HLMP-D150 # **Data Sheet** # HLMP-D150/D155, HLMP-K150/K155 # Description These solid state LED lamps utilize newly developed double heterojunction (DH) AlGaAs/GaAs material technology. This LED material has outstanding light output efficiency at very low drive currents. The color is deep red at the dominant wavelength of 637 nanometres. These lamps are ideally suited for use in applications where high light output is required with minimum power output. #### **Features** - Minimum luminous intensity specified at 1 mA - · High light output at low currents - · Wide viewing angle - · Outstanding material efficiency - · Low power/low forward voltage - · CMOS/MOS compatible - · TTL compatible - Deep red color # **Applications** - · Low power circuits - · Battery powered equipment - · Telecommunication indicators ### **Package Dimensions** NOTES: A. 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. AN EPOXY MINISCUS MAY EXTEND ABOUT 1 mm (0.040") DOWN THE LEADS. ### **Selection Guide** | | | Luminous Intensity | | | | | |-----------------------------------|--------------|--------------------|------|-----------------------|---------|---------| | | | Iv (mcd) at 1 mA | | $2\theta_{1/2}^{[1]}$ | Package | | | Package Description | Device HLMP- | Min. | Тур. | Max. | Degree | Outline | | T-1 3/4 Red Tinted Diffused | D150 | 1.3 | 3.0 | - | 65 | Α | | | D150-C00xx | 1.3 | 3.0 | _ | 65 | Α | | | D150-CD0xx | 1.3 | 3.0 | 4.2 | 65 | Α | | T-1 3/4 Red Untinted Non-diffused | D155 | 5.4 | 10.0 | _ | 24 | В | | | D155-F00xx | 5.4 | 10.0 | _ | 24 | В | | T-1 Red Tinted Diffused | K150 | 1.3 | 2.0 | _ | 60 | С | | | K150-C00xx | 1.3 | 2.0 | _ | 60 | С | | | K150-CD0xx | 1.3 | 3.0 | 4.2 | 60 | С | | T-1 Red Untinted Non-diffused | K155 | 2.1 | 3.0 | _ | 45 | С | | | K155-CD0xx | 1.3 | 3.0 | 4.2 | 45 | С | | | K155-D00xx | 2.1 | 3.0 | _ | 45 | С | | | K155-DE0xx | 2.1 | 3.0 | 6.8 | 45 | С | #### Note: # **Part Numbering System** ^{1.} $\theta_{1/2}$ is the off axis angle from lamp centerline where the luminous intensity is $^{1}/_{2}$ the on-axis value. # Absolute Maximum Ratings at $T_A = 25^{\circ}C$ | Parameter | Value | |--|---------------| | Peak Forward Current ^[1] | 300 mA | | Average Forward Current | 20 mA | | DC Current ^[2] | 30 mA | | Power Dissipation | 87 mW | | Reverse Voltage (I _R = 100 μA) | 5 V | | Transient Forward Current (10 µs Pulse)[3] | 500 mA | | LED Junction Temperature | 110°C | | Operating Temperature Range | -20 to +100°C | | Storage Temperature Range | -55 to +100°C | ### Notes: - 1. Maximum I_{PEAK} at f = 1 kHz, DF = 6.7%. - 2. Derate linearly as shown in Figure 4. - 3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current. # Electrical/Optical Characteristics at $T_A = 25^{\circ}C$ | Symbol | Description | Min. | Тур. | Max. | Unit | Test Condition | |------------------------|---------------------------|------|--|------|------|---| | $\overline{V_F}$ | Forward Voltage | | 1.6 | 1.8 | V | I _F = 1 mA | | $\overline{V_R}$ | Reverse Breakdown Voltage | 5.0 | 15.0 | | V | I _R = 100 μA | | λ_{p} | Peak Wavelength | | 645 | | nm | Measurement at Peak | | $\lambda_{\sf d}$ | Dominant Wavelength | | 637 | | nm | Note 1 | | $\Delta \lambda^{1/2}$ | Spectral Line Halfwidth | | 20 | | nm | | | τ_{S} | Speed of Response | | 30 | | ns | Exponential Time
Constant, e ^{-t} /T _S | | С | Capacitance | | 30 | | pF | $V_F = 0$, $f = 1 MHz$ | | Rθ _{J-PIN} | Thermal Resistance | | 260 ^[3]
210 ^[4]
290 ^[5] | | °C/W | Junction to Cathode Lead | | η_V | Luminous Efficacy | | 80 | | lm/W | Note 2 | #### Notes: - 1. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the color of the device. - 2. The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = I_V/\eta_V$, where I_V is the luminous intensity in candelas and η_V is luminous efficacy in lumens/watt. - 3. HLMP-D150. - 4. HLMP-D155. - 5. HLMP-K150/-K155. Figure 1. Relative intensity vs. wavelength. Figure 3. Relative luminous intensity vs. dc forward current. Figure 2. Forward current vs. forward voltage. Figure 4. Maximum forward dc current vs. ambient temperature. Derating based on T $_J$ Max. = 110 °C. Figure 5. Relative luminous intensity vs. angular displacement. HLMP-D150. Figure 6. Relative luminous intensity vs. angular displacement. HLMP-K150. Figure 7. Relative luminous intensity vs. angular displacement. HLMP-D155. Figure 