[C G Co I‘It r?_!._} Schalten. Steuern, Regeln

Integrated Development Environment

Integrierte Entwicklungsumgebung

www.c-control.de

C-Control Pro IDE

© 2013 Conrad Electronic

| C-Control Pro IDE

Table of

Contents

Part 1 Important Notes 2
L INEFOTUCTION Lot e ettt et e e et et et e ea s 2
2 Reading this operating ManUAalcoiiiiiiii e 2
B HANAIING i e 2
v a1 =T o Lo 1= To BT T PP 3
5 Warranty and Liability ..o 3
LTS 1= VT o = 4
A O oT=T g BT o U | o = PP 4
I D 1Y o o Lo I o o Yo T = U s 4
LS T o 111 o} Y/ 5

Part 2 Hardware 12
N Lo - T = 1= 12
1.1 INSEAHATION et e et e aas 12
O 1 41 0 LT VT PP 16
1.3 MEQA32 MOTUIE ..ttt 17
1.4 MeQal28 MOAUIE ...ttt 23
1.5 Megal28 CAN MOAUIE ..cuuiii e e e e 30
1.6 Mega32 Application BOArdcoouiiiiiiiiii e 40
1.7 Megal28 Application BOArdcooeuuiiiiiiiiiie et 50
1.8 Mega32 ProjeCtDOardcoeuiiiiiiiii e 59
1.9 Megal28 Projecthoardcoouiiiiiiii 61
2 AVRB2BIT . ooitieiiiii ettt 63
220 R | 0 13 = L = 4T o 63
2.2 FIIMW A ettt et 65
2.3 MOAUIE e e e 67
2.4 APPHCAIONDOAI ...vuiee i e 82
2.5 MaiNDOAIU oo 95
2.6 UNIT-BUS EXP. BOAIT ..ttt e e e e e et e e e eaneas 101
2.7 LCDL1602 BOAIM ...ceuiiiieiiiaee ettt ettt et ettt e ean s 103
2.8 POIM-EXT-BOAIT ..uiiiiiiiii ittt ettt et 108
2.9 RELZA-BOAI .. ciiiiii it 111
2.10 RELBUS-BOAIM . .ceuiiiiiiiiiieei ettt et e e e e e e e e et e e et e e eaeaeaneas 116
2.11 UNIT-BUS EXT-BOAI ..uciiiiiieiiiiiiiee it e et s e e e e e e eaan e e eenens 121
2,12 USB-BOAIA ..ttt et e 124

© 2013 Conrad Electronic

Inhalt Il
G I I - 1 1 P 127
Part 3 IDE 129
N = (0] 1= o3 £ PPt 130
O A O Y- 1 =T o = o £ 130
1.2 COMPILE PrOJECS .ovuiiiiieii ettt et ettt 130
1.3 Project ManagemMENTttt et 131
0 S oY =Y od @ o4 o] K= PP 133
1.5 Library Management ... e e e e 134
1.6 THread OPtiONS ...ttt et et et 135
R o Yo (o I 1 PP 136
P2 = o |} (o] S PP PP PP PTRUPTRPN 136
2.1 EditOr FUNCHIONS ..ttt et et e e e e eaa s 139
2 1 S = =Y 1= 1 S 140
2.3 Keyboard SNOMCULSciuiiiiiiii ettt e ea e 141
2.4 RegUIA EXPreSSIONS vt it 143
3 C-CONLIOl HAMAWAKIE ...ttt et ettt et e e e e eaa e 144
3.1 INterface SEIECHION ..o e 144
3.2 STAIT PrOQIraM .ot e e e e e e e e e 145
3.3 C-Control Configurationcc.uiii i 145
3.4 SeArCh EtheINet ..o e 146
G T O 101 01U £ P 147
3.6 PIN FUNCHIONS e ettt e e e e e aees 148
3.7 VEISION CRECK ..uniiiieii ettt 148
I =1 o 11 o o = 149
4.1 BreaKPOiNtS e ittt 150
4.2 Variable WatCh WINGOW ... 150
o T AN 4 = L YA\ VAT g o [0 1 152
I o Lo] £ PP PP PP PPTRPPPIPN 153
5.1 Syntax Highlightingoooouiiiiii e 154
5.2 EITOr SOUINGS ©ouiiriiiii ettt ettt 156
LG I 11 Y= 1 11 g Lo =S 158
B WWINOOW S e ettt et 163
T HEID e 164
Part 4 Compiler 167
1 GENETAl FRATUIES ettt ettt e e e 167
R o €Y o] o o] =31 o | PP PP 167
1.2 Pragma INSITUCTIONS ...oouiiiii ittt et e et e e 169
1.3 MaAP FlE e 169

