ADC has been enabled, or if
ADSC is written at the same time as the ADC is enabled, an extended conversion will
precede the initiated conversion. This extended conversion performs initialization of the
ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is
complete, it returns to zero. When a extended conversion precedes a real conversion,
ADSC will stay high until the real conversion completes. Writing a 0 to this bit has no
effect.

• Bit 5 - ADFR: ADC Free Running Select

When this bit is set (one) the ADC operates in Free Running Mode. In this mode, the
ADC samples and updates the data registers continuously. Clearing this bit (zero) will
terminate Free Running Mode.

• Bit 4 - ADIF: ADC Interrupt Flag

This bit is set (one) when an ADC conversion completes and the data registers are
updated. The ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-
bit in SREG are set (one). ADIF is cleared by hardware when executing the correspond-
ing interrupt handling vector. Alternatively, ADIF is cleared by writing a logical one to the
flag. Beware that if doing a read-modify-write on ADCSR, a pending interrupt can be dis-
abled. This also applies if the SBI and CBI instructions are used.

• Bit 3 - ADIE: ADC Interrupt Enable

When this bit is set (one) and the I-bit in SREG is set (one), the ADC Conversion Com-
plete Interrupt is activated.

• Bits 2..0 - ADPS2..0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input
clock to the ADC.

Bit 7 6 5 4 3 2 1 0

$06 ($26) ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 47.  ADC Prescaler Selections 

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16
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The ADC Data Register – 
ADCL and ADCH

ADLAR = 0:

ADLAR = 1:

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Conse-
quently, if the result is left adjusted and no more than 8 bit precision is required, it is
sufficient to read ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX affects the way the result is read from the registers. If ADLAR
is set, the result is left adjusted. If ADLAR is cleared (default), the result is right adjusted. 

• ADC9..0: ADC Conversion Result

These bits represent the result from the conversion. $000 represents analog ground,
and $3FF represents the selected reference voltage minus one LSB.

Scanning Multiple 
Channels

Since change of analog channel always is delayed until a conversion is finished, the
Free Running Mode can be used to scan multiple channels without interrupting the con-
verter. Typically, the ADC Conversion Complete interrupt will be used to perform the
channel shift. However, the user should take the following fact into consideration:

The interrupt triggers once the result is ready to be read. In Free Running Mode, the
next conversion will start immediately when the interrupt triggers. If ADMUX is changed
after the interrupt triggers, the next conversion has already started, and the old setting is
used.

1 0 1 32

1 1 0 64

1 1 1 128

Table 47.  ADC Prescaler Selections  (Continued)

ADPS2 ADPS1 ADPS0 Division Factor

Bit 15 14 13 12 11 10 9 8

$05 ($25) SIGN - - - - - ADC9 ADC8 ADCH
$04 ($24) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

$05 ($25) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
$04 ($24) ADC1 ADC0 - - - - - - ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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ADC Noise Canceling 
Techniques

Digital circuitry inside and outside the ATmega323 generates EMI which might affect the
accuracy of analog measurements. If conversion accuracy is critical, the noise level can
be reduced by applying the following techniques:

1. The analog part of the ATmega323 and all analog components in the application 
should have a separate analog ground plane on the PCB. This ground plane is 
connected to the digital ground plane via a single point on the PCB.

2. Keep analog signal paths as short as possible. Make sure analog tracks run over 
the analog ground plane, and keep them well away from high-speed switching 
digital tracks.

3. The AVCC pin on the ATmega323 should be connected to the digital VCC supply 
voltage via an LC network as shown in Figure 65.

4. Use the ADC noise canceler function to reduce induced noise from the CPU.

5. If some Port A pins are used as digital outputs, it is essential that these do not 
switch while a conversion is in progress.

Figure 65.  ADC Power Connections
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Notes: 1. Values are guidelines only. Actual values are TBD.
2. Minimum for AVCC is 2.7V.
3. Maximum for AVCC is 5.5V.

ADC Characteristics – Preliminary Data(1) 

Symbol Parameter Condition Min(2) Typ Max(3) Units

Resolution
Single-ended 
Conversion

10 Bits

Absolute 
accuracy

VREF = 4V
ADC clock = 200 kHz

1 2 LSB

Absolute 
accuracy

VREF = 4V
ADC clock = 1 MHz

4 LSB

Absolute 
accuracy

VREF = 4V
ADC clock = 2 MHz

16 LSB

Integral 
Non-linearity

VREF > 2V 0.5 LSB

Differential 
Non-linearity

VREF > 2V 0.5 LSB

Zero Error 
(Offset)

VREF > 2V 1 LSB

Conversion 
Time

Free Running 
Conversion

65 260 µs

Clock 
Frequency

50 200 kHz

AVCC

Analog 
Supply 
Voltage

VCC - 0.3(2) VCC + 0.3(3) V

VREF
Reference 
Voltage

2 V AVCC V

VINT
Internal 
Voltage 
Reference

2.35 2.56 2.77 V

VBG

Bandgap 
Voltage 
Reference

1.12 1.22 1.32 V

RREF

Reference 
Input 
Resistance

6 10 13 kΩ

VIN
Input 
Voltage

AGND AREF V

RAIN
Analog Input 
Resistance

100 MΩ
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I/O Ports All AVR ports have true Read-Modify-Write functionality when used as general digital
I/O ports. This means that the direction of one port pin can be changed without uninten-
tionally changing the direction of any other pin with the SBI and CBI instructions. The
same applies for changing drive value (if configured as output) or enabling/disabling of
pull-up resistors (if configured as input).

Port A Port A is an 8-bit bi-directional I/O port with optional internal pull-ups. 

Three I/O memory address locations are allocated for Port A, one each for the Data
Register – PORTA, $1B($3B), Data Direction Register – DDRA, $1A($3A) and the Port
A Input Pins – PINA, $19($39). The Port A Input Pins address is read only, while the
Data Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port A output buffers can
sink 20 mA and thus drive LED displays directly. When pins PA0 to PA7 are used as
inputs and are externally pulled low, they will source current if the internal pull-up resis-
tors are activated.

Port A has an alternate function as analog inputs for the ADC. If some Port A pins are
configured as outputs, it is essential that these do not switch when a conversion is in
progress. This might corrupt the result of the conversion.

During power-down mode, the schmitt trigger of the digital input is disconnected. This
allows analog signals that are close to VCC/2 to be present during power-down without
causing excessive power consumption.

The Port A Data Register – 
PORTA

The Port A Data Direction 
Register – DDRA

The Port A Input Pins Address 
– PINA

The Port A Input Pins address – PINA – is not a register, and this address enables
access to the physical value on each Port A pin. When reading PORTA the Port A Data
Latch is read, and when reading PINA, the logical values present on the pins are read.

Port A as General Digital I/O All 8-bits in Port A are equal when used as digital I/O pins.

PAn, General I/O pin: The DDAn bit in the DDRA register selects the direction of this
pin, if DDAn is set (one), PAn is configured as an output pin. If DDAn is cleared (zero),
PAn is configured as an input pin. If PORTAn is set (one) when the pin configured as an
input pin, the MOS pull up resistor is activated. To switch the pull up resistor off, the
PORTAn has to be cleared (zero), the pin has to be configured as an output pin, or the

Bit 7 6 5 4 3 2 1 0

$1B ($3B) PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$1A ($3A) DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$19 ($39) PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
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PUD bit has to be set. The Port A pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Note: n: 7,6…0, pin number.

Port A Schematics Note that all port pins are synchronized. The synchronization latches are not shown in
the figure.

Figure 66.  Port A Schematic Diagrams (Pins PA0 - PA7)

Port B Port B is an 8-bit bi-directional I/O port with optional internal pull-ups.

Three I/O memory address locations are allocated for Port B, one each for the Data
Register – PORTB, $18($38), Data Direction Register – DDRB, $17($37) and the Port B
Input Pins – PINB, $16($36). The Port B Input Pins address is read only, while the Data
Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port B output buffers can
sink 20 mA and thus drive LED displays directly. When pins PB0 to PB7 are used as

Table 48.  DDAn Effects on Port A Pins

DDAn PORTAn
PUD

(in SFIOR) I/O Pull Up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes
PAn will source current if ext. pulled 
low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Push-pull Zero Output

1 1 X Output No Push-pull One Output
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inputs and are externally pulled low, they will source current if the internal pull-up resis-
tors are activated.

The Port B pins with alternate functions are shown in Table 49.:

When the pins are used for the alternate function, the DDRB and PORTB registers have
to be set according to the alternate function description.

The Port B Data Register – 
PORTB

The Port B Data Direction 
Register – DDRB

The Port B Input Pins Address 
– PINB

The Port B Input Pins address – PINB – is not a register, and this address enables
access to the physical value on each Port B pin. When reading PORTB, the Port B Data
Latch is read, and when reading PINB, the logical values present on the pins are read.

Port B As General Digital I/O All 8 bits in Port B are equal when used as digital I/O pins. PBn, General I/O pin: The
DDBn bit in the DDRB register selects the direction of this pin, if DDBn is set (one), PBn
is configured as an output pin. If DDBn is cleared (zero), PBn is configured as an input
pin. If PORTBn is set (one) when the pin configured as an input pin, the MOS pull up
resistor is activated. To switch the pull up resistor off, the PORTBn has to be cleared
(zero), the pin has to be configured as an output pin, or the PUD bit has to be set. The

Table 49.  Port B Pins Alternate Functions

Port Pin Alternate Functions

PB0 T0 (Timer/Counter 0 External Counter Input)
XCK (USART External Clock Input/Output)

PB1 T1 (Timer/Counter 1 External Counter Input)

PB2 AIN0 (Analog Comparator Positive Input)
INT2 (External Interrupt 2 Input)

PB3 AIN1 (Analog Comparator Negative Input)
OC0 (Timer/Counter0 Output Compare Match Output)

PB4 SS (SPI Slave Select Input)

PB5 MOSI (SPI Bus Master Output/Slave Input)

PB6 MISO (SPI Bus Master Input/Slave Output)

PB7 SCK (SPI Bus Serial Clock)

Bit 7 6 5 4 3 2 1 0

$18 ($38) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$17 ($37) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$16 ($36) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
136 ATmega323(L)
1457E–11/01



ATmega323(L)
Port B pins are tri-stated when a reset condition becomes active, even if the clock is not
running.

Note: n: 7,6…0, pin number.

Alternate Functions of Port B The alternate pin configuration is as follows:

• SCK - Port B, Bit 7

SCK: Master clock output, slave clock input pin for SPI channel. When the SPI is
enabled as a slave, this pin is configured as an input regardless of the setting of DDB7.
When the SPI is enabled as a master, the data direction of this pin is controlled by
DDB7. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB7 bit. See the description of the SPI port for further details.

• MISO - Port B, Bit 6

MISO: Master data input, slave data output pin for SPI channel. When the SPI is
enabled as a master, this pin is configured as an input regardless of the setting of
DDB6. When the SPI is enabled as a slave, the data direction of this pin is controlled by
DDB6. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB6 bit. See the description of the SPI port for further details.

• MOSI - Port B, Bit 5

MOSI: SPI Master data output, slave data input for SPI channel. When the SPI is
enabled as a slave, this pin is configured as an input regardless of the setting of DDB5.
When the SPI is enabled as a master, the data direction of this pin is controlled by
DDB5. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB5 bit. See the description of the SPI port for further details.

• SS - Port B, Bit 4

SS: Slave port select input. When the SPI is enabled as a slave, this pin is configured as
an input regardless of the setting of DDB4. As a slave, the SPI is activated when this pin
is driven low. When the SPI is enabled as a master, the data direction of this pin is con-
trolled by DDB4. When the pin is forced to be an input, the pull-up can still be controlled
by the PORTB4 bit. See the description of the SPI port for further details.

• AIN1/OC0 - Port B, Bit 3

AIN1, Analog Comparator Negative Input. When configured as an input (DDB3 is
cleared (zero)) and with the internal MOS pull up resistor switched off (PB3 is cleared
(zero)), this pin also serves as the negative input of the On-chip analog comparator.
During power-down mode, the schmitt trigger of the digital input is disconnected. This
allows analog signals which are close to VCC/2 to be present during power-down without
causing excessive power consumption.

Table 50.  DDBn Effects on Port B Pins

DDBn PORTBn
PUD

(in SFIOR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes
PBn will Source Current if Ext. Pulled 
Low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Push-Pull Zero Output

1 1 X Output No Push-Pull One Output
137
1457E–11/01



OC0, Output compare match output: The PB3 pin can serve as an external output for
the Timer/Counter0 compare match. The PB3 pin has to be configured as an output
(DDB3 set (one)) to serve this function. See “8-bit Timers/Counters T/C0 and T/C2” on
page 44 for further details, and how to enable the output. The OC0 pin is also the output
pin for the PWM mode timer function.

• AIN0/INT2 - Port B, Bit 2

AIN0, Analog Comparator Positive Input. When configured as an input (DDB2 is cleared
(zero)) and with the internal MOS pull up resistor switched off (PB2 is cleared (zero)),
this pin also serves as the positive input of the On-chip analog comparator. During
power-down mode, the schmitt trigger of the digital input is disconnected if INT2 is not
enabled. This allows analog signals which are close to VCC/2 to be present during
power-down without causing excessive power consumption.

INT2, External Interrupt source 2: The PB2 pin can serve as an external interrupt source
to the MCU. See “MCU Control and Status Register – MCUCSR” on page 30 for further
details.

• T1 - Port B, Bit 1

T1, Timer/Counter1 counter source. See the timer description for further details.

• T0/XCK - Port B, Bit 0

T0, Timer/Counter0 counter source. See the timer description for further details.

XCK, USART external clock. See the USART description for further details.

Port B Schematics Note that all port pins are synchronized. The synchronization latches are not shown in
the figures.

Figure 67.  Port B Schematic Diagram (Pin PB0)
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Figure 68.  Port B Schematic Diagram (Pin PB1)

Figure 69.  Port B Schematic Diagram (Pin PB2)
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Figure 70.  Port B Schematic Diagram (Pin PB3)

Figure 71.  Port B Schematic Diagram (Pin PB4)
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Figure 72.  Port B Schematic Diagram (Pin PB5)

Figure 73.  Port B Schematic Diagram (Pin PB6)
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Figure 74.  Port B Schematic Diagram (Pin PB7)

Port C Port C is an 8-bit bi-directional I/O port with optional internal pull-ups.

Three I/O memory address locations are allocated for the Port C, one each for the Data
Register – PORTC, $15($35), Data Direction Register – DDRC, $14($34) and the Port C
Input Pins – PINC, $13($33). The Port C Input Pins address is read only, while the Data
Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port C output buffers can
sink 20mA and thus drive LED displays directly. When pins PC0 to PC7 are used as
inputs and are externally pulled low, they will source current if the internal pull-up resis-
tors are activated.
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Table 51.  Port C Pins Alternate Functions

Port Pin Alternate Function

PC0 SCL (2-wire Serial Bus Clock Line)

PC1 SDA (2-wire Serial Bus Data Input/Output Line)

PC2 TCK (JTAG Test Clock)

PC3 TMS (JTAG Test Mode Select)

PC4 TDO (JTAG Test Data Out)

PC5 TDI (JTAG Test Data In)

PC6 TOSC1 (Timer Oscillator Pin 1)

PC7 TOSC2 (Timer Oscillator Pin 2)
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The Port C Data Register – 
PORTC

The Port C Data Direction 
Register – DDRC

The Port C Input Pins Address 
– PINC

The Port C Input Pins address – PINC – is not a register, and this address enables
access to the physical value on each Port C pin. When reading PORTC, the Port C Data
Latch is read, and when reading PINC, the logical values present on the pins are read.