8. Relative luminous intensity vs. angular displacement. HLMP-K155. # **Intensity Bin Limits** | | | Intensity Range (mcd) | | | | |-------|-----|-----------------------|---------|--|--| | Color | Bin | Min. | Max. | | | | Red | С | 1.5 | 2.4 | | | | | D | 2.4 | 3.8 | | | | | E | 3.8 | 6.1 | | | | | F | 6.1 | 9.7 | | | | | G | 9.7 | 15.5 | | | | | Н | 15.5 | 24.8 | | | | | I | 24.8 | 39.6 | | | | | J | 39.6 | 63.4 | | | | | K | 63.4 | 101.5 | | | | | L | 101.5 | 162.4 | | | | | М | 162.4 | 234.6 | | | | | N | 234.6 | 340.0 | | | | | 0 | 340.0 | 540.0 | | | | | Р | 540.0 | 850.0 | | | | | Q | 850.0 | 1200.0 | | | | | R | 1200.0 | 1700.0 | | | | | S | 1700.0 | 2400.0 | | | | | T | 2400.0 | 3400.0 | | | | | U | 3400.0 | 4900.0 | | | | | V | 4900.0 | 7100.0 | | | | | W | 7100.0 | 10200.0 | | | | | X | 10200.0 | 14800.0 | | | | | Υ | 14800.0 | 21400.0 | | | | | Z | 21400.0 | 30900.0 | | | # **Mechanical Option Matrix** | Definition | |--| | Bulk Packaging, minimum increment 500 pcs/bag | | Tape & Reel, crimped leads, minimum increment 1300 pcs for T-13/4, 1800 pcs for T-1 | | Tape & Reel, straight leads, minimum increment 1300 pcs for T-13/4, 1800 pcs for T-1 | | T-1, Right Angle Housing, uneven leads, minimum increment 500 pcs/bag | | T-1, Right Angle Housing, even leads, minimum increment 500 pcs/bag | | T-13/4, Right Angle Housing, uneven leads, minimum increment 500 pcs/bag | | T-13/4, Right Angle Housing, even leads, minimum increment 500 pcs/bag | | Ammo Pack, straight leads with minimum 2K increment | | Ammo Pack, straight leads with minimum 2K increment | | | ### Note: All categories are established for classification of products. Products may not be available in all categories. Please contact your local Avago representative for further clarification/information. #### **Precautions** ### **Lead Forming** - The leads of an LED lamp may be preformed or cut to length prior to insertion and soldering into PC board. - If lead forming is required before soldering, care must be taken to avoid any excessive mechanical stress induced to LED package. Otherwise, cut the leads of LED to length after soldering process at room temperature. The solder joint formed will absorb the mechanical stress of the lead cutting from traveling to the LED chip die attach and wirebond. - It is recommended that tooling made to precisely form and cut the leads to length rather than rely upon hand operation. ## **Soldering Conditions** - Care must be taken during PCB assembly and soldering process to prevent damage to LED component. - The closest LED is allowed to solder on board is 1.59 mm below the body (encapsulant epoxy) for those parts without standoff. - Recommended soldering conditions: | | Wave Soldering | Manual Solder
Dipping | |----------------------|----------------|--------------------------| | Pre-heat Temperature | 105 °C Max. | _ | | Pre-heat Time | 30 sec Max. | _ | | Peak Temperature | 250 °C Max. | 260 °C Max. | | Dwell Time | 3 sec Max. | 5 sec Max. | - Wave soldering parameter must be set and maintained according to recommended temperature and dwell time in the solder wave. Customer is advised to periodically check on the soldering profile to ensure the soldering profile used is always conforming to recommended soldering condition. - If necessary, use fixture to hold the LED component in proper orientation with respect to the PCB during soldering process. - Proper handling is imperative to avoid excessive thermal stresses to LED components when heated. Therefore, the soldered PCB must be allowed to cool to room temperature, 25°C, before handling. - Special attention must be given to board fabrication, solder masking, surface plating and lead holes size and component orientation to assure solderability. - Recommended PC board plated through hole sizes for LED component leads: | LED Component
Lead Size | Diagonal | Plated Through
Hole Diameter | |----------------------------|--------------|---------------------------------| | 0.457 x 0.457 mm | 0.646 mm | 0.976 to 1.078 mm | | (0.018 x 0.018 inch) | (0.025 inch) | (0.038 to 0.042 inch) | | 0.508 x 0.508 mm | 0.718 mm | 1.049 to 1.150 mm | | (0.020 x 0.020 inch) | (0.028 inch) | (0.041 to 0.045 inch) | **Note:** Refer to application note AN1027 for more information on soldering LED components. Figure 9. Recommended wave soldering profile.