‘9 TEXAS
INSTRUMENTS

MSP-FET430 FLASH Emulation Tool (FET)
(For use with IAR Workbench Version 3.x)

User's Guide

2005 SLAU138C
Mixed Signal
Products




IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any
product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before
placing orders, that information being relied on is current and complete. All products are sold subject to the terms and
conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent
infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's
standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support
this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Customers are responsible for their applications using Tl components.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must
be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. Tl does not warrant or represent that any
license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such products or services might
be or are used. TI's publication of information regarding any third party’s products or services does not constitute Tl's
approval, license, warranty or endorsement thereof.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this
information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive
business practice, and Tl is not responsible nor liable for any such use.

Resale of TI's products or services with statements different from or beyond the parameters stated by Tl for that product
or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive
business practice, and Tl is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated






{9 TEXAS
INSTRUMENTS

October 2005



Preface

Read This First

About This Manual

This manual documents the Texas Instruments MSP-FET430 Flash
Emulation Tool (FET). The FET is the development tool for the MSP430
ultra low power microcontroller. Both available interfaces, the Parallel-Port-
Interface and the USB-Interface, are described here.

How to Use This Manual

Read and follow the Get Started Now! chapter. This chapter will enable you
to inventory your FET, and then it will instruct you to install the software
and hardware, and then run the demonstration programs. Once you've
been demonstrated how quick and easy it is to use the FET, we suggest
that you complete the reading of this manual.

This manual describes the set-up and operation of the FET, but does not
fully teach the MSP430 or the development software systems. For details
of these items, refer to the appropriate Tl and IAR documents listed in
Chapter 1.12 Important MSP430 Documents on the CD-ROM and WEB.

This manual is applicable to the following tools (and devices):

MSP-FET430PIF (debug interface with parallel port connection, for all
MSP430 Flash based devices)

MSP-FET430UIF (debug interface with USB connection, for all MSP430
Flash based devices)

Below tools contain the parallel port debug interface (MSP-FET430PIF)
and the respective target-socket module:

MSP-FET430X110 (for the MSP430F11xIDW, MSP430F11x1AIDW, and
MSP430F11x2IDW devices)

MSP-FET430P120 (for the MSP430F12xIDW and MSP430F12x2IDW
devices)

MSP-FET430P140 (for the MSP430F13xIPM, MSP430F14xIPM,
MSP430F15xIPM, MSP430F16xIPM, and MSP430F161xIPM devices)

MSP-FET430P410 (for the MSP430F41xIPM devices)
MSP-FET430P430 (for the MSP430F43xIPN devices)

MSP-FET430P440 (for the MSP430F43xIPZ and MSP430F44xIPZ
devices)



Below tools contain the USB debug interface (MSP-FET430UIF) and the
respective target-socket module:

MSP-FET430U14 (for MSP430 devices in 14 pin PW-Packages)
MSP-FET430U28 (for MSP430 devices in 20 and 28 pin DW-Packages)
MSP-FET430U48 (for MSP430 devices in 48 pin DL-Package)
MSP-FET430U64 (for MSP430 devices in 64 pin PM-Package)
MSP-FET430U80 (for MSP430 devices in 80 pin PN-Package)
MSP-FET430U100 (for MSP430 devices in 100 pin PZ-Package)

This tool contains the most up-to-date materials available at the time of
packaging. For the latest materials (data sheets, User’'s Guides, software,
application information, etc.), visit the TI MSP430 web site at
www.ti.com/msp430, or contact your local Tl sales office.

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

The information in a caution or a warning is provided for your protection.
Read each caution and warning carefully.

Related Documentation From Texas Instruments

MSP430xxxx Device Data Sheets

MSP430x1xx Family User's Guide, SLAU049
MSP430x2xx Family User's Guide, SLAU144
MSP430x3xx Family User's Guide, SLAU012
MSP430x4xx Family User's Guide, SLAU056

OooOoOod



If You Need Assistance

Support for the MSP430 device and the FET is provided by the Texas
Instruments Product Information Center (PIC). Contact information for the
PIC can be found on the Tl web site at www.ti.com. Additional device-
specific information can be found on the MSP430 web site at
www.ti.com/msp430.

Note: Kickstart is supported by Texas Instruments

Although Kickstart is a product of IAR, Texas Instruments provides the
support for it. Therefore, please do not request support for Kickstart from
IAR. Please consult the extensive documentation provided with Kickstart
before requesting assistance.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It
generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits of computing devices pursuant to
subpart J of part 15 of FCC rules, which are designed to provide
reasonable protection against radio frequency interference. Operation of
this equipment in other environments may cause interference with radio
communications, in which case the user at his own expense will be
required to take whatever measures may be required to correct this
interference.



vi



Contents

ST Vo I VST T = iii
ADOUL ThiS MANUAL ... .ccoviiiiii e e et e e e e e e araaas iii
HOW t0 USE ThiS MANUAL .......ccoviiiiiiiii e e e e s iii
Information About Cautions and Warnings .................eeeeeeeeeeeieemeemeeeeeeeeeeeeeeeeeeeeeeeeeee. iV
Related Documentation From Texas INStrUMEeNtS..........ccovviieeiiieeeiiiiis e iv
If YOU NEEA ASSISTANCE ....evvveeiiii ettt e e e e e ettt e e e e e e e e e aeaeeens \Y;
[ OL O =14 o 1o o RO PP PPPPPPPPPPPPPPPPN \

L0 ] =] 0 1 K Vii

Lo [0 PSPPIt iX

BLIE=1 01 =TS iX

Get Started NOW! ... 1-1
1.1 Kit Contents, MSP-FET430XL110 ...ouuiuiiiiieeeieeeeecee e 1-2
1.2 Kit Contents, MSP-FETAB0PIF ....coeiiiiiiie ettt e e e e e e e 1-2
1.3 Kit Contents, MSP-FET430Pxx0 (‘P120, ‘P140, ‘P410, ‘P430, ‘P440).............. 1-2
1.4 Kit Contents, MSP-FETA30UIF ........ouuiiiiiiiee i 1-3
1.5 Kit Contents, MSP-FET430Uxx (‘U14, ‘U28, ‘U48, ‘U64, ‘U80, ‘U100)............. 1-3
1.6 Software INSallation ...........cccooeiiiiiiiiie e 1-5
1.7 Hardware Installation, MSP-FETA430X110 .....ccuuiiviiiniiiiiiiiieeieeieeee e eenneenees 1-5
1.8 Hardware Installation, MSP-FETA30PIF ........oooiiiiie et 1-5
1.9 Hardware Installation, MSP-FETA30UIF ........coccoiiiiiiiiiieeeee e e e enees 1-6
1.10 Hardware Installation, MSP-FET430Uxx (‘U14, ‘U28, ‘U48, ‘U64, ‘U80, ‘U100),

MSP-FET430Pxx0 (‘P120, ‘P140, ‘P410, ‘P430, ‘P440)......cccceeeeieiiieeeeaeeieeeennnns 1-6
1.11 “FIash”ing the LED ... 1-6
1.12 Important MSP430 Documents on the CD-ROM and WEB...............ccccccinnnees 1-7

DEVelOPMENT FIOW ...ttt e e 2-1
2 T O YT V1 2-2
2.2 USING KICKSTAIM......uuiiiieii i e e e e e e e e e r e e e e e 2-2

2.2.1  ProjeCt SEHINGS . oooueeeieiiiiiie ittt st 2-3
2.2.2  Creating a Project from SCratCh ..........occceviiiiiiiiiiiiieieeee e 2-5
2.2.3 Using an EXisting IAR VL1.X/V2.X PrOJECE........cvvviiiieiiiieeeieeiieeeeeeeeeeeeeeeeeeeee e 2-6
2.2.4  Stack Management and .XCl Files ... 2-6
2.2.5 How to Generate Texas Instruments .TXT (and other format) Files ................. 2-7
2.2.6  Overview of EXample Programs ... 2-7
2.3 USING C-SPY i 2-8
2.3.1  BreakpOint TYPES. ....cci ittt ettt st s e 2-8
2.3.2  USING BreakKPOiNtsS .....ccoiueiiiiiiiiie et 2-9
2.3.3  USING SINGIE SEEP ..eeiiiieiiiiiiiiiit et e e e e e e e 2-9
2.3.4  Using Watch WINAOWS.........ccoiviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee et 2-11

Design Considerations for In-Circuit Programming ...............eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen. 3-1

3.1 Signal Connections for In-System Programming and Debugging, MSP-
FET430PIF, MSP-FET430UIF, GANG430, PRGS430......ccccoviieiiiiiiiiiieeeeeeen 3-2

3.2 EXIEINAI POWET ... 3-4

TG T = ToTo) 511 =Y oI Io = (o (=] SO 3-5

Vii



Frequently Asked QUESTIONS ... ....uuiiii i e e 1-1

N A o T 0 1V 7= = U A-2

A.2 Program Development (Assembler, C-Compiler, LinkKer).............uuuuvveereeereennne. A-3

A.3 DebUGING (C-SPY) it A-5

[ P2 T T 2-1
FET SPECITIC IMENUS ..eeiiceieeee sttt e e et e e e e e e e e e et e eeeeaeeeees 3-1
C.1.1 EMULATOR--> DEVICE INFORMATION ......ccoiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee C-2

C.1.2 EMULATOR--> RELEASE JTAG ON GO ...ccoetiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeee C-2

C.1.3 EMULATOR--> RESYNCHRONIZE JTAG ....cottiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e C-2

C.1.4 EMULATOR--> INIT NEW DEVICE ......coottiiiie e C-2

C.1.5 EMULATOR--> SECURE ......cotiiii et C-3

C.1.6 EMULATOR--> SHOW USED BREAKPOINTS ... C-3

C.1.7 EMULATOR--> ADVANCED--> CLOCK CONTROL .......cccovviiiiiiiiiiiiiiiiiiiiiee C-3

C.1.8 EMULATOR--> ADVANCED--> EMULATION MODE .......cccvvvviiiiiieeeeeiiieeee, C-3

C.1.9 EMULATOR--> ADVANCED--> MEMORY DUMP..........ccovviiiiiiiee e, C-3

C.1.10 EMULATOR--> ADVANCED--> BREAKPOINT COMBINER...........ccccvvvvuunn..n. C-3

C.1.11 EMULATOR--> STATE STORAGE CONTROL .....cccovviiiiiiiiiiiiiiiiiiiiiiiee C-3

C.1.12 EMULATOR--> STATE STORAGE WINDOW.......ccovtiiiiiiiiiiiiiiiiiiiiieieieieieeeeeee C-14

C.1.13 EMULATOR--> SEQUENCER CONTROL ....ccoiiiiiiiiii C-4

C.1.14 EMULATOR-->"POWER ON” RESET ......coiii ittt e s C-4

C.1.15 EMULATOR--> GIE ON/Off..ccoiiiiiiieiiieeeeeeeeeeeeeeeeeee C-4

C.1.16 EMULATOR--> LEAVE TARGET RUNNING.........cccoviiiiiiiiiiiieeeeeeeeeeeeee C-4

C.1.17 EMULATOR--> FORCE SINGLE STEPPING........cccovviiiiiiiiiiiiiiiiiiieieieiieeeeeeee C-4

C.1.18 EMULATOR--> SET VCC ...cciiiiiiiiiiiiiiiieiteeeeteeeeeeeteeeee ettt C-4

80-pin MSP430F44x and MSP430F43x Device Emulation ..........ccccccvvviviiiiiiiiiiineennnnn, 4-1
TIto IAR 2.X/3.x Assembler Migration .........ccooiiiiiiiiiiiiiiie e 5-1
E.1 Segment CONrOl........ccooiiiiiiiiii e E-2

E.2 Translating Asm430 Assembler Directives to A430 Directives........cccceeeeennn... E-2
22 A 1o To 13 T3 1T o ISP E-2

S O g T 1= Toi (] g 10T L TSRS UPU PP E-2

E.2.3  Section Control DIF€CHIVES .......ccoceviiiieie et e e ee s E-3

E.2.4 Constant Initialization DIr€CHVES ..........ccouiiiiiiiiiieiiiiiiiee e E-4

E.2.5 Listing Control DIr€CHIVES........cccooiiiiie i E-4

E.2.6 File Reference DIr€CLVES .......cooiiuiiiiiiie et E-5

E.2.7 Conditional-ASSEMDIY Dir€CHVES .......occuuiiiiiiiiieiiiiie e E-5

E.2.8  Symbol Control DIFECHVES ......ccoiiuiiiiiiiiiee ittt E-6

E.2.9  MaCIO DIFECHVES ....cce ittt ettt e e e e e e e e e s e e e e e e ennnnneees E-7

E.2.10 MisCellan@ous DIrCHVES .......ccoiiiiiiiiiiiee ettt E-7

E.2.11 PreproCeSSOr DIFECLIVES ......cccoiiiiiiiiiiiiee ettt e E-7

E.2.12 Alphabetical Listing and Cross Reference of Asm430 Directives ..................... E-8

E.2.13 Additional A430 DireCtives (IAR) .....cooiiiiiiiiiiie ettt E-8
MSP-FET430UIF Installation GUIAE .........cooiiiiiiiieiiiiiiiiiietieeeeeeeeeeeeee e e eeeeeeeees 6-1
F.1 Hardware INStallation ............cccooiieiiiieiiiiei e F-2

viii



Figures

Figure 3-1. Signal Connections for 4-Wire JTAG Communication ................eeeveeeeee.. 3-3
Figure 3-2. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire).....3-4
Figure B-1. MSP-FET430X110, SCheMALIC ....uuuciiiiieciiciiieeiiieee e B-2
Figure B-2. MSP-FET430X110, PCB PictorialS ........ccovvviiiiiiiiii e B-3
Figure B-3. MSP-TS430PW14 Target Socket module, SchematiC....................oo. B-4
Figure B-4. MSP-TS430PW14 Target Socket module, PCB Pictorials ...................... B-5
Figure B-5. MSP-TS430DW28 Target Socket module, SchematicC................ccecoeee. B-6
Figure B-6. MSP-TS430DW28 Target Socket module, PCB Pictorials ...................... B-7
Figure B-7. MSP-TS430DL48 Target Socket module, Schematic.............c.cccvvveeene B-8
Figure B-8. MSP-TS430DL48 Target Socket module, PCB .........ooovviiiiiieiiinn, B-9
Figure B-9. MSP-TS430PM64 Target Socket module, Schematic ................ccevvveee. B-10
Figure B-10. MSP-TS430PM64 Target Socket module, PCB Pictorials................... B-11
Figure B-11. MSP-TSPN8O0 Target Socket module, SchematicC...............cevvveverenenee. B-12
Figure B-12. MSP-TSPNB8O0 Target Socket module, PCB PictorialS......................... B-13
Figure B-13. MSP-TSPZ100 Target Socket module, Schematic................cccvvvvneeee. B-14
Figure B-14. MSP-TSPZ100 Target Socket module, PCB Pictorials ...................... B-15
Figure B-15. MSP-FET430PIF FET Interface module, Schematic..................ccuveee. B-16
Figure B-16. MSP-FET430PIF FET Interface module, PCB Pictorials .................... B-17
Figure B-17. MSP-FET430UIF USB Interface, Schematic .........cccccvvvvviceiiiiiieeeennn, B-18
Figure B-18. MSP-FET430UIF USB Interface, PCB Pictorial........cccccccoceeeeiiineeneenn. B-22
Figure F-1. WinXP Hardware RECOgNItION .....uuuiiiiiiii et F-2
Figure F-2. WIinXP Hardware WizZard.................ueuueeieiiiiieiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees F-2
Figure F-3. WinXP Driver Location Selection Folder.........cccooviiiiiiiiiiiiiiiici e, F-3
Figure F-4. WinXP Driver INStallation...............uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeneeneennnnee F-4
Figure F-5. DEVICE MaANAQGET .......cii ittt e e e e et s e e e e e e e e e et e e e eeeeenens F-5

Tables

Table 2-1. Number of device breakpoints and other emulation features. ................. 2-8

Table D-1. F4xx/80-pin Signal Mapping .....cccouriiiiiiiiiiiiiieeeeee e D-2






Chapter 1

Get Started Now!

This chapter will enable you to inventory your FET, and then it will
instruct you to install the software and hardware, and then run the
demonstration programs.

Topic Page
1.1 Kit Contents, MSP-FET430X110 1-2
1.2 Kit Contents, MSP-FET430PIF 1-2
1.3 Kit Contents, MSP-FET430Pxx0 (‘P120, ‘P140, ‘P410, ‘P430, 1-2

'P440)
1.4 Kit Contents, MSP-FET430UIF 1-3
1.5 Kit Contents, MSP-FET430Uxx (‘U14, ‘U28, ‘U438, ‘U64, ‘U80, 1-3
‘U100)
1.6 Software Installation 1-5
1.7 Hardware Installation, MSP-FET430X110 1-5
1.8 Hardware Installation, MSP-FET430PIF 1-5
1.9 Hardware Installation, MSP-FET430UIF 1-6
1.11 “Flash”ing the LED 1-6

1.12 Important MSP430 Documents on the CD-ROM and WEB 1-7




1.1 Kit Contents, MSP-FET430X110

One READ ME FIRST document.
One MSP430 CD-ROM.

One MSP-FET430X110 Flash Emulation Tool. This is the PCB on which
is mounted a 20-pin ZIF socket for the MSP430F11xIDW,
MSP430F11x1AIDW, or MSP430F11x2IDW device. A 25-conductor
cable originates from the FET for connecting to the PC parallel port.

One small box containing two MSP430F1121AIDW device samples.

1.2 Kit Contents, MSP-FET430PIF

One READ ME FIRST document.

One MSP430 CD-ROM.

One MSP-FET430PIF interface module.
One 25-conductor cable.

One 14-conductor cable.

1.3 Kit Contents, MSP-FET430Pxx0 (‘P120, ‘P140, ‘P410, ‘P430, ‘P440)

1-2

One READ ME FIRST document.
One MSP430 CD-ROM.

One MSP-FET430PIF FET Interface module. This is the unit that has a
25-pin male D-Sub connector on one end of the case, and a 2x7 pin
male connector on the other end of the case.

MSP-FET430P120: One MSP-TS430DW28 Target Socket module. This
is the PCB on which is mounted a 28-pin ZIF socket for the
MSP430F12xIDW or MSP43012x2IDW device. A 2x7 pin male
connector is also present on the PCB.

MSP-FET430P140: One MSP-TS430PM64 Target Socket module. This
is the PCB on which is mounted a 64-pin clam-shell-style socket for
the MSP430F13xIPM, MSP430F14xIPM, MSP430F15xIPM,
MSP430F16xIPM, or MSP430F161xIPM device. A 2x7 pin male
connector is also present on the PCB.

MSP-FET430P410: One MSP-TS430PM64 Target Socket module. This
is the PCB on which is mounted a 64-pin clam-shell-style socket for
the MSP430F41xIPM device. A 2x7 pin male connector is also
present on the PCB.