Port C As General Digital I/O All 8 bits in Port C are equal when used as digital I/O pins.

PCn, General I/O pin: The DDCn bit in the DDRC register selects the direction of this
pin, if DDCn is set (one), PCn is configured as an output pin. If DDCn is cleared (zero),
PCn is configured as an input pin. If PORTCn is set (one) when the pin configured as an
input pin, the MOS pull up resistor is activated. To switch the pull up resistor off,
PORTCn has to be cleared (zero), the pin has to be configured as an output pin, or the
PUD bit has to be set. The Port C pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Note: n: 7…0, pin number

If the JTAG interface is enabled, the pull-up resistors on pins PC5 (TDI), PC3 (TMS) and
PC2 (TCK) will be activated even if a reset occurs.

Bit 7 6 5 4 3 2 1 0

$15 ($35) PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$14 ($34) DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$13 ($33) PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Table 52.  DDCn Effects on Port C Pins

DDCn PORTCn
PUD

(in SFIOR) I/O Pull-up Comments

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes
PCn will Source Current if Ext. Pulled 
Low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Push-pull Zero Output

1 1 X Output No Push-pull One Output
143
1457E–11/01



Alternate Functions of Port C • TOSC2 - Port C, Bit 7

TOSC2, Timer Oscillator pin 2: When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PC7 is disconnected from the port, and
becomes the inverting output of the oscillator amplifier. In this mode, a crystal oscillator
is connected to this pin, and the pin can not be used as an I/O pin. 

• TOSC1 - Port C, Bit 6

TOSC1, Timer Oscillator pin 1: When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter1, pin PC6 is disconnected from the port, and
becomes the input of the inverting oscillator amplifier. In this mode, a crystal oscillator is
connected to this pin, and the pin can not be used as an I/O pin.

• TDI - Port C, Bit 5

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or
Data Register (scan chains). When the JTAG interface is enabled, this pin can not be
used as an I/O pin. Refer to the section “JTAG Interface and the On-chip Debug Sys-
tem” on page 153 for details on operation of the JTAG interface. 

• TDO - Port C, Bit 4

TDO, JTAG Test Data Out: Serial output data from Instruction register or Data Register.
When the JTAG interface is enabled, this pin can not be used as an I/O pin. Refer to the
section “JTAG Interface and the On-chip Debug System” on page 153 for details on
operation of the JTAG interface. 

• TMS - Port C, Bit 3

TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller
state machine. When the JTAG interface is enabled, this pin can not be used as an I/O
pin. Refer to the section “JTAG Interface and the On-chip Debug System” on page 153
for details on operation of the JTAG interface. 

• TCK - Port C, Bit 2

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG inter-
face is enabled, this pin can not be used as an I/O pin. Refer to the section “JTAG
Interface and the On-chip Debug System” on page 153 for details on operation of the
JTAG interface. 

• SDA - Port C, Bit 1

SDA, 2-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable
the 2-wire Serial Interface, pin PC1 is disconnected from the port and becomes the
Serial Data I/O pin for the 2-wire Serial Interface. In this mode, there is a spike filter on
the pin to capture spikes shorter than 50 ns on the input signal, and the pin is driven by
an open collector driver with slew rate limitation.

• SCL - Port C, Bit 0

SCL, 2-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable
the 2-wire Serial Interface, pin PC1 is disconnected from the port and becomes the
Serial Clock I/O pin for the 2-wire Serial Interface. In this mode, there is a spike filter on
the pin to capture spikes shorter than 50 ns on the input signal.
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Port C Schematics Note that all port pins are synchronized. The synchronization latches are not shown in
the figure.

Figure 75.  Port C Schematic Diagram (Pins PC0 - PC1)
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Figure 76.  Port C Schematic Diagram (Pins PC2 - PC5). The JTAG interface on these
pins is not shown in the figure.

Figure 77.  Port C Schematic Diagram (Pins PC6)

D
A

TA
 B

U
S

D

D

Q

Q

RESET

RESET

C

C

WD

WP

RD

MOS
PULL-
UP

PCn

R

R

WP:
WD:
RL:
RP:
RD:

n:

WRITE PORTC
WRITE DDRC
READ PORTC LATCH
READ PORTC PIN
READ DDRC

2..5

DDCn

PORTCn

RL

RP

PUD

PUD: PULL-UP DISABLE

D
A

TA
 B

U
S

D

D

Q

Q

RESET

RESET

C

C

WD

WP

RD

MOS
PULL-
UP

PC6

R

R

WP:
WD:
RL:
RP:
RD:
AS2:

WRITE PORTC
WRITE DDRC
READ PORTC LATCH
READ PORTC PIN
READ DDRC
ASYNCH SELECT T/C2

DDC6

PORTC6

RL

RP

AS2
T/C2 OSC
AMP INPUT

PUD

0

1

PUD: PULL-UP DISABLE
146 ATmega323(L)
1457E–11/01



ATmega323(L)
Figure 78.  Port C Schematic Diagram (Pins PC7)

Port D Port D is an 8 bit bi-directional I/O port with optional internal pull-up resistors.

Three I/O memory address locations are allocated for Port D, one each for the Data
Register – PORTD, $12($32), Data Direction Register – DDRD, $11($31) and the Port D
Input Pins – PIND, $10($30). The Port D Input Pins address is read only, while the Data
Register and the Data Direction Register are read/write.

The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally
pulled low will source current if the pull-up resistors are activated. Some Port D pins
have alternate functions as shown in Table 53.

PUD

0

1

WP:
WD:
RL:
RP:
RD:

PUD:

WRITE PORTC
WRITE DDRC
READ PORTC LATCH
READ PORTC PIN
READ DDRC

PULL-UP DISABLE
AS2: ASYNCH SELECT T/C2

Table 53.  Port D Pins Alternate Functions

Port Pin Alternate Function

PD0 RXD (USART Input Pin)

PD1 TXD (USART Output Pin)

PD2 INT0 (External Interrupt 0 Input)

PD3 INT1 (External Interrupt 1 Input)

PD4 OC1B (Timer/Counter1 Output CompareB Match Output)

PD5 OC1A (Timer/Counter1 Output CompareA Match Output)

PD6 ICP (Timer/Counter1 Input Capture Pin)

PD7 OC2 (Timer/Counter2 Output Compare Match Output)
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The Port D Data Register – 
PORTD

The Port D Data Direction 
Register – DDRD

The Port D Input Pins Address 
– PIND

The Port D Input Pins address – PIND – is not a register, and this address enables
access to the physical value on each Port D pin. When reading PORTD, the Port D Data
Latch is read, and when reading PIND, the logical values present on the pins are read.

Port D As General Digital I/O PDn, General I/O pin: The DDDn bit in the DDRD register selects the direction of this
pin. If DDDn is set (one), PDn is configured as an output pin. If DDDn is cleared (zero),
PDn is configured as an input pin. If PDn is set (one) when configured as an input pin
the MOS pull up resistor is activated. To switch the pull up resistor off the PDn has to be
cleared (zero), the pin has to be configured as an output pin, or the PUD bit has to be
set. The Port D pins are tri-stated when a reset condition becomes active, even if the
clock is not running.

Note: n: 7,6…0, pin number.

Alternate Functions of Port D • OC2 - Port D, Bit 7

OC2, Timer/Counter2 output compare match output: The PD7 pin can serve as an
external output for the Timer/Counter2 output compare. The pin has to be configured as
an output (DDD7 set (one)) to serve this function. See the timer description on how to
enable this function. The OC2 pin is also the output pin for the PWM mode timer
function.

Bit 7 6 5 4 3 2 1 0

$12 ($32) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Val-
ue

0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$11 ($31) DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$10 ($30) PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Table 54.  DDDn Effects on Port D Pins

DDDn PORTDn
PUD

(in SFIOR) I/O Pull Up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes
PDn will Source Current if Ext. Pulled 
Low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Push-pull Zero Output

1 1 X Output No Push-pull One Output
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• ICP - Port D, Bit 6

ICP  – Input Capture Pin: The PD6 pin can act as an input capture pin for
Timer/Counter1. The pin has to be configured as an input (DDD6 cleared(zero)) to serve
this function. See the timer description on how to enable this function.

• OC1A - Port D, Bit 5

OC1A, Output compare matchA output: The PD5 pin can serve as an external output for
the Timer/Counter1 output compareA. The pin has to be configured as an output (DDD5
set (one)) to serve this function. See the timer description on how to enable this function.
The OC1A pin is also the output pin for the PWM mode timer function.

• OC1B - Port D, Bit 4

OC1B, Output compare matchB output: The PD4 pin can serve as an external output for
the Timer/Counter1 output compareB. The pin has to be configured as an output (DDD4
set (one)) to serve this function. See the timer description on how to enable this function.
The OC1B pin is also the output pin for the PWM mode timer function.

• INT1 - Port D, Bit 3

INT1, External Interrupt source 1: The PD3 pin can serve as an external interrupt source
to the MCU. See the interrupt description for further details, and how to enable the
source.

• INT0 - Port D, Bit 2

INT0, External Interrupt source 0: The PD2 pin can serve as an external interrupt source
to the MCU. See the interrupt description for further details, and how to enable the
source.

• TXD - Port D, Bit 1

TXD, Transmit Data (Data output pin for the USART). When the USART transmitter is
enabled, this pin is configured as an output regardless of the value of DDD1.

• RXD - Port D, Bit 0

RXD, Receive Data (Data input pin for the USART). When the USART receiver is
enabled this pin is configured as an input regardless of the value of DDD0. When the
USART forces this pin to be an input, a logical one in PORTD0 will turn on the internal
pull-up.
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Port D Schematics Note that all port pins are synchronized. The synchronization latches are not shown in
the figures.

Figure 79.  Port D Schematic Diagram (Pin PD0)

Figure 80.  Port D Schematic Diagram (Pin PD1)
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Figure 81.  Port D Schematic Diagram (Pins PD2 and PD3)

Figure 82.  Port D Schematic Diagram (Pins PD4 and PD5)
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Figure 83.  Port D Schematic Diagram (Pin PD6)

Figure 84.  Port D Schematic Diagram (Pin PD7)
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JTAG Interface and 
the On-chip Debug 
System

Features: • JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundary-scan Capabilities According to the JTAG Standard
• Debugger Access to:

– All Internal Peripheral Units
– Internal and External RAM
– The Internal Register File
– Program Counter
– EEPROM and Flash Memories

• Extensive On-chip Debug Support for Break Conditions, Including
– Break on Change of Program Memory Flow
– Single Step Break
– Program Memory Breakpoints on Single Address or Address Range
– Data Memory Breakpoints on Single Address or Address Range

• Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
• On-chip Debugging Supported by AVR Studio

Overview The AVR IEEE std. 1149.1 compliant JTAG interface can be used for 

• Testing PCBs by using the JTAG Boundary-scan Capability

• Programming the Non-volatile Memories, Fuses and Lock-bits

• On-chip Debugging

A brief description is given in the following sections. Detailed descriptions for Program-
ming via the JTAG interface, and using the Boundary-Scan Chain can be found in the
sections “Programming via the JTAG interface” on page 196 and “IEEE 1149.1 (JTAG)
Boundary-scan” on page 159, respectively. The On-Chip Debug support is considered
being private JTAG instructions, and distributed within ATMEL and to selected 3rd party
vendors only.

Figure 85 shows a block diagram of the JTAG interface and the On-Chip Debug system.
The TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP
Controller selects either the JTAG Instruction Register or one of several Data Registers
as the scan chain (shift register) between the TDI - input and TDO - output. The Instruc-
tion Register holds JTAG instructions controlling the behavior of a Data Register. 

Of the Data Registers, the ID-Register, Bypass Register, and the Boundary-Scan Chain
are used for board-level testing. The JTAG Programming Interface (actually consisting
of several physical and virtual Data Registers) is used for serial programming via the
JTAG interface. The Internal Scan Chain and Break-Point Scan Chain are used for On-
Chip debugging only.

The Test Access Port – 
TAP

The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology,
these pins constitute the Test Access Port - TAP. These pins are

• TMS: Test mode select. This pin is used for navigating through the TAP-controller 
state machine.

• TCK: Test clock. JTAG operation is synchronous to TCK

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data 
Register (Scan Chains)

• TDO: Test Data Out. Serial output data from Instruction register or Data Register
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The IEEE std. 1149.1 also specifies an optional TAP signal; TRST - Test ReSeT - which
is not provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins,
and the TAP controller is in reset. When programmed, the input TAP signals are inter-
nally pulled high and the JTAG is enabled for Boundary-Scan and programming. The
device is shipped with this fuse programmed.

For the On-Chip Debug system, in addition the RESET pin is monitored by the debugger
to be able to detect external reset sources. The debugger can also pull the RESET pin
low to reset the whole system, assuming only open collectors on reset line are used in
the application.

Figure 85.  Block Diagram
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Figure 86.  TAP Controller State Diagram

TAP Controller The TAP controller is a 16-state finite state machine that controls the operation of the
Boundary-Scan circuitry, JTAG programming circuitry, or On-Chip Debug system. The
state transitions depicted in Figure 86 depends on the signal present on TMS (shown
adjacent to each state transition) at the time of the rising edge at TCK. The initial state
after a Power-On Reset is Test-Logic-Reset.
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• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction 
is latched onto the parallel output from the shift register path in the Update-IR state. 
The Exit-IR, Pause-IR, and Exit2-IR states are only used for navigating the state 
machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the 
Shift Data Register - Shift-DR state. While TMS is low, upload the selected Data 
Register (selected by the present JTAG instruction in the JTAG Instruction Register) 
from the TDI input at the rising edge of TCK. At the same time, the parallel inputs to 
the Data Register captured in the Capture-DR state shifts out on the TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected 
Data Register has a latched parallel-output, the latching takes place in the Update-
DR state. The Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating 
the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between
selecting JTAG instruction and using Data Registers, and some JTAG instructions may
select certain functions to be performed in the Run-Test/Idle, making it unsuitable as an
Idle state.
Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can

always be entered by holding TMS high for 5 TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibli-
ography” on page 158.

Using the Boundary-
scan Chain

A complete description of the Boundary-Scan capabilities are given in the section “IEEE
1149.1 (JTAG) Boundary-scan” on page 159.

Using the On-chip Debug 
System

As shown in Figure 85, the hardware support for On-Chip Debugging consists mainly of

• A scan chain on the interface between the internal AVR CPU and the internal 
peripheral units

• Breakpoint unit

• Communication interface between the CPU and JTAG system

All read or modify/write operations needed for implementing the Debugger are done by
applying AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the
result to an I/O memory mapped location which is part of the communication interface
between the CPU and the JTAG system.

The Breakpoint Unit implements Break on Change of Program Flow, Single Step Break,
2 Program Memory Breakpoints, and 2 combined break points. Together, the 4 break-
points can be configured as either:

• 4 single Program Memory break-points

• 3 Single Program Memory break point + 1 single Data Memory break point

• 2 single Program Memory break-points + 2 single Data Memory break points

• 2 single Program Memory break-points + 1 Program Memory break point with mask 
(‘range break point’)

• 2 single Program Memory break-points + 1 Data Memory break point with mask 
(‘range break point’)

A list of the On-Chip Debug specific JTAG instructions is given in “On-chip Debug Spe-
cific JTAG Instructions” on page 157. Note that Atmel supports the On-Chip Debug
system with the AVR Studio front-end software for PCs. The details on hardware imple-
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mentation and JTAG instructions are therefore irrelevant for the user of the On-Chip
Debug system.

