Data Sheet

HLMP-3301, HLMP-3401, HLMP-3507, HLMP-3762,
HLMP-3862, HLMP-3962, HLMP-D401

Description

This family of $\mathrm{T}-13 / 4$ tinted, diffused LED lamps is widely used in general purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

Selection Guide

Material/ Color	Part Number	Luminous Intensity Iv (mcd) at 10 mA	
		Min.	Max.
GaP HER	HLMP-3301	5.4	-
	HLMP-3301-D00xx	2.1	-
	HLMP-3301-F00xx	5.4	-
	HLMP-3301-FG0xx	5.4	17.2
	HLMP-3762	8.6	-
	HLMP-3762-G00xx	8.6	-
GaP Yellow	HLMP-3401	5.7	-
	HLMP-3401-E00xx	5.7	-
	HLMP-3401-EF0xx	5.7	18.4
	HLMP-3401-EFBxx	5.7	18.4
	HLMP-3862	9.2	-
	HLMP-3862-F00xx	9.2	-
	HLMP-3862-FGBxx	9.2	29.4
GaP Orange	HLMP-D401	5.4	-
	HLMP-D401-D00xx	2.1	-
	HLMP-D401-EF0xx	3.4	10.8
	HLMP-D401-F00xx	5.4	-
GaP Green	HLMP-3507	4.2	-
	HLMP-3507-D00xx	4.2	-
	HLMP-3507-EF0xx	6.7	21.2
	HLMP-3962	10.6	-
	HLMP-3962-F00xx	10.6	-

Features

- High intensity
- Choice of 4 bright colors
- High Efficiency Red
- Orange
- Yellow
- High Performance Green
- Popular T-13/4 diameter package
- Selected minimum intensities
- Wide viewing angle
- General purpose leads
- Reliable and rugged
- Available on tape and reel

Part Numbering System

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm
(.040") DOWN THE LEADS

Optical/Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Color	Min.	Typ.	Max.	Units	Test Condition
$2 \theta^{1 / 2}$	Included Angle	High Efficiency Red		60		Deg.	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Between Half	Orange		60			See Note 1
	Luminous Intensity	Yellow		60			
	Points	Green		60			
$\overline{\lambda_{\text {PEAK }}}$	Peak Wavelength	High Efficiency Red		635		nm	Measurement at Peak
		Orange		600			
		Yellow		583			
		Green		565			
$\overline{\Delta l_{1 / 2}}$	Spectral Line Halfwidth	HER/Orange		40		$n \mathrm{~m}$	
		Yellow		36			
		Green		28			
$\overline{\lambda_{d}}$	Dominant Wavelength	High Efficiency Red		626		nm	See Note 2
		Orange		602			
		Yellow		585			
		Green		569			
$\tau_{\text {s }}$	Speed of Response	High Efficiency Red		90		ns	
		Orange		280			
		Yellow		90			
		Green		500			
C	Capacitance	High Efficiency Red		11		pF	$\begin{aligned} & V_{F}=0 ; \\ & f=1 M H z \end{aligned}$
		Orange		4			
		Yellow		15			
		Green		18			
R JJ-PIN	Thermal Resistance	All		260		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	HER/Orange		1.9	2.4	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
		Yellow		2.0	2.4		
		Green		2.1	2.7		
V_{R}	Reverse Breakdown Voltage	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
$\eta \mathrm{V}$	Luminous Efficacy	High Efficiency Red	-	145		lumens	See Note 3
		Orange		380		Watt	
		Yellow	-	500			
		Green		595			

Notes:

1. $\theta^{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in Watts/steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/Watt.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	HER/Orange	Yellow	Green/ Emerald Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{[1]}$	25	20	25	mA
DC Current[2]	30	20	30	mA
Power Dissipation ${ }^{[3]}$	135	85	135	mW
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	5	5	V
Transient Forward Current ${ }^{[4]}$ ($10 \mu \mathrm{sec}$ Pulse)	500	500	500	mA
LED Junction Temperature	110	110	110	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	

Notes:

1. See Figure 5 (Red/Orange), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red, Orange and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative intensity vs. wavelength

T-13/4 High Efficiency Red, Orange Diffused Lamps

Figure 2. Forward current vs. forward voltage characteristics

Figure 3. Relative luminous intensity vs. DC forward current

Figure 4. Relative efficiency (luminous intensity per unit current) vs. peak LED current

Figure 5. Maximum tolerable peak current vs. pulse duration. (IDC MAX as per MAX ratings)

T-13/4 Yellow Diffused Lamps

Figure 7. Forward current vs. forward voltage characteristics

Figure 8. Relative luminous intensity vs. forward current

Figure 9. Relative efficiency (luminous intensity per unit current) vs. peak current

Figure 10. Maximum tolerable peak current vs. pulse duration. (ldC MAX as per MAX ratings)

T-13/4 Green/Emerald Green Diffused Lamps

Figure 12. Forward current vs. forward voltage characteristics

Figure 13. Relative luminous intensity vs. DC forward current

Figure 14. Relative efficiency (luminous intensity per unit current) vs. peak LED current

Figure 15. Maximum tolerable peak current vs. pulse duration. (IDC MAX as per MAX ratings)