MSP-FET430P430: One MSP-TS430PN80 Target Socket module. This
is the PCB on which is mounted an 80-pin ZIF socket for the
MSP430F43xIPN device. A 2x7 pin male connector is also present
on the PCB.



MSP-FET430P440: One MSP-TS430PZ100 Target Socket module. This
is the PCB on which is mounted a 100-pin ZIF socket for the
MSP430F43xIPZ or MSP430F44xIPZ device. A 2x7 pin male
connector is also present on the PCB.

One 25-conductor cable.
One 14-conductor cable.

MSP-FET430P120: Four PCB 1x14 pin headers (Two male and two
female).

MSP-FET430P140: Eight PCB 1x16 pin headers (Four male and four
female).

MSP-FET430P410: Eight PCB 1x16 pin headers (Four male and four
female).

MSP-FET430P430: Eight PCB 1x20 pin headers (Four male and four
female).

MSP-FET430P440: Eight PCB 1x25 pin headers (Four male and four
female).

One small box containing two or four MSP430 device samples.
MSP-FET430P120: MSP430F123IDW and/or MSP430F1232IDW
MSP-FET430P140: MSP430F149IPM and/or MSP430F169IPM
MSP-FET430P410: MSP430F413IPM
MSP-FET430P430: MSP430F437IPN and/or MSP430FG439
MSP-FET430P440: MSP430F449IPZ
Consult the device data sheets for device specifications. Device
errata can be found in the respective device product folder on the
web provided as a PDF document. Depending on the device, errata
may also be found in the device bug database at
http://www.ti.com/sc/cgi-bin/buglist.cqi.

1.4 Kit Contents, MSP-FET430UIF
One READ ME FIRST document.
One MSP430 CD-ROM.
One MSP-FET430UIF interface module.
One USB-Cable.

One 14-conductor cable.

1.5 Kit Contents, MSP-FET430Uxx (‘U14, ‘U28, ‘U48, ‘U64, ‘U80, ‘U100)
One READ ME FIRST document.
One MSP430 CD-ROM.

One MSP-FETP430UIF USB-Interface module. This is the unit that has a
USB B-connector on one end of the case, and a 2x7 pin male
connector on the other end of the case.

1-3



1-4

MSP-FET430U14: One MSP-TS430PW14 Target Socket module. This is
the PCB on which is mounted a 20-pin ZIF socket. It fits all MSP430
devices in 14 pin PW-Packages. A 2x7 pin male connector is also
present on the PCB. Note that only the 2-wire JTAG debug mode is
supported (Spy-Bi-Wire) by this Target Socket module.

MSP-FET430U28: One MSP-TS430DW28 Target Socket module. This
is the PCB on which is mounted a 28-pin ZIF socket. It fits all
MSP430 devices in 20 and 28 pin DW-Packages. A 2x7 pin male
connector is also present on the PCB.

MSP-FET430U48: One MSP-TS430DL48 Target Socket module. This is
the PCB on which is mounted a 48-pin ZIF socket. It fits all MSP430
devices in 48 pin DL-Package. A 2x7 pin male connector is also
present on the PCB.

MSP-FET430U64: One MSP-TS430PM64 Target Socket module. This is
the PCB on which is mounted a 64-pin ZIF socket. It fits all MSP430
devices in 64 pin PM-Package. A 2x7 pin male connector is also
present on the PCB.

MSP-FET430U80: One MSP-TS430PN80 Target Socket module. This is
the PCB on which is mounted a 80-pin ZIF socket. It fits all MSP430
devices in 80 pin PN-Package. A 2x7 pin male connector is also
present on the PCB.

MSP-FET430U100: One MSP-TS430PZ100 Target Socket module. This
is the PCB on which is mounted a 100-pin ZIF socket. It fits all
MSP430 devices in 100 pin PZ-Package. A 2x7 pin male connector
is also present on the PCB.

One USB-Cable.
One 14-conductor cable.

MSP-FET430U14: Four PCB 1x7 pin headers (Two male and two
female).

MSP-FET430U28: Four PCB 1x14 pin headers (Two male and two
female).

MSP-FET430U48: Four PCB 2x24 pin headers (Two male and two
female).

MSP-FET430U64: Eight PCB 1x16 pin headers (Four male and four
female).

MSP-FET430U80: Eight PCB 1x20 pin headers (Four male and four
female).

MSP-FET430U100: Eight PCB 1x25 pin headers (Four male and four
female).

One small box containing two or four MSP430 device samples.
MSP-FET430U14: MSP430F2013IPW
MSP-FET430U28: MSP430F123IDW and/or MSP430F1232IDW
MSP-FET430U48: MSP430F4270IDL
MSP-FET430U64: MSP430F4171PM and MSP430F169I1PM
MSP-FET430U80: MSP430FG439



MSP-FET430U100: MSP430F4491PZ

Consult the device data sheets for device specifications. Device
errata can be found in the respective device product folder on the
web provided as a PDF document. Depending on the device, errata
may also be found in the device bug database at
http://www.ti.com/sc/cgi-bin/buglist.cqi.

1.6 Software Installation

Follow the instructions on the supplied READ ME FIRST document to
install the IAR Embedded Workbench Kickstart. Read the file
<Installation Root>\Embedded Workbench x.x\430\doc\readme.htm from
IAR for the latest information about the Workbench. The term Kickstart is
used to refer to the function-limited version of Embedded Workbench
(including C-SPY debugger). Kickstart is supplied on the CD-ROM
included with each FET, and the latest version is available from the
MSP430 web site.

The above documents (and this document) can be accessed using:
START--> PROGRAMS--> IAR SYSTEMS--> IAR EMBEDDED
WORKBENCH KICKSTART FOR MSP430 V3

Kickstart is compatible with WINDOWS 98, 2000, ME, NT4.0, and XP.
However, the USB-FET-Interface works only with WINDOWS 2000 and
XP.

1.7 Hardware Installation, MSP-FET430X110

1) Connect the 25-conductor cable originating from the FET to the
parallel port of your PC. The necessary driver for accessing the PC
parallel port will be installed automatically during IAR Embedded
Workbench installation. Note that a restart is required after the IAR
Embedded Workbench installation for the driver to become active.

2) Ensure that the MSP430F1121AIDW is securely seated in the
socket, and that its pin 1 (indicated with a circular indentation on the
top surface) aligns with the “1” mark on the PCB.

3) Ensure that jumpers J1 (near the non-socketed IC on the FET) and
J5 (near the LED) are in place. Pictorials of the FET and its parts are
presented in 38).

1.8 Hardware Installation, MSP-FET430PIF

1) Use the 25-conductor cable to connect the FET Interface module to
the parallel port of your PC. The necessary driver for accessing the
PC parallel port will be installed automatically during IAR Embedded
Workbench installation. Note that a restart is required after the IAR
Embedded Workbench installation for the driver to become active.

2) Use the 14-conductor cable to connect the parallel port debug
interface module to a target board, such as an MSP-TS430xxx
Target Socket Module.

1-5



1.9 Hardware Installation, MSP-FET430UIF

1)

2)

3)

4)

5)

Use the USB cable to connect the USB-FET Interface module to a
USB port of your PC. The USB FET should be recognized instantly
as the USB device driver should have been installed already with the
Kickstart SW. If for any reason the Install Wizard starts, respond
to the prompts and point the wizard to the driver files which are
located in directory: <Installation Root>\Embedded Workbench
x.x\430\bin\WinXP. Detailed driver installation instructions can
be found in Appendix F.

After connecting to a PC the USB FET performs a selftest where the
red LED flashes for about 2 seconds. If the selftest passed
successfully, the green LED lits permanently.

Use the 14-conductor cable to connect the USB-FET Interface
module to a target board, such as an MSP-TS430xxx Target Socket
Module.

Ensure that the MSP430 device is securely seated in the socket, and
that its pin 1 (indicated with a circular indentation on the top surface)
aligns with the “1” mark on the PCB.

Compared to the parallel port debug interface, the USB FET has
additional features like: JTAG security fuse blow and adjustable
target Ve (1.8V-5.0V); target can be supplied with up to 100mA.

1.10 Hardware Installation, MSP-FET430Uxx (‘U14, ‘U28, ‘U48, ‘U64, ‘U80,
‘U100), MSP-FET430Pxx0 (‘P120, ‘P140, ‘P410, ‘P430, ‘P440)

1)

2)

3)

Connect the MSP-FET430PIF or MSP-FET430UIF debug interface
to the appropriate port of your PC. Use the 14-conductor cable to
connect the FET Interface module to the supplied Target Socket
module.

Ensure that the MSP430 device is securely seated in the socket, and
that its pin 1 (indicated with a circular indentation on the top surface)
aligns with the “1” mark on the PCB.

Ensure that the two jumpers (LED and V¢c) near the 2x7 pin male
connector are in place. Pictorials of the Target Socket module and its
parts are presented in 38).

1.11 “Flash”ing the LED

1-6

This section demonstrates on the FET the equivalent of the C-language
“Hello World!” introductory program; an application that flashes the LED
is developed and downloaded to the FET, and then run.

1)

2)

Start the Workbench (START--> PROGRAMS--> IAR SYSTEMS-->
IAR EMBEDDED WORKBENCH KICKSTART FOR MSP430 V3-->
IAR EMBEDDED WORKBENCH).

Use FILE--> OPEN WORKSPACE to open the file at: <Installation
Root>\Embedded Workbench
x.X\430\FET_examples\fet_projects.eww. The workspace window will
open.



3) Click on the tab at the bottom of the workspace window that
corresponds to your tool (FETxxx) and desired language (assembler
or C).

4) Use PROJECT--> OPTIONS--> FET Debugger--> Setup-->
Connection to select the appropriate port: LPTx for the parallel FET
Interface or TI USB FET for the USB Interface.

5) Use PROJECT--> REBUILD ALL to build and link the source code.
You can view the source code by double-clicking on the project, and
then double-clicking on the displayed source file.

6) Use PROJECT--> DEBUG to start the C-SPY debugger. C-SPY wiill
erase the device Flash, and then download the application object file
to the device Flash.

Refer to FAQ, Debugging #1) if C-SPY is unable to communicate
with the device.

7) Use DEBUG--> GO to start the application. The LED should flash!

8) Use DEBUG--> STOP DEBUGGING to stop debugging, to exit C-
SPY, and to return to the Workbench.

9) Use FILE--> EXIT to exit the Workbench.

Congratulations, you've just built and tested your first MSP430
application!

1.12 Important MSP430 Documents on the CD-ROM and WEB

The primary sources of MSP430 information are the device specific data
sheet and User’s Guide. The most up to date versions of these
documents available at the time of production have been provided on the
CD-ROM included with this tool. The MSP430 web site
(www.ti.com/msp430) will contain the latest version of these documents.

From the MSP430 main page on the CD-ROM, navigate to: Literature-->
MSP430 Literature--> Data Sheets, to access the MSP430 device data
sheets.

From the MSP430 main page on the CD-ROM, navigate to: Literature-->
MSP430 Literature--> User’s Guides, to access the MSP430 device
User’s Guides and tools.

Documents describing the IAR tools (Workbench/C-SPY, the assembiler,
the C compiler, the linker, and the librarian) are located in common\doc
and 430\doc. The documents are in PDF-format. Supplements to the
documents (i.e., the latest information) are available in HTML-format
within the same directories. 430\doc\readme_start.htm provides a
convenient starting point for navigating the IAR documentation.

1-7



1-8



Chapter 2

Development Flow

This chapter discusses how to use Kickstart to develop your application
software, and how to use C-SPY to debug it.

Topic Page
2.1 Overview 2-2
2.2 Using Kickstart 2-2
2.2.1 Project Settings 2-3
2.2.2 Creating a Project from Scratch 2-5
2.2.3 Using an Existing IAR V1.x/V2.x Project 2-6
2.2.4 Stack Management and .xcl Files 2-6
2.2.5 How to Generate Texas Instruments .TXT (and other format) 2-7

Files
2.2.6 Overview of Example Programs 2-7
2.3 Using C-SPY 2-8
2.3.1 Breakpoint Types 2-8
2.3.2 Using Breakpoints 2-9
2.3.3 Using Single Step 2-9
2.3.4 Using Watch Windows 2-11




2.1 Overview

Applications are developed in assembler and/or C using the Workbench,
and they are debugged using C-SPY. C-SPY is seamlessly integrated
into the Workbench. However, it is more convenient to make the
distinction between the code development environment (Workbench) and
the debugger (C-SPY). C-SPY can be configured to operate with the
FET (i.e., an actual MSP430 device), or with a software simulator of the
device. Kickstart is used to refer to the Workbench and C-SPY
collectively. The Kickstart software tools are a product of IAR.

Documentation for the MSP430 family and Kickstart is extensive. The
CD-ROM supplied with this tool contains a large amount of
documentation describing the MSP430. The MSP430 home page
(www.ti.com/msp430) is another source of MSP430 information. The
components of Kickstart (workbench/debugger, assembler, compiler,
linker) are fully documented in <Installation Root>\Embedded
Workbench x.x\common\doc and <Installation Root>\Embedded
Workbench\430\doc. .htm files located throughout the Kickstart directory
tree contain the most up to date information and supplement the .pdf
files. In addition, Kickstart documentation is available on-line via HELP.

Read Me Firsts from IAR and TI, and this document, can be accessed
using:

START--> PROGRAMS--> IAR SYSTEMS--> IAR EMBEDDED
WORKBENCH KICKSTART FOR MSP430 V3

Tool User’s Guide Most Up To Date
Information
Workbench/C-SPY EW430_UsersGuide.pdf readme.htm, ew430.htm,

¢s430.htm, cs430f.htm,

Assembler EW430_AssemblerReference.pdf a430.htm, a430 _msg.htm
Compiler EW430_CompilerReference.pdf icc430.htm, icc430_msg.htm
C library CLibrary.htm

Linker and Librarian xlink.pdf xlink.htm, xman.htm, xar.htm

2.2 Using Kickstart

2-2

The Kickstart development environment is function-limited. The following
restrictions are in place:

* The C compiler will not generate an assembly code list file.

* The linker will link a maximum of 4K bytes of code originating
from C source (but an unlimited amount of code originating from
assembler source).




*  The simulator will input a maximum of 4K bytes of code.

A “Full” (i.e., unrestricted) version of the software tools can be purchased
from IAR. A mid-featured tool set — called “Baseline”, with a 12K byte C
code size limitation and basic floating-point operations — is also available
from IAR. Consult the IAR web site (www.iar.se) for more information.

2.2.1 Project Settings

The settings required to configure the Workbench and C-SPY are
numerous and detailed. Please read and thoroughly understand the
documentation supplied by IAR when dealing with project settings.
Please review the project settings of the supplied assembler and C
examples; the project settings are accessed using: PROJECT-->
OPTIONS with the project name selected. Use these project settings as
templates when developing your own projects. Note that if the project
name is not selected when settings are made, the settings will be applied
to the selected file (and not to the project).

The following project settings are recommended/required:
Specify the target device (GENERAL OPTIONS--> TARGET--> DEVICE)

Enable an assembler project or a C/assembler project (GENERAL
OPTIONS--> TARGET--> ASSEMBLER ONLY PROJECT)

Enable the generation of an executable output file (GENERAL
OPTIONS--> OUTPUT--> OUTPUT FILE--> EXECUTABLE)

In order to most easily debug a C project, disable optimization (C/C++
COMPILER--> CODE--> OPTIMIZATIONS--> SIZE--> NONE (BEST
DEBUG SUPPORT))

Enable the generation of debug information in the compiler output
(C/IC++ COMPILER --> OUTPUT--> GENERATE DEBUG INFO)

Specify the search path for the C preprocessor (C/C++ COMPILER -->
PREPROCESSOR--> INCLUDE PATHS)

Enable the generation of debug information in the assembler output
(ASSEMBLER--> OUTPUT--> GENERATE DEBUG-INFO)

Specify the search path for the assembler preprocessor (ASSEMBLER --
> PREPROCESSOR--> INCLUDE PATHS)

In order to debug the project using C-SPY, specify a compatible format
(LINKER--> OUTPUT--> FORMAT--> DEBUG INFO [WITH
TERMINAL 10])

Specify the search path for any used libraries (LINKER--> CONFIG-->
SEARCH PATHS)

Specify the C-SPY driver. Select PROJECT--> OPTIONS--> Debugger--
> Setup--> Driver--> FET Debugger to debug on the FET (i.e.,
MSP430 device). Select SIMULATOR to debug on the simulator. If
FET Debugger is selected, use PROJECT--> OPTIONS--> FET
Debugger--> Setup--> Connection to select the appropriate port:

2-3



LPTx for the parallel FET Interface or TI USB FET for the USB
Interface.

Enable the Device Description file. This file makes C-SPY “aware” of the
specifics of the device it is debugging. This file will correspond to the
specified target device (DEBUGGER--> SETUP--> DEVICE
DESCRIPTION--> OVERRIDE DEFAULT)

Enable the erasure of the Main and Information memaories before object
code download (FET DEBUGGER--> SETUP--> DOWNLOAD
CONTROL--> ERASE MAIN AND INFORMATION MEMORY)

In order to maximize system performance during debug, disable Virtual
Breakpoints (FET DEBUGGER--> SETUP --> USE VIRTUAL
BREAKPOINTS), and disable all System Breakpoints (FET
DEBUGGER--> SETUP --> SYSTEM BREAKPOINTS ON)

Note: Use of Factory Settings to quickly configure a project

It is possible to use the Factory Settings button to quickly configure a
project to a usable state.

The following steps can be used to quickly configure a project:

Note: The GENERAL OPTIONS tab does not have a FACTORY
SETTINGS button

1) Specify the target device (GENERAL OPTIONS --> TARGET-->
DEVICE)

2) Enable an assembler project or a C/assembler project (GENERAL
OPTIONS --> TARGET--> ASSEMBLER ONLY PROJECT)

3) Enable the generation of an executable output file (GENERAL
OPTIONS --> OUTPUT--> OUTPUT FILE--> EXECUTABLE)

4) Accept the factory settings for the compiler (C/C++ COMPILER-->
FACTORY SETTINGS)

5) Accept the factory settings for the assembler (ASSEMBLER-->
FACTORY SETTINGS)

6) Accept the factory settings for the linker (LINKER--> FACTORY
SETTINGS)

7) Accept the factory settings for C-SPY (DEBUGGER--> FACTORY
SETTINGS)

8) To debug on the hardware, select DEBUGGER --> SETUP-->
DRIVER--> FET DEBUGGER

9) Specify the active parallel port used to interface to the FET if not
LPT1 (FET DEBUGGER --> SETUP--> CONNECTION--> LPTX) or
specify the USB port (FET DEBUGGER --> SETUP-->
CONNECTION--> TI USB FET)




Note: Avoid the use of absolute pathnames when referencing files.