The JTAGEN fuse must be programmed to enable the JTAG Test Access Port. In addi-
tion, the OCDEN fuse must be programmed and no lock bits must be set for the On-
Chip debug system to work. The disabling of the On-Chip debug system when any lock
bits are set is a security feature. Otherwise, the On-Chip debug system would have pro-
vided a back-door into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR
device with On-Chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR
Instruction Set Simulator. AVR Studio supports source level execution of Assembly pro-
grams assembled with Atmel Corporation’s AVR Assembler and C programs compiled
with 3rd party vendors’ compilers.

AVR Studio runs under Microsoft Windows 95/98/2000 and Microsoft Windows NT.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide.
Only highlights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level
and on disassembly level. The user can execute the program, single step through the
code either by tracing into or stepping over functions, step out of functions, place the
cursor on a statement and execute until the statement is reached, stop the execution,
and reset the execution target. In addition, the user can have up to 2 data memory
breakpoints, alternatively combined as a mask (range) break-point.

On-chip Debug Specific 
JTAG Instructions

The On-Chip debug support is considered being private JTAG instructions, and distrib-
uted within ATMEL and to selected 3rd party vendors only. Instruction opcode listed for
reference.

PRIVATE0; $8 Private JTAG instruction for accessing On-Chip debug system.

PRIVATE1; $9 Private JTAG instruction for accessing On-Chip debug system.

PRIVATE2; $A Private JTAG instruction for accessing On-Chip debug system.

PRIVATE3; $B Private JTAG instruction for accessing On-Chip debug system.

Using the JTAG 
Programming 
Capabilities

Programming of AVR parts via JTAG is performed via the four-pin JTAG port, TCK,
TMS, TDI and TDO. These are the only pins that need to be controlled/observed to per-
form JTAG programming (in addition to power pins). It is not required to apply 12V
externally. The JTAGEN fuse must be programmed and the JTD bit in the MCUSR reg-
ister must be cleared to enable the JTAG Test Access Port.

The JTAG programming capability supports:

• Flash programming and verifying

• EEPROM programming and verifying

• Fuse programming and verifying

• Lock bit programming and verifying

The lock bit security is exactly as in parallel programming mode. If the lock-bits LB1 or
LB2 are programmed, the OCDEN Fuse cannot be programmed unless first doing a
chip erase. This is a security feature that ensures no back-door exists for reading out the
content of a secured device.
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A description of the programming specific JTAG instructions is given in “Programming
specific JTAG instructions” on page 196. The details on programming through the JTAG
interface is given in the section “Programming via the JTAG interface” on page 196

Bibliography For more information about general Boundary-Scan, the following literature can be
consulted:

• IEEE: IEEE Std 1149.1-1990. IEEE Standard Test Access Port and Boundary-Scan 
Architecture, IEEE, 1993

• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-
Wesley, 1992
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IEEE 1149.1 (JTAG) Boundary-scan

Features • JTAG (IEEE std. 1149.1 compliant) Interface
• Boundary-scan Capabilities According to the JTAG Standard
• Full Scan of All Port Functions
• Supports the Optional IDCODE Instruction
• Additional Public AVR_RESET Instruction to Reset the AVR

System Overview The Boundary-Scan chain has the capability of driving and observing the logic levels on
the digital I/O pins. At system level, all ICs having JTAG capabilities are connected seri-
ally by the TDI/TDO signals to form a long shift register. An external controller sets up
the devices to drive values at their output pins, and observe the input values received
from other devices. The controller compares the received data with the expected result.
In this way, Boundary-Scan provides a mechanism for testing interconnections and
integrity of components on Printed Circuits Boards by using the 4 TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAM-
PLE/PRELOAD, and EXTEST, as well as the AVR specific public JTAG instruction
AVR_RESET can be used for testing the Printed Circuit Board. Initial scanning of the
data register path will show the ID-code of the device, since IDCODE is the default
JTAG instruction. It may be desirable to have the AVR device in reset during test mode.
If not reset, inputs to the device may be determined by the scan operations, and the
internal software may be in an undetermined state when exiting the test mode. Entering
reset, the outputs of any Port Pin will instantly enter the high impedance state, making
the HIGHZ instruction redundant. If needed, the BYPASS instruction can be issued to
make the shortest possible scan chain through the device. The device can be set in the
reset state either by pulling the external RESET pin low, or issuing the AVR_RESET
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with
data. The data from the output latch will be driven out on the pins as soon as the
EXTEST instruction is loaded into the JTAG IR-register. Therefore, the SAMPLE/PRE-
LOAD should also be used for setting initial values to the scan ring, to avoid damaging
the board when issuing the EXTEST instruction for the first time. SAMPLE/PRELOAD
can also be used for taking a snapshot of the external pins during normal operation of
the part.

The JTAGEN fuse must be programmed and the JTD bit in the I/O register MCUSR
must be cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-Scan, using a JTAG TCK clock frequency
higher than the internal chip frequency is possible. The chip clock is not required to run.

Data Registers The Data Registers are selected by the JTAG instruction registers described in section
“Boundary-scan Specific JTAG Instructions” on page 161. The data registers relevant
for Boundary-Scan operations are:

• Bypass Register

• Device Identification Register

• Reset Register

• Boundary-Scan Chain

Bypass Register The Bypass register consists of a single shift-register stage. When the Bypass register
is selected as path between TDI and TDO, the register is reset to 0 when leaving the
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Capture-DR controller state. The Bypass register can be used to shorten the scan chain
on a system when the other devices are to be tested.

Device Identification Register Figure 87 shows the structure of the Device Identification register. 

Figure 87.  The format of the Device Identification register

Version Version is a 4 bit number identifying the revision of the component. The relevant version
numbers are shown in Table 55.

Part Number The part number is a 16 bit code identifying the component. The JTAG Part Number for
AVR devices are listed in Table 56.

Manufacturer ID The manufacturer ID for ATMEL is 0x01F (11 bit)

Reset Register The Reset Register is a Test Data Register used to reset the part. Since the AVR tri-
states Port Pins when reset, the Reset Register can also replace the function of the
unimplemented optional JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the Fuse settings for the clock options, the part will remain reset for a Reset Time-
Out Period (refer to Table 6 on page 27) after releasing the Reset Register. The output
from this Data Register is not latched, so the reset will take place immediately, as shown
in Figure 88.

MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part Number Manufacturer ID 1

4 bits 16 bits 11 bits 1 bit

Table 55.  JTAG Version Numbers

Version JTAG Version number (Binary digits)

ATmega323 revision B 0010

Table 56.  AVR JTAG Part Number

Part number JTAG Part Number (Hex)

ATmega323 0x9501
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Figure 88.  Reset Register

Boundary-scan Chain The Boundary-scan Chain has the capability of driving and observing the logic levels on
the digital I/O pins.

See “Boundary-scan Chain” on page 162 for a complete description.

Boundary-scan Specific 
JTAG Instructions

The instruction register is 4 bit wide, supporting up to 16 instructions. Listed below are
the JTAG instructions useful for Boundary-Scan operation. Note that the optional HIGHZ
instruction is not implemented, but all outputs with tri-state capability can be set in high-
impedant state by using the AVR_RESET instruction, since the initial state for all port
pins is tri-state.

As a definition in this data sheet, the LSB is shifted in and out first for all shift registers.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which data register is selected as path between TDI and TDO for
each instruction.

EXTEST; $0 Mandatory JTAG instruction for selecting the Boundary-Scan Chain as Data Register for
testing circuitry external to the AVR package. For port-pins, Pull-up Disable, Output
Control, Output Data, and Input Data are all accessible in the scan chain. For Analog cir-
cuits having off-chip connections, the interface between the analog and the digital logic
is in the scan chain. The contents of the latched outputs of the Boundary-Scan chain is
driven out as soon as the JTAG IR-register is loaded by the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-Scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.

IDCODE; $1 Optional JTAG instruction selecting the 32 bit ID register as Data Register. The ID regis-
ter consists of a version number, a device number and the manufacturer code chosen
by JEDEC. This is the default instruction after power-up.

The active states are:

• Capture-DR: Data in the IDCODE register is sampled into the Boundary-Scan 
Chain.

• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

D Q
From
TDI

ClockDR · AVR_RESET

To 
TDO

From other internal and
external reset sources

Internal reset
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SAMPLE_PRELOAD; $2 Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of
the input/output pins without affecting the system operation. However, the output latches
are not connected to the pins. The Boundary-Scan Chain is selected as Data Register.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-Scan Chain.

• Shift-DR: The Boundary-Scan Chain is shifted by the TCK input.

• Update-DR: Data from the Boundary-Scan chain is applied to the output latches. 
However, the output latches are not connected to the pins.

AVR_RESET; $C The AVR specific public JTAG instruction for forcing the AVR device into the Reset
Mode or releasing the JTAG reset source. The TAP controller is not reset by this instruc-
tion. The one bit Reset Register is selected as Data Register. Note that the reset will be
active as long as there is a logic 'one' in the Reset Chain. The output from this chain is
not latched. 

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

BYPASS; $F Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:

• Capture-DR: Loads a logic ‘0’ into the Bypass Register.

• Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

Boundary-scan Chain The Boundary-Scan chain has the capability of driving and observing the logic levels on
the digital I/O pins. 

Note: Compatibility issues regarding future devices: Future devices, included replacements for
ATmega323 will have Pull-Up Enable signals instead of the Pull-Up Disable signals in the
scan path (i.e. inverted logic). The scan cell for the reset signal will have the same logic
level as the external pin (i.e. inverted logic). The length of the scan-chain is likely to
change in future devices.

Scanning the Digital Port Pins Figure 89 shows the Boundary-Scan Cell for Bidirectional Port Pins with Pull-up func-
tion. The cell consists of a standard Boundary-Scan cell for the Pull-up function, and a
Bidirectional pin cell that combines the three signals Output Control - OC, Output Data -
OD, and Input Data - ID, into only a two-stage shift register.
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Figure 89.  Boundary-scan Cell For bidirectional Port Pin with Pull-up Function.

The Boundary-Scan logic is not included in the figures in the Data Sheet. Figure 90
shows a simple digital Port Pin as described in the section “I/O Ports” on page 134. The
Boundary-Scan details from Figure 89 replaces the dashed box in Figure 90.
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Figure 90.  General Port Pin Schematic diagram

When no alternate port function is present, the Input Data - ID corresponds to the PINn
register value, Output Data corresponds to the PORTn register, Output Control corre-
sponds to the Data Direction - DDn register, and the PuLL-up Disable - PLD -
corresponds to logic expression (DDn OR NOT(PORTBn)).

Digital alternate port functions are connected outside the dotted box in Figure 90 to
make the scan chain read the actual pin value. For Analog function, there is a direct
connection from the external pin to the analog circuit, and a scan chain is inserted on
the interface between the digital logic and the analog circuit.

Scanning RESET The RESET pin accepts 5V active low logic for standard reset operation. An observe-
only cell as shown in Figure 91 is inserted at the output from the reset detector; RST.

Note: The scanned signal is active high, i.e., the RST signal is the inverse of the external
RESET pin.
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Figure 91.  Observe-only Cell

Internal signals ATmega323 contains a lot of scan chains for internal signals. The description of these
signals are not public. However, the user must apply safe values to these cells before
applying the Update-DR state of the TAP controller.
Note: Incorrect setting of the scan cells for internal signals may cause signal contention and

can damage the part. Make sure the safe values are used.

0

1
D Q

From
previous

cell

ClockDR

ShiftDR

To
next
cell

From  system pin To system logic

FF1

Table 57.  Boundary-scan signals for the ADC 

Signal Name Type of scan cell Recommended input when not in use

SIG_PRIVATE0 General Scan Cell 1

SIG_PRIVATE1 General Scan Cell 0

SIG_PRIVATE2 General Scan Cell 0

SIG_PRIVATE3 General Scan Cell 0

SIG_PRIVATE4 General Scan Cell 0

SIG_PRIVATE5 General Scan Cell 0

SIG_PRIVATE6 General Scan Cell 0

SIG_PRIVATE7 General Scan Cell 0

SIG_PRIVATE8 General Scan Cell 0

SIG_PRIVATE9 General Scan Cell 0

SIG_PRIVATE10 General Scan Cell 0

SIG_PRIVATE11 General Scan Cell 1

SIG_PRIVATE12 General Scan Cell 0

SIG_PRIVATE13 General Scan Cell 0

SIG_PRIVATE14 General Scan Cell 0

SIG_PRIVATE15 General Scan Cell 0

SIG_PRIVATE16 General Scan Cell 0

SIG_PRIVATE17 General Scan Cell 0

SIG_PRIVATE18 General Scan Cell 0
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SIG_PRIVATE19 General Scan Cell 0

SIG_PRIVATE20 General Scan Cell 0

SIG_PRIVATE21 General Scan Cell 1

SIG_PRIVATE22 General Scan Cell 0

SIG_PRIVATE23 General Scan Cell 0

SIG_PRIVATE24 General Scan Cell 0

SIG_PRIVATE25 General Scan Cell 1

SIG_PRIVATE26 General Scan Cell 0

SIG_PRIVATE27 General Scan Cell 0

SIG_PRIVATE28 General Scan Cell 0

SIG_PRIVATE29 General Scan Cell 0

SIG_PRIVATE30 General Scan Cell 0

SIG_PRIVATE31 General Scan Cell 0

SIG_PRIVATE32 General Scan Cell 0

SIG_PRIVATE33 General Scan Cell 0

SIG_PRIVATE34 General Scan Cell 1

SIG_PRIVATE35 General Scan Cell 0

SIG_PRIVATE36 General Scan Cell 0

SIG_PRIVATE37 General Scan Cell 0

SIG_PRIVATE38 General Scan Cell 1

SIG_PRIVATE39 General Scan Cell 1

SIG_PRIVATE40 General Scan Cell 0

SIG_PRIVATE41 General Scan Cell 0

SIG_PRIVATE42 General Scan Cell 0

SIG_PRIVATE43 Observe Only X

SIG_PRIVATE44 Observe Only X

SIG_PRIVATE45 Observe Only X

SIG_PRIVATE46 Observe Only X

Table 57.  Boundary-scan signals for the ADC  (Continued)

Signal Name Type of scan cell Recommended input when not in use
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ATmega323 Boundary-
scan Order

Table 64 shows the Scan order between TDI and TDO when the Boundary-Scan chain
is selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit
scanned out. The scan order follows the pin-out order as far as possible. Therefore, the
bits of Port A is scanned in the opposite bit order of the other ports. Exceptions from the
rules are the Scan chains for the analog circuits, which constitute the most significant
bits of the scan chain regardless of which physical pin they are connected to. In Figure
89, PXn.Data corresponds to FF0, PXn.Control corresponds to FF1, and PXn.
Pullup_dissable corresponds to FF2. Bit 2, 3, 4, and 5 of Port C is not in the scan chain,
since these pins constitute the TAP pins when the JTAG is enabled

Table 58.  ATmega323 Boundary-scan Order 

Bit Number Signal Name Module

131 SIG_PRIVATE0

Privat Section 1
130 SIG_PRIVATE1

129 SIG_PRIVATE2

128 SIG_PRIVATE3

127 SIG_PRIVATE4

Privat Section 2

126 SIG_PRIVATE5

125 SIG_PRIVATE6

124 SIG_PRIVATE7

123 SIG_PRIVATE8

122 SIG_PRIVATE9

121 SIG_PRIVATE10

120 SIG_PRIVATE11

119 SIG_PRIVATE12

118 SIG_PRIVATE13

117 SIG_PRIVATE14

116 SIG_PRIVATE15

115 SIG_PRIVATE16

114 SIG_PRIVATE17

113 SIG_PRIVATE18

112 SIG_PRIVATE19

111 SIG_PRIVATE20

110 SIG_PRIVATE21

109 SIG_PRIVATE22

108 SIG_PRIVATE23

107 SIG_PRIVATE24

106 SIG_PRIVATE25

105 SIG_PRIVATE26
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104 SIG_PRIVATE27

Private Section 2 (Cont.)