© 2013 Conrad Electronic

11 C-Control Pro IDE
2 COMPACTC .ot 170
2.0 PrOGIAIM e 170
A [11 U Tod £ o] o = PP PTPIS 171
P T B - Y - N Y/ 1= SRR PTPRPTPRR 173
2.4 VArAbIES .. 174
2.5 OPBIAIOIS oot 178
2.6 CONIOl SITUCTUIES ettt et e et e e e et e e e e e enaees 181
2.7 FUNCHIONS ettt ettt et et et e 187
2.8 TADEIIEN o 189
G N [P 192
EC F0 A o o o] = 1 o PP 192
K2 1 1= U [od (o] 1= S PP PP PP PTRUPPRN 193
TG T B - L = N Y/ 11 PO PP PTPRPTPRN 194
Bid VAIADIES e e 195
TSI O 0 1=] = Lo] £ PRSP 200
3.6 CONTIOl STIUCTUIES ...ttt et et e e et e e e ean s 202
BT FUNCHIONS ettt ettt et 208
= T 1= Y o1 1= S 210
A ASS M D T e e 212
A1 AN EXAMPIE i 212
4.2 DATA ACCESS ...eiiiiiiieii ettt 214
B T WY o =] T o = 216
B ASCI TaBDIE et 217
Part 5 Libraries 223
I a1 (=] o = I U o Ted 4o o PP 223
2 GBNBTA et 223
2.0 ADSDEIAY et 223
2.2 ForceBootloader (AVR32BIL) ...oiuuiiiiiiiiiie e e e e e e e e e 224
2.3 SIEEP (MEBOA) ievuiiiiieii ettt ettt e 224
IR AN o= To To L @e] 7] o -1 = 1 (o] SRR 225
1 70 R |V =T o - PRSP 225
Be2 AV RBZBIT coiiiieiiii et aanan 226
4 ANnalog-Digital-CoONVEITEr ...t 229
e R /[o = PP 229
Y NV = 72 = 1 PR 233
B CAN BUS ittt ettt aaanns 237
5.1 CAN EXAMPIES oottt 240
LI O ANV g [PP 241
5.3 CAN _GEIINTO oottt 241

© 2013 Conrad Electronic

Inhalt v

3 A 07 N\ 1 o T S PP 242
T ©F AN (T o = AV S 243
L ST 7 N AV (@] o 1= o o PPN 243
5.7 CAN_SetChan (AVR3B2BIL)uieiiiiiieiiiiiiieeiiiis ettt e et s e e e e e eae e eenens 244
5.8 CAN_SEIMOD ..ot 244
LS o T o] PSRRI 245
6.1 ClOCK _GEIVAI .uiiiiniiii e e e 245
(S O Lo Tod S Y= 4 - = N 246
LSRG T O o T QS Y= A T 12 =S 247
7 L1 i PP 247
8 R T e = = N 1Y PP 249
7 11 |] N PP 249
RS T 0 L i = O S PRSPPI 250
A S 1O S I 2 250
48 T 11 S 4 V[P PPUP 250
S T =Y o LU o N 251
S 00 R Y £=o T AV 1 (=Y O o - 1 S 251
8.2 MSO_WIITEFIOAL ...ttt 251
8.3 MSO B HE X etiniiiiit e et e e e e aaas 252
8.4 MSO W Nt e 252
S TR 1Y o T AT 1 (= = G N 253
8.6 MSO_WIITEWOIT ...oeiiiiiiiie ettt et e e e e e 253
LS I B T = To Aot o X R (1Y 1= o -) S 253
9.1 DITACC_REAM ..oeiiiiii e 254
LS I L 7N o o AV 1 (- 254
O T T (@ Y PP 254
10.1 EEPROM_REAMA ..uuuiiiiiii ettt ee ettt e ettt e e et e e e et e e e e et e e e e aat e e eeaaeaaaees 255
10.2 EEPROM_REAAWOIAoviiiiii it e e e e e aaas 255
10.3 EEPROM_REAAFIOAL . .uuiiiiii ettt et e et e e e eae e eees 256
O TR o o (@ 1Y AV (= 256
10.5 EEPROM_WIHEWOIM ..uuiiiiiiiieeiiiie e ettt e et e e et s e e e et e e e e eat s e e eaaeaaeees 257
10.6 EEPROM _WIItEFIOAL ..ouieiiiici et e e e aas 257
R = g Y= A NV = b2 = T o 258
11.1 Ethernet ACHIVAtION ... e e e e enas 258
11.2 TCP/IP ProgrammMliNg ..ououueee e ee e e e e e e e e e e e e e e e e e e ane e e eneane e ans 259
11.3 UDP ProgrammMing ..ooueie e e e e e e e e e e e e e e e e s e s et e et e et eenaaannas 261
12.4 ETH_CONNECITCP ..ttt et e e et e e e et e e e e eaaaeaees 262
11.5 ETH CheCKRECEIVEBUT ... e 263
11.6 ETH _ClOSELISIENTCP ..iiuiiiiiie e e e e e e e ans 264

© 2013 Conrad Electronic

C-Control Pro IDE

11.7 ETH _CIOSELISLENUDP ...c.uiiiiii e et e e e e e e e e e e e eaaeanas 264
11.8 ETH DIiSCONNECITCP ..ottt et e e e e e e e et eea e anaas 264
12,9 ETH _GEUPINTO 1ottt ettt e et e e e e et e e e e e a e e e eaaeaaaees 265
12,10 ETH_GEtSIAtETCP oiiitiiiiiiiii i ee ettt ettt e e et e e et s e e e et e e e e eat e e e eeaeaaaees 265
12,10 ETH_LISEENTCP Louiiiii ettt ettt e e e et e e e e eatneeeeaeaeaees 266
I 2 o I o T (Y o 1 267
11.13 ETH RECEIVEDALA .. cuiviiiiiiiii e e e e ans 267
T 7 o I o Y=Y o o I ! PSSP 267
12,15 ETH_SENAUDPiiiii ettt e e et e e et aeeeeaaaeaees 268
11.16 ETH _SetCONNBUT ..ot e e e e e e e eenas 268
102 7 OSSPSR 269
D2 Y/ =T o - PP PP 269
12,2 AVRBZ2BIT . iitiieiiiii et ettt aae 273
I 1 =T U PP 277
13,1 EXt INtENGDIE oo 278
13.2 EXT INIDISADIE o.oeiee i e 279
e e S | o [1= O 1 ¥ [) PP 279
1304 11 SOV oo e 280
13,5 TRQ EXAM IO e e 280
A (=) Y] o Yo = Yo I (1Y (=T -) I 281
I)V 12T S PSPPSRI 281
F4.2 KEY _SCAN ..ottt 282
14.3 Key _TranslateKeY ... 282
LS I 1 5 LSS 283
15.1 Internal FUNCHIONS ..ottt e 283
LT I 0t I I == 1 11 0 284
T T O O 01 =70] £] 1 PP 285
3 O B O 01 £=To] £ o PP PP 285
15.5 LCD _CUISOIPOS . euiiiiii ittt et e e et en e ens 286
L0 T X 4 T oV 286
T A I O b o Yo = L PP 287
15.8 LCD_SetDiSpAdAr (AVR32BIL) .icuuuiiiiiiiieeiiiiiee e e et e e e e et eeeeai e e eeaiaeaees 287
15.9 LCD _WIECRNAT ..uuiiiiiiii ittt n e et e e e e et e e e e eaaaeeees 288
TN O O T 1 =Y o - 1 288
15.11 LCD WIEREGISIEI ouiiiiei et e e e e e e e e e e e ans 288
LT 2 OB I Y1V 1 (- = PP 289
15.13 LCD_WITEWOTA . iiiiiieeiii ettt et e et e e e et e e e et e e e eeataeaees 289
L T 1Y =T o PP 290
16.1 FlOAting PoOiNt oo e e e e e e e e a e aas 290