Instead, use the relative pathname keywords $TOOLKIT_DIR$ and
$PROJ_DIRS$. Refer to the IAR documentation for a description of these
keywords. The use of relative pathnames will permit projects to be
moved easily, and projects will not require modification when IAR
systems are upgraded (say, from Kickstart, or Baseline, to Full).

2.2.2 Creating a Project from Scratch

The following section presents step-by-step instructions to create an
assembler or C project from scratch, and to download and run the
application on the MSP430. Refer to Project Settings above. Also, the
MSP430 IAR Embedded Workbench IDE User Guide presents a more
comprehensive overview of the process.

1) Start the Workbench (START--> PROGRAMS--> IAR SYSTEMS-->
IAR EMBEDDED WORKBENCH KICKSTART FOR MSP430 V3-->
KICKSTART IAR EMBEDDED WORKBENCH).

2) Create a new text file (FILE--> NEW--> SOURCE/TEXT).

3) Enter the program text into the file.

Note: Use .h files to simplify your code development

Kickstart is supplied with files for each device that define the device
registers and the bit names, and these files can greatly simplify the task
of developing your program. The files are located in <Installation
Root>\Embedded Workbench x.x\430\inc. Simply include the .h file
corresponding to your target device in your text file (#include
“msp430xyyy.h”). Additionally, files i0430xxxx.h are provided, and are
optimized to be included by C source files.

4) Save the text file (FILE--> SAVE).

It is recommended that assembler text file be saved with a file type
suffix of “.s43”, and that C text files be saved with a file type suffix of
“.C”.

5) Create a new workspace (FILE--> NEW--> WORKSPACE). Specify
a workspace name and press SAVE.

6) Create a new project (PROJECT--> CREATE NEW PROJECT).
Specify a project name and press CREATE

7) Add the text file to the project (PROJECT--> ADD FILES). Select the
text file and press OPEN. Alternatively, double-click on the text file to
add it to the project.

2-5



Note: How to add assembler source files to your project

The default file type presented in the Add Files window is “C/C++ Files”.
In order to view assembler files (.s43), select “Assembler Files” in the
“Files of type” drop-down menu.

8)

8)
9)

Configure the project options (PROJECT--> OPTIONS). For each of
the listed subcategories (GENERAL OPTIONS, C/C++ COMPILER,
ASSEMBLER, LINKER, DEBUGGER), accept the default Factory
Settings with the following exceptions:

Specify the target device (GENERAL OPTIONS--> TARGET-->
DEVICE)

Enable an assembler project or a C/assembler project (GENERAL
OPTIONS --> TARGET--> ASSEMBLER ONLY PROJECT)

Enable the generation of an executable output file (GENERAL
OPTIONS --> OUTPUT--> OUTPUT FILE--> EXECUTABLE)

To debug on the FET (i.e., the MSP430), select DEBUGGER -->
SETUP--> DRIVER--> FET DEBUGGER

Specify the active port used to interface to the FET (FET
DEBUGGER --> SETUP--> CONNECTION)

Build the project (PROJECT--> REBUILD ALL).

Debug the application using C-SPY (PROJECT--> DEBUG). This will
start C-SPY, and C-SPY will get control of the target, erase the
target memory, program the target memory with the application, and
reset the target.

Refer to FAQ, Debugging #1) if C-SPY is unable to communicate
with the device.

10) Use DEBUG--> GO to start the application.

11) Use DEBUG--> STOP DEBUGGING to stop the application, to exit

C-SPY, and to return to the Workbench.

12) Use FILE--> EXIT to exit the Workbench.

2.2.3 Using an Existing IAR V1.x/V2.x Project

It is possible to use an existing project from an IAR V1.x/V2.x system
with the new IAR V3.x system; refer to the IAR document Step by step
migration for EW430 x.xx. This document can be located in: <Installation
Root>\Embedded Workbench x.x\430\doc\migration.htm

2.2.4 Stack Management and .xcl Files

2-6

The reserved stack size can be configured through either the project
options dialog (GENERAL OPTIONS--> STACK/HEAP) or through direct
modification of the .xcl linker control files. These files are input to the
linker, and contain statements that control the allocation of device




memory (RAM, Flash). Refer to the IAR XLINK documentation for a
complete description of these files. The .xcl files provided with the FET
(<Installation Root>\Embedded Workbench
x.X\430\config\Ink430xxxx.xcl) define a relocatable segment (RSEG)
called CSTACK. CSTACK is used to define the region of RAM that is
used for the system stack within C programs. CSTACK can also be used
in assembler programs [MOV.W #SFE(CSTACK), SP]. CSTACK is
defined to extend from the last location of RAM for 50 bytes (i.e., the
stack extends downwards through RAM for 50 bytes).

Other statements in the .xcl file define other relocatable regions that are
allocated from the first location of RAM to the bottom of the stack. It is
critical to note that:

1. The supplied .xcl files reserve 50 bytes of RAM for the
stack, regardless if this amount of stack is actually required
(or if it is sufficient).

2. Thereis no runtime checking of the stack. The stack can
overflow the 50 reserved bytes and possible overwrite the
other segments. No error will be output.

The supplied .xcl files can be easily modified to tune the size of the stack
to the needs of the application; simply edit -D_STACK_SIZE=xx to
allocate xx bytes for the stack. Note that the .xcl file will also reserve 50
byes for the heap if required (say, by malloc()).

2.2.5 How to Generate Texas Instruments .TXT (and other format) Files

The Kickstart linker can be configured to output objects in TI .TXT format
for use with the GANG430 and PRGS430 programmers. Select:
PROJECT--> OPTIONS--> LINKER--> OUTPUT--> FORMAT-->
OTHER--> MSP430-TXT. Intel and Motorola formats can also be
selected.

Refer to FAQ, Program Development #6).

2.2.6 Overview of Example Programs

Example programs for MSP430 devices are provided in <Installation
Root>\Embedded Workbench x.x\430\FET_examples. Each tool folder
contains folders that contain the assembler and C sources.

<Installation Root>\Embedded
Workbench\x.x\430\FET_examples\fet_projects.eww conveniently
organizes the FET_1 demonstration code into a workspace. The
workspace contains assembler and C projects of the code for each of the
FET tools. Debug and Release versions are provided for each of the
projects.

<Installation Root>\Embedded Workbench
x.X\430\FET_examples\code_examples.eww conveniently organizes the
code examples into a workspace. The workspace contains assembler
and C projects of the code for each of the FET tools. Debug and Release
versions are provided for each of the projects.

2-7



<Installation Root>\Embedded Workbench
x.X\430\FET_examples\contents.htm conveniently organizes and
documents the examples.

Additional code examples can be found on the MSP430 home page
under Design Resources.

Note: Some example programs require a 32KHz crystal on LFXT1, and
not all FETs are supplied with a 32KHz crystal.

2.3 Using C-SPY

Refer to Error! Reference source not found. for a description of FET-
specific menus within C-SPY.

2.3.1 Breakpoint Types

The C-SPY breakpoint mechanism makes use of a limited number of on-
chip debugging resources (specifically, N breakpoint registers, refer to
Table 2-1 below). When N or fewer breakpoints are set, the application
runs at full device speed (or “Realtime”). When greater than N
breakpoints are set and Use Virtual Breakpoints is enabled (FET
DEBUGGER--> SETUP--> USE VIRTUAL BREAKPOINTS), the
application runs under the control of the host PC; the system operates at
a much slower speed, but offers unlimited software breakpoint (or “Non-
Realtime”). During Non-Realtime mode, the PC effectively repeatedly
single steps the device and interrogates the device after each operation
to determine if a breakpoint has been hit.

Both (code) address and data (value) breakpoints are supported. Data
breakpoints and range breakpoints each require two MSP430 hardware
breakpoints.

Table 2-1. Number of device breakpoints and other emulation features.

Device 4-Wire  2-Wire Breakpoints Range Clock State Trace
JTAG JTAGT (N) Breakpoints  Control Sequencer Buffer

MSP430F11x1
MSP430F11x2
MSP430F12x
MSP430F12x2
MSP430F13x
MSP430F14x
MSP430F15x
MSP430F16x
MSP430F161x
MSP430F20xx
MSP430F21x1
MSP430F41x
MSP430F42x
MSP430F42x0
MSP430F43x
MSP430F44x
MSP430FE42x
MSP430FG43x
MSP430FW42x
T The 2-wire JTAG debug interface is also referred to as Spy-Bi-Wire interface

2

XXXXXXXXXXXXXXXXXXX
X
NNNWWONNNNNOOGWODWWNNN
XX X X X
X X X
X X X

XXXXXXXXXXXXX

2-8



2.3.2 Using Breakpoints

If C-SPY is started with greater than N breakpoints set and virtual
breakpoints are disabled, a message will be output that informs the user
that only N (Realtime) breakpoints are enabled (and one or more
breakpoints are disabled). Note that the workbench permits any number
of breakpoints to be set, regardless of the USE VIRTUAL
BREAKPOINTS setting of C-SPY. If virtual breakpoints are disabled, a
maximum of N breakpoints can be set within C-SPY.

RESET’ing a program temporarily requires a breakpoint if PROJECT-->
OPTIONS--> DEBUGGER--> SETUP--> RUN TO is enabled. Refer to
FAQ, Debugging #31).

The RUN TO CURSOR operation temporarily requires a breakpoint.
Consequently, only N-1 breakpoints can be active when RUN TO
CURSOR is used if virtual breakpoints are disabled. Refer to FAQ,
Debugging #32).

If, while processing a breakpoint, an interrupt becomes active, C-SPY
will stop at the first instruction of the interrupt service routine. Refer to
FAQ, Debugging #25).

2.3.3 Using Single Step

When debugging an assembler file, STEP OVER, STEP OUT, and
NEXT STATEMENT operate like STEP INTO; the current instruction is
executed at full speed.

When debugging an assembler file, a step operation of a CALL
instruction stops at the first instruction of the CALL’ed function.

When debugging an assembler file, a (true) STEP OVER a CALL
instruction that executes the CALL’ed function at full device speed can
be synthesized by placing a breakpoint after the CALL and GO'’ing (to
the breakpoint in “Realtime mode”).

When debugging a C file, a single step (STEP) operation executes the
next C statement. Thus, it is possible to step over a function reference. If
possible, a hardware breakpoint will be placed after the function
reference and a GO will be implicitly executed. This will cause the
function to be executed at full speed. If no hardware breakpoints are
available, the function will be executed in Non-Realtime mode. STEP
INTO is supported. STEP OUT is supported.

Within Disassembly mode (VIEW--> DISASSEMBLY), a step operation
of a non-CALL instruction executes the instruction at full device speed.

Within Disassembly mode (VIEW--> DISASSEMBLY), a step operation
of a CALL instruction will place — if possible - a hardware breakpoint after
the CALL instruction, and then execute GO. The CALL'ed function will
execute at full device speed. If no hardware breakpoint is available prior
to the GO, the CALL’ed function will be executed in Non-Realtime mode.
In either case, execution will stop at the instruction following the CALL.

2-9



2-10

It is only possible to single step when source statements are present.
Breakpoints must be used when running code for which there is no
source code (i.e., place the breakpoint after the CALL to the function for
which there is no source, and then GO to the breakpoint in “Realtime
mode”).

If, during a single step operation, an interrupt becomes active, the
current instruction is completed and C-SPY will stop at the first
instruction of the interrupt service routine. Refer to FAQ, Debugging
#25).



2.3.4 Using Watch Windows

The C-SPY Watch Window mechanism permits C variables to be
monitored during the debugging session. Although not originally
designed to do so, the Watch Window mechanism can be extended to
monitor assembler variables.

Assume that the variables to watch are defined in RAM, say:

RSEG DATA16_|
varword ds 2 ; two bytes per word
varchar ds 1 ; one byte per character

In C-SPY:
1) Open the Watch Window: VIEW--> WATCH
2) Use DEBUG--> QUICK WATCH

3) To watch varword, enter in the Expression box:
(__datal6 unsigned int *) varword

4) To watch varchar, enter in the Expression box:
(__datal6 unsigned char *) varchar

5) Press the Add Watch button
6) Close the Quick Watch window

7) For the created entry in the Watch Window, click on the + symbol.
This will display the contents (or value) of the watched variable.

To change the format of the displayed variable (default, binary, octal,
decimal, hex, char), select the type, click the right mouse button, and
then select the desired format. The value of the displayed variable can
be changed by selecting it, and then entering the new value.

In C, variables can be watched by selecting them and then dragging-n-
dropping then into the Watch Window.

Since the MSP430 peripherals are memory mapped, it is possible to
extend the concept of watching variables to watching peripherals. Be
aware that there may be side effects when peripherals are read and

written by C-SPY. Refer to FAQ, Debugging #23).

CPU core registers can be specified for watching by preceding their
name with ‘# (i.e., #PC, #SR, #SP, #R5, etc.).

Variables watched within the Watch Window are only updated when C-
SPY gets control of the device (say, following a breakpoint hit, a single
step, or a STOP/escape).

Although registers can be monitored in the Watch Window, VIEW-->
REGISTER is a superior method.

2-11



2-12



Chapter 3

Design Considerations for In-Circuit
Programming

This chapter presents signal requirements for in-circuit programming of

the MSP430.
Topic Page
3.1 Signal Connections for In-System Programming and Debugging, 3-2

MSP-FET430PIF, MSP-FET430UIF, GANG430, PRGS430

3.2 External Power 3-4

3.3 Bootstrap Loader 3-5




3.1 Signal Connections for In-System Programming and Debugging, MSP-

3-2

FET430PIF, MSP-FET430UIF, GANG430, PRGS430

With the proper connections, you can use the C-SPY debugger and an
FET hardware JTAG interface such as the MSP-FETP430IF and MSP-
FET430UIF to program and debug code on your own target board. In
addition, the connections will also support the GANG430 or PRGS430
production programmers, thus providing an easy way to program
prototype boards, if desired.

Figure 3-1 shows the connections between the 14-pin FET Interface
module connector and the target device required to support in-system
programming and debugging using C-SPY for 4-wire JTAG
communication. Figure 3-2 shows the connections for 2-wire JTAG mode
(Spy-Bi-Wire). While 4-wire JTAG mode is generally supported on all
MSP430 devices, 2-wire JTAG mode is available on selected devices
only. Refer to Table 2-1 above for information on which interfacing
method can be used on which device.

The connections for the FET Interface module and the GANG430 or
PRGSA430 are identical. Both the FET Interface module and GANG430
can supply Vcc to your target board (via pin 2). In addition, the FET
Interface module and GANG430 have a Vqc-sense feature that, if used,
requires an alternate connection (pin 4 instead of pin 2). The V¢c-sense
feature senses the local V¢ (present on the target board, i.e., a battery
or other local power supply) and adjusts the output signals accordingly. If
the target board is to be powered by a local V¢, then the connection to
pin 4 on the JTAG should be made, and not the connection to pin 2. This
utilizes the Vcc-sense feature and prevents any contention that might
occur if the local on-board V¢ were connected to the V¢ supplied from
the FET Interface module or the GANG430. If the Vc-sense feature is
not necessary (i.e., the target board is to be powered from the FET
Interface module or the GANG430) the V¢ connection is made to pin 2
on the JTAG header and no connection is made to pin 4. Figure 3-1 and
Figure 3-2 show a jumper block which supports both scenarios of
supplying Vcc to the target board. If this flexibility is not required, the
desired Vcc connections may be hard-wired eliminating the jumper block.
Pins 2 and 4 must not be connected simultaneously.

Note that in 4-Wire JTAG communication mode (Figure 3-1), the
connection of the target RST signal to the JTAG connector is optional
and not required. The MSP430 development tools and device
programmers perform a target reset through issuing a JTAG command to
gain control over the device. However, in the case this should be
unsuccessful, the RST signal of the JTAG connector may be used by the
development tool or device programmer as an additional way to assert a
device reset.



———————O J1t

Vee

®
— 0 J2¢t
—> c2 C3
R1% § 10uF 77 0.1uF
47kQ
JTAG . =
VCC TOOL | ,, 1 | TDO/TDI
VCC TARGET | , 5 | TDIVPP
o P 5 | Vs
TESTAVPP | - LTCK
>e 10 9 GND
— 12 11 |RSTY ®
XK—] 14 13 —X

Vee/ AVec/ DVee

MSP430Fxxx

RST/NMI
TDO/TDI
TDINPP
T™S
TCK

TEST/VPP§
Vss/ AVss/ DVss

Figure 3-1. Signal Connections for 4-Wire JTAG Communication

Make either connection J1 to power target from the debug/programming adapter OR connection J2 in case a local

target power supply is used.
The RST/NMI pin R1/C1 configuration is device family dependent. Refer to the respective MSP430 Family User's

Guide for the recommended configuration.
The TEST/VPP pin is only available on MSP430 family members with multiplexed JTAG pins. Refer to the device data

sheet to see if this pin is available.
The connection to the JTAG connector RST pin is optional and not required for device programming or debugging.

3-3




Vee

-
2 it *—o Vee/ AVee/ DV,
JZT CcC CcC cC
—> c2 Cc3
10uF 7T 7T O0ApF
Rit 2 MSP430Fxxx
VCC TOOL |, 1 |{RO/TDI ® RST/NMI/SBWTDIO
VCC TARGET| , 3|—x
W 6 5 ?<
TESTAVPP | o B el
|10 o |GND
»X— 12 11 —X R2§
X—14 13X 3300
TEST/SBWTCK
p— C1¢ VSS/AVSS/ DVSS
10nF

Figure 3-2. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)

T Make either connection J1 to power target from the debug/programming adapter OR connection J2 in case a local
target power supply is used.

F The RST pin R1/C1 configuration is device family dependent. Refer to the respective MSP430 Family User's Guide for
the recommended configuration. Note that the device RST/NMI/SBWTDIO pin is used in 2-wire mode for bi-directional
communication with the device during JTAG access and that increased capacitance (C1) may affect the ability to
establish a connection with the device.

8§ R2 is used to protect the JTAG debug interface TCK signal against the JTAG security fuse blow voltage that is supplied
by the TEST/VPP pin during the fuse blow process. In the case that fuse blow functionality is not needed, R2 is not
required (becomes 00) and the connection TEST/VPP must not be made.

3.2 External Power

3-4

The PC parallel port can only source a limited amount of current. Owing
to the ultra low power capability of the MSP430, a stand-alone FET does
not exceed the available current. However, if additional circuitry is added
to the tool, this current limit could be exceeded. In this case, external
power can be supplied to the tool via connections provided on the MSP-
FET430X110 and the Target Socket modules. Refer to the schematics
and pictorials of the MSP-FET430X110 and the Target Socket modules
presented in 38) to locate the external power connectors.