103 SIG_PRIVATE28

102 SIG_PRIVATE29

101 SIG_PRIVATE30

100 SIG_PRIVATE31

99 SIG_PRIVATE32

98 SIG_PRIVATE33

97 SIG_PRIVATE34

96 SIG_PRIVATE35

95 SIG_PRIVATE36

94 SIG_PRIVATE37

93 SIG_PRIVATE38

92 SIG_PRIVATE39

91 SIG_PRIVATE40

90 SIG_PRIVATE41

89 SIG_PRIVATE42

88 PB0.Data

Port B

87 PB0.Control

86 PB0.PuLLup_Disable

85 PB1.Data

84 PB1.Control

83 PB1.PuLLup_Disable

82 PB2.Data

81 PB2.Control

80 PB2.PuLLup_Disable

79 PB3.Data

78 PB3.Control

77 PB3.PuLLup_Disable

76 PB4.Data

75 PB4.Control

74 PB4.PuLLup_Disable

Table 58.  ATmega323 Boundary-scan Order  (Continued)

Bit Number Signal Name Module
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73 PB5.Data

Port B

72 PB5.Control

71 PB5.PuLLup_Disable

70 PB6.Data

69 PB6.Control

68 PB6.PuLLup_Disable

67 PB7.Data

66 PB7.Control

65 PB7.PuLLup_Disable

64 RSTT

Observe-Only cells

63 SIG_PRIVATE43

62 SIG_PRIVATE44

61 SIG_PRIVATE45

60 SIG_PRIVATE46

59 PD0.Data

Port D

58 PD0.Control

57 PD0.PuLLup_Disable

56 PD1.Data

55 PD1.Control

54 PD1.PuLLup_Disable

53 PD2.Data

52 PD2.Control

51 PD2.PuLLup_Disable

50 PD3.Data

49 PD3.Control

48 PD3.PuLLup_Disable

47 PD4.Data

46 PD4.Control

45 PD4.PuLLup_Disable

Table 58.  ATmega323 Boundary-scan Order  (Continued)

Bit Number Signal Name Module
169
1457E–11/01



44 PD5.Data

Port D

43 PD5.Control

42 PD5.PuLLup_Disable

41 PD6.Data

40 PD6.Control

39 PD6.PuLLup_Disable

38 PD7.Data

37 PD7.Control

36 PD7.PuLLup_Disable

35 PC0.Data

Port C

34 PC0.Control

33 PC0.PuLLup_Disable

32 PC1.Data

31 PC1.Control

30 PC1.PuLLup_Disable

29 PC6.Data

28 PC6.Control

27 PC6.PuLLup_Disable

26 PC7.Data

25 PC7.Control

24 PC7.PuLLup_Disable

23 PA7.Data

Port A

22 PA7.Control

21 PA7.PuLLup_Disable

20 PA6.Data

19 PA6.Control

18 PA6.PuLLup_Disable

17 PA5.Data

16 PA5.Control

15 PA5.PuLLup_Disable

14 PA4.Data

13 PA4.Control

12 PA4.PuLLup_Disable

Table 58.  ATmega323 Boundary-scan Order  (Continued)

Bit Number Signal Name Module
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Boundary-scan 
Description Language 
Files

Boundary-Scan Description Language (BSDL) files describe Boundary-Scan capable
devices in a standard format used by automated test-generation software. The order
and function of bits in the Boundary-Scan data register are included in this description. A
BSDL file for ATmega323 is available.

11 PA3.Data

Port A

10 PA3.Control

9 PA3.PuLLup_Disable

8 PA2.Data

7 PA2.Control

6 PA2.PuLLup_Disable

5 PA1.Data

4 PA1.Control

3 PA1.PuLLup_Disable

2 PA0.Data

1 PA0.Control

0 PA0.PuLLup_Disable

Table 58.  ATmega323 Boundary-scan Order  (Continued)

Bit Number Signal Name Module
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Memory 
Programming

Boot Loader Support The ATmega323 provides a mechanism for downloading and uploading program code
by the MCU itself. This feature allows flexible application software updates, controlled
by the MCU using a Flash-resident Boot Loader program. This makes it possible to pro-
gram the AVR in a target system without access to its SPI pins. The Boot Loader
program can use any available data interface and associated protocol, such as USART
serial bus interface, to input or output program code, and write (program) that code into
the Flash memory, or read the code from the Flash memory.

The ATmega323 Flash memory is organized in two main sections:

• The Application Flash section

• The Boot Loader Flash section

The Application Flash section and the Boot Loader Flash section have separate Boot
Lock Bits. Thus the user can select different levels of protection for the two sections.
The Store Program Memory (SPM) instruction can only be executed from the Boot
Loader Flash section.

The program Flash memory in ATmega323 is divided into 256 pages of 64 words each.
The Boot Loader Flash section is located at the high address space of the Flash, and
can be configured through the BOOTSZ fuses as shown in Table 59.

Table 59.  Boot Size Configuration

BOOTSZ1 BOOTSZ0
Boot 
Size Pages

Application 
Flash Addresses

Boot Flash 
Addresses

Boot Reset 
Address

1 1
256 
words

4 $0000 - $3EFF
$3F00 - 
$3FFF

$3F00

1 0
512 
words

8 $0000 - $3DFF
$3E00 - 
$3FFF

$3E00

0 1
1024 
words

16 $0000 - $3BFF
$3C00 - 
$3FFF

$3C00

0 0
2048 
words

32 $0000 - $37FF
$3800 - 
$3FFF

$3800
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Figure 92.  Memory Sections
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Entering the Boot Loader 
Program

The SPM instruction can access the entire Flash, but can only be executed from the
Boot Loader Flash section. If no Boot Loader capability is needed, the entire Flash is
available for application code. Entering the Boot Loader takes place by a jump or call
from the application program. This may be initiated by some trigger such as a command
received via USART or SPI interface, for example. Alternatively, the Boot Reset Fuse
can be programmed so that the reset vector is pointing to the Boot Flash start address
after a reset. In this case, the Boot Loader is started after a reset. After the application
code is loaded, the program can start executing the application code. Note that the
fuses cannot be changed by the MCU itself. This means that once the Boot Reset Fuse
is programmed, the Reset Vector will always point to the Boot Loader Reset and the
fuse can only be changed through the serial or parallel programming interface.

Capabilities of the Boot 
Loader

The program code within the Boot Loader section has the capability to read from and
write into the entire Flash, including the Boot Loader Memory. This allows the user to
update both the Application code and the Boot Loader code that handles the software
update. The Boot Loader can thus even modify itself, and it can also erase itself from
the code if the feature is not needed anymore.

Self-programming the 
Flash 

Programming of the Flash is executed one page at a time. The Flash page must be
erased first for correct programming. The general Write Lock (Lock Bit 2) does not con-
trol the programming of the Flash memory by SPM instruction. Similarly, the general
Read/Write Lock (Lock Bit 1) does not control reading nor writing by LPM/SPM, if it is
attempted. 

The program memory can only be updated page by page, not word by word. One page
is 128 bytes (64 words). The program memory will be modified by first performing page
erase, then filling the temporary page buffer one word at a time using SPM, and
then executing page write. If only part of the page needs to be changed, the other parts
must be stored (for example in internal SRAM) before the erase, and then be rewritten.
The temporary page buffer can be accessed in a random sequence. It is essential that
the page address used in both the page erase and page write operation is addressing
the same page. See “Assembly code example for a Boot Loader” on page 179 for an
assembly code example.

Performing Page Erase by 
SPM

To execute page erase, set up the address in the Z pointer, write “00011” to the five LSB
in SPMCR and execute SPM within four clock cycles after writing SPMCR. The data in
R1 and R0 is ignored. The page address must be written to Z14:Z7. Other bits in the Z
pointer will be ignored during this operation. It is recommended that the interrupts are
disabled during the page erase operation.

Fill the Temporary Buffer 
(Page Load)

To write an instruction word, set up the address in the Z pointer and data in R1:R0, write
“00001” to the five LSB in SPMCR and execute SPM within four clock cycles after writ-
ing SPMCR. The content of Z6:Z1 is used to address the data in the temporary buffer.
Z14:Z7 must point to the page that is supposed to be written.

Table 60.  Boot Reset Fuse

BOOTRST Reset Address

0 Reset Vector = Application reset (address $0000)

1 Reset Vector = Boot Loader reset (see Table 59)
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Perform a Page Write To execute page write, set up the address in the Z pointer, write “00101” to the five LSB
in SPMCR and execute SPM within four clock cycles after writing SPMCR. The data in
R1 and R0 is ignored. The page address must be written to Z14:Z7. During this opera-
tion, Z6:Z0 must be zero to ensure that the page is written correctly. It is recommended
that the interrupts are disabled during the page write operation.

Consideration while Updating 
the Boot Loader Section

Special care must be taken if the user allows the Boot Loader section to be updated by
leaving Boot Lock Bit 11 unprogrammed. An accidental write to the Boot Loader itself
can corrupt the entire Boot Loader, and further software updates might be impossible. If
it is not necessary to change the Boot Loader software itself, it is recommended to pro-
gram the Boot Lock Bit 11 to protect the Boot Loader software from any internal
software changes.

Wait for SPM Instruction to 
Complete

Though the CPU is halted during page write, page erase or Lock bit write, for future
compatibility, the user software must poll for SPM complete by reading the SPMCR reg-
ister and loop until the SPMEN bit is cleared after a programming operation. See
“Assembly code example for a Boot Loader” on page 179 for a code example. 

Instruction Word Read after 
Page Erase, Page Write, and 
Lock-bit Write

To ensure proper instruction pipelining after programming action (page erase, page
write, or lock-bit write), the SPM instruction must be followed with the sequence (.dw
$FFFF - NOP) as shown below:

spm

.dw $FFFF

nop

If not, the instruction following SPM might fail. It is not necessary to add this sequence
when the SPM instruction only loads the temporary buffer.

Avoid Reading the Application 
Section During Self-
programming

During self-programming (either page erase or page write), the user software should not
read the application section. The user software itself must prevent addressing this sec-
tion during the self-programming operations. This implies that interrupts must be
disabled or moved to the Boot Loader section. Before addressing the application section
after the programming is completed, for future compatibility, the user software must
write”10001” to the five LSB in SPMCR and execute SPM within four clock cycles. Then
the user software should verify that the ASB bit is cleared. See “Assembly code exam-
ple for a Boot Loader” on page 179 for an example. Though the ASB and ASRE bits
have no special function in this device, it is important for future code compatibility that
they are treated as described above.

Boot Loader Lock-bits ATmega323 has two separate sets of Boot Lock Bits which can be set independently.
This gives the user a unique flexibility to select different levels of protection. 

The user can select:

• To protect the entire Flash from a software update by the MCU

• To only protect the Boot Loader Flash section from a software update by the MCU

• To only protect application Flash section from a software update by the MCU

• Allowing software update in the entire Flash

See Table 61 for further details. The Boot Lock bits can be set in software and in Serial
or Parallel Programming mode, but they can only be cleared by a chip erase command.
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Note: “1” means unprogrammed, “0” means programmed

Note: “1” means unprogrammed, “0” means programmed

Setting the Boot Loader Lock 
Bits by SPM

To set the Boot Loader Lock bits, write the desired data to R0, write “00001001” to
SPMCR and execute SPM within four clock cycles after writing SPMCR. The only
accessible lock bits are the Boot Lock bits that may prevent the Application and Boot
Loader section from any software update by the MCU. 

If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock Bit will be programmed
if an SPM instruction is executed within four cycles after BLBSET and SPMEN are set in
SPMCR. 

Reading the Fuse and Lock 
Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits,
load the Z pointer with $0001 and set the BLBSET and SPMEN bits in SPMCR. When
an LPM instruction is executed within five CPU cycles after the BLBSET and SPMEN
bits are set in SPMCR, the value of the Lock bits will be loaded in the destination regis-
ter. The BLBSET and SPMEN bits will auto-clear upon completion of reading the Lock
bits or if no SPM, or LPM, instruction is executed within four, respectively five, CPU
cycles. When BLBSET and SPMEN are cleared, LPM will work as described in “Con-

Table 61.  Boot Lock Bit0 Protection Modes (Application Section)

BLB0 Mode BLB02 BLB01 Protection

1 1 1 No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0 SPM is not allowed to write to the Application section, and 
LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If interrupt 
vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

4 0 1 LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If interrupt 
vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

Table 62.  Boot Lock Bit1 Protection Modes (Boot Loader Section)

BLB1 mode BLB12 BLB11 Protection

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader 
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0 SPM is not allowed to write to the Boot Loader section, 
and LPM executing from the Application section is not 
allowed to read from the Boot Loader section. If interrupt 
vectors are placed in the Application section, interrupts 
are disabled while executing from the Boot Loader section.

4 0 1 LPM executing from the Application section is not allowed 
to read from the Boot Loader section. If interrupt vectors 
are placed in the Application section, interrupts are 
disabled while executing from the Boot Loader section.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1
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stant Addressing Using the LPM and SPM Instructions” on page 16 and in the
Instruction set Manual.

The algorithm for reading the Fuse Low bits is similar to the one described above for
reading the Lock bits. To read the Fuse Low bits, load the Z pointer with $0000 and set
the BLBSET and SPMEN bits in SPMCR. When an LPM instruction is executed within
five cycles after the BLBSET and SPMEN bits are set in the SPMCR, the value of the
Fuse Low bits will be loaded in the destination register as shown below.

Similarly, when reading the Fuse High bits, load $0003 in the Z pointer. When an LPM
instruction is executed within five cycles after the BLBSET and SPMEN bits are set in
the SPMCR, the value of the Fuse High bits will be loaded in the destination register as
shown below.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that
are unprogrammed, will be read as one.

In all cases, the read value of unused bit positions are undefined.

EEPROM Write Prevents 
Writing to SPMCR

Note that an EEPROM write operation will block all software programming to Flash.
Reading the Fuses and Lock bits from software will also be prevented during the
EEPROM write operation. It is recommended that the user checks the status bit (EEWE)
in the EECR register and verifies that the bit is cleared before writing to the SPMCR reg-
ister. If EEPROM writing is performed inside an interrupt routine, the user software
should disable that interrupt before checking the EEWE status bit.

Addressing the Flash During 
Self-programming

The Z pointer is used to address the SPM commands.

Z15 always ignored

Z14:Z7 page select, for page erase and page write

Z6:Z1 word select, for filling temp buffer (must be zero during page write operation)

Z0 should be zero for all SPM commands, byte select for the LPM instruction.

The only operation that does not use the Z pointer is Setting the Boot Loader Lock Bits.
The content of the Z pointer is ignored and will have no effect on the operation.

Note that the page erase and page write operation is addressed independently. There-
fore it is of major importance that the Boot Loader software addresses the same page in
both the page erase and page write operation.

The LPM instruction also uses the Z pointer to store the address. Since this instruction
addresses the Flash byte by byte, also the LSB (bit Z0) of the Z pointer is used. See
page 16 for a detailed description.