© 2013 Conrad Electronic

Inhalt VI

G2 1] (=T 1= PP PP 297
I O TN = PPN 298
17.1 ONEWITE_REAMA ..ottt e e e e e e e e ans 298
17.2 ONEBWITE RO ST oottt ittt et e e e e 299
17.3 ONEWITE W ettt e e et et e e e e s e e et e e e et e eaaeanas 299
17.4 ONeWIre EXamPle .. 299
R o] o AP P PP UPTPTRPTR 301
18.1 POrt AT DULE Lo e e e e e 302
18.2 POrt_DatabDir (MEQ@) «iuueieneieieieieii ittt e e e et e e e e e e e e e s e s e e e e e e enaeanas 303
18.3 Port_DatabDirBit (MEOA) ...cuuueerieiiiiiei ettt 303
18.4 POrt_REAU (MEUA) .uiuiiiiiiiiei e e e e e e e e e e e e e e ans 304
18.5 POrt REAUBIT ...t 304
R 2 G o] A e T o | = = T R 305
18.7 POrt_TOggIE (MEOA) .ieuuierieii ettt et et ennas 305
18.8 POIt_WIIte (MEOA) couiniiiiiiei e e e e e e e e e e e e e e e ans 306
RS2 T oo] AT 1 L= 2 1 P 306
18.10 POrt TaBIE oo e 307
18.11 Port EXamMpPle (MEOA) ..ccuuiiiiieiiiiei ettt et 309
18.12 Port EXample (AVR3B2BIT) ...cuuiiiiiieie e e 310
LS T PSPPI 311
e A {015 T [o1 PSPPI 314
LS T = {015 T === Lo [315
e R B {0t J 1V 4 1 PSSP 315
B0 = S 4 ¥ PP 316
b0 A V7 o 1= (1Y 1= o =) S 316
20.2 Serial_Disable ... 318
20.3 Serial_INIt (MEOA) iiuiniiniitii et e e e e e e e e e 318
20.4 Serial_INit (AVRSB2) ..ouuiiiiii e 319
20.5 Serial_INit_IRQ (MEOA) ..uiuuuiitiiii ittt e e e e e e e e e e aeanaeen 320
20.6 Serial_INit TRQ (AVR3B2) ..uiiiiiiiiiei ettt e e e e e e et s e et e e e e eeenaees 321
20.7 Serial_IRQ _INTO c.uiiniiii e e 322
20.8 Serial_Read (MEOA) ..uiiviiiiiiii it e e 323
20.9 Serial_REAUEXT ...iieiiii e 323
20.10 SerIAl W e 324
20.11 Serial W B T X T ouiniiiii e e e e e e e e e e e e anns 324
20.12 Serial EXAmMPIE oot 325
20.13 Serial EXample (IRQ) wuueereie ittt e e e e e e 325
2 RS T I 10 1 o PP 325
At I R N IS T ¥ o o 1 & S PP 328

© 2013 Conrad Electronic

VIl

C-Control Pro IDE

21.2 SDC REtUIN VAIUESuiiiiiei ettt 328
G TS L@ 1 o 1 328
214 SDC FOPEIM ciiiiiiet ettt ettt e e e e et e ettt aar e aaaa 329
215 SDC _FREAM . oiitiieiiiiii ettt aaaan 330
216 SDC FSBEK ittt ettt aaaa 330
21.7 SDC _FSetDAtETIME oiuuiiiiieeiie ettt e e e e e e e et s e et e e e e aeeateeeaneeeenees 331
A TS Y D L] 7-) PPN 331
21,9 SDC FSYNC oiiitiieiiii ittt ettt aaaan 332
21,10 SDC _FTTUNCALE ..iuiitiiiiiiiie ettt ettt et e e e e e e 333
22 0 I T I T Y1V = 333
b S B O €11 4 =T TP 334
2 00 TS T 1o T S PP 334
21,14 SDC_MKDIT ittt et eaaan 335
21,15 SDC _RENAMIE ..ouiiiitiiei ettt et et eaas 335
21,16 SDC_UNTINK oottt e e e e e et e et aaaaas 336
21.17 SD card EXamMPle .o 336
22 GBIV ittt ettt aaas 337
2 ST =Y Yo 1 o 1 S 338
22,2 GBIV S ittt e 339
22.3 SEIVO EXAMPIE oo 339
22 T Y 340
P2 0 O |V =T = PP 340
W T N = 1 PP 343
2] 4 o S 346
Pt R Y | g ©7o] 1 1 o TP PTPRPTPRR 346
2 | 0 o P 347
24.3 S _Fill oo aaaa 347
24,4 SHE_ISAINUM oo e 348
24.5 SHISAIP A e e 348
2 T € - o P 349
S A (S o 4T | 1 PP 349
24.8 Str_REAAFIOAL . .uii i 350
24.9 S _REAAINT oo 350
24.10 Str_REAANUIM ...ttt e e e e e e e e e e e eeen 351
24,00 St SUD S e 351
24.12 S WIHEFIOAL ..o e e 352
2 e TSy AV 1 (= 1 1 352
2 2 Y | VAV 1 (XYL oY o 353
24.15 Str_ Printf EXamMPIE oo 354

