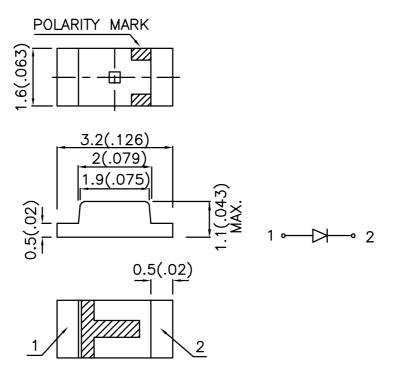


3.2x1.6mm SMD CHIP LED LAMP

KP-3216EC

HIGH EFFICIENCY RED

PAGE: 1 OF 4


Features

- •3.2mmx1.6mm SMT LED, 1.1mm THICKNESS.
- •LOW POWER CONSUMPTION.
- •WIDE VIEWING ANGLE.
- •IDEAL FOR BACKLIGHT AND INDICATOR.
- •VARIOUS COLORS AND LENS TYPES AVAILABLE.
- •PACKAGE: 2000PCS/REEL.
- •RoHS COMPLIANT.

Description

The High Efficiency Red source color devices are made with Gallium Arsenide Phosphide on Gallium Phosphide Orange Light Emitting Diode.

Package Dimensions

- 1. All dimensions are in millimeters (inches).
- Tolerance is ±0.2(0.0079") unless otherwise noted.
 Specifications are subject to change without notice.

SPEC NO: DSAB4908 **REV NO: V.7 DATE: MAR/18/2005** APPROVED: J. Lu CHECKED: Allen Liu DRAWN: Y.CHENG

Kingbright

Selection Guide

Part No.	Dice	Lens Type	Iv (mcd) @ 20mA		Viewing Angle
		,	Min.	Тур.	201/2
KP-3216EC	HIGH EFFICIENCY RED (GaAsP/GaP)	WATER CLEAR	4	12	120°

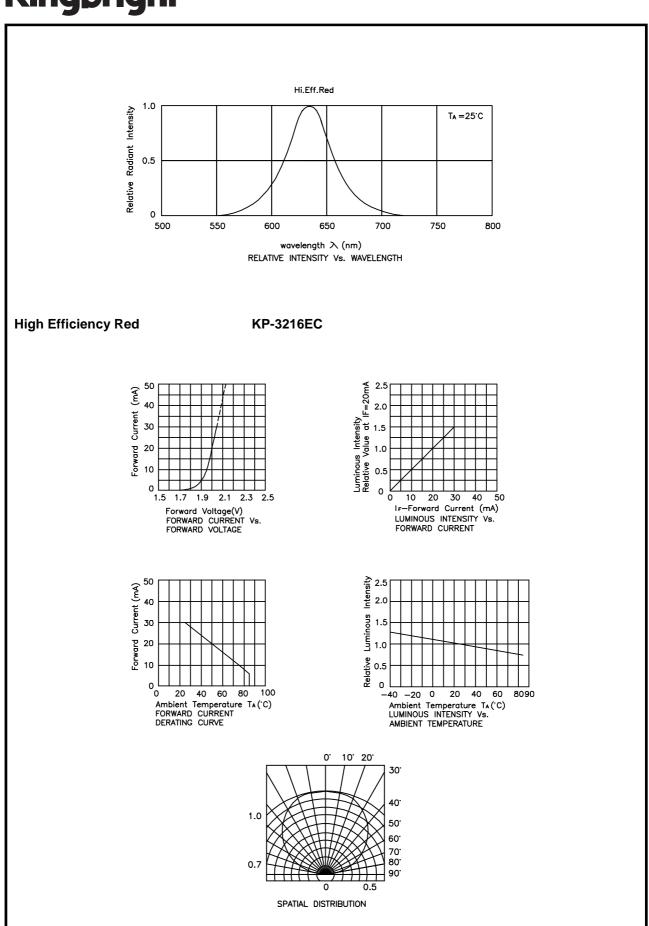
Note:

Electrical / Optical Characteristics at Ta=25°C

Symbol	Parameter	Device	Тур.	Max.	Units	Test Conditions
λpeak	Peak Wavelength	High Efficiency Red	627		nm	I _F =20mA
λD	Dominant Wavelength	High Efficiency Red	625		nm	I _F =20mA
Δλ1/2	Spectral Line Half-width	High Efficiency Red	45		nm	I _F =20mA
С	Capacitance	High Efficiency Red	15		pF	V _F =0V;f=1MHz
V _F	Forward Voltage	High Efficiency Red	2.0	2.5	V	I _F =20mA
I _R	Reverse Current	High Efficiency Red		10	uA	V _R = 5V

Absolute Maximum Ratings at Ta=25°C

Parameter	High Efficiency Red	
Power dissipation	105	mW
DC Forward Current	30	mA
Peak Forward Current [1]	160	mA
Reverse Voltage	5	V
Operating / Storage Temperature	-40°C To +85°C	•

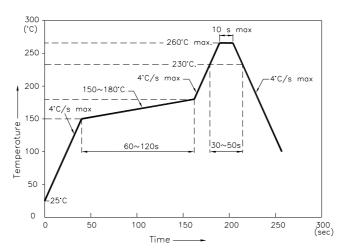

Note

SPEC NO: DSAB4908 REV NO: V.7 DATE: MAR/18/2005 PAGE: 2 OF 4
APPROVED: J. Lu CHECKED: Allen Liu DRAWN: Y.CHENG

^{1.} θ 1/2 is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.

^{1. 1/10} Duty Cycle, 0.1ms Pulse Width.

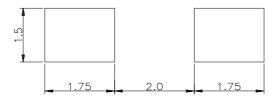
Kingbright


SPEC NO: DSAB4908 **REV NO: V.7 DATE: MAR/18/2005** PAGE: 3 OF 4 CHECKED: Allen Liu **DRAWN: Y.CHENG**

APPROVED: J. Lu

Kingbright

KP-3216EC


Reflow Soldering Profile For Lead-free SMT Process.

NOTES

- 1.We recommend the reflow temperature 245°C(+/-5°C).The maximum soldering temperature should be limited to 260°C.
- 2.Don't cause stress to the epoxy resin while it is exposed to high temperature.
- 3. Number of reflow process shall be 2 times or less.

Recommended Soldering Pattern (Units: mm)

Tape Specifications (Units: mm)

TAPE

4.0TYP.

2.0TYP.

4.0TYP.

1.55

0.23TYP.

1.3TYP.

Remarks:

If special sorting is required (e.g. binning based on forward voltage, luminous intensity, or wavelength), the typical accuracy of the sorting process is as follows:

- 1. Wavelength: +/-1nm
- 2. Luminous Intensity: +/-15%
- 3. Forward Voltage: +/-0.1V

Note: Accuracy may depend on the sorting parameters.

SPEC NO: DSAB4908 REV NO: V.7 DATE: MAR/18/2005 PAGE: 4 OF 4
APPROVED: J. Lu CHECKED: Allen Liu DRAWN: Y.CHENG