Bit 7 6 5 4 3 2 1 0

Rd - - BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd BODLEVEL BODEN - - CKSEL3 CKSEL2 CKSEL1 CKSEL0

Bit 7 6 5 4 3 2 1 0

Rd OCDEN JTAGEN SPIEN - EESAVE BOOTSZ1 BOOTSZ0 BOOTRST

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8
ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0
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Store Program Memory 
Control Register – SPMCR

The Store Program Memory Control Register contains the control bits needed to control
the programming of the Flash from internal code execution.

• Bit 7 - Res: Reserved Bit

This bit is a reserved bit in the ATmega323 and always reads as zero. This bit should be
written to zero when writing SPMCR.

• Bit 6 - ASB: Application Section Busy

Before entering the application section after a boot loader operation (page erase or
page write) the user software must verify that this bit is cleared. In future devices, this bit
will be set to “1” by page erase and page write. In ATmega323, this bit always reads as
zero.

• Bit 5 - Res: Reserved Bit

This bit is a reserved bit in the ATmega323 and always reads as zero. This bit should be
written to zero when writing SPMCR.

• Bit 4 - ASRE: Application Section Read Enable

Before re-entering the application section, the user software must set this bit together
with the SPMEN bit and execute SPM within 4 clock cycles.

• Bit 3 - BLBSET: Boot Lock Bit Set

If this bit is set at the same time as SPMEN, the next SPM instruction within four clock
cycles will set Boot Lock Bits. Alternatively, an LPM instruction within five cycles will
read either the Lock Bits or the Fuse Bits. The BLBSET bit will auto-clear upon comple-
tion of the SPM or LPM instruction, or if no SPM, or LPM, instruction is executed within
four, respectively five, clock cycles.

• Bit 2 - PGWRT: Page Write

If this bit is set at the same time as SPMEN, the next SPM instruction within four clock
cycles executes page write, with the data stored in the temporary buffer. The page
address is taken from the high part of the Z pointer. The data in R1 and R0 are ignored.
The PGWRT bit will auto-clear upon completion of a page write, or if no SPM instruction
is executed within four clock cycles. The CPU is halted during the entire page write
operation.

• Bit 1 - PGERS: Page Erase

If this bit is set at the same time as SPMEN, the next SPM instruction within four clock
cycles executes page erase. The page address is taken from the high part of the Z
pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon comple-
tion of a page erase, or if no SPM instruction is executed within four clock cycles. The
CPU is halted during the entire page erase operation. 

• Bit 0 - SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If set together with
either ASRE, BLBSET, PGWRT or PGERS, the following SPM instruction will have a
special meaning, see description above. If only SPMEN is set, the following SPM
instruction will store the value in R1:R0 in the temporary page buffer addressed by the Z
pointer. The LSB of the Z pointer is ignored. The SPMEN bit will auto-clear upon com-
pletion of an SPM instruction, or if no SPM instruction is executed within four clock

Bit 7 6 5 4 3 2 1 0

$37 ($57) - ASB - ASRE BLBSET PGWRT PGERS SPMEN SPMCR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value x 0 0 0 0 0 0 0
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cycles. During page erase and page write, the SPMEN bit remains high until the opera-
tion is completed.

Writing any other combination than “10001”, “01001”, “00101”, or “00001” in the lower
five bits will have no effect.

Preventing Flash 
Corruption

During periods of low VCC, the Flash can be corrupted because the supply voltage is too
low for the CPU and the Flash to operate properly. These issues are the same as for
board level systems using the Flash, and the same design solutions should be applied.

A Flash corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly.
Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage for
executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one
is sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply 
voltage. This can be done be enabling the internal Brown-Out Detector (BOD) if 
the operating voltage matches the detection level. If not, an external low VCC 
Reset Protection circuit can be used. If a reset occurs while a write operation is 
in progress, the write operation will be completed provided that the power supply 
voltage is sufficient. The total reset time must be longer than the Flash write 
time. This can be achieved by holding the external reset, or by selecting a long 
reset timeout.

2. Keep the AVR core in Power-down Sleep Mode during periods of low VCC. This 
will prevent the CPU from attempting to decode and execute instructions, effec-
tively protecting the Flash from unintentional writes.

Assembly code example for a 
Boot Loader

;- the routine writes one page of data from RAM to Flash the first data
: location in RAM is pointed to by the Y pointer (lowest address) the first
; data location in Flash is pointed to by the Z pointer (lowest address)
; - error handling is not included - the routine must be placed inside the
; boot space. Only code inside boot loader section should be read during
; self-programming.
;- registers used: r0, r1, temp1, temp2, looplo, loophi, spmcrval storing and
; restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;- It is assumed that the interrupts are disabled
.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words
.org SMALLBOOTSTART
Write_page:
; page erase

ldi spmcrval, (1<<PGERS) + (1<<SPMEN)
call Do_spm

; re-enable the Application Section
ldi spmcrval, (1<<ASRE) + (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB);not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SPMEN)
call Do_spm
adiw ZH:ZL, 2
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sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute page write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) + (1<<SPMEN)
call Do_spm

; re-enable the Application Section
ldi spmcrval, (1<<ASRE) + (1<<SPMEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB);not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to Application Section
; verify that Application Section is safe to read

Return:
in temp1, SPMCR
sbrs temp1, ASB ; If ASB is set, the AS is not ready yet
ret

; re-enable the Applicaiton Section
ldi spmcrval, (1<<ASRE) + (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; input: spmcrval determines SPM action
; check that no EEPROM write access is running

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee

; SPM timed sequence
out SPMCR, spmcrval
spm

.dw $FFFF ; ensure proper pipelining
nop ; of next instruction

; check for SPM complete
Wait_spm:

in temp1, SPMCR
sbrc temp1, SPMEN
rjmp Wait_spm
ret
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Program and Data 
Memory Lock Bits

The ATmega323 provides six Lock bits which can be left unprogrammed (“1”) or can be
programmed (“0”) to obtain the additional features listed in Table 63. The Lock bits can
only be erased to “1” with the Chip Erase command.

Note: 1. Program the Fuse bits before programming the Lock bits.

Table 63.  Lock Bit Protection Modes

Memory Lock Bits

Protection TypeLB mode LB2 LB1

1 1 1 No memory lock features enabled for parallel, serial, and 
JTAG programming.

2 1 0 Further programming of the Flash and EEPROM is 
disabled in parallel, serial, and JTAG programming mode. 
The Fuse bits are locked in both serial and parallel 
programming mode.(1)

3 0 0 Further programming and verification of the Flash and 
EEPROM is disabled in parallel, serial, and JTAG 
programming mode. The Fuse bits are locked in both 
serial and parallel programming mode.(1)

BLB0 mode BLB02 BLB01

1 1 1 No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0 SPM is not allowed to write to the Application section, and 
LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If interrupt 
vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

4 0 1 LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If interrupt 
vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

BLB1 mode BLB12 BLB11

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader 
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0 SPM is not allowed to write to the Boot Loader section, 
and LPM executing from the Application section is not 
allowed to read from the Boot Loader section. If interrupt 
vectors are placed in the Application section, interrupts 
are disabled while executing from the Boot Loader section.

4 0 1 LPM executing from the Application section is not allowed 
to read from the Boot Loader section. If interrupt vectors 
are placed in the Application section, interrupts are 
disabled while executing from the Boot Loader section.
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Fuse Bits The ATmega323 has 13 Fuse bits, divided in two groups. The Fuse High bits are
OCDEN, JTAGEN, SPIEN, EESAVE, BOOTSZ1..0, and BOOTRST, and the Fuse Low
bits are BODLEVEL, BODEN, and CKSEL3..0. All Fuses are accessible in parallel pro-
gramming mode and when programming via the JTAG interface. In serial programming
mode, all but the SPIEN Fuse is accessible.

• When the OCDEN fuse is programmed, the On-chip debug system is enabled if the 
JTAGEN fuse is programmed. If the JTAGEN fuse is unprogrammed, the OCDEN 
fuse has no visible effect.Never ship a product with the OCDEN fuse programmed. 
Regardless of the setting of lockbits and the JTAGEN Fuse, a programmed OCDEN 
fuse enables some parts of the clock system be running in all sleep modes. This 
may increase the power consumption. Default value is unprogrammed (“1”). 

• When the JTAGEN fuse is programmed, the JTAG interface is enabled on port C 
pins PC5..2. Default value is programmed (“0”).

• When the SPIEN fuse is programmed (“0”), Serial Program and Data Downloading 
are enabled. Default value is programmed (“0”). The SPIEN Fuse is not accessible 
in SPI serial programming mode.

• When EESAVE is programmed, the EEPROM memory is preserved through the 
Chip Erase cycle. Default value is unprogrammed (“1”). The EESAVE Fuse bit can 
not be programmed if any of the Lock bits are programmed. 

• BOOTSZ1..0 select the size and start address of the Boot Flash section according 
to Table  on page 172. Default value is “11” (both unprogrammed).

• When BOOTRST is programmed (“0”), the reset vector is set to the start address of 
the Boot Flash section, as selected by the BOOTSZ fuses according to Table  on 
page 172. If the BOOTRST is unprogrammed (“1”), the reset vector is set to address 
$0000. Default value is unprogrammed (“1”).

• The BODLEVEL Fuse selects the Brown-out Detection Level and changes the Start-
up times, according to Table 5 on page 26 and Table 6 on page 27, respectively. 
Default value is unprogrammed (“1”).

• When the BODEN Fuse is programmed (“0”), the Brown- out Detector is enabled. 
See “Reset and Interrupt Handling” on page 22. Default value is unprogrammed 
(“1”).

• CKSEL3..0 select the clock source and the start-up delay after reset, according to 
Table 1 on page 6 and Table 6 on page 27. Default value is “0010” (Internal RC 
Oscillator, slowly rising power).

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are
locked if lock bit1 (LB1) is programmed. Program the Fuse bits before programming the
Lock bits.

Signature Bytes All Atmel microcontrollers have a three-byte signature code which identifies the device.
This code can be read in both serial and parallel mode. The three bytes reside in a sep-
arate address space.

For the ATmega323 the signature bytes are:

1. $000: $1E (indicates manufactured by Atmel)

2. $001: $95 (indicates 32KB Flash memory)

3. $002: $01 (indicates ATmega323 device when $001 is $95)
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Calibration Byte The ATmega323 has a one byte calibration value for the internal RC Oscillator. This
byte resides in the high byte of address $000 in the signature address space. To make
use of this byte, it should be read from this location and written into the normal Flash
program memory by the external programmer. At start-up, the user software must read
this Flash location and write the value to the OSCCAL register.

Parallel Programming This section describes how to parallel program and verify Flash Program memory,
EEPROM Data memory + Program And Data Memory Lock bits and Fuse bits in the
ATmega323. Pulses are assumed to be at least 500ns unless otherwise noted.

Signal Names In this section, some pins of the ATmega323 are referenced by signal names describing
their functionality during parallel programming, see Figure 93 and Table 64. Pins not
described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a posi-
tive pulse. The bit coding are shown in Table 65.

When pulsing WR or OE, the command loaded determines the action executed. The
Command is a byte where the different bits are assigned functions as shown in Table
66.

Figure 93.  Parallel Programming

Table 64.  Pin Name Mapping

Signal Name in 
Programming Mode

Pin 
Name I/O Function

RDY/BSY PD1 O 0: Device is Busy Programming, 1: Device is 
Ready for New Command

OE PD2 I Output Enable (Active Low)

WR PD3 I Write Pulse (Active Low)

BS1 PD4 I Byte Select 1 (“0” Selects Low Byte, “1” Selects 
High Byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

ATmega323
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GND
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PD1
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 PB7 - PB0 DATA

RESET
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+12 V
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XA0

XA1
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PAGEL

PA0
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BS2
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Enter Programming Mode The following algorithm puts the device in parallel programming mode:

1. Apply 4.5 - 5.5V between VCC and GND.

2. Set RESET and BS1 pins to “0” and wait at least 100 ns.

3. Apply 11.5 - 12.5V to RESET. Any activity on BS1 within 100 ns after +12V has 
been applied to RESET, will cause the device to fail entering programming mode.

Chip Erase The Chip Erase command will erase the Flash and EEPROM memories and the Lock
bits. The Lock bits are not reset until the program memory has been completely erased.
The Fuse bits are not changed. A Chip Erase must be performed before the Flash is
reprogrammed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

PAGEL PD7 I Program Memory Page Load

BS2 PA0 I Byte Select 2 (“0” Selects Low Byte, “1” Selects 2 
nd High Byte)

DATA PB7-0 I/O Bidirectional Data Bus (Output When OE is Low)

Table 65.  XA1 and XA0 Coding

XA1 XA0 Action When XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or Low Address Byte 
Determined by BS1)

0 1 Load Data (High or Low Data Byte for Flash Determined by BS1)

1 0 Load Command

1 1 No Action, Idle

Table 66.  Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse Bits

0010 0000 Write Lock Bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes

0000 0100 Read Fuse and Lock Bits

0000 0010 Read Flash

0000 0011 Read EEPROM

Table 64.  Pin Name Mapping

Signal Name in 
Programming Mode

Pin 
Name I/O Function
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3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

5. Wait until RDY/BSY goes high before loading a new command.

Programming the Flash The Flash is organized as 256 pages of 128 bytes each. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to
be programmed simultaneously. The following procedure describes how to program the
entire Flash memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low Byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address low byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte ($00 - $FF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data High and Low Byte

1. Set BS1 to “1”. 

2. Give PAGEL a positive pulse. See Figure 94 for signal waveforms.

F. Repeat B through F 64 Times to Fill the Page Buffer.

To address a page in the Flash, 8 bits are needed (256 pages). The 6 most significant
bits are read from address high byte as described in section “H” below. The two least
significant page address bits however, are the two most significant bits (bit7 and bit6) of
the latest loaded address low byte as described in section “B”.

G. Load Address High Byte

1. 1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address high byte ($00 - $3F).

4. Give XTAL1 a positive pulse. This loads the address high byte.
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H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of 
data. RDY/BSYgoes low.

2. Wait until RDY/BSY goes high.
(See Figure 95 for signal waveforms)

I. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write 
signals are reset.

J. Repeat A through I 256 Times or Until All Data Has Been Programmed.

Figure 94.  Programming the Flash Waveforms

Figure 95.  Programming the Flash Waveforms (continued)
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Programming the EEPROM The programming algorithm for the EEPROM data memory is as follows (refer to “Pro-
gramming the Flash” on page 185 for details on Command, Address and Data loading):

1. A: Load Command “0001 0001”.

2. H: Load Address High Byte ($00 - $03)

3. B: Load Address Low Byte ($00 - $FF)

4. C: Load Data Low Byte ($00 - $FF)

K: Write Data Low Byte

1. Set BS1 to “0”. This selects low data.

2. Give WR a negative pulse. This starts programming of the data byte. RDY/BSY 
goes low.

3. Wait until to RDY/BSY goes high before programming the next byte.
(See Figure 96 for signal waveforms)

The loaded command and address are retained in the device during programming. For
efficient programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory 
locations.

• Address high byte needs only be loaded before programming a new 256 byte 
window in the EEPROM.

• Skip writing the data value $FF, that is the contents of the entire EEPROM after a 
Chip Erase.

These considerations also applies to Flash, EEPROM and Signature bytes reading.

Figure 96.  Programming the EEPROM Waveforms

Reading the Flash The algorithm for reading the Flash memory is as follows (refer to “Programming the
Flash” on page 185 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. H: Load Address High Byte ($00 - $3F)

3. B: Load Address Low Byte ($00 - $FF)

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.
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5. Set BS to “1”. The Flash word high byte can now be read at DATA.