© 2013 Conrad Electronic

Inhalt VIl

225 T I 01 1= - o £ 354
25.1 TRIEAU _CYCIES ittt 356
25.2 TRIEAA_DEIAYvuiiiiii i e e 357
25.3 Thread _INfO ... 357
254 Thre@ad_Kill ..o et 358
25.5 TRIEAU _LOCK ..o e 358
25.6 Thread _IMEMEFTEE ...t e e e 358
b T A N o €= Yo [L= TU 0 2 = S 359
25.8 Thread _Signalc.cooiiiiiii e 359
BT B N a1 =T Yo [- 1 o 360
25,10 THIrEAO Wt oueniiiii i e e e e e e e e 360
25.11 Thread EXampPle e 361
25.12 Thread EXampPle 2 ... e e 361
b T T 1 1 = S PP PRPS 362
P24 T R Y/ =T o > PPN 362
26.2 AVRB2BIT .uuuetiiiiietieie et a et e aaaan 387
27 WeEDSEIVET (AVRB2BIL) tuuuiiiiiiiieeiie et st s e e s e e e e e et e e e neean s e e et e e eaneeeanees 395
27.1 WeEDSEIVEr HINtS ..ot et e e e e e eees 396
27.2 WEB _GEIREQUESE ..ottt 397
27.3 WEB_GetFileHAash ... 398
27.4 WEB _RelEASEREQUESEiitiii it e e e e e e 398
27.5 WEB_SEIDYNVAT ...uniiiiiiiiiee ettt e e e e e e et e e e e e e e e e et e e e e e aan e 398
27.6 WEB S Al S O VT it 400
27,7 WEB S 0P S O VT ittt 400
Part 6 FAQ 403
L GENETAL et e 403
pZA =T o - SO PTPRPTPRRY 404
B AVRB2BIT . ettt ettt et a e aannn 405

© 2013 Conrad Electronic

Important Notes 2

1 Important Notes

This chapter deals with important information's to warranty, support and operation of the C-Control-
Pro hardware and software.

1.1 Introduction

The C-Control Pro Systems are based on the Atmel AVR32 and the Atmel Mega Series (Mega 32,
Mega 128, AT90CAN) resp. These Microcontrollers are used in large numbers in a broad variety of
devices from entertainment electronics through household appliances to various application facilities
in the industries. There the controller takes charge of important control tasks. C-Control Pro offers
this highly sophisticated technology to solve your controlling problems. You can acquire analog
measuring values and switch positions and provide corresponding switching signals dependent on
these input conditions, e. g. for Relais and servo motors. In conjunction with a DCF-77 radio antenna
C-Control Pro can receive the time with atomic accuracy and thus take over precise time switch
functions. Various hardware interfaces and bus systems allow the cross linking of C-Control Pro with
sensors, actors and other control systems. We want to provide a broad user range with our techno-
logy. From our former work in C-Control senice we know that also customers without any experi-
ence in electronics and programming but eager to learn are interested in C-Control. If you happen to
belong to this user group please allow us to give you the following advice:

C-Control Pro is only of limited use for the entry into programming of micro computers and electronic
circuit technique! We presuppose that you have at least a basic knowledge in a higher programming
language such as BASIC, PASCAL, C, C++ or Java. Furthermore we presume that you are used to
operating a PC under one of the Microsoft operating systems (2000/XP/Vista/Win7/Win8) . You
should further be experienced in working with soldering irons, multimeters and electronic compon-
ents. We havwe made ewery effort to formulate all descriptions as simple as possible. Unfortunately
we were not able to do without the use of technical terms and expressions in an operating manual to
the themes inwvolved here. If need be please see the appropriate technical literature.

1.2 Reading this operating manual

Please read this operating manual thoroughly prior to putting the C-Control Pro Unit into operation.
While seweral chapters are only of interest for the understanding of the deeper coherence's, others
contain important information's whose non-compliance may lead to malfunctions or even damages.

=¥ Chapters and paragraphs containing important themes are marked by a symbol.

Please read the entire manual prior to putting the unit into operation since it contains important
notes for correct operation. In case of damages to material or personnel caused by improper hand-
ling or non-compliance to this operating manual the warranty claim will expire! We will further not
take liability for consequential damages.

1.3 Handling

The C-Control Pro Unit contains sensitive components. These can be destroyed by electrostatic
discharges! Please observe the general rules on handling electronic components. Please organize
your working bench professionally. Ground your body prior to any work being done, e. g. by touch-
ing a grounded and conducting object (e. g. heating radiator). Awid touching the connection pins
of the C-Control Pro Unit.