The MSP-FET430UIF can supply targets with up to 100mA through pin 2
of the 14-pin connector. Vc for the target can be selected between 1.8V
and 5.0V in steps of 0.1V. Alternatively the target can be supplied
externally. In this case, the external voltage should be connected to pin 4
of the 14-pin connector. The MSP-FET430UIF then adjusts the level of



the JTAG signals to external Vcc automatically. Only pin 2 (MSP-
FET430UIF supplies target) OR pin 4 (target is externally supplied) must
be connected, not both at the same time.

When an MSP-FET430X110 is powered from an external supply, an on-
board device regulates the external voltage to the level required by the
MSP430.

When a Target Socket module is powered from an external supply, the
external supply powers the device on the Target Socket module and any
user circuitry connected to the Target Socket module, and the FET
Interface module continues to be powered from the PC via the parallel
port. If the externally supplied voltage differs from that of the FET
Interface module, the Target Socket module must be modified so that the
externally supplied voltage is routed to the FET Interface module (so that
it may adjust its output voltage levels accordingly). Again, refer to the
Target Socket module schematics in 38).

3.3 Bootstrap Loader

The JTAG pins provide access to the Flash memory of the MSP430Fxxx
devices. On some devices, these pins are shared with the device port
pins, and this sharing of pins can complicate a design (or it may simply
not be possible to do so). As an alternative to using the JTAG pins, most
MSP430Fxxx devices contain a program (a “Bootstrap Loader”) that
permits the Flash memory to be erased and programmed simply, using a
reduced set of signals. Application Notes SLAA089 and SLAAQ96 fully
describe this interface. Tl does not produce a BSL tool. However,
customers can easily develop their own BSL tools using the information
in the Application Notes, or BSL tools can be purchased from 3 parties.
Refer to the MSP430 web site for the Application Notes and a list of
MSP430 3" party tool developers.

Texas Instruments suggests that MSP430Fxxx customers design their
circuits with the BSL in mind (i.e., we suggest providing access to these
signals, e.g. via a header).

Refer to FAQ, Hardware #9) for a second alternative to sharing the JTAG
and port pins.

The BSL tool requires the following device signals:

RST/NMI
TESTY

TCKt

GND

VCC

P1.1

P2.2 or P1.0%

Oooooono

T If present on device.
F ‘“Ixx/‘2xx devices use pins P1.1 and P2.2 for the BSL. ‘4xx devices use pins P1.0 and
P1.1 for the BSL.

3-5



3-6



Appendix A

Frequently Asked Questions

This appendix presents solutions to frequently asked questions regarding
hardware, program development, and debugging tools.

Topic Page
A.1 Hardware A-2
A.2 Program Development (Assembler, C-Compiler, Linker) A-3

A.3 Debugging (C-SPY) A-5




Al

A-2

Hardware

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

The state of the device (CPU registers, RAM memory, etc.) is
undefined following a reset. Exceptions to the above statement are
that the PC is loaded with the word at Oxfffe (i.e., the reset vector),
the status register is cleared, and the peripheral registers (SFRs) are
initialized as documented in the device Family User's Guides. C-SPY
resets the device after programming it.

When the MSP-FET430X110 is used as an interface to an MSP430
on the user’s circuit (i.e., there is no MSP430 device in the FET
socket), the XOUT and XIN signals from the FET should not be
connected to the corresponding pins of the in-circuit MSP430.
Similarly, when using the Interface module, do not connect the
XOUT and XIN signals from the Interface module to the
corresponding pins of the in-circuit MSP430.

The 14-conductor cable connecting the FET Interface module and
the Target Socket module must not exceed 8 inches (20
centimeters) in length.

The signal assignment on the 14-conductor cable is identical for
the parallel port interface and the USB FET.

To utilize the on-chip ADC voltage references, C6 (10uF, 6.3V,
low leakage) must be installed on the Target Socket module.

Crystals/resonators Q1 and Q2 (if applicable) are not provided on
the Target Socket module. For MSP430 devices which contain user
selectable loading capacitors, the effective capacitance is the
selected capacitance plus 3pF (pad capacitance) divided by two.

Crystals/resonators have no effect upon the operation of the
tool and C-SPY (as any required clocking/timing is derived from the
internal DCO/FLL).

On 20-pin and 28-pin devices with multiplexed port/JTAG pins
(P1.4-P1.7), it is required that “RELEASE JTAG ON GO” be
selected in order to use these pins in their port capacity. Refer
to C.1.2 EMULATOR--> RELEASE JTAG ON GO for additional
information regarding this mechanism.

As an alternative to sharing the JTAG and port pins (on 20 and
28 pin devices), consider using an MSP430 device that is a
“superset” of the smaller device. A very powerful feature of the
MSP430 is that the family members are code and architecturally
compatible, so code developed on one device (say, without shared
JTAG and port pins) will port effortlessly to another (assuming an
equivalent set of peripherals).

Information Memory may not be blank (erased to 0xff) when the
device is delivered from TIl. Customers should erase the Information
Memory before its first usage. Main Memory of packaged devices is
blank when the device is delivered from TI.



11) The device current increases by approximately 10uA when a

device in low power mode is stopped (using ESC), and then the
low power mode is restored (using GO). This behavior appears to
happen on all devices except the MSP430F12x.

12) The following ZIF sockets are used in the FET tools and Target

Socket modules:

20-pin device (PW package): Yamaichi IC189-0202-64
28-pin device (DW package): Wells-CTI 652 D028
48-pin device (DL package): Yamaichi IC51-0482-1163
64-pin device (PM package): Yamaichi IC51-0644-807
80-pin device (PN package): Yamaichi 1C201-0804-014
100-pin device (PZ package): Yamaichi IC201-1004-008

OoOoOoooo

Wells-CTI:_http://www.wellscti.com/

Yamaichi: http://www.yamaichi.us/

A.2  Program Development (Assembler, C-Compiler, Linker)

1)

2)

3)

4)

5)

6)

7

8)

The files supplied in the 430\tutor folder work only with the
simulator. Do not use the files with the FET. Refer to FAQ: Program
Development #11)

A common MSP430 “mistake” is to fail to disable the Watchdog
mechanism; the Watchdog is enabled by default, and it will reset the
device if not disabled or properly handled by your application. Refer
to FAQ, Program Development #14).

When adding source files to a project, do not add files that are
#include’ed by source files that have already been added to the
project (say, an .h file within a .c or .s43 file). These files will be
added to the project file hierarchy automatically.

In assembler, enclosing a string in double-quotes (“string”)
automatically appends a zero byte to the string (as an “End Of
String” marker). Enclosing a string in single-quotes (‘string’) does
not.

When using the compiler or the assembler, if the last character of a
source line is backslash (\), the subsequent carriage return/line
feed is ignored (i.e., it is as if the current line and the next line are a
single line). When used in this way, the backslash character is a
“Line Continuation” character.

The linker output format must be “Debug information for C-
SPY” (.d43) for use with C-SPY. C-SPY will not start otherwise,
and an error message will be output. C-SPY cannot input a . TXT file.

Position Independent code can be generated (using PROJECT-->
OPTIONS--> GENERAL OPTIONS--> TARGET--> POSITION-
INDEPENDENT CODE).

Within the C libraries, GIE (Global Interrupt Enable) is disabled
before (and restored after) the hardware multiplier is used.
Contact Tl if you wish the source code for these libraries so that this
behavior can be disabled.

A-3



A4

9) Itis possible to mix assembler and C programs within the
Workbench. Refer to the Assembler Language Interface chapter of
the C/C++ Compiler Reference Guide from IAR.

10) The Workbench can produce an object file in Texas Instruments
.TXT format. C-SPY cannot input an object file in Texas
Instruments .TXT format. An error message will be output in this
case.

11) The example programs giving in the Kickstart documentation
(i.e., Demo, Tutor, etc.) are not correct. The programs will work
only in the simulator. However, the programs will not function
correctly on an actual device because the Watchdog mechanism is
active. The programs need to be modified to disable the Watchdog
mechanism. Disable the Watchdog mechanism with the C-statement:
“WDTCTL = WDTPW + WDTHOLD;", or
“mov.w # WDTPW+WDTHOLD,&WDTCTL” in assembler.

12) Access to MPY using an 8-bit operation is flagged as an error.
Within the .h files, 16-bit registers are defined in such a way that 8-bit
operations upon them are flagged as an error. This “feature” is
normally a good thing and can catch register access violations.
However, in the case of MPY, it is also valid to access this register
using 8-bit operators. If 8-bit operators are used to access MPY, the
access violation check mechanism can be defeated by using “MPY _”"
to reference the register. Similarly, 16-bit operations on 8-bit
registers are flagged.

13) Constant definitions (#define) used within the .h files are
effectively “reserved”, and include, for example, C, Z, N, and V. Do
not create program variables with these names.

14) The CSTARTUP that is implicitly linked with all C applications
does not disable the Watchdog timer. Use WDT = WDTPW +
WDTHOLD; to explicitly disable the Watchdog. This statement is
best placed in the __low_level_init() function that gets executed
before main().

If the Watchdog timer is not disabled and the Watchdog triggers and
resets the device during CSTARTUP, the source screen will go
blank as C-SPY is not able to locate the source code for
CSTARTUP. Be aware that CSTARTUP can take a significant
amount of time to execute if a large number of initialized global
variables are used.

int _low_level _init(void)

{

/* Insert your lowlevel initializations here */

WDTCTL = WDTPW + WDTHOLD; // Stop Watchdog tiner

[ *== = ===*/
/* Choose if segnent initialization */
/* shoul d be done or not. */

/* Return: O to omt seg_init */

/* 1torun seg_init */

[ *== = ===*/
return (1);



15) Compiler optimization can remove unused variables and/or
statements that have no effect, and can effect debugging.
Optimization: NONE is supported within PROJECT--> OPTIONS-->
C/C++ COMPILER--> CODE--> OPTIMIZATIONS. Alternatively,
variables can be declared volatile.

16) The IAR Tutorial assumes a Full or Baseline version of the
Workbench. Within a Kickstart system, it is not possible to configure
the C compiler to output assembler mnemonics.

17) Existing projects from an IAR 1.x system can be used within the
new IAR 2.x/3.x system; refer to the IAR document Migration guide
for EW430 x.x. This document can be located in: <Installation
Root>\Embedded Workbench x.x\430\doc\migration.htm

18) Assembler projects must reference the code segment (RSEG
CODE) in order to use the LINKER--> PROCESSING--> FILL
UNUSED CODE MEMORY mechanism. No special steps are
required to use LINKER --> PROCESSING--> FILL UNUSED CODE
MEMORY with C projects.

19) Ensure that the proper C-runtime library is selected for C-only
and mixed C/Assembly language projects (PROJECT-->
GENERAL OPTIONS--> LIBRARY CONFIGURATION--> LIBRARY).
For assembly-only projects, the runtime library must not get
linked in, otherwise the build will fail and a linker error will be output
(e.g., that the RESET vector is allocated twice).

20) Numerous C and C++ runtime libraries are provided with the
Workbench:
cl430d: C, 64-bit doubles
cl430dp:  C, 64-bit doubles, position independent
cl430f: C, 32-bit doubles
cl430fp: C, 32-bit doubles, position independent
di430d: C++, 64-bit doubles
dl430dp:  C++, 64-bit doubles, position independent
dl430f: C++, 32-bit doubles
di430fp: C++, 32-bit doubles, position independent
Refer to the IAR MSP430 C/C++ compiler reference guide for more
information on which library to use.

A.3 Debugging (C-SPY)

1) Debugging with C-SPY does not seem to affect an externally
connected MSP430 device. Should this be the case, check whether
the main debugger menu bar contains a menu item called
SIMULATOR. If so, an actual C-SPY MSP430 core simulator session
is running, and no actual communication with the target device is
established. Solution: ensure that the C-SPY driver is set to FET
Debugger (PROJECT--> OPTIONS--> DEBUGGER--> DRIVER).

2) C-SPY reports that it cannot communicate with the device.
Possible solutions to this problem include:

Ensure that the correct debug interface is selected; use PROJECT--
> OPTIONS--> FET DEBUGGER--> CONNECTION

A-5



A-6

3)

4)

5)

6)

Ensure that the correct parallel port (LPT1, 2, or 3) is being specified
in the C-SPY configuration in the case a parallel port MSP-
FET430PIF interface is used; use PROJECT--> OPTIONS-->
FET DEBUGGER--> CONNECTION--> PARALLEL PORT-->
LPT1 (default) or LPT2 or LPT3. Check the PC BIOS for the
parallel port address (0x378, 0x278, 0x3bc), and the parallel port
configuration (ECP, Compatible, Bidirectional, or Normal). Refer
to FAQ, Debugging #7) later in this document. For users of IBM
Thinkpads, please try port specifications LPT2 and LPT3 despite
the fact that the operating system reports the parallel port is
located at LPT1.

Ensure that no other software application has reserved/taken control
of the parallel port (say, printer drivers, ZIP drive drivers, etc.) in
the case a parallel port MSP-FET430PIF interface is used. Such
software can prevent the C-SPY/FET driver from accessing the
parallel port, and, hence, communicating with the device.

It may be necessary to reboot the computer to complete the
installation of the required port drivers.

Ensure that the MSP430 device is securely seated in the socket (so
that the “fingers” of the socket completely engage the pins of the
device), and that its pin 1 (indicated with a circular indentation on
the top surface) aligns with the “1” mark on the PCB.

CAUTION: Possible Damage To Device

Always handle MSP430 devices with using vacuum pick-up
tool only; do not use your fingers as they can easily bend
the device pins.and render the device useless. Also, always
observe and follow proper ESD precautions.

C-SPY can download data into RAM, INFORMATION, and Flash
MAIN memories. A warning message is output if an attempt is made
to download data outside of the device memory spaces.

C-SPY can debug applications that utilize interrupts and low
power modes. Refer to FAQ, Debugging #25).

C-SPY cannot access the device registers and memory while
the device is running. C-SPY will display “-“ to indicate that a
register/memory field is invalid. The user must stop the device in
order to access device registers and memory. Any displayed
register/memory fields will then be updated.

When C-SPY is started, the Flash memory is erased and the
opened file is programmed in accordance with the download
options as set in PROJECT--> OPTIONS--> FET DEBUGGER-->
DOWNLOAD CONTROL. This initial erase and program operations
can be disabled selecting PROJECT--> OPTIONS--> FET
DEBUGGER--> DOWNLOAD CONTROL --> SUPPRESS



DOWNLOAD. Programming of the Flash can be initiated manually
with EMULATOR--> INIT NEW DEVICE.

7) The parallel port designators (LPTx) have the following physical
addresses: LPT1: 378h, LPT2: 278h, LPT3: 3BCh. The
configuration of the parallel port (ECP, Compatible, Bidirectional,
Normal) is not significant; ECP seems to work well. Refer FAQ,
Debugging #1) for additional hints on solving communication
problems between C-SPY and the device.

8) C-SPY may assert RST/NMI to reset the device when C-SPY is
started and when the device is programmed. The device is also reset
by the C-SPY RESET button, and when the device is manually
reprogrammed (EMULATOR--> INIT NEW DEVICE), and when the
JTAG is resynchronized (EMULATOR--> RESYNCHRONIZE JTAG).
When RST/NMI is not asserted (low), C-SPY sets the logic driving
RST/NMI to high-impedance, and RST/NMI is pulled high via a
resistor on the PCB.

RST/NMI may get asserted and negated after power is applied when
C-SPY is started. RST/NMI may then get asserted and negated a
second time after device initialization is complete.

Within C-SPY, EMULATOR--> "POWER ON” RESET will cycle the
power to the target to generate a power-on reset.

9) C-SPY can debug a device whose program reconfigures the
function of the RST/NMI pin to NML.

10) The level of the XOUT/TCLK pin is undefined when C-SPY
resets the device. The logic driving XOUT/TCLK is set to high-
impedance at all other times.

11) When making current measurements of the device, ensure that
the JTAG control signals are released (EMULATOR--> RELEASE
JTAG ON GO), otherwise the device will be powered by the signals
on the JTAG pins and the measurements will be erroneous. Refer to
FAQ, Debugging #13) and Hardware #11).

12) Most C-SPY settings (breakpoints, etc.) are preserved between
sessions.

13) When C-SPY has control of the device, the CPU is ON (i.e., itis
not in low power mode) regardless of the settings of the low power
mode bits in the status register. Any low power mode conditions will
be restored prior to STEP or GO. Consequently, do not measure the
power consumed by the device while C-SPY has control of the
device. Instead, run your application using GO with JTAG released.
Refer to FAQ, Debugging #11) and Hardware #11).

14) The VIEW--> MEMORY--> MEMORY FILL dialog of C-SPY requires
hexadecimal values for Starting Address, Length, and Value to be
preceded with “0x”. Otherwise the values are interpreted as
decimal.

15) The MEMORY debug view of C-SPY (VIEW--> MEMORY)can be
used to view the RAM, the INFORMATION memory, and the Flash

A-7



MAIN memory. The MEMORY utility of C-SPY can be used to modify
the RAM; the INFORMATION memory and Flash MAIN memory
cannot be modified using the MEMORY utility. The
INFORMATION memory and Flash MAIN memory can only be
programmed when a project is opened and the data is downloaded
to the device, or when EMULATOR--> INIT NEW DEVICE is
selected.

16) C-SPY does not permit the individual segments of the
INFORMATION memory and the Flash MAIN memory to be
manipulated separately; consider the INFORMATION memory to
be one contiguous memory, and the Flash MAIN memory to be a
second contiguous memory.

17) The MEMORY window correctly displays the contents of memory
where it is present. However, the MEMORY window incorrectly
displays the contents of memory where there is none present.
Memory should only be used in the address ranges as specified by
the device data sheet.

18) C-SPY utilizes the system clock to control the device during
debugging. Therefore, device counters, etc., that are clocked by
the Main System Clock (MCLK) will be effected when C-SPY has
control of the device. Special precautions are taken to minimize the
effect upon the Watchdog Timer. The CPU core registers are
preserved. All other clock sources (SMCLK, ACLK) and peripherals
continue to operate normally during emulation. In other words, the
Flash Emulation Tool is a partially intrusive tool.

Devices which support Clock Control (EMULATOR--> ADVANCED--
> CLOCK CONTROL) can further minimize these effects by selecting
to stop the clock(s) during debugging.

Refer to FAQ, Debugging #23).

19) There is atime after C-SPY performs a reset of the device (when
the C-SPY session is first started, when the Flash is reprogrammed
(via INITNEW DEVICE), and when JTAG is resynchronized
(RESYNCHRONIZE JTAG)) and before C-SPY has regained control
of the device that the device will execute code normally. This
behavior may have side effects. Once C-SPY has regained control of
the device, it will perform a reset of the device and retain control.

20) When programming the Flash, do not set a breakpoint on the
instruction immediately following the write to Flash operation. A
simple work-around to this limitation is to follow the write to Flash
operation with a NOP, and set a breakpoint on the instruction
following the NOP. Refer to FAQ, Debugging #22).