6. Set OE to “1”.

Reading the EEPROM The algorithm for reading the EEPROM memory is as follows (refer to “Programming the
Flash” on page 185 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. H: Load Address High Byte ($00 - $03)

3. B: Load Address ($00 - $FF)

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at 
DATA.

5. Set OE to “1”.

Programming the Fuse Low 
Bits

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming
the Flash” on page 185 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
Bit 7 = BODLEVEL Fuse bit
Bit 6 = BODEN Fuse bit
Bit 3..0 = CKSEL3..0 Fuse bits
Bit 5,4 = “1”. This bit is reserved and should be left unprogrammed (“1”).

3. Give WR a negative pulse and wait for RDY/BSY to go high.

Programming the Fuse High 
Bits

The algorithm for programming the Fuse high bits is as follows (refer to “Programming
the Flash” on page 185 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
Bit 7 = OCDEN Fuse bit
Bit 6 = JTAGEN Fuse bit
Bit 5 = SPIEN Fuse bit
Bit 3 = EESAVE Fuse bit
Bit 2..1 = BOOTSZ1..0 Fuse bits
Bit 0 = BOOTRST Fuse bit
Bit 7,6,4 = “1”. These bits are reserved and should be left unprogrammed (“1”).

3. Set BS1 to “1”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

Programming the Lock Bits The algorithm for programming the Lock bits is as follows (refer to “Programming the
Flash” on page 185 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit.
Bit 5 = Boot Lock Bit12
Bit 4 = Boot Lock Bit11
Bit 3 = Boot Lock Bit02
Bit 2 = Boot Lock Bit01
Bit 1 = Lock Bit2
Bit 0 = Lock Bit1
Bit 7..6 = “1”. These bits are reserved and should be left unprogrammed (“1”).

3. L: Write Data Low Byte.
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The Lock bits can only be cleared by executing Chip Erase.

Reading the Fuse and Lock 
Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming
the Flash” on page 185 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can 
now be read at DATA (“0” means programmed).
Bit 7 = BODLEVEL Fuse bit
Bit 6 = BODEN Fuse bit
Bit 3..0 = CKSEL3..0 Fuse bits

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can 
now be read at DATA (“0” means programmed).
Bit 7 = OCDEN Fuse bit
Bit 6 = JTAGEN Fuse bit
Bit 5 = SPIEN Fuse bit
Bit 3 = EESAVE Fuse bit
Bit 2..1 = BOOTSZ1..0 Fuse bits
Bit 0 = BOOTRST Fuse bit

4. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be 
read at DATA (“0” means programmed).
Bit 5 = Boot Lock Bit12
Bit 4 = Boot Lock Bit11
Bit 3 = Boot Lock Bit02
Bit 2 = Boot Lock Bit01
Bit 1 = Lock Bit2
Bit 0 = Lock Bit1

5. Set OE to “1”.

Reading the Signature Bytes The algorithm for reading the Signature bytes is as follows (refer to Programming the
Flash for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. C: Load Address Low Byte ($00 - $02).

3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at 
DATA.

4. Set OE to “1”.

Reading the Calibration Byte The algorithm for reading the Calibration byte is as follows (refer to Programming the
Flash for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. C: Load Address Low Byte, $00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.
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Parallel Programming 
Characteristics

Figure 97.  Parallel Programming Timing

Notes: 1.  tWLRH is valid for the Write EEPROM, Write Fuse Bits and Write Lock Bits
commands.

2.  tWLRH_CE is valid for the Chip Erase command.
3.  tWLRH_FLASH is valid for the Write Flash command.

Table 67.  Parallel Programming Characteristics, TA = 25°C ± 10%, VCC = 5 V ± 10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 µA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXHXL XTAL1 Pulse Width High 67 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 67 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 67 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tRHBX BS1 Hold after RDY/BSY High 67 ns

tWLWH WR Pulse Width Low 67 ns

tWLRL WR Low to RDY/BSY Low 0 2.5 µs

tWLRH
(1) WR Low to RDY/BSY High(1) 1 1.5 1.9 ms

tWLRH_CE
(2) WR Low to RDY/BSY High for Chip Erase(2) 16 23 30 ms

tWLRH_FLASH
(3) WR Low to RDY/BSY High for Write Flash(3) 8 12 15 ms

tXLOL XTAL1 Low to OE Low 67 ns

tOLDV OE Low to DATA Valid 20 ns

tOHDZ OE High to DATA Tri-stated 20 ns

Data & Contol
(DATA, XA0/1, BS1, BS2)

DATA

W
rit

e
Re

ad

XTAL1 tXHXL

tWLWH

tDVXH

tXLOL tOLDV

tXLDX

tPLWL

tWLRH

WR

RDY/BSY

OE

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tRHBX

tOHDZ

tBVWL

WLRL
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Serial Downloading Both the Flash and EEPROM memory arrays can be programmed using the serial SPI
bus while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI
(input) and MISO (output). After RESET is set low, the Programming Enable instruction
needs to be executed first before program/erase operations can be executed.

Figure 98.  Serial Programming and Verify

When programming the EEPROM, an auto-erase cycle is built into the self-timed pro-
gramming operation (in the serial mode ONLY) and there is no need to first execute the
Chip Erase instruction. The Chip Erase operation turns the content of every memory
location in both the Program and EEPROM arrays into $FF.

The Program and EEPROM memory arrays have separate address spaces:

$0000 to $3FFF for Program memory and $0000 to $03FF for EEPROM memory.

The device can be clocked by any clock option during Low Voltage Serial Programming.
The minimum low and high periods for the serial clock (SCK) input are defined as
follows:

Low: > 2 CPU clock cycles

High: > 2 CPU clock cycles

Serial Programming 
Algorithm

When writing serial data to the ATmega323, data is clocked on the rising edge of SCK.

When reading data from the ATmega323, data is clocked on the falling edge of SCK.
See Figure 99, Figure 100 and Table 70 for timing details.

To program and verify the ATmega323 in the serial programming mode, the following
sequence is recommended (See four byte instruction formats in Table 69):
1. Power-up sequence:

Apply power between VCC and GND while RESET and SCK are set to “0”. The
RESET and SCK are set to “0”. In accordance with the setting of CKSEL fuses,
apply a crystal/resonator, external clock or RC network, or let the device run on the
internal RC oscillator. In some systems, the programmer can not guarantee that
SCK is held low during power-up. In this case, RESET must be given a positive
pulse of at least two XTAL1 cycles duration after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Program-
ming Enable serial instruction to pin MOSI/PB5.

ATmega323

VCC

2.7 - 5.5V

GND

PB6

PB7

PB5

SCK

MISO

MOSI

RESET
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3. The serial programming instructions will not work if the communication is out of 
synchronization. When in sync. the second byte ($53), will echo back when issu-
ing the third byte of the Programming Enable instruction. Whether the echo is 
correct or not, all 4 bytes of the instruction must be transmitted. If the $53 did not 
echo back, give SCK a positive pulse and issue a new Programming Enable 
command. If the $53 is not seen within 32 attempts, there is no functional device 
connected.

4. If a chip erase is performed (must be done to erase the Flash), wait 2•tWD_FLASH 
after the instruction, give RESET a positive pulse, and start over from Step 2. 
See Table 68 for the tWD_FLASH figure.

5. The Flash is programmed one page at a time. The memory page is loaded one 
byte at a time by supplying the 6 LSB of the address and data together with the 
Load Program Memory Page instruction. The Program Memory Page is stored 
by loading the Write Program Memory Page instruction with the 8 MSB of the 
address. If polling is not used, the user must wait at least tWD_FLASH before issu-
ing the next page. (Please refer to Table 68). Accessing the serial programming 
interface before the Flash write operation completes can result in incorrect 
programming.

6. The EEPROM array is programmed one byte at a time by supplying the address 
and data together with the appropriate Write instruction. An EEPROM memory 
location is first automatically erased before new data is written. If polling is not 
used, the user must wait at least tWD_EEPROM before issuing the next byte. (Please 
refer to Table 68). In a chip erased device, no $FFs in the data file(s) need to be 
programmed.

7. Any memory location can be verified by using the Read instruction which returns 
the content at the selected address at serial output MISO/PB6.

8. At the end of the programming session, RESET can be set high to commence 
normal operation.

9. Power-off sequence (if needed):
Set XTAL1 to “0” (if a crystal is not used).
Set RESET to “1”.
Turn VCC power off

Data Polling Flash When a page is being programmed into the Flash, reading an address location within
the page being programmed will give the value $FF. At the time the device is ready for a
new page, the programmed value will read correctly. This is used to determine when the
next page can be written. Note that the entire page is written simultaneously and any
address within the page can be used for polling. Data polling of the Flash will not work
for the value $FF, so when programming this value, the user will have to wait for at least
tWD_FLASH before programming the next page. As a chip-erased device contains $FF in
all locations, programming of addresses that are meant to contain $FF, can be skipped.
See Table 68 tWD_FLASH.

Data Polling EEPROM When a new byte has been written and is being programmed into EEPROM, reading the
address location being programmed will give the value $FF. At the time the device is
ready for a new byte, the programmed value will read correctly. This is used to deter-
mine when the next byte can be written. This will not work for the value $FF, but the user
should have the following in mind: As a chip-erased device contains $FF in all locations,
programming of addresses that are meant to contain $FF, can be skipped. This does
not apply if the EEPROM is re-programmed without chip-erasing the device. In this
case, data polling cannot be used for the value $FF, and the user will have to wait at
least tWD_EEPROM before programming the next byte. See Table 68 for tWD_EEPROM.
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Programming Times for 
Nonvolatile Memory

The internal RC oscillator is used to control programming time when programming or
erasing Flash, EEPORM, fuses, and lock bits. During parallel or serial programming, the
device is in reset, and this oscillator runs at its initial, uncalibrated frequency, which may
vary from 0.5 MHz to 1.0 MHz. In software it is possible to calibrate this oscillator to 1.0
MHz (see “Calibrated Internal RC Oscillator” on page 40). Consequently, programming
times will be shorter and more accurate when programming or erasing nonvolatile mem-
ory from software, using SPM or the EEPROM interface. See Table 68 for a summary of
programming times.

Notes: 1. Includes variation over voltage and temperature after RC oscillator has been cali-
brated to 1.0 MHz

2. Parallel EEPROM programming takes 1K cycles

Figure 99.  Serial Programming Waveforms

Table 68.  Maximum Programming Times for Nonvolatile Memory

Operation Symbol

Number of 
RC Oscillator 

Cycles

Parallel/serial programming Self-
programming

(1)2.7V 5.0V

Chip Erase tWD_CE 16K 32 ms 30 ms 17 ms

Flash Write tWD_FLASH 8K 16 ms 15 ms 8.5 ms

EEPROM 
Write(2) tWD_EEPROM

2K 4 ms 3.8 ms 2.2 ms

Fuse/lock 
bit write

tWD_FUSE
1K 2 ms 1.9 ms 1.1 ms

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
PB7(SCK)

SERIAL DATA INPUT
PB5 (MOSI)

PB6 (MISO)

SAMPLE

SERIAL DATA OUTPUT
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.

Note: a = address high bits; b = address low bits; H = 0 - Low byte, 1 - High Byte; o = data out; i = data in; x = don’t care; 
1 = lock bit 1; 2 = lock bit 2; 3 = Boot Lock Bit01; 4 = Boot Lock Bit02; 5 = Boot Lock Bit11; 6 = Boot Lock Bit12; 
7 = CKSEL0 Fuse; 8 = CKSEL1 Fuse; 9 = CKSEL2 Fuse; A = CKSEL3 Fuse; B = BODEN Fuse; C = BODLEVEL Fuse; 
D = BOOTRST Fuse; E = BOOTSZ0 Fuse; F = BOOTSZ1 Fuse; G = EESAVE Fuse; H = JTAGEN Fuse; and I = OCDEN Fuse

Table 69.  Serial Programming Instruction Set 

Instruction

Instruction Format

OperationByte 1 Byte 2 Byte 3 Byte4

Programming Enable 1010 1100 0101 0011 xxxx xxxx xxxx xxxx
Enable Serial Programming after 
RESET goes low.

Chip Erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx Chip Erase EEPROM and Flash.

Read Program Memory 0010 H000 xxaa aaaa bbbb bbbb oooo oooo
Read H (high or low) data o from 
Program memory at word address 
a:b.

Load Program Memory 
Page

0100 H000 xxxx xxxx xxbb bbbb iiii iiii
Write H (high or low) data i to 
Program Memory page at word 
address b.

Write Program Memory 
Page

0100 1100 xxaa aaaa bbxx xxxx xxxx xxxx
Write Program Memory Page at 
address a:b.

Read EEPROM Memory 1010 0000 xxxx xxaa bbbb bbbb oooo oooo
Read data o from EEPROM 
memory at address a:b.

Write EEPROM Memory 1100 0000 xxxx xxaa bbbb bbbb iiii iiii
Write data i to EEPROM memory 
at address a:b.

Read Lock Bits 0101 1000 0000 0000 xxxx xxxx xx65 4321
Read Lock bits. “0” = programmed, 
“1” = unprogrammed.

Write Lock Bits 1010 1100 111x xxxx xxxx xxxx 1165 4321
Write Lock bits. Set bits 6 - 1 = “0” 
to program Lock bits.

Read Signature Byte 0011 0000 xxxx xxxx xxxx xxbb oooo oooo
Read Signature Byte o at address 
b.

Write Fuse Bits 1010 1100 1010 0000 xxxx xxxx CB11 A987
Set bits C- A, 9 - 7 = “0” to program, 
“1” to unprogram

Write Fuse High Bits 1010 1100 1010 1000 xxxx xxxx IH11 GFED
Set bits F - D = “0” to program, “1” 
to unprogram

Read Fuse Bits 0101 0000 0000 0000 xxxx xxxx CBxx A987
Read Fuse bits. “0” = programmed,

“1” = unprogrammed

Read Fuse High Bits 0101 1000 0000 1000 xxxx xxxx IHxx GFED
Read Fuse high bits. “0” = pro-
grammed, “1” = unprogrammed

Read Calibration Byte 0011 1000 xxxx xxxx 0000 0000 oooo oooo
Read Signature Byte o at address 
b.
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Serial Programming 
Characteristics

Figure 100.  Serial Programming Timing

Table 70.  Serial Programming Characteristics
TA = -40°C to 85°C, VCC = 2.7V - 5.5V (Unless otherwise noted)

Symbol Parameter Min Typ Max Units

1/tCLCL Oscillator Frequency (VCC = 2.7 - 5.5 V) 0 4 MHz

tCLCL Oscillator Period (VCC = 2.7 - 5.5 V) 250 ns

1/tCLCL Oscillator Frequency (VCC = 4.0 - 5.5 V) 0 8 MHz

tCLCL Oscillator Period (VCC = 4.0 - 5.5 V) 125 ns

tSHSL SCK Pulse Width High 2 tCLCL ns

tSLSH SCK Pulse Width Low 2 tCLCL ns

tOVSH MOSI Setup to SCK High tCLCL ns

tSHOX MOSI Hold after SCK High 2 tCLCL ns

tSLIV SCK Low to MISO Valid 10 16 32 ns

MOSI

MISO

SCK

tOVSH

tSHSL

tSLSHtSHOX

tSLIV
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Programming via the 
JTAG interface

Programming through the JTAG interface requires control of the four JTAG specific
pins: TCK, TMS, TDI and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN fuse must be programmed. The
device is default shipped with the fuse programmed. In addition, the JTD bit in MCUCSR
must be cleared. Alternatively, if the JTD bit is set, the external reset can be forced low.
Then, the JTD bit will be cleared after two chip clocks, and the JTAG pins are available
for programming. This provides a means of using the JTAG pins as normal port pins in
running mode while still allowing In-System Programming via the JTAG interface. Note
that this technique can not be used when using the JTAG pins for Boundary-Scan or
On-chip Debug. In these cases the JTAG pins must be dedicated for this purpose.