© 2013 Conrad Electronic

C-Control Pro IDE

1.4

1.5

Intended use

The C-Control Pro Unit is an electronic device in the sense of an integrated circuit. It serves the
programmable controlling of electric and electronic equipment. Construction and operation of this
equipment must be in conformance with the valid European licensing principles (CE).

The C-Control Pro must not be galvanically connected to wltages exceeding the directed Extra
Low Protective Voltage. Coupling to systems with higher wltages must exclusively be performed
by use of components having VDE qualification. In doing so the directed air and leakage paths
must be obsened as well as sufficient precautions for protection against touching dangerous
wltages must be taken.

The PCB of the C-Control Pro Unit carries electronic components with high frequency clock sig-
nals and steep pulse slopes. Improper use of the unit may lead to the radiation of electro-magnetic
interference signals. The adoption of proper measures (e. g. the use of chokes, limiting resistors,
blocking capacitors and shielding's) to ensure the obsernance of legally directed maximum values
lies in the responsibility of the user.

The maximum allowable length of connected wire lines is without additional precautions appr. 0.25
Meters (Exception: Serial Interface). Under influence of strong electro-magnetic alternating fields
or interference pulses the function of the C-Control Pro Unit can be detracted. If need be a reset or
a restart of the system may become necessary.

During connection of external sub-assemblies the maximum admissible current and wltage values of
the particular pins must be obserned. The connection of too high a wltage, a wltage of wrong polar-
ity or an excessive current load may lead to immediate damage of the unit. Please keep the C-Con-
trol Pro Unit away from spray water or condensation dampness. Obsene the safe operating temper-
ature range in Item Technical Data in the attachment.

Warranty and Liability

For the C-Control Pro Unit Conrad Electronic grants a warranty period of 24 months from the date
of billing. Within this time period faulty units will be replaced free of charge if the fault provable ori-
ginates in faulty production or loss on goods in transit.

The software in the operating system of the Microcontroller as well as the PC software on CD-
ROM is shipped in the form as is. Conrad Electronic can not guarantee that the performance fea-
tures of this software will satisfy individual requirements and that this software will operate free of
faults and interruptions. Conrad Electronic can further not be held liable for damages occurring dir-
ectly by or consequently to the use of the C-Control Pro Unit. The use of the C-Control Pro Unit in
systems directly or indirectly sening medical, health or life saving objectives is not authorized.

In case the C-Control Pro Unit incl. software does not satisfy your demands or if you do not agree
to our warranty and liability conditions you are to make use of our 14 days money back guarantee.
Please return the unit without use marks, in the undamaged original packaging and incl. all ac-
cessories within this time-limit to our address for refund or clearing of the value of goods!

© 2013 Conrad Electronic

Important Notes 4

1.6

1.7

1.8

Service

Conrad Electronic provides you with a team of experienced senice technicians. If you have any
question with regard to our C-Control Pro Unit you can reach our Technical Senice by letter, tele-
fax or e-mail.

By letter Conrad Electronic SE
Technical Inquiry
Klaus-Conrad-Stral3e 2
D-92530 Wernberg-Koblitz

Fax-Nr.: 09604 / 40-8848
E-Mail: webmaster@c-control.de

Please preferably use e-mail communication. If there is a problem possibly provide us with a
sketch of your connection diagram in form of an attached picture file (jpg format) as well as the
program source code reduced to the part referring to your problem (max. 20 lines). Further inform-
ation's and current software for download please find on the C-Control homepage under www.c-
control.de.

Open Source

When C-Control Pro was designed also open source software has come into operation:

ANTLR 2.73 http://www.antlr.org

Inno Setup 5.5.2 http://www.jrsoftware.org

GPP (Generic Preprocessor) http://www.nothingisreal.com/gpp
awra-1.2.3a Assembler http://awra.sourceforge.net/

In accordance with the rules of "LESSER GPL" (www.gnu.org/copyleft/lesser) during installation of
the IDE also the original source code of the awa assembler, the generic pre-processor as well as the
source text of the modified version is supplied, which is used with C-Control Pro. Both source texts
are found in a ZIP file in the "GNU" sub-directory.

Demo Programs

You will find the actual demo programs in "C:\Documents and Settings\All Users\Documents\C-Con-
trol Pro Demos" (XP and earlier) or in "C:\Users\Public\Public Documents\C-Control Pro Demos" dir-
ectory (Vista and later). The current demos are stored in the folder "Demos Ver 2.31". The old demo
programs are thus not overwritten.

= There is an entry Demo Programs in the Help menu of the IDE that will open an Explorer window
at the point where the demo programs are stored. Can also be opened with Open Demos directly
from the Project menu.

= Please do not save your own programs in the area of the demo programs! Reinstalling the IDE
will overwrite the files there.

© 2013 Conrad Electronic

http://www.c-control.de
http://www.c-control.de
http://www.antlr.org
http://www.jrsoftware.org
http://www.nothingisreal.com/gpp
http://avra.sourceforge.net/

C-Control Pro IDE

1.9

History
= Version 2.31 from 09/20/2013

New Features

AVR32 support

Ethernet Support (AVR32Bit)
Websenver (AVR32Bit)

Tab Interface for Editor

new Communication routines

direct access to COM Port in Toolbar
turn on/off COM Ports in Toolbar

Error Corrections

Documentation Update

Partly wrong incrementation of Clock Variable in Interrupt context
corrected error in type recognition of constants

fixed error in Onewire_Read

wrong definitions PORT_ON and PORT_OFF corrected

Version 2.13 from 04/04/2011

New Features

overhauled all demo programs

Error Corrections

Documentation Update

error check in Linker improved

corrected register usage in Mega32 interpreter

all fields in project options are now correctly initialized
corrected wrong behavior with setting PIN Codes
Expressions like "a[fun(2)]=b" work again