21) The Dump Memory length specifier is restricted to four
hexadecimal digits (O-ffff). This limits the number of bytes that can
be written from 0 to 65535. Consequently, it is not possible to write
memory from 0 to Oxffff inclusive as this would require a length
specifier of 65536 (or 10000h).

22) Multiple internal machine cycles are required to clear and program
the Flash memory. When single stepping over instructions that



manipulate the Flash, control is given back to C-SPY before these
operations are complete. Consequently, C-SPY will update its
memory window with erroneous information. A work around to
this behavior is to follow the Flash access instruction with a NOP,
and then step past the NOP before reviewing the effects of the Flash
access instruction. Refer to FAQ, Debugging #20).

23) Peripheral bits that are cleared when read during normal
program execution (i.e., Interrupt Flags) will be cleared when
read while being debugged (i.e., memory dump, peripheral
registers).

When using certain MSP430 devices (such as MSP430F15x/16x and
MSP430F43x/44x devices), bits do not behave this way (i.e., the bits
are not cleared by C-SPY read operations).

24) C-SPY cannot be used to debug programs that execute in the
RAM of F12x and F41x devices. A work around to this limitation is
to debug programs in Flash.

25) While single stepping with active and enabled interrupts, it can
appear that only the interrupt service routine (ISR) is active (i.e.,
the non-ISR code never appears to execute, and the single step
operation always stops on the first line of the ISR). However, this
behavior is correct because the device will always process an active
and enabled interrupt before processing non-ISR (i.e., mainline)
code. A work-around for this behavior is, while within the ISR, to
disable the GIE bit on the stack so that interrupts will be disabled
after exiting the ISR. This will permit the non-ISR code to be
debugged (but without interrupts). Interrupts can later be re-enabled
by setting GIE in the status register in the Register window.

On devices with the Clock Control emulation feature, it may be
possible to suspend a clock between single steps and delay an
interrupt request (EMULATOR--> ADVANCED--> CLOCK
CONTROL).

26) The base (decimal, hexadecimal, etc.) property of Watch Window
variables is not preserved between C-SPY sessions; the base
reverts to Default Format.

27) On devices equipped with a Data Transfer Controller (DTC), the
completion of a data transfer cycle will preempt a single step of
a low power mode instruction. The device will advance beyond the
low power mode instruction only after an interrupt is processed. Until
an interrupt is processed, it will appear that the single step has no
effect. A work around to this situation is to set a breakpoint on the
instruction following the low power more instruction, and then
execute (GO) to this breakpoint.

28) The transfer of data by the Data Transfer Controller (DTC) may
not stop precisely when the DTC is stopped in response to a
single step or a breakpoint. When the DTC is enabled and a single
step is performed, one or more bytes of data can be transferred.
When the DTC is enabled and configured for two-block transfer
mode, the DTC may not stop precisely on a block boundary when
stopped in response to a single step or a breakpoint.

A-9



A-10

29) The C-SPY Register window supports instruction cycle length
counters. The cycle counter is only active while single stepping. The
count is reset when the device is reset, or the device is run (GO).
The count can be edited (normally set to zero) at any time.

30) It’s possible to use C-SPY to get control of a running device
whose state is unknown. Simply use C-SPY to program a dummy
device, and then start the application with RELEASE JTAG ON GO
selected. Remove the JTAG connector from the dummy device and
connect to the unknown device. Select “DEBUG--> BREAK” (or the
“stop” hand) to stop the unknown device. The state of the device can
then be interrogated.

31) RESET’ing a program temporarily requires a breakpoint if
PROJECT--> OPTIONS--> DEBUGGER--> SETUP--> RUN TO is
enabled. If N or more breakpoints are set, RESET will set a virtual
breakpoint and will run to the RUN TO function. Consequently, it
may require a significant amount of time before the program
“resets” (i.e., stops at the RUN TO function). During this time the C-
SPY will indicate that the program is running, and C-SPY windows
may be blank (or may not be correctly updated).

32) RUN TO CURSOR temporarily requires a breakpoint. If N
breakpoints are set and virtual breakpoints are disabled, RUN TO
CURSOR will incorrectly use a virtual breakpoint. This results in
very slow program execution.

33) The simulator is a CPU core simulator only; peripherals are not
simulated, and interrupts are statistical events.

34) On devices without data breakpoint capabilities, it's possible to
associate with an instruction breakpoint an (arbitrarily complex)
expression that C-SPY evaluates when the breakpoint is hit. This
mechanism can be used to synthesize a data breakpoint. Refer
to the C-SPY documentation for a description of this complex
breakpoint mechanism.

35) The ROM-Monitor referenced by the C-SPY documentation applies
only to older MSP430Exxx (EPROM) based devices; it can be
ignored when using the FET and the FLASH-based MSP430F
device.

36) Special Function Registers (SFRs) and the peripheral registers are
displayed in VIEW--> REGISTER.

37) The putchar()/getchar() breakpoints are set only if these
functions are present (and the mechanism is enabled). Note that
putchar()/getchar() could be indirectly referenced by a library
function.

38) The Flash program/download progress bar does not update
gradually. This behavior is to be expected. The progress bar
updates whenever a “chunk” of memory is written to Flash. The
development tools attempt to minimize the number of program
chunks in order to maximize programming efficiency. Consequently,
it's possible for, say, a 60K byte program to be reduced to a single



chunk, and the progress bar will not be updated until the entire write
operation is complete.

A-11



A-12



Appendix B

Hardware

This appendix contains information relating to the FET hardware, including
schematics and PCB pictorials.

Topic Page
Figure B-1. MSP-FET430X110, Schematic B-2
Figure B-2. MSP-FET430X110, PCB Pictorials B-3
Figure B-3. MSP-TS430PW14 Target Socket module, Schematic B-4
Figure B-4. MSP-TS430PW14 Target Socket module, PCB Pictorials B-5
Figure B-5. MSP-TS430DW28 Target Socket module, Schematic B-6
Figure B-6. MSP-TS430DW28 Target Socket module, PCB Pictorials B-7
Figure B-7. MSP-TS430DL48 Target Socket module, Schematic B-7
Figure B-8. MSP-TS430DL48 Target Socket module, PCB B-9
Figure B-9. MSP-TS430PM64 Target Socket module, Schematic B-10
Figure B-10. MSP-TS430PM64 Target Socket module, PCB Pictorials B-11
Figure B-11. MSP-TSPN80 Target Socket module, Schematic B-12
Figure B-12. MSP-TSPN80 Target Socket module, PCB Pictorials B-13
Figure B-13. MSP-TSPZ100 Target Socket module, Schematic B-14
Figure B-14. MSP-TSPZ100 Target Socket module, PCB Pictorials B-15
Figure B-15. MSP-FET430PIF FET Interface module, Schematic B-16
Figure B-16. MSP-FET430PIF FET Interface module, PCB Pictorial B-17
Figure B-17. MSP-FET430UIF USB Interface, Schematic B-18
Figure B-18. MSP-FET430UIF USB Interface, PCB Pictorial B-22




TPS770081
1 5
IN ouT il
o s €
gl e 3 nl3
g ol S 8=
< =N - . N
¢
2 ol s
2 gl GND
5
Wells-Socket 652 SOP ZIF
TSP430F112
1 ST P1.7 a 100
2] uee prig 2 1l o
2 p2.5p15 (2 T =
4 1 Uss P14 z 10K 4
=—{ xoute1.3 I
§ 1 XN p1.2 © =
® = . RST PL.1 - =
— P2.@P1.0
— EN_114G
“f o [ & ZARHC244 0| P22t
2 2.202.3
M
Tl ut =
1 Aﬁ_z”_u @
&
v2 e—1LT %
v |2 @ 5
v = 2 2 2
EN_ICLK 15 ¢ Lo hw WO Ow EVAS
59 9% 59 e
7ARHC244 159 O 150 O
1 - GND O GND
= el TNHD-2X5 TNHD- 255
RX
e
[ — 7
a
g
2 | [ of (2
INYRE
i | EO | i 3=
=8 alsells sll=
Uce +3u
R26
Sla
G N5
placed close uzp not assembled _|%
=5 &l
to Socket =2 layout prepared o|§
1@89n GND
i
GND

Figure B-1. MSP-FET430X110, Schematic

TEXAS INSTRUMENTS

Project: MSP43@F112 Flash Emulation Kit Hardware

Block:
Size: [File: TI F112 Flash Emu Kit [Rev: 1.1
Name: | Date: 10.04.2001 12:06:30 [sheet: 1.1

B C D E F G H 7 i

B-2



o i Bl
O s O MSP-SOCKET
=) SR ITIIITTIT
= T [MSP43BF112
UL B
- 0||||||||| W
1 D;a ! Ol R
LELLS — M- N
'a-b%s .

E QBn
) R R[] o o[ li5erorrerm
il [3) MIE
3 IIIIIIIIII’.:.
[ ]

MEn ]
56]  |748HC244

1d0d-1d71

[R17 ]
Eielle Y2 Lo 5
Exallo A
LR

1[.]

MSP-FET430x11x gy

33k MSP-FET430x11x%

Connector 4

/ External power connector

=4——— LED connected to P1.0

Jumper J5
Open to disconnect LED

H J_J_LLLLLLLLEE&

EEFEEFERRR ;132:5

g fOE=5o

e
R6 El II E =4 I Orient Pin 1 of MSP430
Ensure value is 82 ohms ™7 = B device
o f in
M
Jumper J1 ¥ — L
Open to measure current ;] “ 5 nwe
= & | [ 5 1
f = at z ar z
J2 J3
P2.1 RST XOUT | P25 TST P2.4 P1.1 P1.3 P1.5 P1.7
P2.2 P2.0 XIN Vss Vcc P2.3 P1.0 P1.2 P1.4 P1.6

Figure B-2. MSP-FET430X110, PCB Pictorials

B-3



J3

zﬂ% Ext_PWR

J2

JTAG C8
S g K3 u_u RS GND
20 1t 1onF L] 47K
100 9 VCC
8 7 SBWTCK
JL-H DG E-T
4 -3
2 1 RST/SEWTDIO
ext _p3 TISTA/PP — R2
|2 L _H_
int _JJt U (R 330R
J5
2 to measure supply current
Hﬁ J6
. |—| cs
= C7 100nF
=
10uUF/1OV
MSP430x20x1
GND
veal 1 [yee onp 120 GND
e P10 2| pro x| XIN
12pFp XOUT P1.1 3 | pi1 xour |18 XOUT
L) P1.2 4 | b42 TEST I TEST/SBWTCK
P13 5 P13 RST 16 RST/SBWTDIO
Q= P14 6 | p1a pr7 |15 P17
P15 7] ps prs |14 P16
T ] ]
s Socket: YAMAICHI
— Type: IC189-0202--64
Not bled: C1, C2, Q1, C3 Leosiy B e *
otassembled: &1, L2, Q1. ot seR zI NOTE THAT THE U1 PIN NUMBERS SHOWN HERE
REFER TO THE PIN NUMBERS ON THE SOCKET,
&ND J4 GND AND NOT TO THE ACTUAL MSP430 DEVICE PIN NUMBERS!

MSP-TS430PW14 Target Socket Board

TITLE: MSP-TS430PW14

Document Number: REV:
1.3

Date: 10/06/2005 10:11:20a Sheet: 1M1

Figure B-3. MSP-TS430PW14 Target Socket module, Schematic

B-4



Vg
& =
>00

LED
D5
B B4« o0rRE B
{onE 330R (-N-]
(X1

10onF 1OUFMDV

= K 12pF
o- o o P
o MSP430F 201X ol lo N
D —
O] O |ecg o 8 o o
OloonF| 3 © 8 9 o] o -
ouﬂo O v
o o (3] S |
2!& U7 | 12pF

O
O

] 14 I
@) @000 Connector J3
OOOOOBO: 13 External power connector
e 71 Jumper J5to ‘ext’
D1 JTAG Veo P
LED connected to P1.0 _T@ *‘hRB ops o ext_int 933 Jumper J6
ce RS 1 R2 B® — Open to measure current
Jumper J4 J5 Jg
Open to disconnect LED m
S MSP430F201X sfol =
Orient Pin 1 of MSP430 (D— = o of |
device oD o Q O 10| |5
o~ s 2 o |0
o7 8 o 8| .2 .
0a8 s 9 O (o
o290 o ©
& o o
U =|Q| c2

Figure B-4. MSP-TS430PW14 Target Socket module, PCB Pictorials

B-5



_1 o _ Ext_PUR

o
-
e P RS T NI Im
pr— X g IO
14 13 | Bem's B[
21z Zfr ) s 5@ "
10 3 uce
8 7 TCK
A 5 1
4 E DI
2 1 TDO
_u 14 IST UBP
ol wlle
gh, gbg
S &
_H_ ol ¢ &
el =
IN] —
o
&
=
_H_ = %lﬁ
. J= 8
= B ~ SOCK280U
=3 o £1al FEL4H
(&) pr— p—
Bl 1 TST UPP 1 g 100 28,
. 2 UCCAza | 5 oy TOI 27 [¢
3 D2.5 5 o 101 26
4 GND A o TCK 25
5 ot 5 24 Pl 2t e BOOTST R18
s In 2 31 23 EIST
z RS | 5 5 S 22 sfo e 1
3 p2.0 g 2l Pl.@ 21 e o z 8 Rl
s B2, 1 5 & P2 4 20, 5 5
10 D 50 p 13 al o 3 4 RST/NMI %ﬂ_‘
11 D3.0 TR D 13 L £ - Tz
12 P31 12 17 p 1z @R
13 = 5 G P25 e ML1D
il = 14 15 P3.4 151¢
I U1 72
R
3
Fi123 N
STAUPP 1 28
P25 3 : 26 TrS
2| P25 pr5 |25
SEITRNE -y N [
XOOT 5 | your s |24 PL3
YIN il vl BN MSP-TS430DW28 Target Socket DW28
TReTNMT 7 | pet pr |22 PL1
—£28 8 lmans [2Lola
L2l S paip2s |ER B2 TITLE: MSP-TS430DW28
P22 18 ) prpppg |48 P23
\Pwr@’m P3.8 P3.7 \Fmer
pa.1 P2.é . .
12 { paipas |2 Document Numbers: REV:
L2212 pezpas [HEPAE 1.0
Tpaa e | p5ess s paa .
Uz

Date: 2,14,20081 12:31:24p

_mjmm.: 1,1

Note: Connections between the JTAG header and pins XOUT and XIN are no longer required,

and should not be made.

Figure B-5. MSP-TS430DW28 Target Socket module, Schematic

B-6



O Ci Rt c2 R2
[ = I : | o n ~
7
ucc% ! nily 0 <= @E
fa >
GND w (S
o =
GND seem (00 (005
J4 J5 @
o000 000000000
14 J1 1 pemm
Esmmmmm |; ©"
EEEEENe
RE 1
14 1 =
& RS &1
12
15 28 § RO
EEEEEEE % RIHE
|}
EEEEEEE [~ psm 3
-
15 J2 28 R7 g
o000 0000000000
Jumper J4

O

12pF - 12pF @R
o o o n ~
10UF /10U Qg —
o 25k
GND Loon >
5ND eoonm @3
JP1Q JP1Q
oo oseeseseess , -
14

FE14L 1 n
4]

EEEEEERE 1
EEEEEENe

10000000

0000000

TITTTTTTTTTAT (]
14 1
Fizs o &
o
15 28 o ®©

100000

200000

FE14H 28 o |I

15
o000 000000000

O

Open to disconnect LED

NN

LED connected to P1.0

Jumper J5
Open to measure current

Connector J3
External power connector =—
Remove R8 and jumper R9

Orient Pin 1 of MSP430

O

device

1 Rt C2 R2
[ = I : | o n
+C7
o] O F @
ao@s |C_1e o =
GND soonm cg,@@
J+ I
o000 000000000
14 J1 1 pemm
Esmmmmm |; ©"
EEEEENG®
I rsm
o RS 1
12
15 £ |2 rRon
EEEEEEE 3 RUIND
EEEEEEE [ psn
J2 28 R7 I

15
D000

O

151008

0000000

Figure B-6. MSP-TS430DW?28 Target Socket module, PCB Pictorials



5 bzﬂ% Ex_PWR

e RST/NMI
RS
241 13 | cs 47K GND
2. 1 |_|§__n
ET bt I vee
-2 7 TCK
I et I3 TS
4 3 TDI
2 1 Do
ML14
ext 3 c3
Vee 2 10uF/10V_ g+
int 1 o |—_|
JP J5
JP1Q Rz YAMASOCK48DL
oR
L _ 5
> DO m TDOMDI P5.4 Mw
+ 1Dl 2 ToITeLK P53 L
c7Te= C5 o8 TMS L8 Tvs pso (48
1ouFMoy | 100nF TCK .2 Tox como |2
GN RYTAMIL 5 RSTINMI P20 |2 Vee
pvee P21
—1- | GND| 7 42 Cl — oxt int
at,c1,c2 = =1 XN [ 6] 20S P22 [ ==
not assembled = __ Xou Aw XouT P24 wm _ - = S=rer JP2
e (I AV P23 e _ = = BOOTST
==t 2 VReF P27 WM ! Ann ee— e
-~ — L P6.0 S5 -] e
[= == L 4 1 pet ps7 35 1 o 9] 6
= +8 __ 5 | peo peg |24 | 7 =] o1l [ 4 RST/NMI
= 5 _ 8 1 pea ps |32 ___ = 2 TCK
7 32 ,
= 2 P6.4 P5.0 =
[= == 8 1 pes Py (31 = BSL_TX ML10
- 131 pes Lepcapo (33 ™
P6.7 LCDCAP1
20| pes oo 22 Pin RLOR BSL_RX
22 1 pyg P11 2L —
2 p1s P12 22 R6 " OR
P14 P13 -
IC51-0482-1163 OAWS:_E:Z
U1 GND
MSP-TS430DL48 Target Socket DL48
TITLE: MSP-TS430DL48
Document Number: REV:
1.2
Date: 2/02/2005 02:04:15p Sheet: 1/

Figure B-7. MSP-TS430DL48 Target Socket module, Schematic

B-8



O — e ) S— 10 O
OPOOOOOO1 0O
200000 0O: Q00 0:
Jumper J5 JTAG ; gaBOOTST, RER7
Opento measure — i int BN B
current Vee
ext LED connected to
Connector J3 4 — P1.0
External power 8@e
connector 000000000000 1
Jumper J1 to ‘ext’ 000000000000 Jumper J4
U1 | Open to disconnect
+ LED
000000000000
000000000800
|
Orient pin 1 of
MSP430 device

Figure B-8. MSP-TS430DL48 Target Socket module, PCB

B-9



[ F @
[ o
T
RST/NMI
x| |© o
JTAG DY 517%% o4
FEE BN bR o e
121 il
remove R8 and add RS (@ Ohm> 1@ S Uce
If external supply voltage 8l z ICK
S ™S
4 3 101
2 1 100
— GND
L14
ey, alls m&
13
ih [l L y
2 + 0
o [ST o J Y vy |9 -
sUE |3 S O BN R R e I3
— —1—
L :
5 .
—_r §8
[ 53+ CSS&BSTKSM032&BS
s2cq . QgL RLERRVBLY J3
FELRSEN N il Toc — ! &
¢S £y o ouce 48 18 E B s _H_u
not_assembled e 3 w “M 46 15 & &
VT 7 e e 5 al|& BOOTST
coAl | 5 & u2 44 44 Sl e
||.FIv 6 6 43 k! . 8
— 2 42 5 3
2] ™ 7 42
<) ] 8 XIN phy 41 3 4
1207 S XouT 40 40 1 2
HLL sJie 10 MSP&64PM 39 s
™R3 Jria 1L 11 38 38l ML1O
.|_&|D|w_||= 12 12 Socket: 37 37 b b  not assembled
560R 1 >3 13 Yamaichi 36 36 E B For BSL usage add:
&5 R 14 4 1C51-0644-807 o 35 %: wz g :
Ed el SO HE 12 15 a4 3 Ré R’ RI3 R4
is connected 16 33 MSP430F14x : @ @ open open
— Sy MSP430F41x : open open ) Q
FE16-1-3
FE16-1-1 NROSRARTRRNERS R I external supply voltage:
remove R11 and add R1@ (@ Ohm)
o !
memmmnmymnwmwm_mn MSP-TS430PM64 Target Socket PMé&4
- A
o [o for Fl4x and F4lx

TITLE:

MSP-TS430PM64

Document Number:

Date: 11.07.2001 16

1 41:20 Sheet: 1/1

Note: Connections between the JTAG header and pins XOUT and XIN are no longer required,

and should not be made.