As a definition in this data sheet, the LSB is shifted in and out first of all shift registers.

Programming specific 
JTAG instructions

The instruction register is 4 bit wide, supporting up to 16 instructions. The JTAG instruc-
tions useful for Programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which data register is selected as path between TDI and TDO for
each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can
also be used as an idle state between JTAG sequences. 

AVR_RESET ($C) The AVR specific public JTAG instruction for setting the AVR device in the Reset Mode
or taking the device out from the Reset Mode. The TAP controller is not reset by this
instruction. The one bit Reset Register is selected as Data Register. Note that the reset
will be active as long as there is a logic 'one' in the Reset Chain. The output from this
chain is not latched. 

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

PROG_ENABLE ($4) The AVR specific public JTAG instruction for enabling programming via the JTAG port.
The 16 bit Programming Enable register is selected as data register. The active states
are the following:

• Shift-DR: the programming enable signature is shifted into the data register.

• Update-DR: the programming enable signature is compared to the correct value, 
and programming mode is entered if the signature is valid.

PROG_COMMANDS ($5) The AVR specific public JTAG instruction for entering programming commands via the
JTAG port. The 15 bit Programming Command register is selected as data register. The
active states are the following:

• Capture-DR: the result of the previous command is loaded into the data register.

• Shift-DR: the data register is shifted by the TCK input, shifting out the result of the 
previous command and shifting in the new command.

• Update-DR: the programming command is applied to the Flash inputs

• Run-Test/Idle: one clock cycle is generated, executing the applied command (not 
always required, see Table 71 below).

PROG_PAGELOAD ($6) The AVR specific public JTAG instruction to directly load the Flash data page via the
JTAG port. The 1024 bit Virtual Flash Page Load register is selected as data register.
This is a virtual scan chain with length equal to the number of bits in one Flash page.
Internally the shift register is 8 bit. Unlike most JTAG instructions, the Update-DR state
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is not used to transfer data from the shift register. The data are automatically transferred
to the Flash page buffer byte by byte in the Shift-DR state by an internal state machine.
This is the only active state:

• Shift-DR: Flash page data are shifted in from TDI by the TCK input, and 
automatically loaded into the Flash page one byte at a time.

PROG_PAGEREAD ($7) The AVR specific public JTAG instruction to read one full Flash data page via the JTAG
port. The 1032 bit Virtual Flash Page Read register is selected as data register. This is a
virtual scan chain with length equal to the number of bits in one Flash page plus 8. Inter-
nally the shift register is 8 bit. Unlike most JTAG instructions, the Capture-DR state is
not used to transfer data to the shift register. The data are automatically transferred from
the Flash page buffer byte by byte in the Shift-DR state by an internal state machine.
This is the only active state:

• Shift-DR: Flash data are automatically read one byte at a time and shifted out on 
TDO by the TCK input. The TDI input is ignored.

Data Registers The data registers are selected by the JTAG instruction registers described in section
“Programming specific JTAG instructions” on page 196. The data registers relevant for
programming operations are:

• Reset Register

• Programming Enable Register

• Programming Command Register

• Virtual Flash Page Load Register

• Virtual Flash Page Read Register

Reset Register The Reset Register is a Test Data Register used to reset the part during programming. It
is required to reset the part before entering programming mode.

A high value in the Reset Register corresponds to pulling the external Reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the Fuse settings for the clock options, the part will remain reset for a Reset Time-
Out Period (refer to Table 6 on page 27) after releasing the Reset Register. The output
from this Data Register is not latched, so the reset will take place immediately, as shown
in Figure 93 on page 183.

Programming Enable 
Register

The Programming Enable register is a 16 bit register. The contents of this register is
compared to the programming enable signature, binary code 1010_0011_0111_0000.
When the contents of the register is equal to the programming enable signature, pro-
gramming via the JTAG port is enabled. The register is reset to 0 on Power-on Reset,
and should always be reset when leaving programming mode.
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Figure 101.  Programming Enable Register

Programming Command 
Register

The Programming Command register is a 15 bit register. This register is used to serially
shift in programming commands, and to serially shift out the result of the previous com-
mand, if any. The JTAG Programming Instruction Set is shown in Table 71. The state
sequence when shifting in the programming commands is illustrated in Figure 102.

Figure 102.  Programming Command Register
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Table 71.  JTAG Programming Instruction Set 

Instruction TDI sequence TDO sequence Notes

1a. Chip erase
0100011_10000000

0110001_10000000

0110011_10000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for chip erase complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address High Byte 0000111_00aaaaaa xxxxxxx_xxxxxxxx

2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2d. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2e. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2f. Latch Data

0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2g. Write Page
0110111_00000000

0110101_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Poll for Page Write complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address High Byte 0000111_00aaaaaa xxxxxxx_xxxxxxxx

3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3d. Read Data Low and High Byte
0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

low byte
high byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_000000aa xxxxxxx_xxxxxxxx

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Write EEPROM byte
0110011_00000000

0110001_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Poll for Byte Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_000000aa xxxxxxx_xxxxxxxx

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

5d. Read Data Byte
0110011_bbbbbbbb

0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data High Byte 0010011_IH11GFED xxxxxxx_xxxxxxxx (3)
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Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is
normally the case).

2. Repeat until o = “1”
3. Set bits to “0” to program the corresponding fuse, “1” to unprogram the fuse.

6c. Write Fuse High byte
0110111_00000000

0110101_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6d. Poll for Fuse Write complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6e. Load Data Low Byte 0010011_CB11A987 xxxxxxx_xxxxxxxx (3)

6f. Write Fuse Low byte

0110011_00000000

0110001_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6g. Poll for Fuse Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte 0010011_11654321 xxxxxxx_xxxxxxxx (4)

7c. Write Lock Bits
0110011_00000000

0110001_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Fuse High Byte
0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_IHxxGFED

8c. Read Fuse Low Byte
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_CBxxA987

8d. Read Lock Bits
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xx654321
(5)

8e. Read Fuses and Lock Bits

0111110_00000000

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

xxxxxxx_oooooooo

(5)

fuse high byte
fuse low byte
lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

11a. Load No Operation Command
0100011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

Table 71.  JTAG Programming Instruction Set  (Continued)

Instruction TDI sequence TDO sequence Notes
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4. Set bits to “0” to program the corresponding lock bit, “1” to leave the lock bit
unchanged.

5. “0” = programmed, “1” = unprogrammed.
6. a = address high byte; b = address low byte; i = data in; o = data out; 1 = lock bit 1; 2

= lock bit 2; 3 = Boot Lock Bit01; 
4 = Boot Lock Bit02; 5 = Boot Lock Bit11; 6 = Boot Lock Bit12; 7 = CKSEL0 Fuse; 8 =
CKSEL1 Fuse ; 9 = CKSEL2 Fuse; 
A = CKSEL3 Fuse; B = BODEN Fuse; C = BODLEVEL Fuse; D = BOOTRST Fuse; E
= BOOTSZ0 Fuse; F = BOOTSZ1 Fuse; G = EESAVE Fuse; H = JTAGEN Fuse; I =
OCDEN Fuse

Figure 103.  State Machine Sequence for Changing / Reading the Data Word
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Virtual Flash Page 
Load Register

The Virtual Flash Page Load register is a virtual scan chain with length equal to the
number of bits in one Flash page, 1024. Internally the shift register is 8 bit, and the data
are automatically transferred to the Flash page buffer byte by byte. Shift in all instruction
words in the page, starting with the LSB of the instruction with page address 0 and end-
ing with the MSB of the instruction with page address 3F. This provides an efficient way
to load the entire Flash page buffer before executing Page Write.

Figure 104.  Virtual Flash Page Load Register
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Virtual Flash Page Read 
Register

The Virtual Flash Page Read register is a virtual scan chain with length equal to the
number of bits in one Flash page plus 8, 1032 in total. Internally the shift register is 8 bit,
and the data are automatically transferred from the Flash data page byte by byte. The
first 8 cycles are used to transfer the first byte to the internal shift register, and the bits
that are shifted out during these 8 cycles should be ignored. Following this initialization,
data are shifted out starting with the LSB of the instruction with page address 0 and end-
ing with the MSB of the instruction with page address 3F. This provides an efficient way
to read one full Flash page to verify programming.

Figure 105.  Virtual Flash Page Read Register

Programming algorithm All references below of type “1a”, “1b”, and so on, refer to Table 71.

Entering programming mode 1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset register.

2. Enter instruction PROG_ENABLE and shift 1010_0011_0111_0000 in the Pro-
gramming Enable register.

Leaving Programming Mode 1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by usning no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0000_0000_0000_0000 in the pro-
gramming Enable register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset register.

If PROG_ENABLE instruction is not followed by the AVR_RESET instruction, the follow-
ing algorithm should be used:

1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0000_0000_0000_0000 in the Pro-
gramming Enable register.

4. Enter instruction PROG_ENABLE and shift 0000_0000_0000_0000 in the Pro-
gramming Enable register.

5. Wait until the selected oscillator has started before applying more commands.
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Performing Chip Erase 1. Enter JTAG instruction PROG_COMMANDS.

2. Start chip erase using programming instruction 1a.

3. Poll for chip erase complete using programming instruction 1b, or wait for 
tWLRH_CE (refer to Table 67 on page 190).

Programming the Flash 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address using programming instructions 2b and 2c.

4. Load data using programming instructions 2d, 2e and 2f.

5. Repeat step 3 and 4 for all 64 instruction words in the page.

6. Write the page using programming instruction 2g.

7. Poll for Flash write complete using programming instruction 2h, or wait for 
tWLRH_FLASH (refer to Table 67 on page 190).

8. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. The 6 LSB 
are used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page, starting with 
the LSB of the first instruction in the page and ending with the MSB of the last 
instruction in the page.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for 
tWLRH_FLASH (refer to Table 67 on page 190).

9. Repeat steps 3 to 8 until all data have been programmed.

Reading the Flash 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b and 3c.

4. Read data using programming instruction 3d.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3b and 3c. The 6 LSB 
are used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page by shifting out all instruction words in the page, starting 
with the LSB of the instruction with page address 0 and ending with the MSB of 
the instruction with page address 3F. Remember that the first 8 bits should be 
ignored.
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6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

Programming the EEPROM 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load address using programming instructions 4b and 4c.

4. Load data using programming instructions 4d.

5. Write the data using programming instruction 4e.

6. Poll for EEPROM write complete using programming instruction 4f, or wait for 
tWLRH (refer to Table 67 on page 190).

7. Repeat steps 3 to 6 until all data have been programmed.

Reading the EEPROM 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Programming the Fuses 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data high byte using programming instructions 6b. A bit value of “0” will pro-
gram the corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse high byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH 
(refer to Table 67 on page 190).

6. Load data low byte using programming instructions 6e. A “0” will program the 
fuse, a “1” will unprogram the fuse.

7. Write Fuse low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH 
(refer to Table 67 on page 190).

Programming the Lock Bits 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the 
corresponding lock bit, a “1” will leave the lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for 
tWLRH (refer to Table 67 on page 190).

Reading the Fuses and Lock 
Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse/Lock bit read using programming instruction 8a.

3. To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse high byte, use programming instruction 8b.
To only read Fuse low byte, use programming instruction 8c.
To only read Lock bits, use programming instruction 8d.
205
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Reading the Signature Bytes 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address $00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address $01 and address $02 to read the second and 
third signature bytes, respectively.

Reading the Calibration Byte 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address $00 using programming instruction 10b.

4. Read the calibration byte using programming instruction 10c.
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Electrical Characteristics

Absolute Maximum Ratings*
Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute 

Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or 
other conditions beyond those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect 
device reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground ................................-1.0V to VCC+0.5V

Voltage on RESET with respect to Ground......-1.0V to +13.0V

Maximum Operating Voltage ............................................ 6.6V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current VCC and GND Pins................................ 200.0 mA

DC Characteristics

TA = -40°C to 85°C, VCC = 2.7V to 5.5V (Unless Otherwise Noted) 

Symbol Parameter Condition Min Typ Max Units

VIL Input Low Voltage (Except XTAL1) -0.5 0.3 VCC
(1) V

VIL1 Input Low Voltage

(XTAL1), CKSEL3 fuse 
programmed

-0.5 0.3 VCC
(1) V

(XTAL1), CKSEL3 fuse 
unprogrammed

-0.5 0.2 VCC
(1) V

VIH Input High Voltage (Except XTAL1, RESET) 0.6 VCC
(2) VCC + 0.5 V

VIH1 Input High Voltage

(XTAL1), CKSEL3 fuse 
programmed

0.6 VCC
(2) VCC + 0.5 V

(XTAL1), CKSEL3 fuse 
unprogrammed

0.8 VCC
(2) VCC + 0.5 V

VIH2 Input High Voltage (RESET) 0.9 VCC
(2) VCC + 0.5 V

VOL
Output Low Voltage(3)

(Ports A,B,C,D)
IOL = 20 mA, VCC = 5V
IOL = 10 mA, VCC = 3V

0.6
0.5

V
V

VOH
Output High Voltage(4)

(Ports A,B,C,D)
IOH = -3 mA, VCC = 5V
IOH = -1.5 mA, VCC = 3V

4.2
2.3

V
V

IIL
Input Leakage
Current I/O Pin

Vcc = 5.5V, pin low
(absolute value)

8.0 µA

IIH
Input Leakage
Current I/O Pin

Vcc = 5.5V, pin high
(absolute value)

980 nA

RRST Reset Pull-up Resistor 100 500 kΩ

RI/O I/O Pin Pull-up Resistor 35 120 kΩ
207
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Note: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20mA at Vcc = 5V, 10mA at Vcc = 3V) under steady state

conditions (non-transient), the following must be observed – PDIP Package:
1] The sum of all IOL, for all ports, should not exceed 200 mA.
2] The sum of all IOL, for port A0-A7, should not exceed 100 mA.
3] The sum of all IOL, for ports B0-B7,C0-C7, D0-D7 and XTAL2, should not exceed 100 mA – TQFP Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0-A7, should not exceed 100 mA.
3] The sum of all IOL, for ports B0-B3, should not exceed 100 mA.
4] The sum of all IOL, for ports B4-B7, should not exceed 100 mA.
5] The sum of all IOL, for ports C0-C3, should not exceed 100 mA.
6] The sum of all IOL, for ports C4-C7, should not exceed 100 mA.
7] The sum of all IOL, for ports D0-D3 and XTAL2, should not exceed 100 mA.
8] The sum of all IOL, for ports D4-D7, should not exceed 100 mA
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (3mA at Vcc = 5V, 1.5mA at Vcc = 3V) under steady state
conditions (non-transient), the following must be observed – PDIP Package:
1] The sum of all IOH, for all ports, should not exceed 200 mA.
2] The sum of all IOH, for port A0-A7, should not exceed 100 mA.
3] The sum of all IOH, for ports B0-B7,C0-C7, D0-D7 and XTAL2, should not exceed 100 mA – TQFP Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports A0-A7, should not exceed 100 mA.
3] The sum of all IOH, for ports B0-B3, should not exceed 100 mA.
4] The sum of all IOH, for ports B4-B7, should not exceed 100 mA.
5] The sum of all IOH, for ports C0-C3, should not exceed 100 mA.
6] The sum of all IOH, for ports C4-C7, should not exceed 100 mA.
7] The sum of all IOH, for ports D0-D3 and XTAL2, should not exceed 100 mA.
8] The sum of all IOH, for ports D4-D7, should not exceed 100 mA
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum VCC for Power-down is 2.5V.