Version 2.12 from 01/06/2011

New Features

32-Bit Integer (only Megal28)

new multithreading with time slices

#thread parameter syntax in source

SD card support

CAN-Bus Support (only C-Control Pro 128 CAN)
direct access to Flash Arrays

Array Tooltips in Debugger

IDE Style changeable

Vista and Win7 Theme support

ask for transfer at program start option
increased serial speed for module communication
VT100 Emulation for Terminal

rand(), srand() randomize functions

Error Corrections

Documentation update
Translation errors fixed

© 2013 Conrad Electronic

Important Notes

Floats in tables now work

Corrected negative values in tables

Fixed constant expressions in parentheses
Corrected function calls made in return statements
"#pragma Warn" is now "‘#pragma Warning"

Wrong editor undo after save fixed

Fixed bug in Serial_IRQ_Info

Fixed bug in serial program transfer

Problem in Servo-Routines corrected

External Interrupt Acknowledge now in correct order
Wrong upper limit at some TimerXTime() functions fixed
Clear all Breakpoints now works every time

Fixed problem crossing 64kb boundary

Fixed stopping program in debugger >64kb code
round() now works correctly

Problem in BASIC For-loops fixed

= Version 2.01 from 06/27/2009

New Features
¢ Added Search Function into Editor popupmenu

Error Corrections

Documentation update

Error at "unused Code Optimizer" corrected

Fixed internal handling of data crossing 64kb boundary

Fixed error when starting programs from Tools menu
Corrected translation bugs in Search dialog

Line offset fixed in Project Search

Timeout in I2C Routines

Fixed error message "...tbSetRowCount:new count too small"

= Version 2.00 from 05/14/2009

New Features

Assembler Support

Enhanced Search Functions in the Editor

New configurable GUI

Todo List

switchable Compiler Warnings

Program Transfer of Bytecode without Project
extended Program Info

Fast Transfer if Interpreter already on Module
Enhanced Auto-Completion of Keywords and Function Names
Function Parameter help

unused Code Optimizer

Peephole Optimizer

Support for predefined Arrays in Flash Memory
Realtime Array Index check

Optimized Array Access

better verification of constant array indices

call functions with string constants

Enter binary numbers with Ob....

© 2013 Conrad Electronic

C-Control Pro IDE

Addition und Subtraction of Pointers
Optimized Port OUT, PIN and DDR Access
Direct Atmel Register Access

Formatted String Output with Str_Printf()
convert ASCII strings in numerical values
++/-- for BASIC

Port toggle functions

RC5 Send and Receive Routines

Software Clock (Time & Date) with Quartz correction factor
Sernvo Routines

mathematical Round

Atmel Mega Sleep Function

Error Corrections

Initialization Timer_TOFRQ corrected
Initialization Timer_TOPWM corrected
Initialization Timer_T1FRQ corrected
Initialization Timer_T1FRQX corrected
Initialization Timer_T1PWM corrected
Initialization Timer_T1PWMX corrected
Initialization Timer_T1PWMXY corrected
Initialization Timer_T3FRQ corrected
Refresh for Array Window corrected
Desktop Reset corrected

Module Reset corrected

Bug in Debugfiles >30000 Bytes corrected
Bug in conditional valuation in CompactC fixed
Bug in Timer Disable() fixed

Version 1.72 from 10/22/2008

New Features
¢ added SPI functions
¢ RP6 AutoConnect

Error Corrections
¢ improved quality of serial transfers

Version 1.71 from 06/25/2008

New Features

new Editor in IDE

Editor shows all defined function names

Editor supports code folding

Simple serial Terminal

Pulldownmenu to start your own programs (Tool Quickstart)
Syntaxhighlighting of all standard library functions

Configuration of Syntaxhighlighting

Extension of Select .. Case in BASIC

Automatic case correction for keywords and library function names
Simple automatic lookup for keywords and library function names
OneWire Library Functions

Comments of Blocks in BASIC with /* | */

© 2013 Conrad Electronic

Important Notes 8

e New FTDI driver

Error Corrections

Global For-Loop counter variables in BASIC work now correct

Char variables work now correct with negative numbers

"u" after an integer now defines unsigned number

Project names now can contain special characters

Thread_Wait() now supports thread parameter

return command in CompactC without return parameter was working wrong
Corrected swapped error messages when called functions with pointers
Corrected error message at assignment, when function had no return parameter
Nested switch/Select statements are working now

Very long switch/Select statements are functioning properly now

Better Error recovery when selected COM Port already in use

No longer a crash if very huge amounts of faulty data where transferred over USB or COM Port
"Exit" in BASIC For-Loops is working now

Compiler error corrected in declaration of array variables

= Version 1.63 from 12/21/2007

Error Corrections
e Documentation update

= Version 1.62 from 12/08/2007

New Features
¢ Vista Compatibility

Error Corrections

¢ Brackets are working correctly

¢ The compiler is no longer crashing when variable names are not known

¢ There were sometimes incorrect syntax errors when opening some brace levels and a missing
operand

e "Exit" don't worked correctly in BASIC For-Next loops

¢ The array window could only be opened 16 times, even when some array windows were closed

Renamed the Text "Compiler" to "Compiler Defaults" in the Options Menu

= Version 1.60 from 03/04/2007

New Features

English language version of IDE - switchable at runtime
English language Compiler messages

English language version of help files and manual
printing of source code from the IDE