Figure B-9. MSP-TS430PM64 Target Socket module, Schematic

B-10



. Ti4 ] Tio | —
|| eeeoROO! ©00006!
OO0 (oNoNoNON Vs

LEDY ML14
- u @rREN 47K "k
5608 : 120F  12pF
merr m n B oornm
l .Open J6 if XTCLK 2R gr ©GND
l@ZnF LCD_connected H o @
[ X X-Xo)
1@E/mu R Al
000000000000 000 0] -
3 7ol &% T oo
v nG) o
%E G) 1C51-2644-807 ©
® “o ( 000000 () o
o L1 00000 = (=)
o .o 00000 (=)
1ppFR o 1 o o o
o 883 388 °
- o] 203 048
f ol © 8 005 Q9 8 o
kL | | ol (@ 6o °ds z)
T lolle] [ 00000 ()
(2] I ~ 00000 P o
l2pFIn (0 . 000000 | O
o Clamshell ol
(z] Olv
B ol MSP&4PM ol N
S |oooooooooooooooo| @)
_ FEl6-1-2 —
, Tie ] -
{ 00@@@@@1 (L
[oNoNoN-NoNoNC Wi
v JTAG R8RS R2 JipooTsT
LED connected to pin 12 ——@m R3 0o cs Connector J5
J6 RS mn n H wowm al i
Sumper J7 J7 Dpen J6 if el Ro  6N\D(@)J5 External power qonnectlon
p — ® LCD connected aF o (= IOYNC) Remove R8 and jumper R9
Open to measure current 2] (2] 0000
o2 w

0000000000000000|

Jumper J6 A g st I $§
; cs
Open tO dISCOI’]nect LED +E o LA IC51-B644-807 ()
o () 000000 () ()
I m o L1 00000 o
Orient Pin 1 of MSP430 device = |, ™ z 9] | 00000 =
C2 o3 0 o] o
039 8g0
- 99n|(® 089 8490 o
6089 84d4¢
3 o|l© o 8 o] 8 [o <3 O
f=| |o|[® o“o 9o (2
ol® [ 00000 o
© . . 00000 —~ o
i Jo ‘ 000000 ) o
1) Clamshell o
g‘“ 17 U2 Eg
B o ooooooooooooooool - O

Figure B-10. MSP-TS430PM64 Target Socket module, PCB Pictorials

B-11



J wnl

UCe

FRmaY# HY and #0d KR R Onme JTAG B F .ﬂ-nx
T E:__.H RET #HHI
,_ g
d KT2IN
H= ol KT20UT
Alas
i i}
. @i RI
uia R i _
BND 4 AR L B e o
J7 s .H- 1 T R A
ana Vi 1w 5, U A,
o DL 1
HF
]
r XN : u rL H
m aummm m KOUT H—s
| i | m
i i
| __.x_—"_ﬁl | T
i i 3
_ ! : QF P8BPN
Hh 3 Hocket:
Yamal chi
A [G201-au84-81 4
ors® h = k)
=
Lipa  GaAR TR HYRANAREARRNALARNERS
D Ll LT 3| B ) 45 3 8 | G ) o 4 8 | R R

& cannected

Al

6 ] ) L 8 5 8 )

Iz [FRRRRE R R AR AR AAARAAAR]

.
whU GHE
GZ_U Ny
(] [Ja
ROTAT
a[- e
ok ]
| sg | an -
S 1
A
bl uh | ot )
Hm ”w : If BAL 1% usedi
Tl e [Fommmsar ot o 8 o |
EF—1] b
n e
17 CEd M
18 16 ¢
15 15
1 EL3
ER] walt
EF [¥]
41 ile
MSP438: Target-Sacket MSP-T5438PN8RA
for F43x
TITLE: MSP-TS43BPNEE
Nacument Number!: RELU:
1.8
Date: 18. 84. 2003 168 46: 28 _mjnnﬁ_H\H

Figure B-11. MSP-TSPN80 Target Socket module, Schematic

B-12



LED connected to pin 12

Jumper J6
Open to disconnect LED

Orient Pin 1 of MSP430 device

[-X-X-N-X-3
00006062

- @R
=~

me Ol Jo
® o )
*) 000000 O
(-} 0000000 (-]
S gg 0000000 mg
¥l ol O 0S¢ 320 “o

olds og° g°o
2T o (@ 969 @ 090 O
ol [0 ggg ggg ©
o o (OR %¢6g 65° ]

QFP8@PN o
12pF 12pF g o =)
(=) 0000000 (+)
(:) goooo000 ()
2 000000 0}

10UF /6,3V
L 1 oo
Eor(g 12pFd (D000 O,
1BuF 76,3V g 1oor B g
Pl

E (1) 3 1eenF Polexte Ho
2 [ofz dlo
o B 12 18 20
%) (00 0000000000000600000

ML14
mionF [47K

[ X XN -3

000062

JP1@

D Oer

H560R —
[00000000000000000000| .6
&0 55 =) 5 a o

©

/

Jumper J7
Open to measure current

%) Y- CX-X-X- TR XXX - S (%)
v PO RO G2 060662
- 0
c 7§ tem RS M JTAG 17 rRie @ HPIIESCOTST

RME-T [00000000000000000000| ;. (6 —

L‘;E ) 55 ba J3 4% 4T T
1655 Ol o I8
&g [0 (:)
= o 000000 O,

(=] 0000000 -
ol 0000000 O
Q2 = 10
¥ s ogp u1 oo >0
ol ©| (o 98¢0 299 O,
&[T ol [0 238 @ 890 (:)
ol (e 820 EEE ()
oo [of 063 690 (-]
c+ c3 (@ k)
(:) %] 0000000 (s)
Oo00000
o [-T-1-1-1.1.] NO
e 0 No
- oJe 1 o2
- QR [o cigoooo Ko
o 2 o ] 0.
(:) c2l F L:)
+E O mcs P o
2 lolp do
R2 5 J1 1@ 15, 20
@ [O00000000000000000D0 0 @

Connector J5
External power connection
Remove R8 and jumper R9

Figure B-12. MSP-TSPNB8O0 Target Socket module, PCB Pictorials

B-13



uce
If external supply voltage: 3
remove R8 and add RS <@ OhM  JTAG rmUl 2R
(S
ulo s 1Hﬁ
2]z Tl RST/NMI
10 S not assembled 0O ™
Y bt TCK o%% o
3 s [ 7T 1 yrAan . Fm==——zx o] =
L8 XT2IN 2 T < . &
1 3 221 XT20UT 1
2 1 D0 o o 12pF]
AUSS o—=° |
ML14 W I
: o C4 1 o
ol ollx 5 - - i i1 _.." 1Z
=z BT \ y \ YYvy VY Yy = Lo____120F
S| 3| N\ \O| O [ | N| = ®( D O N[O O] [ M| N| —| | D 00| \.| \Of _vy mZD
®| 0| 0| 0| D 00| M| 0| D M| cof 0| co| cof 0| co| cof 0| | O N|N| N[N o~
GND = N , x
™ -~ GND eE :1
ommt | D= & &
o omg | ¢T¢ BOOTST
shlg (sl e &rs R L PR L L T R LGN S -je
sLds S FE25-1A Ol J3 Wi m
— nucet | _ s : 75 2 BSI RX 3 4
-z W= 2 74 BSL_TX 1 2
= i L ME 3 73 231
%8 4 72
ST =23 > 4 72 < ML1@
&< PP Nl 5 71 7Ll
gmwn m : 3 = - 70 not assembled
o ~ 2 3z CH 639 If BSL is used:
|||||||||||||||| 7 69 d
,ﬂ S_u_w“n 1" XIN_ 15— 8 68 58 If external supply voltage:
2 67 :
: —Lx xaum s s 67 . remove RI1 and add R1@ (8 Ohm)
—o | 17 19 66
| not assembled >N 11 65
| ol > 11 65
BT a5, Hi2 12 64 sk
1 —<E : > <
i ST S S iz 12 P 62|
MIE 15 61 5
= 16 & 8 nUCC
iz 17 59 59
18 18 Socket: | 58 58
19 18 Yamalichi 57 52
J2e 1C201-1004-008 56
o 20 56 e
22 s = 54 ¢
560R > ¢
oz 76 Nz 2 5 Sk
4 H2& 24 52 521
1 1125 25 51 s,
ST Open J6 1if LCD by
GND d |
is connected J1 FE25-1A3
VNODO«NMTOVNDONO~«~NMTIOVNODDS
NNNNOOOOOOONOOOOMT T v0

MSP4308: Target-Socket MSP-TS430PZ100

26
2
2
2
30
31
3
3
3
35
36
3

Figure B-13. MSP-TSPZ100 Target Socket module, Schematic

FE25-1A2

Py Tk >_ for F43x and F44x
TITLE: MSP-TS430PZ100

J2

Document Number: REU:
1.2

Date: 25.10.2001 12:039:44 Sheet: 1/1

Note: Connections between the JTAG header and pins XOUT and XIN are no longer required,

and should not be made.

B-14



) 1@ ] —
0 ©eeOeeOeO! g g eeoe00e: ||( )
¥ [oNoN-NoNoRCN Y Se - 000062
¥ = BR
L ML14 Hon ML1@
© B62R
n FE25-1A3
)cND [C000000000000000000000000]
Eovo 75 70 55 50 55 51
Bucc™ £[Ofe G
() o
e B :
L{O (=)
et ol X
~o| [o /o
YL ol [0 )
ol 000000000
/T o IO 00000000 o
2_o| [0 00000000 o
o o [0Of - o
2pF12pF [ gog ogg slo
(o) 09 2950
698 = 085 O
(s} 098 ) 980 ()
= 098 \_ 9380
888 L o
o) 860 QFPieePz 60§ ()
(o) ()
(o) '~ 00000000 (=)
o 00000000 o
o 000000000 °
olg , B[0ooo toger o
o
auF/s,aug o g 1 ‘“’g
oRr ol AF P
E [} (o] o LEX OT
eur/s,anu&g 12pF gg§
| =or1_ 5 18 15 20 25
) 0000000000000 000000000000] [
FE25-1A1

Jumper J6 Jumper J7
Open to disconnect LED Open to measure current
- T2 ] 7 —
@ 00000 00! Js J7 B
v 00000002 e (o
1 R1@
LED connected to pin 12 @DD; TG SO LD d
5 T n pen 1 connecte
Connector J5 o0 [0000000000000000000000000]
External power connection —%Eggu Sl e EEEE ¥
: RI peiN ol
Remove R8 and jumper R9 a0 o
(*) ()
AR5
() (:)
acs og ©
ol [o 9o
= J4 <
] T I 000000000 O
&[T ol lo 00000000 O
2| o] (O 00000000 (=)
o o [0 - ()
c+ 3 o] 809 ut 098 =)
609 09¢s A
O 698 — 280 O
o o9 ) 950 o
6908 _/ 08o 12
o 88¢ 898 ©
g S 800 609 i g
(o) © 00000000 & o
. . . O 00000000 (1)
Orient Pin 1 of MSP430 device ST 000000000 o
ol Eldocoo | )
o & cs slo
cé (o) R12 (=)
2 o, -
+E =1 (o) n Lrjun. (z)
o c2 )
oo g lof bl=]
e L 5 1g_ J1 15 20 25
0 [0C000000000000000000000000] !

Figure B-14. MSP-TSPZ100 Target Socket module, PCB Pictorials

B-15



Ext_PUR
D4
- TPS77001
= LL18;
03
B uce ¢ IO uce sy -
LL1O; o
GND 02 O
Bt sie g2
LL1g; JENS FB
D1 &)
103 4 U3 g8
R21 S
—
g GND
9 R27 o 125HP284
5] 33k 13
5 12 o e
s ohe g o
212 Py B
1z o Ells o
- 0s I c R6
21 bl - 2 > 18 2 oo 14
el _ I . o e iE
- = T LN R T e 1=
olor 16 m 3 RN T 336 S 18
150 Py P 8 | s vs |12 ] 1 z 8
o 14 1 osiron 330 1 5 = 3
1 " id s RS 01 3 4
J 0 1 2 I
74AHC244 330
- . R13 e 140
11 S 330
= s ] & .
| || [ Blea va |2 33
SLssLIs b7 1 oz vs |2
EN_TCLK] R12_ RIS
o 33k
It 74AHC244
7 & |
— 5 w:m
TLCS55CD 4
1
m e GND U+
Sl cu TR B A e
- a8 S8
[ ISE S ol
‘e os ﬁ | 3
2w o u2p  USP
U4 o) |2 o2
o I¢ E L
el
m " 74AHC240 GND
S8 2lS =
Il B L & &t
5 - - -
LS e o | 3
8 1UT32¢Hz
R35
m e
s|& ~|a

._";_‘2
._||§_‘S

TEXAS INSTRUMENTS

Figure B-15. MSP-FET430PIF FET Interface module, Schematic

Project: MSP-FETP43BIF Flash-Emulation-Kit-Interface

Block:
Size: [File: MSP-FETP430IF [Rev: 1.3
Name: | Date: 26.07.2001 10:03:24 [Sheet: 1/1

B C D E F _ G H | i

B-16



|

M25HP284

| 125

|“qq“qq“““““qH

—._" 125

T

M
m!Hwéh g
TPS??BBl

028

[}
-

= »—'
H

T

[ee] [e] [eed

12 1
74AHC240

TecZnl

[ 1 ]
Qa1

11

058374

;@:ﬂ
E LLLLLLLLLE
<l [g] | &=
— 74AHC244 | [
e 68K
TTITTITITT
= W] [CO] [GS W) [CO] [CO] =
Kl 2 EEEMEEERE
)
2
1
NN

=] [@]
=|

i
Sl
N

— A

ML14L

""""""""""F"b*

R6
Ensurevalueis
82 ohms

va.

DD -- T 7] [0

N_;; D wl[S]]1= Nl o] =

N[ N mm"‘m

) W R [
[N 2

n w o

N
q 95
O

RHEE § @ﬂ =
l!ﬁll

§ R
Iy s | Il
lon 10 1

SHSH

EE

us
20L

=

€17
[ ]

p)
E ILD glgldj:E ] [e1a] [¢1d]
m

el
N
®

pel

34

i
,\)
pel
e
A
n
o) [o wilreifreilrevealre; o)
© NIIRINIES = @
=N =
HE zEEEEEE
B

1
LI .

UT

A

J2

Figure B-16. MSP-FET430PIF FET Interface module, PCB Pictorials

B-17



vcc

GND R1
- 7 VBUS 47
6 RESET R49_ 1k
5
4 H mm URTS
3 I R52
2 HTD
1 HTDO
ADCO
ADC1
ADC2
GND ) .
3
c7 c5
R i OnuaTosSxXNAaZE~N©OW
293 B0ZE~
el | | OfEzeaseeeianis
vee | 4] pvee atog [~ P5.4 -
ADC3 m P6.3/A3 P5.3 T wM
M P6.4/A4 P5.2 TDI
PB.5/A5 P5.1 —
SETvVCCT 5| pgoms MSP430F1612IPM P5.0 S
6
—=— PB.7IA7 P47
c1o gt ] M MiEi el «MWHM,_%_.
< ﬂ 3 XIN P4.5 TDIOFF#
XOUT/TCLK P4.4
e Iﬁ VEREF+ P43 ,m\m_m.n_.vwz
- 5| VEREF- P4.2
B o S U1 i TEST#
2 !
af 2] 2 P3.7
5 RST 3410
= — P13 P3.6 o
8MHz 5 P35 sy
4 C1 NMOMNO-ANMTNONO~ N®M
mm_u_n_ TR RRRRRARRRRR
w
R
p st B B et Ko 8 N 6 o] I 1 I ) o
SETVF
TGTRST
R54 SCL
g — SDA
D4 POWER 470R OR OR
UDSR
UcTs SELT# USBFET
GND
MUO . —
I - TITLE: MSP-FETU430IF _Revl.4upd
Y — (]
47k
M3 Document Number:
RXD vee

Date: 10/05/2085 ©9:33:37a

Sheet: 1/4

Figure B-17. MSP-FET430UIF USB Interface, Schematic

B-18



é D5 R29
veeT 2 4 RIEET
r._w_m% AT U29  SN75240
SN74LVC1G125DBV R6 TRST 8 1 o oot 2
TEST# & e
Uto TITek 6 | 5 onp2 LB
TcK mlllllrb TTCK U4 TTEST 2 5
&ND co AQY211EHA & €Ny
SN74LVC1G125DBV R78 VE2TEST il N o1 TTMsS 41 b onps L
SELT# 5 270R % = /._
20 |
u1s K 02
Ms 2 4 TTMS L VF U SN75240
vcol s 1
—_— A GND1
Q SN74LVC1G125DBV R79 xm<
! %7 R10 QY21 1EHA ITDo 61 5 onp2 |2
Uss VF2TDI e 1 -
3 e TTDI 2 5
270R -
TDI M/h TTDI 4¥ =\ ¢ onDs
: veco a4l e |2
SN74LVC1G125DBV RS0
47k
u13
a2 AQY211EHA
vecTon R 1 orr] vceT GND
VCCO 270R =2
24, |VON/
2 4 R40
2k2
SN74LVC1G125DBV
U14
s AQY211EHA GND
TDloFF# RE8 1 o
270R
21, IVOMJ
C15p 1L
L oonr B P L
GND Ak GND R74
= 100R TARGET-CON.
e
DO 4 TTDO, RS 100R TTDOP. 1 2 VCCO
L TTDIP 3 4 VCCl
R& ND TTmMs  R2_ 1o0R sio —le_
470R o TTCK H 7 8 TTEST
SN74LVC1GO7DBV o= “Two
Raz 100K TRST EEN b KF)
vce GND 8. 4
GND
) _ VCCT.
8 S w0l8 wl8 w8 w8
02 0[S 12 [S WS w[S -l c1sl e USBFET
o o —
o O W T Ww o l —-—
53 &= = 0o o o
2 2 100nH 100nH 100nH 100nH 100R
a [=} a [=] a a o -_—
of2 02 02 of2 02 o2 T Vo TR TITLE: MSP-FETU43BIF _Revl.4upd
SELT# assembled: SN74LVC1GO7DBV!!