ICC

Power Supply Current

Active 4 MHz, VCC = 3V

(ATmega323L)
5 mA

Active 8 MHz, VCC = 5V

(ATmega323)
15 mA

Idle 4 MHz, VCC = 3V

(ATmega323L)
2.5 mA

Idle 8 MHz, VCC = 5V

(ATmega323)
8 mA

Power-down mode(5)
WDT enabled, VCC = 3V 9 15.0 µA

WDT disabled, VCC = 3V <1 4.0 µA

VACIO
Analog Comparator 
Input Offset Voltage

VCC = 5V

Vin = VCC/2
40 mV

IACLK
Analog Comparator 
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACID
Analog Comparator 
Initialization Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

DC Characteristics (Continued)

TA = -40°C to 85°C, VCC = 2.7V to 5.5V (Unless Otherwise Noted) 

Symbol Parameter Condition Min Typ Max Units
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External Clock Drive 
Waveforms

Figure 106.  External Clock Drive Waveforms

External Clock Drive

Note: R should be in the range 3kΩ - 100kΩ, and C should be at least 20pF. The C values
given in the table includes pin capacitance. This will vary with package type.

lL1

lH1

Table 72.  External Clock Drive

Symbol Parameter

VCC = 2.7V to 5.5V VCC = 4.0V to 5.5V

UnitsMin Max Min Max

1/tCLCL Oscillator Frequency 0 4 0 8 MHz

tCLCL Clock Period 250 125 ns

tCHCX High Time 100 50 ns

tCLCX Low Time 100 50 ns

tCLCH Rise Time 1.6 0.5 µs

tCHCL Fall Time 1.6 0.5 µs

Table 73.  External RC Oscillator, Typical Frequencies

R [kΩ] C [pF] f

100 70 TBD

31.5 20 TBD

6.5 20 TBD
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2-wire Serial Interface Characteristics
Table 74 describes the requirements for devices connected to the 2-wire Serial Bus. The ATmega323 2-wire Serial Inter-
face meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 107.

Notes: 1. In ATmega323, this parameter is characterized and not 100% tested.
2. Required only for fSCL > 100 kHz.
3. Cb = capacitance of one bus line in pF.
4. fCK = CPU clock frequency
5. This requirement applies to all ATmega323 2-wire Serial Interface operation. Other devices connected to the 2-wire Serial

Bus need only obey the general fSCL requirement.
6. The actual low period generated by the ATmega323 2-wire Serial Interface is (1/fSCL - 2/fCK), thus fCK must be greater than 6

MHz for the low time requirement to be strictly met at fSCL = 100 kHz.
7. The actual low period generated by the ATmega323 2-wire Serial Interface is (1/fSCL - 2/fCK), thus the low time requirement

will not be strictly met for fSCL > 308 kHz when fCK = 8 MHz. Still, ATmega323 devices connected to the bus may communi-

Table 74.  2-wire Serial Bus Requirements 

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage -0.5 0.3 VCC V

VIH Input High-voltage 0.7 VCC VCC + 0.5 V

Vhys
(1) Hysteresis of Schmitt Trigger Inputs 0.05 VCC

(2) - V

VOL
(1) Output Low-voltage 3 mA sink current 0 0.4 V

tof
(1) Output Fall Time from VIHmin to VILmax 10 pF < Cb < 400 pF(3) 20 + 0.1Cb

(3)(2) 250 ns

tSP
(1) Spikes Suppressed by Input Filter 0 50(2) ns

Ii Input Current each I/O Pin 0.1VCC < Vi < 0.9VCC -10 10 µA

Ci
(1) Capacitance for each I/O Pin - 10 pF

fSCL SCL Clock Frequency fCK
(4) > max(16fSCL, 250kHz)(5) 0 400 kHz

tHD;STA Hold Time (repeated) START Condition
fSCL ≤ 100 kHz 4.0 - µs

fSCL > 100 kHz 0.6 - µs

tLOW Low Period of the SCL Clock
fSCL ≤ 100 kHz(6) 4.7 - µs

fSCL > 100 kHz(7) 1.3 - µs

tHIGH High period of the SCL clock
fSCL ≤ 100 kHz 4.0 - µs

fSCL > 100 kHz 0.6 - µs

tSU;STA Set-up time for a repeated START condition
fSCL ≤ 100 kHz 4.7 - µs

fSCL > 100 kHz 0.6 - µs

tHD;DAT Data hold time
fSCL ≤ 100 kHz 0 3.45 µs

fSCL > 100 kHz 0 0.9 µs

tSU;DAT Data setup time
fSCL ≤ 100 kHz 250 - ns

fSCL > 100 kHz 100 - ns

tSU;STO Setup time for STOP condition
fSCL ≤ 100 kHz 4.0 - µs

fSCL > 100 kHz 0.6 - µs

tBUF
Bus free time between a STOP and START 
condition

fSCL ≤ 100 kHz 4.7 - µs

fSCL > 100 kHz 1.3 - µs
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cate at full speed (400 kHz) with other ATmega323 devices, as well as any other device with a proper tLOW acceptance
margin.

Figure 107.  2-wire Serial Bus timing
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ATmega323 Typical 
Characteristics – 
Preliminary Data

The following charts show typical behavior. These figures are not tested during manu-
facturing. All current consumption measurements are performed with all I/O pins
configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-
to-rail output is used as clock source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage,
operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and
ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as
CL*VCC*f where CL = load capacitance, VCC = operating voltage and f = average switch-
ing frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaran-
teed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog
Timer enabled and Power-down mode with Watchdog Timer disabled represents the dif-
ferential current drawn by the Watchdog timer.

Figure 108.  Active Supply Current vs. Frequency
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Figure 109.  Active Supply Current vs. VCC

Figure 110.  Active Supply Current vs. VCC, Device Clocked by Internal Oscillator
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Figure 111.  Active Supply Current vs. VCC, Device Clocked by External 32kHz Crystal

Figure 112.  Idle Supply Current vs. Frequency
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Figure 113.  Idle Supply Current vs. VCC

Figure 114.  Idle Supply Current vs. VCC, Device Clocked by Internal Oscillator
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Figure 115.  Idle Supply Current vs. VCC, Device Clocked by External 32kHz Crystal

Figure 116.  Power-down Supply Current vs. VCC
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Figure 117.  Power-down Supply Current vs. VCC

Figure 118.  Power-save Supply Current vs. VCC
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Figure 119.  Analog Comparator Current vs. VCC

Analog comparator offset voltage is measured as absolute offset

Figure 120.  Analog Comparator Offset Voltage vs. Common Mode Voltage
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Figure 121.  Analog Comparator Offset voltage vs. Common Mode Voltage

Figure 122.  Analog Comparator Input Leakage Current

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

ANALOG COMPARATOR OFFSET VOLTAGE vs.
COMMON MODE VOLTAGE

Common Mode Voltage (V)

O
ffs

et
 V

ol
ta

ge
 (

m
V

)

V  = 2.7Vcc

T  = 85˚CA

T  = 25˚CA

60

50

40

30

20

10

0

-10
0 0.5 1.51 2 2.5 3.53 4 4.5 5 6 6.5 75.5

ANALOG COMPARATOR INPUT LEAKAGE CURRENT
T  = 25˚CA

I
 (

nA
)

A
C

LK

V  (V)IN

V  = 6VCC
219
1457E–11/01



Figure 123.  Calibrated RC Oscillator Frequency vs. VCC 

Figure 124.  Watchdog Oscillator Frequency vs. VCC
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Figure 125.  Pull-Up Resistor Current vs. Input Voltage

Figure 126.  Pull-Up Resistor Current vs. Input Voltage
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Figure 127.  I/O Pin Sink Current vs. Output Voltage

Figure 128.  I/O Pin Source Current vs. Output Voltage
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Figure 129.  I/O Pin Sink Current vs. Output Voltage

Figure 130.  I/O Pin Source Current vs. Output Voltage
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Figure 131.  I/O Pin Input Threshold Voltage vs. VCC

Figure 132.  I/O Pin Input Hysteresis vs. VCC
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ATmega323(L)
Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

$3F ($5F) SREG I T H S V N Z C 21

$3E ($5E) SPH - - - - SP11 SP10 SP9 SP8 22

$3D ($5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 22

$3C ($5C) OCR0 Timer/Counter0 Output Compare Register 46

$3B ($5B) GICR INT1 INT0 INT2 - - - IVSEL IVCE 32

$3A ($5A) GIFR INTF1 INTF0 INTF2 - - - - - 34

$39 ($59) TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 35

$38 ($58) TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 35

$37 ($57) SPMCR - ASB - ASRE BLBSET PGWRT PGERS SPMEN 178

$36 ($56) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE 102

$35 ($55) MCUCR SE SM2 SM1 SM0 ISC11 ISC10 ISC01 ISC00 37

$34 ($54) MCUCSR JTD ISC2 - JTRF WDRF BORF EXTRF PORF 30

$33 ($53) TCCR0 FOC0 PWM0 COM01 COM00 CTC0 CS02 CS01 CS00 46

$32 ($52) TCNT0  Timer/Counter0 (8 Bits) 48

$31 ($51)
OSCCAL Oscillator Calibration Register 40

OCRD On-chip Debug Register 156

$30 ($50) SFIOR - - - - ACME PUD PSR2 PSR10 44

$2F ($4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B PWM11 PWM10 55

$2E ($4E) TCCR1B ICNC1 ICES1 - - CTC1 CS12 CS11 CS10 56

$2D ($4D) TCNT1H Timer/Counter1 - Counter Register High Byte 57

$2C ($4C) TCNT1L Timer/Counter1 - Counter Register Low Byte 57

$2B ($4B) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 58

$2A ($4A) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 58

$29 ($49) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 58

$28 ($48) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 58

$27 ($47) ICR1H Timer/Counter1 - Input Capture Register High Byte 59

$26 ($46) ICR1L Timer/Counter1 - Input Capture Register Low Byte 59

$25 ($45) TCCR2 FOC2 PWM2 COM21 COM20 CTC2 CS22 CS21 CS20 46

$24 ($44) TCNT2 Timer/Counter2 (8 Bits) 48

$23 ($43) OCR2 Timer/Counter2 Output Compare Register 48

$22 ($42) ASSR - - - - AS2 TCN2UB OCR2UB TCR2UB 51

$21 ($41) WDTCR - - - WDTOE WDE WDP2 WDP1 WDP0 63

$20 ($40)
UBRRH URSEL - - - UBRR[11:8] 97

UCSRC URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL 95

$1F ($3F) EEARH - - - - - - EEAR9 EEAR8 65

$1E ($3E) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 65

$1D ($3D) EEDR  EEPROM Data Register 65

$1C ($3C) EECR - - - - EERIE EEMWE EEWE EERE 66

$1B ($3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 134

$1A ($3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 134

$19 ($39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 134

$18 ($38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 136

$17 ($37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 136

$16 ($36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 136

$15 ($35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 143

$14 ($34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 143

$13 ($33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 143

$12 ($32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 148

$11 ($31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 148

$10 ($30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 148

$0F ($2F) SPDR  SPI Data Register 72

$0E ($2E) SPSR SPIF WCOL - - - - - SPI2X 71

$0D ($2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 70

$0C ($2C) UDR  USART I/O Data Register 93

$0B ($2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 93

$0A ($2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 94

$09 ($29) UBRRL  USART Baud Rate Register Low Byte 97

$08 ($28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 121

$07 ($27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 128

$06 ($26) ADCSR ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 130

$05 ($25) ADCH ADC Data Register High Byte 131

$04 ($24) ADCL ADC Data Register Low Byte 131

$03 ($23) TWDR  2-wire Serial Interface Data Register 104

$02 ($22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 104
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Notes: 1. When the OCDEN fuse is unprogrammed, the OSCCAL register is always accessed on this address. Refer to the debugger
specific documentation for details on how to use the OCDR register.

2. Refer to the USART description for details on how to access UBRRH and UCSRC.
3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses

should never be written.
4. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on

all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers $00 to $1F only.

$01 ($21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 - - - 103

$00 ($20) TWBR 2-wire Serial Interface Bit Rate Register 101

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
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Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ←=Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd •=K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ←=Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd  ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← $FF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC=← PC + k  + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP k Direct Jump PC=← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL k Direct Subroutine Call PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC=← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2

BREQ  k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2

BRNE  k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2

BRCS  k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2

BRCC  k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2

BRSH  k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2

BRLO  k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2

BRMI  k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2

BRPL  k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2

BRGE  k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2

BRLT  k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2

BRHS  k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2

BRHC  k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2

BRTS  k Branch if T Flag Set if (T = 1) then PC ← PC + k  + 1 None 1/2

BRTC  k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2

BRVS  k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2

BRVC  k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2
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BRIE  k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1/2

BRID  k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1/2

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd  ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd  ← (k) None 2

ST X, Rr Store Indirect (X)=← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X)=← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I=← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

Mnemonics Operands Description Operation Flags #Clocks
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CLH Clear Half Carry Flag in SREG H ← 0 H 1

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks
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Ordering Information
Speed (MHz) Power Supply Ordering Code Package Operation Range

4 2.7-5.5V ATmega323L-4AC
ATmega323L-4PC

44A
40P6

Commercial
(0°C to 70°C)

ATmega323L-4AI

ATmega323L-4PI

44A

40P6

Industrial

(-40°C to 85°C)

8 4.0-5.5V ATmega323-8AC
ATmega323-8PC

44A
40P6

Commercial
(0°C to 70°C)

ATmega323-8AI
ATmega323-8PI

44A
40P6

Industrial
(-40°C to 85°C)

Package Type

44A 44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)

40P6 40-pin, 0.600” Wide, Plastic Dual Inline Package (PDIP)
230 ATmega323(L)
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Packaging Information

44A

1.20(0.047) MAX

10.10(0.394)
  9.90(0.386)

SQ

12.25(0.482)
11.75(0.462)

SQ

0.75(0.030)
0.45(0.018)

0.15(0.006)
0.05(0.002)

0.20(0.008)
0.09(0.004)

0˚~7˚ 

0.80(0.0315) BSC

PIN 1 ID

0.45(0.018)
0.30(0.012)

    PIN 1

*Controlling dimension: millimetter

44-lead, Thin (1.0mm) Plastic Quad Flat Package 
(TQFP), 10x10mm body, 2.0mm footprint, 0.8mm pitch.
Dimension in Millimeters and  (Inches)*
JEDEC STANDARD MS-026 ACB

REV. A     04/11/2001
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40P6

52.71(2.075)
51.94(2.045) PIN

1

13.97(0.550)
13.46(0.530)

0.38(0.015)MIN

0.56(0.022)
0.38(0.015)

REF

15.88(0.625)
15.24(0.600)

1.65(0.065)
1.27(0.050)

17.78(0.700)MAX

0.38(0.015)
0.20(0.008)

2.54(0.100)BSC

3.56(0.140)
3.05(0.120)

SEATING
PLANE

4.83(0.190)MAX

48.26(1.900) REF

0º ~ 15º  

40-lead, Plastic Dual Inline
Parkage (PDIP), 0.600" wide
Demension in Millimeters and (Inches)*
JEDEC STANDARD MS-011 AC

*Controlling dimension: Inches
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