Print preview of source code

Thread_Wait() extended with thread parameter
ADC_Set() got a speedup

DoubleClock mode can be activated in serial functions

Error Corrections

¢ ExtIintEnable() was only working correct with IRQ 0 and 4

e Serial_Init() und Serial_Init_IRQ() got wrongly a byte as divider instead of a word
e EPROM_WriteFloat und EEPROM_ReadFloat() sometimes worked incorrect

© 2013 Conrad Electronic

C-Control Pro IDE

Thread_Kill() worked erroneous when called from the main thread

read accesses from globally defined floating point arrays were faulty

The second serial interface was not working correctly

EEPROM write accesses that used illegal addresses could overwrite reserved data in
EEPROM

There was a chance with a very low probability that the LCD display content could get corrup-
ted

Version 1.50 from 11/08/2005

New Features

IDE Support for Megal28

Improved Cache Algorithm during IDE access to Transit Time Data in the Debugger

New Library Routines for Timer 3 (Megal28)

Programs using the extended (>64kb) Address Space (Megal28)

Supporting the external 64kb SRAM

Supporting the external Interrupts 3 - 7 (Megal28)

Routines for the 2. Serial Interface (Megal28)

Mathematical Functions (Megal28)

Display of Memory Volume when Interpreter is started

Internal RAM check for recognition when Global Variables too large for Main Memory
Interner RAM check for recognition when Thread Configuration too large for Main Memory
Transit Time Check if Stack Limits have been violated

Source Files can be moved up and down in the Project Hierarchy

Warning when Strings too long are assigned

On demand the Compiler creates a Map File describing the wvolume of all Program Variables
New Address model for Global Variables (the same Program runs at different RAM Volumes)
Interrupt Routines for Serial Interface (up to 256 Byte Receiver Buffer / 256 Byte Transmitter
Buffer)

Fixed wired IRQ Routines to allow Periode Measurement of small time intervals
Recursions are now usable without limits

Arrays of any size can now be displayed in a separate Window in the Debugger

Strings (character arrays) are now shown as Tooltip in the Debugger

SPI can be switched off in order to use the pins for I/O

The Serial Interface can be switched off in order to use the pins for I/O

The Hex value is now additionally shown as Tooltip in the Debugger

New Function Thread_MemFree()

Additional EEPROM Routines for Word and Floating Point access

Time Measurement with Timer_TickCount()

#pragma Commands to create Errors or Warnings

Pre-defined Symbol in Pre-Prozessor: __ DATE__, TIME__ __ FILE__, FUNCTION__,
__LINE__

Version Number in Splashscreen

Extended Documentation

Interactive Graphics at "Jumper Application Board" in Help File

New Demo Programs

Ctrl-F1 starts Context Help

Error Corrections

An Error is created if the Return Command is missing at the end of a function
Breakpoint Marks have not always been deleted

Limits at EEPROM Access can now be checked closer (internal overflow seized)
In the Debugger a single step can no longer depose the next command too early

© 2013 Conrad Electronic

Important Notes

= Version 1.39 from 06/09/2005

New Features

e BASIC Support

e CompactC and BASIC can be mixed in a project
e Extended Documentation

e Loop Optimizing for For - Next in BASIC

e Threadinfo Function

e New Demo Programs

Error Corrections
e Compiler does no longer break down at German Umlauts (&, 6, U)
¢ Internal Byte Code of command StoreRel32XT corrected
o Offset in String Table improved
= Version 1.28 from 04/26/2005

e [nitial Version

10

© 2013 Conrad Electronic

Hardware 12

2.1

2.11

2111

2112

Hardware

This chapter gives a description of the hardware coming into operation with the C-Control Pro series.
The Modules C-Control Pro Mega32 and C-Control Pro Megal28 will be described. Further chapters
will comment on construction and function of the accompanying application boards and LCD mod-
ules as well as the keyboard.

Mega Series

Installation

In this chapter the installation of hardware and software of the C-Control Pro Mega is described.

Software

To get the current development software, sample programs, the manual and useful information,
please visit: www.c-control.de The manual is also available as a help file in the dewvelopment environ-
ment of the C-Control PRO IDE and the PDF file is in the installation folder of the C-Control Pro in
the "Manual” directory.

Direct IDE Download Link: http://www.c-control-pro.de/updates/C-ControlSetup.exe

=2 For the time of software and USB driver installations the user must be registered as adminis-
trator. During normal operation of C-Control Pro this is not necessary.

At the beginning of the installation first select the language in which the installation should take
place. After that you can choose whether you want to install C-Control Pro into the standard path or
whether you want to specify your own target directory. At the end of the installation process you will
be asked if an icon should be created on your desktop.

When the installation process is completed you can choose whether you want to see the "ReadMe"
file, have the shortform introduction displayed or directly start the C-Control Pro design platform.

Hardware

Important Note on Inserting/ Retrieving a Mega Module

For the connection between Module and Application Board high quality connectors have been used
in order to ensure intimate contacts. Mounting and dismounting of a Module should only take place
during power-down condition (switched off wltage) since otherwise damages may occur to Applica-
tion Board and/ or Module resp. Because of the high number of contacts (40/ 64 Pins) considerable
force may be necessary to insert/ retrieve the Module. When inserting it must be ensured that the
Module is pressed into the socket evenly, i. e. not out of line. To do this the Module should be
placed onto an even surface. Mount the Module Mega32 in the correct orientation obsening the
marking for Pin 1. The label inscription will then point towards the control elements on the Applica-

© 2013 Conrad Electronic

http://www.c-control.de
http://www.c-control-pro.de/updates/C-ControlSetup.exe

13 C-Control Pro IDE

tion Board

Mounting Orientation of Module MEGA32

..l.i..l...l......ltﬂﬁ

@ Wb hhbiik

H “"20000000 |EENENNEN u

E| secoesee 00CC000C0COOREO,
r‘!mﬁ Ry C

ZEVOTN

[T
2

-utl

—@

.5

o

PR

L
[=
[3 B

]

2990000000020 00000000000O0REROIRRDORRRS
oo OOOOIDOOEOOOOOPOOTOOOOODOODOOPDOEROODODED
ececoooROOOGIOOEORODOIRROOOROODOSORODRBOS
(I XX XA AR RO RNRR NN SR R RE NN RN N R R A NN |

The connector of Module Mega32 has been designed in such a way that faulty insertion of the Mod-
ule is not possible. The dismounting of the Module is performed by carefully lifting it from the socket

by use of a suitable tool. In order to avoid bending t
place from various sides.