o

Document Number:

REU:

1.4

Date: 10/05/2005 03:38:37a

[Sheet: 2/4

B-19



VF = +3.6V..6.6V

470u
vce Y D1 VF
0 = AN U3 - VCCT = +1.8V.5V
51 N1 ooutt FLYQER = . pVCCT
css | RS
100NF g 6 N2 OUT2 8 o
] c24 ce R70 0 4 R41
BSP123 = ]en e [ 202118
SETVF _A_ - 100nF 3| ves po k2 B0K4/0.1% e el
100u/16V
TPS76601D
RS GND GND GND  GND GND
R72 R71
47k
38k2/0.1% 30k1/0.1%  SND
GND GND GND GND
R16 R18 R48 R15
veel 30k1/0.1% ADCO VCeT 30k1/0.1% ADC1 VE 39k2/0.1% ADC?2 VCCR 30k1/0.1% ADC3
| S —J —J | S
R17 H c8 R19 H ca R47 H c37 R14 Hoi
20k1/0.19 H 10nF 22k1/0.19 H 10nF 22k1/0.1% H 10nF 22k1/0.1% HS:ﬂ
GND GND GND GND GND GND GND GND
Us
VCC = +3.6V
VBUS ﬁm N1 OUT1 J pcc
C38 s NP (00 L R11 P Cc25
3 5 10uF/6.3V
100nF GND RES [ Bke1/0.1%
4 1
EN FB
M 1 U7
D RX 8 [an . rour L2 RXD TPS77301DGK s S
T 13 1 XD
BUCHSE2 e GND GND s 156
u c18 —|m o1+ Co+ m|— Cc21 =
100nF 4 , 5 100nF G
C1- C2-
J4 1 VBUS VBUS
r— c20 3 7 c22
— v v- H—
B e i USBFET
BUCHSE2 GND 10d wmio  vee GND
141 enp Fo |2 AT TITLE: MSP-FETU43BIF _Revl.4upd
e 1d en FoFF 18— vee
- C23 —le ° °
MG TEW HSO% aND Document Number: Dmﬂ
GND GND Date: 10/05/2005 09:39:37a [Sheet: 3/4

B-20



vce
o R37
RST 3410 onﬁ 15K
U7
R13_ 33k 2PN ey —1 s R33__1K5
————( |_H_|—
\%_“ —=¢] ReseT ol
WAKEUP DM
1u/6.3V NI 2
D3 SUSPEND
EL ) 1Karas 22 ciwour cts pid—_UCTS =2
psR P4 UDSR VBUS 11 veus
X N oo P — R46_33R
RXD — RXDU 19 souT RICP 16 pIEESy 2 o
R38 — 1k rTs & URTS ol
10 SDA DTR UNA UDTR — 3 D+
111 scL TESTo 22 vce
MUp %2 ] s TEsT1 |24 C35 b - C16 41 enp
Raz  MUL 211 par vce wm R45 | | 100k/1% 22p 22p 5
sgor MU2 S0 ] g3y veet SHIELD
MU3 29 ] pgy vbD1s |4
12MHz o oD -2 GND  GND § 1 SHIELD!
X1 GND1
Q2 26 1 % GND2 |28 R32| | 100k/1% cmm|WMMmmu>0rm
R31 e
= TUSB3410VF e
OMQH C18 miem
So:vlﬁ So:mH | o o «© GND
nW_/ﬂu o o0 o <
SCL & © © ©| sN75240PW
SDA
R34 U11
?m_H_ 1kS e —~
0 s L
GND
21 E1 scL |8
S 1 e we p=
USBFET
lvee 4| vss vee |- vce
2iecZelEn TITLE: MSP-FETU43BIF _Revl.4upd
il Document Number: REU:
_L €33 © 100nF
GND 1.4

Date: 10/05/2005 03:38:37a

[Sheet: 4/4

B-21



50ooel: o -
GHD RXD THD VEBUS -H= Cuw -H-D
] i B
C22 H®-n-
da[ ) o
1 | R1 m
R5 ce R4
-u-

” cis Hcze Mcm = HEE _..:_ . 8-e <
m-w-w | ele] ' | _. pil p¥s Ewnuuﬁm uzg| My

R54 L
+ C25
I 00 R-um L1z = Qo2 c1 c2
o H a+ +
oo pH Ly B

R3L 5
O| apcis  H O-l-o
, TTTTTTT

- _— n
- K AK
S Y Eo 2 Rg5y KiR42
L _—
= - H- “ n%%m G4 R ﬂﬂu Brs ﬁﬁ Dmﬂm 22
LLLLLLLL PSP - = = 02
C27 R332 u C33 -~ Fe3 RZB e
-f-§-§-Eb-§-]- 28 n Wk o
45 R3Z2 CIR37 Clz2

TARGET-CON.
Figure B-18. MSP-FET430UIF USB Interface, PCB Pictorial

B-22



MSP-FET430UIF Revision History

Revision 1.3

Initial released hardware version

Assembly change on 1.3 (May 2005)

R29, R51, R42, R21, R22, R74: value changed from 330R to
100R

Changes 1.3 --> 1.4 (Aug 2005)

J5: VBUS and RESET additionally connected

R29, R51, R42, R21, R22, R74: value changed from 330R to
100R

U1, U7: F1612 can reset TUSB3410; R44 = OR added

TARGET-CON.: pins 6, 10, 12, 13, 14 disconnected from GND

Firmware-upgrade option through BSL: R49, R52, R53, R54
added; R49, R52 are currently DNP

Pull-ups on TCK and TMS: R78, R79 added

U2: Changed from SN75LVC1G125DBYV to SN75LVC1G07D

BV

B-23



B-24



Appendix C

FET Specific Menus

This appendix describes the C-SPY menus that are specific to the FET.

Topic Page
C.1.1 EMULATOR--> DEVICE INFORMATION c-2
C.1.2 EMULATOR--> RELEASE JTAG ON GO c-2
C.1.3 EMULATOR--> RESYNCHRONIZE JTAG c-2
C.1.4 EMULATOR--> INIT NEW DEVICE c-2
C.1.5 EMULATOR--> SECURE c-3
C.1.6 EMULATOR--> SHOW USED BREAKPOINTS C-3
C.1.7 EMULATOR--> ADVANCED--> CLOCK CONTROL C-3
C.1.8 EMULATOR--> ADVANCED--> EMULATION MODE C-3
C.1.9 EMULATOR--> ADVANCED--> MEMORY DUMP C-3
C.1.10 EMULATOR--> ADVANCED--> BREAKPOINT c-3

COMBINER
C.1.11 EMULATOR--> STATE STORAGE CONTROL C-3
C.1.12 EMULATOR--> STATE STORAGE WINDOW C-4
C.1.13 EMULATOR--> SEQUENCER CONTROL C-4
C.1.14 EMULATOR-->"POWER ON” RESET C-4
C.1.15 EMULATOR--> GIE on/off C-4
C.1.16 EMULATOR--> LEAVE TARGET RUNNING C-4
C.1.17 EMULATOR--> FORCE SINGLE STEPPING C-4
C.1.18 EMULATOR--> SET VCC C-4




C.l1

C.l2

C.13

C.l4

C-2

EMULATOR--> DEVICE INFORMATION

Opens a window with information about the target device being used.
Also, this window allows adjusting the target voltage in the case an MSP-
FET430UIF interface is used to supply power to the target by performing
a right-click inside this window. The supply voltage can be adjusted
between 1.8V and 5.0V. This voltage is available on pin 2 of the 14-pin
target connector to supply the target from the USB FET. If the target is
supplied externally, the external supply voltage should be connected to
pin 4 of the target connector, so the USB FET can set the level of the
output signals accordingly.

EMULATOR--> RELEASE JTAG ON GO

C-SPY uses the device JTAG signals to debug the device. On some
MSP430 devices, these JTAG signals are shared with the device port
pins. Normally, C-SPY maintains the pins in JTAG mode so that the
device can be debugged. During this time the port functionality of the
shared pins is not available.

However, when RELEASE JTAG ON GO is selected, the JTAG drivers
are set to tri-state and the device is released from JTAG control (TEST
pin is set to GND) when GO is activated. Any active on-chip breakpoints
are retained and the shared JTAG port pins revert to their port functions.

At this time, C-SPY has no access to the device and cannot determine if
an active breakpoint (if any) has been reached. C-SPY must be manually
commanded to stop the device, at which time the state of the device will
be determined (i.e., Was a breakpoint reached?).

Refer to FAQ, Debugging #11).

EMULATOR--> RESYNCHRONIZE JTAG

Regain control of the device.

It is not possible to RESYNCHRONIZE JTAG while the device is
operating.

EMULATOR--> INIT NEW DEVICE

Initialize the device according to the settings in the DOWNLOAD
OPTIONS. Basically, the current program file is downloaded to the
device memory. The device is then reset. This option can be used to
program multiple devices with the same program from within the same
C-SPY session.

It is not possible to select INIT NEW DEVICE while the device is
operating.



C.15

C.16

C.1.7

C.18

C.1.9

C.1.10

C.l1

EMULATOR--> SECURE

Blows the fuse on the target device. After the fuse is blown, no
communication with the device is possible.

EMULATOR--> SHOW USED BREAKPOINTS

List all used hardware and virtual breakpoints, as well as all currently
defined EEM breakpoints.

EMULATOR--> ADVANCED--> CLOCK CONTROL

Disable the specified system clock while C-SPY has control of the device
(following a STOP or breakpoint). All system clocks are enabled
following a GO or a single step (STEP/STEP INTO). Refer to FAQ,
Debugging #18).

EMULATOR--> ADVANCED--> EMULATION MODE

Specify the device to be emulated. The device must be reset (or
reinitialized through INIT NEW DEVICE) following a change to the
emulation mode.

Refer to 0.

EMULATOR--> ADVANCED--> MEMORY DUMP

Write the specified device memory contents to a specified file. A
conventional dialog is displayed that permits the user to specify a file
name, a memory starting address, and a length. The addressed memory
is then written in a text format to the named file. Options permit the user
to select word or byte text format, and address information and register
contents can also be appended to the file.

EMULATOR--> ADVANCED--> BREAKPOINT COMBINER

Open the Breakpoint Combiner dialog box. The Breakpoint Combiner
dialog box permits one to specify breakpoint dependencies. A breakpoint
will be triggered when the breakpoints are encountered in the specified
order.

EMULATOR--> STATE STORAGE CONTROL

Open the State Storage dialog box. The State Storage dialog box
permits one to use the state storage module. The state storage module
is present only in those devices that contain the EEM.

Refer to the IAR C-SPY FET Debugger section in the MSP430 IAR
Embedded Workbench IDE User Guide.

C-3



C.112

C.1.13

C.l14

C.1.15

C.1.16

C.1.17

C.1.18

c-4

EMULATOR--> STATE STORAGE WINDOW

Open the State Storage window, and display the stored state information
as configured by the State Storage dialog.

Refer to the IAR C-SPY FET Debugger section in the MSP430 IAR
Embedded Workbench IDE User Guide.
EMULATOR--> SEQUENCER CONTROL

Open the Sequencer dialog box. The Sequencer dialog box permits one
to configure the sequencer state machine.

Refer to the IAR C-SPY FET Debugger section in the MSP430 IAR
Embedded Workbench IDE User Guide.
EMULATOR-->"POWER ON” RESET

Cycle power to the device to effect a reset.

EMULATOR--> GIE on/off
Enables or disables all interrupts. Needs to be restored manually before
GO.

EMULATOR--> LEAVE TARGET RUNNING

If C-SPY is closed, the target keeps running the user program.

EMULATOR--> FORCE SINGLE STEPPING

On GO the program is executed by single steps. Only in this mode the
cycle counter works correctly.

EMULATOR--> SET VCC

On the USB FET the target supply voltage can be adjusted between
1.8V and 5.0V. This voltage is available on pin 2 of the 14-pin target
connector to supply the target from the USB FET. If the target is supplied
externally, the external supply voltage should be connected to pin 4 of
the target connector, so the USB FET can set the level of the output
signals accordingly.

Note: Availability of EMULATOR--> ADVANCED menus

Not all EMULATOR--> ADVANCED menus are supported by all
MSP430 devices. These menus will be grayed-out.




C-5






Appendix D

80-pin MSP430F44x and MSP430F43x
Device Emulation

80-pin MSP430F44x and MSP430F43x devices can be emulated by the
100-pin MSP430F449 device.Table D-1. F4xx/80-pin Signal Mapping
lists where the pin signals of an 80-pin device appear on the pins of an
MSP-TS430PZ100 Target Socket module. Note: The MSP-TS430PZ100
must be modified as indicated. Refer to Appendix C.1.8 EMULATOR-->
ADVANCED--> EMULATION MODE to enable the emulation mode.

Topic Page

Table D-1. F4xx/80-pin Signal Mapping D-2




Table D-1. F4xx/80-pin Signal Mapping

F4xx/80-pin Signal F4xx/80-pin Pin MSP430- Connection required
Number TS430PZ100 between indicated
Pin Number pins of MSP430-
TS430PZ100 socket

DVvccl 1 1

P6.3/A3 2 2

P6.4/A4 3 3

P6.5/A5 4 4

P6.6/A6 5 5

P6.7/A7 6 6

VREF+ 7 7

XIN 8 8

XOouT 9 9

VeREF+ 10 10

VREF-/VeREF- 11 11

P5.1/S0 12 12

P5.0/S1 13 13

P4.7/S2 14 14 14-46
P4.6/S3 15 15 15-47
P4.5/S4 16 16 16-48
P4.4/S5 17 17 17-49
P4.3/S6 18 16 18-50
P4.2/S7 19 19 19-51
P4.1/S8 20 20 20-62
P4.0/S9 21 21 21-63
S10 22 22

S11 23 23

S12 24 24

S13 25 25

S14 26 26

S15 27 27

S16 28 28

S17 29 29
P2.7/ADC12CLK/S18 30 30

P2.6/CAOUT/S19 31 31

S20 32 32

S21 33 33

S22 34 34

S23 35 35

P3.7/S24 36 36 36-64
P3.6/S25 37 37 37-65
P3.5/S24 38 38 38-66
P3.4/S27 39 39 39-67
P3.3/UCLK0/S28 40 40 40-68
P3.2/SOMI0/S29 41 41 41-69
P3.1/SIMO0/S30 42 42 42-70
P3.0/STE0/S31 43 43 43-71
COMO 44 52t

P5.2/COM1 45 53

P5.3/COM2 46 54

P5.4/COM3 47 55

R0O3 48 56

P5.5/R13 49 57

P5.6/R23 50 58

P5.7/R33 51 59

DVcc2 52 60

D-2



DVss2
P2.5/URXDO
P2.4/UTXDO
P2.3.TB2
P2.2/TB1
P2.1/TBO
P2.0/TA2
P1.7/CA1
P1.6/CAO
P1.5/TACLK/ACLK
P1.4/TBCLK/SMCLK
P1.3/TBOUTH/SVSOUT
P1.2/TAL1
P1.1/TAO/MCLK
P1.0/TAO

XT20UT

XT2IN

TDO/TDI

TDI

TMS

TCK

RST/NMI

P6.0/A0

P6.1/A1

P6.2/A2

Avss

DVssl

Avcc

T Note discontinuity of pin numbering sequence

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

61
74%
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

D-3



D-4



Appendix E

TIto IAR 2.x/3.x Assembler Migration

Texas Instruments made a suite of development tools for the MSP430,
including a comprehensive assembler and device simulator. The source
of the Tl assembler and the source of the Kickstart assembler are not
100% compatible; the instruction mnemonics are identical, while the
assembler directives are somewhat different. The following section
documents the differences between the Tl assembler directives and the
Kickstart 2.x/3.x assembler directives.

Topic Page
E.1 Segment Control E-2
E.2 Translating Asm430 Assembler Directives to A430 Directives E-2
E.2.1 Introduction E-2
E.2.2 Character strings E-2
E.2.3 Section Control Directives E-3
E.2.4 Constant Initialization Directives E-4
E.2.5 Listing Control Directives E-4
E.2.6 File Reference Directives E-5
E.2.7 Conditional-Assembly Directives E-5
E.2.8 Symbol Control Directives E-6
E.2.9 Macro Directives E-7
E.2.10 Miscellaneous Directives E-7
E.2.11 Preprocessor Directives E-7
E.2.12 Alphabetical Listing and Cross Reference of Asm430 E-8

Directives
E.2.13 Additional A430 Directives (IAR) E-8




E.l

E.2

E.2.1

E.2.2

E-2

Segment Control

RSEG defines a Relocatable SEGment. A relocatable segment means
that the code that follows the RSEG statement will be place
*somewhere* in the region defined for that segment (in the .xcl file). In
other words, the code can be "relocated", and you don't know (or care)
where it's put. In the .xcl files provided with the FET, multiple segments
are defined in the same memory regions. ASEG defines an Absolute
SEGment. An absolute segment means that the code that follows the
ASEG statement will be placed in the order it is encountered in the
region defined for the segment (in the .xcl file). In other words, the
placement of the code is fixed in memory. One significant difference
between the new IAR assembler and the old Tl assembler is the
meaning of the ORG statement. In the old Tl assembler, ORG would set
the assembler code pointer to the specified absolute address. However,
the IAR assembler uses ORG to set an offset from the current RSEG.
Fortunately, if you don't use RSEG explicitly, it will default to 0 (zero) and
your program will link as you expect (with your code at ORG). Be careful
if you mix RSEG and ORG as ORG then becomes a relative offset. Use
ASEG if you want the (absolute) behavior of the old TI ORG statement.

Translating Asm430 Assembler Directives to A430 Directives

Introduction

Character

The following sections describe, in general, how to convert assembler
directives for Texas Instruments’ Asm430 assembler (Asm430) to
assembler directives for IAR’s A430 assembler (A430). These sections
are only intended to act as a guide for translation. For detailed
descriptions of each directive, refer to either the MSP430 Assembly
Language Tools User’'s Guide, SLAUE12, from Texas Instruments, or the
MSP430 Assembler User's Guide from IAR.