Intensity Bin Limits

Color	Intensity Range (mcd)		
	Bin	Min.	Max.
Red/Orange	D	2.4	3.8
	E	3.8	6.1
	F	6.1	9.7
	G	9.7	15.5
	H	15.5	24.8
	1	24.8	39.6
	J	39.6	63.4
	K	63.4	101.5
	L	101.5	162.4
	M	162.4	234.6
	N	234.6	340.0
	0	340.0	540.0
	P	540.0	850.0
	0	850.0	1200.0
	R	1200.0	1700.0
	S	1700.0	2400.0
	T	2400.0	3400.0
	U	3400.0	4900.0
	V	4900.0	7100.0
	W	7100.0	10200.0
	X	10200.0	14800.0
	Y	14800.0	21400.0
	Z	21400.0	30900.0
Yellow	E	6.5	10.3
	F	10.3	16.6
	G	16.6	26.5
	H	26.5	42.3
	I	42.3	67.7
	J	67.7	108.2
	K	108.2	173.2
	L	173.2	250.0
	M	250.0	360.0
	N	360.0	510.0
	0	510.0	800.0
	P	800.0	1250.0
	0	1250.0	1800.0
	R	1800.0	2900.0
	S	2900.0	4700.0
	T	4700.0	7200.0
	U	7200.0	11700.0
	V	11700.0	18000.0
	W	18000.0	27000.0

Intensity Bin Limits, continued

Color	Intensity Range (mcd)		
	Bin	Min.	Max.
Green	D	4.7	7.6
	E	7.6	12.0
	F	12.0	19.1
	G	19.1	30.7
	H	30.7	49.1
	1	49.1	78.5
	J	78.5	125.7
	K	125.7	201.1
	L	201.1	289.0
	M	289.0	417.0
	N	417.0	680.0
	0	680.0	1100.0
	P	1100.0	1800.0
	0	1800.0	2700.0
	R	2700.0	4300.0
	S	4300.0	6800.0
	T	6800.0	10800.0
	U	10800.0	16000.0
	V	16000.0	25000.0
	W	25000.0	40000.0

Maximum tolerance for each bin limit is $\pm 18 \%$.

Color Categories

Color	Lambda (nm)		
	Category \#	Min.	Max.
Green	6	561.5	564.5
	5	564.5	567.5
	4	567.5	570.5
	3	570.5	573.5
	2	573.5	576.5
Yellow	1	582.0	584.5
	3	584.5	587.0
	2	587.0	589.5
	4	589.5	592.0
	5	592.0	593.0
Orange	1	597.0	599.5
	2	599.5	602.0
	3	602.0	604.5
	4	604.5	607.5
	5	607.5	610.5
	6	610.5	613.5
	7	613.5	616.5
	8	616.5	619.5

Tolerance for each bin limit is $\pm 0.5 \mathrm{~nm}$.

Mechanical Option Matrix

Mechanical Option Code	Definition
00	Bulk Packaging, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
01	Tape \& Reel, crimped leads, minimum increment $1300 \mathrm{pcs} / \mathrm{bag}$
$\mathbf{0 2}$	Tape \& Reel, straight leads, minimum increment $1300 \mathrm{pcs} / \mathrm{bag}$
B1	Right Angle Housing, uneven leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
DD	Right Angle Housing, even leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
R4	Ammo Pack, straight leads with minimum increment 2K/pack

Note:

All categories are established for classification of products. Products may not be available in all categories. Please contact your local Avago representative for further clarification/information.

Precautions

Lead Forming

- The leads of an LED lamp may be preformed or cut to length prior to insertion and soldering into PC board.
- Iflead forming is required before soldering, care must be taken to avoid any excessive mechanical stress induced to LED package.Otherwise,cut the leads of LED tolength after soldering process at room temperature.The solder joint formed will absorb the mechanical stress of the lead cutting from traveling to the LED chip die attach and wirebond.
- It is recommended that tooling made to precisely form and cut the leads to length rather than rely upon hand operation.

Soldering Conditions

- Care must be taken during PCB assembly and soldering process to prevent damage to LED component.
- The closest LED is allowed to solder on board is 1.59 mm below the body (encapsulant epoxy) for those parts without standoff.
- Recommended soldering conditions:

	Wave Soldering	Manual Solder Dipping
Pre-heat Temperature	$105^{\circ} \mathrm{C}$ Max.	-
Pre-heat Time	30 sec Max.	-
Peak Temperature	$250^{\circ} \mathrm{C}$ Max.	$260^{\circ} \mathrm{C}$ Max.
Dwell Time	3 sec Max.	5 sec Max.

- Wave soldering parameter must be set and maintained according to recommended temperature and dwell time in the solder wave. Customer is advised to periodically check on the soldering profile to ensure the soldering profile used is always conforming to recommended soldering condition.
- If necessary, use fixture to hold the LED component in proper orientation with respect to the PCB during soldering process.
- Proper handling is imperative to avoid excessive thermal stresses to LED components when heated. Therefore, the soldered PCB must be allowed to cool to room temperature, $25^{\circ} \mathrm{C}$, before handling.
- Special attention must be given to board fabrication, solder masking, surface plating and lead holes size and component orientation to assure solderability.
- Recommended PC board plated through hole sizes for LED component leads:

LED Component Lead Size	Diagonal	Plated Through Hole Diameter
$0.457 \times 0.457 \mathrm{~mm}$	0.646 mm	0.976 to 1.078 mm
$(0.018 \times 0.018 \mathrm{inch})$	$(0.025 \mathrm{inch})$	$(0.038$ to 0.042 inch$)$
$0.508 \times 0.508 \mathrm{~mm}$	0.718 mm	1.049 to 1.150 mm
$(0.020 \times 0.020 \mathrm{inch})$	$(0.028 \mathrm{inch})$	$(0.041$ to 0.045 inch$)$

Note: Refer to application note AN1027 for more information on soldering LED components.

Figure 17. Recommended wave soldering profile