Note: Only the assembler directives require conversion

Only the assembler directives require conversion - not the assembler
instructions. Both assemblers use the same instruction mnemonics,
operands, operators, and special symbols such as the section program
counter ($), and the comment delimiter (;).

The A430 assembler is not case sensitive by default. These sections
show the A430 directives written in uppercase to distinguish them from
the Asm430 directives, which are shown in lower case.

strings

In addition to using different directives, each assembler uses different
syntax for character strings. A430 uses C syntax for character strings: A
guote is represented using the backslash character as an escape
character together with quote (\") and the backslash itself is represented




by two consecutive backslashes (\\). In Asm430 syntax, a quote is
represented by two consecutive quotes (*"). See examples below:

Character String Asm430 Syntax (Tl A430 Syntax (IAR)
PLAN ILCH HPLAN MHCH”H “PLAN \HC\HH
\dos\command.com “\dos\command.com” “\dos\\command.com”
Concatenated string (i.e. Error 41) - “Error " “41”

E.2.3 Section Control Directives

Asm430 has three predefined sections into which various parts of a
program are assembled. Uninitialized data is assembled into the .bss
section, initialized data into the .data section and executable code into
the .text section.

A430 also uses sections or segments, but there are no predefined
segment names. Often, it is convenient to adhere to the names used by
the C compiler: DATAL16_Z for uninitialized data, CONST for constant
(initialized) data and CODE for executable code. The table below uses
these names.

A pair of segments can be used to make initialized, modifiable data
PROM-able. The ROM segment would contain the initializers and would
be copied to RAM segment by a start-up routine. In this case, the
segments must be exactly the same size and layout.

Description Asm430 Directive (TI) A430 Directive (IAR)
Reserve size bytes in the .bss .bss 1)
(uninitialized data) section

Assemble into the .data (initialized data) .data RSEG const
section

Assemble into a named (initialized) .sect RSEG
section

Assemble into the .text (executable code) text RSEG code
section

Reserve space in a named (uninitialized) .usect 1)

section

Alignment on byte boundary .align 2)
Alignment on word boundary .even EVEN

1) Space is reserved in an uninitialized segment by first switching to that segment, then defining the
appropriate memory block, and then switching back to the original segment. For example:

RSEG DATAl6_Z

LABEL: DS 16
RSEG CODE
2) Initialization of bit-field constants (.field) is not supported, therefore, the section counter is always byte-
aligned.
Additional A430 Directives (IAR) A430 Directive (IAR)
Switch to an absolute segment ASEG
Switch to a relocatable segment RSEG
Switch to a common segment COMMON
Switch to a stack segment (high-to-low allocation) STACK
Alignment on specified address boundary (power of two) ALIGN
Set the location counter ORG

E-3



E.24

Description

Constant Initialization Directives

Asm430 Directive (TI)

A430 Directive (IAR)

Initialize one or more successive bytes or
text strings

Initialize a 48-bit MSP430 floating-point
constant

Initialize a variable-length field

Initialize a 32-bit MSP430 floating-point
constant

Reserve size bytes in the current section
Initialize one or more text strings

Initialize one or more 16-bit integers

.byte or .string
.double

field
float

.Space
.string
.word

DB
1)

2)
DF 3)

DS
DB
DW

1) The 48-bit MSP430 format is not supported
2) nitialization of bit-field constants (.field) is not supported. Constants must be combined into complete

words using DW.

; Asm430 code

field53  \
field12,4 | -->
field 30,8/

; A430 code

DW (30<<(4+3))|(12<<3)|5 ; equals 3941

3) The 32-bit IEEE floating-point format, used by the C Compiler, is supported in the A430 assembler.

Additional A430 Directives (IAR)

A430 Directive (IAR)

Initialize one or more 32-bit integers

DL

E.2.5

Description

Listing Control Directives

Asm430 Directive (TI)

A430 Directive (IAR)

Allow false conditional code block listing
Inhibit false conditional code block listing
Set the page length of the source listing
Set the page width of the source listing
Restart the source listing

Stop the source listing

Allow macro listings and loop blocks

Inhibit macro listings and loop blocks

Select output listing options

Eject a page in the source listing

Allow expanded substitution symbol listing
Inhibit expanded substitution symbol
listing

Print a title in the listing page header

fclist
fcnolist
Jlength
.width
list
.nolist
.mlist

.mnolist
.option
.page
.sslist
.ssnolist

title

LSTCND-

LSTCND+

PAGSIZ

COL

LSTOUT+

LSTOUT-

LSTEXP+ (macro)
LSTREP+ (loop blocks)
LSTEXP- (macro)
LSTREP- (loop blocks)
1)

PAGE

2)

2)

3)

1) No A430 directive directly corresponds to .option. The individual listing control directives (above) or the
command-line option -c (with suboptions) should be used to replace the .option directive.

2) There is no directive that directly corresponds to .sslist/.ssnolist.

3) The title in the listing page header is the source file name.

Additional A430 Directives (IAR)

A430 Directive (IAR)

Allow/inhibit listing of macro definitions
Allow/inhibit multi-line code listing
Allow/inhibit partitioning of listing into pages
Generate cross reference table

LSTMAC (+/-)
LSTCOD (+/-)
LSTPAG (+/-)
LSTXREF (+/-)

E-4



E.2.6 File Reference Directives

Description Asm430 Directive (TI) A430 Directive (IAR)
Include source statements from another .copy or .include #include or $

file

Identify one or more symbols that are .def PUBLIC or EXPORT

defined in the current module and used in
other modules

Identify one or more global (external) .global
symbols

Define a macro library .mlib
Identify one or more symbols that are .ref

used in the current module but defined in
another module

1

2)
EXTERN or IMPORT

1) The directive .global functions as either .def if the symbol is defined in the current module, or .ref
otherwise. PUBLIC or EXTERN must be used as applicable with the A430 assembler to replace the

.global directive.

2) The concept of macro libraries is not supported. Include files with macro definitions must be used for

this functionality.

Modules may be used with the Asm430 assembler to create individually
linkable routines. A file may contain multiple modules or routines. All
symbols except those created by DEFINE, #define (IAR preprocessor
directive) or MACRO are “undefined” at module end. Library modules
are, furthermore, linked conditionally. This means that a library module is
only included in the linked executable if a public symbol in the module is
referenced externally. The following directives are used to mark the
beginning and end of modules in the A430 assembler.

Additional A430 Directives (IAR)

A430 Directive (IAR)

Start a program module
Start a library module
Terminate the current program or library module

NAME or PROGRAM
MODULE or LIBRARY
ENDMOD

E.2.7 Conditional-Assembly Directives

Description Asm430 Directive (TI) A430 Directive (IAR)
Optional repeatable block assembly .break 1)

Begin conditional assembly if IF

Optional conditional assembly .else ELSE

Optional conditional assembly .elseif ELSEIF

End conditional assembly .endif ENDIF

End repeatable block assembly .endloop ENDR

Begin repeatable block assembly .loop REPT

1) There is no directive that directly corresponds to .break. However, the EXITM directive can be used with
other conditionals if repeatable block assembly is used in a macro, as shown:

SEQ MACRO FROM,TO
LOCAL X

X SET FROM
REPT TO-FROM+1
IF X>255
EXITM
ENDIF
DB X

X SET X+1

; Initialize a sequence of byte constants

; Repeat from FROM to TO
; Break if X exceeds 255

; Initialize bytes to FROM...TO
; Increment counter

E-5



ENDR

ENDM
Additional A430 Directives (IAR) A430 Directive (IAR)
Repeatable block assembly: Formal argument is substituted by each REPTC

character of a string.

Repeatable block assembly: formal argument is substituted by each string REPTI
of a list of actual arguments.

See also Preprocessor Directives

E.2.8 Symbol Control Directives

The scope of assembly-time symbols differs in the two assemblers. In
Asm430, definitions are global to a file, but can be undefined with the
.newblock directive. In A430, symbols are either local to a macro
(LOCAL), local to a module (EQU) or global to a file (DEFINE). In
addition, the preprocessor directive #define can also be used to define

local symbols.
Description Asm430 Directive (TI) A430 Directive (IAR)
Assign a character string to a substitution .asg SET or VAR or ASSIGN
symbol
Undefine local symbols .newblock 1)
Equate a value with a symbol .equ or .set EQU or =
Perform arithmetic on numeric substitution  .eval SET or VAR or ASSIGN
symbols
End structure definition .endstruct 2)
Begin a structure definition .struct 2)
Assign structure attributes to a label .tag 2)

1) No A430 directive directly corresponds to .newblock. However, #undef may be used to reset a symbol
that was defined with the #define directive. Also, macros or modules may be used to achieve the
.newblock functionality because local symbols are implicitly undefined at the end of a macro or module.

2) Definition of structure types is not supported. Similar functionality is achieved by using macros to
allocate aggregate data and base address plus symbolic offset, as shown below:

MYSTRUCT:MACRO

DS 4
ENDM
LO DEFINE 0
HI DEFINE 2
RSEG DATAl6_Z
X MYSTRUCT
RSEG CODE

MOV  X+LO,R4

Additional A430 Directives (IAR) A430 Directive (IAR)
Define a file-wide symbol DEFINE

Definition of special function registers (byte size) SFRB

Definition of special function registers (word size) SFRW

E-6



E.2.9 Macro Directives

Description

Asm430 Directive (TI)

A430 Directive (IAR)

Define a macro

Exit prematurely from a macro

End macro definition

.macro
.mexit
.endm

MACRO
EXITM
ENDM

Additional A430 Directives (IAR)

A430 Directive (IAR)

Create symbol, local to a macro

LOCAL 1)

1) In Asm430 local symbols are suffixed by a question mark (?).

E.2.10 Miscellaneous Directives

Description Asm430 Directive (TI)

A430 Directive (IAR)

Send user-defined error messages to the .emsg
output device

Send user-defined messages to the output .mmsg
device

#error

#message 1)

Send user-defined warning messages to .wmsg 2)

the output device

Define a load address label label 3)

Directive produced by absolute lister .setsect ASEG 4)
Directive produced by absolute lister .setsym EQU or =4)
Program end .end END

1) The syntax of the #message directive is: #message “<string>"

This causes ‘#message <string>' to be output to the project build window during assemble/compile time.
2) Warning messages cannot be user-defined. #message may be used, but the warning counter will not

be incremented.

3) The concept of load-time addresses is not supported. Run-time and load-time addresses are assumed
to be the same. To achieve the same effect, labels can be given absolute (run-time) addresses by the

EQU directives.

; Asm430 code ; A430 code
label load_start load_start:

Run_start: <code>
<code> load_end:

Run_end: run_starttEQU  240H

label load_end

run_end: EQU  run_start+load_end-load_start

4) Although not produced by the absolute lister ASEG defines absolute segments and EQU can be used to

define absolute symbols.

MYFLAG EQU 23EH
ASEG 240H

MAIN: MOV  #23CH, SP : MAIN is located at 240

Additional A430 Directives (IAR)

: MYFLAG is located at 23E
; Absolute segment at 240

A430 Directive (IAR)

Set the default base of constants
Enable case sensitivity
Disable case sensitivity

RADIX
CASEON
CASEOFF

E.2.11 Preprocessor Directives

The A430 assembler includes a preprocessor similar to that used in C
programming. The following preprocessor directives can be used in
include files which are shared by assembly and C programs.

E-7



Additional A430 Directives (IAR)

A430 Directive (IAR)

Assign a value to a preprocessor symbol
Undefine a preprocessor symbol

Conditional assembly

Assemble if a preprocessor symbol is defined (not defined)
End a #if, #ifdef or #ifndef block

Includes a file
Generate an error

#define
#undef

#if, #else, #elif
#ifdef, #ifndef

#endif

#include

#error

E.2.12

Asm430 directive

A430 directive

Asm430 directive

Alphabetical Listing and Cross Reference of Asm430 Directives

A430 directive

.align See Section control directives .loop REPT

.asg SET or VAR or ASSIGN .macro MACRO

.break See Conditional-Assembly Directives .mexit EXITM

.bss See Symbol Control Directives .mlib See File Referencing Directives
.byte or .string DB .mlist LSTEXP+ (macro)

.copy or .include #include or $ LSTREP+ (loop blocks)

.data RSEG .mmsg #message (XXXXXX)

.def PUBLIC or EXPORT .mnolist LSTEXP- (macro)

.double Not supported LSTREP- (loop blocks)

.else ELSE .newblock See Symbol Control Directives
.elseif ELSEIF .nolist LSTOUT-

.emsg #error .option See Listing Control Directives
.end END .page PAGE

.endif ENDIF ref EXTERN or IMPORT

.endloop ENDR .sect RSEG

.endm ENDM .setsect See Miscellaneous Directives
.endstruct See Symbol Control Directives .setsym See Miscellaneous Directives
.equ or .set EQU or = .Space DS

.eval SET or VAR or ASSIGN .sslist Not supported

.even EVEN .ssnolist Not supported

fclist LSTCND- .string DB

fcnolist LSTCND+ .struct See Symbol Control Directives
field See Constant Initialization Directives .tag See Symbol Control Directives
float See Constant Initialization Directives text RSEG

.global See File Referencing Directives title See Listing Control Directives
if IF .usect See Symbol Control Directives
label See Miscellaneous Directives .width COL

length PAGSIZ .wmsg See Miscellaneous Directives
ist LSTOUT+ .word DW

E.2.13 Additional A430 Directives (IAR)

Conditional-Assembly Directives
REPTC
REPTI

File Referencing Directives
NAME or PROGRAM
MODULE or LIBRARY
ENDMOD

Listing Control Directives
LSTMAC (+/-)
LSTCOD (+/-)
LSTPAG (+/-)

E-8

Constant Initialization Directives
DL

Miscellaneous Directives
RADIX

CASEON

CASEOFF

Preprocessor Directives
#define

#undef

#if, #else, #elif

Macro Directives
LOCAL

Symbol Control Directives
DEFINE

SFRB

SFRW

Symbol Control Directives
ASEG

RSEG

COMMON



LSTXREF (+/-)

#ifdef, #ifndef
#endif
#include
#error

STACK
ALIGN
ORG

E-9



E-10



Appendix F

MSP-FET430UIF Installation Guide

This section describes the hardware installation process of the MSP-
FET430UIF USB debug interface on a PC running Windows XP. The
installation procedure for a Windows 2000 system is very similar and
therefore not shown here.

Topic Page

F.1 Hardware Installation F-2




F.1 Hardware Installation

1) Connect the MSP-FET430UIF USB Debug Interface with a USB
cabletoa USB port of your PC

2) Windows now should recognize the new hardware as an “MSP430
USB FET x.xx.xx" (Figure F-1).

'il_.- Fruarnl Sew Hardware | M

PSP LSS FET 1,00 107

(@ % tE9E S0

Figure F-1. WinXP Hardware Recognition

3) The Hardware Wizard should start automatically and popup the
“Found New Hardware Wizard” dialog window.

4) Instruct the Wizard to install the hardware driver from a specific
location (Figure F-2).

Fiuired Miw Hardware Wizard

Wilcome to the Found New
Hardware Wiz ard

Tl wzand heldps pou ksl sofbaae jor

MEF4Z0USE FET L0007

=1 Il pour hardmare: came ik an nstallalion O
= of Hoppy disk, inseit il now.

a'hial o o sl the wizaed lo do]

{ |reitill Do scflovins doriaScaly [Facormarind

= Inztall hom & kst o goecihc locabon dvanced)

Ok Hisd 1o coribre

Hisd o Cancal

Figure F-2. WinXP Hardware Wizard

5) Point the Hardware Wizard to the according folder where the
corresponding driver information files are located on your hard disc.

F-2



Fovisred] Mizis Hardaare Wi ard

Flaazs choome pour zeaich anid inclallaion aplions,

& Smarch for the bt deves in these locaions.

Ui b chvich, Beceots: bethoos B el o safuinred o ol inall sieich, sobach Foducies lecal
paths ard remosable media. The best dinser fournd vl be nstaled.

[ Swanch nemorable greda [lopey. COAOM., |
P Inchube bhia kpzation in the seackc

[C\org dstahpaceecta\MEP430 LISE_FETWLISE_FETL »]

T Dot search | well choose e Siver ko instal

Clruein Bk ophion b sebect thie disice divt fom & k. \Windows does fol gualaries Hhal
o it oo oo vl e e Easd rrissbod Bion o Fascine.

cBack | Heas | Caoce |

Figure F-3. WinXP Driver Location Selection Folder

6) The Wizard should generate a message that an appropriate driver

has been found.

7) Note that WinXP shows a warning that the driver is not certified by
Microsoft. Ignore this warning and click “Continue Anyway” (Figure

F-4).

F-3



Plesse wal whils the wizaed installs the softwaie. .

ﬂ HEFI0 USE FET Adapte

- !E The solwss pou s nstaling ko Ty handeae
HEPI0 USE FET Aclaphs

e o pasgied Whindowss Lioga hesting 1o ey i connpatbl
with ‘windows #P. (T e webw iy teofing s angostont |

I o dastabilize the comect cparstion ol poan spstem
R — withe mmediaiely oo inlhe Toturs, Meciozoll civongly
recommersds that you sbop this insallabon new aoid
conlecd the hardsare wendod Foi soflwais hal has
passed ‘Windows Logo leshmg.

Conteuse trgway | [ STOP Instatater: |

Figure F-4. WinXP Driver Installation

8) In the next step the Wizard installs the driver files.

9) The Wizard now shows a message that it has finished the installation
of the software for “MSP430 USB FET Adapter”.

10) After closing the Hardware Wizard, Windows automatically
recognizes another new hardware device called “Texas Instruments
UMP Serial Port”.

11) Depending on the current update version of the OS corresponding
drivers are installed automatically or the Hardware Wizard pops up
again. In case of the Wizard is started, please repeat the steps
already described above again

12) Finally the MSP-FET430UIF debug interface is installed and ready to
use. The Device Manager should list a new entry as shown in Figure
F-5.

F-4



Fl=  fwtion  Yew Help
= @S @ N

(3} wgm [k chrfems

i} Cisplay adapiers

Bk DVDIOD-ROM dravas

[ (g Human Interlacn Desvioms

i) !a IDE ATAJETAPT conkroflers
[3-2 Kervboards

[y Mice and other poinking devices

I Mot senial sdspters
B 1S40 LISE FET fdapher

BE Broadoon 570k Ggabet Inksgrated Controllar
B Ol Trowmobie b330 WALAHN Hani-PCT Cand
# § POMCIA adeprers
=5 Ports (COMEBLET)
o Bhustooth Communications Port {COM4]
o Bhmtooth Communicsbons Port (C0HT]
CorisunCations Port (COML)
o ECF Prinker Post (LFT1}
ji{bfﬂﬂﬂvtﬁm
[+ W Processons
14 Smeut; card regders
= B Sound, videa and garms controbens
A & System devices
14 Uresgrasl Serial Bus controlérs

Figure F-5. Device Manager