21.1.3 USB and serial

Installation of the USB Drivers

he contacts the lifting of the Module should take

Please connect the Application Board to an appropriate power supply. A Standard 9V/ 250mA Mains

Plug-in Power Supply will be sufficient. The polarity

does not matter since it is automatically correc-

ted by means of diodes. Depending on additionally used components it may later become neces-
sary to use a power supply with higher output. Establish a connection between the Application
Board and your PC by use of a USB cable. Switch on the Application Board.

= Driver and Software of the C-Control Pro environment support no Windows Operating System be-

fore Windows 2000.

If the Application Board is connected for the first ti

me then there will be no driver for the FTDI chip.

The following window will then be shown under Windows XP.

© 2013 Conrad Electronic

Hardware

Assistent fiir das Suchen neuer Hardware

Willkommen

Mit diesem Assisterten konnen Sie Software fur die folgende
Hardwarekomponents installiersn:

CAZontral Pro

F \J Falls die Hardwarekomponente mit einer CD
L4 oder Diskette geliefert wurde., legen Sie diese
P jciat cin

Wie machten Sie vorgehen?

) Software automatisch installieren {empfohlen)

{#) Software von einer Liste oder bestimmten Cuelle
installieren fur fortgeschrittene Benutzer)

Klicken Sie auf "Weiter”, um den Vorgang fortzusetzen.

14

Weiter = l [P.I:-I:ure-:hen

From here select "Install software from a list or other source" and click "Next"..

© 2013 Conrad Electronic

15

C-Control Pro IDE

Assistent fiir das Suchen neuer Hardware

Wahlen Sie die Such- und Installationsoptionen.

{®) Dieze Quellen nach dem zutreffendsten Treiber durcheuchen

Verwenden Sie die Kortrollkastchen, um die Standardsuche zu erweitem oder
einzuschranken. Lokale Pfade und Wechselmedien sind in der Standardsuche mit
einbegriffen. Der zutreffendste Treiber wird installiert .

[] Wechselmedien durchsuchen (Diskette, CD....)
Folgende Quelle ebenfalls durchsuchen:

Programme \C-Control-Pro’FTDI USB Driver v| [Durchsuchen

") Nicht suchen, sondem den zu installierenden Treiber selbst wahlen

Verwenden Sie diese Option, um einen Geratetreiber aus einer Liste zu wahlen. Es wird
nicht garartiert, dass der von lhnen gewahlte Treiber der Hardware am besten entspricht.

< Zurick ” Weiter = l [Abbredﬁen

Then type in the path to the driver's directory. If the software has been installed to "C:\Programs" it
will be path "C:\Programs\C-Control-Pro\FTDI USB Driver".

Hardwareinstallation

AN

Die Software, die fur diese Hardware installiert wird:

C-Cortral Pro LUSB Device

hat den Windows-Logo-Test nicht bestanden, der die Kompatibilitat mit
Windows XP Gberprift. (#anm ist dieser Test wichtia)

Das Fortsetzen der Installation dieser Software kann die komekte
Funktion des Systems direkt oder in Zulanit beeintrachtigen.
Microsoft empfiehlt strengstens. die Installation jetzt abzubrechen
und sich mit dem Hardwarehersteller fur Software. die den
Windows-Logo-Test bestanden hat. in Verbindung zu setzen.

Installation fortsetzen] [Installation abbrechen]

© 2013 Conrad Electronic

Hardware 16

The message "C-Control Pro USB Device has not passed the Windows Logo Test" will normally
appear. This does not mean that the driver has failed during the Windows Logo Test. It merely
means that the driver has not taken part in the (quite costly) Redmond Test.

Here click "Continue Installation". The USB driver should then be installed after a few seconds.

In the PC software click on IDE in menu Options and select the area Interfaces. Here select the
communication port "USBO".

=¥ The FTDI driver supports 32 bit and 64 bit operating systems. The specific drivers are located in
the "FTDI USB Driven\i386" and "FTDI USB Drive\amd64".

Serial Connection

Due to the slow transmitting speed of the serial interface the USB connection should preferably be
used. If however due to hardware grounds the USB interface is not available then the Bootloader can
be switched into the Serial Mode.

To do this the key SW1 has to be kept pressed during power-up of the Application Board. After this
the Serial Bootloader Mode will be activated.

Select in the IDE the correct COM Interface.

2.1.2 Firmware

The operating system of C-Control Pro consists of the following components:

¢ Bootloader
e Interpreter

Bootloader

The Bootloader is available at any time. It serves the serial or USB communication with the IDE. By
use of command line commands the Interpreter and the user program can be transferred from the PC
to the Atmel Risc Chip. If a program is compiled and transferred to the Mega Chip the current Inter-
preter is also transferred at the same time.

= If instead of the USB interface a serial connection should be set up from the IDE to the C-Con-
trol Pro module then the push button SW1 (Port M32:D.2 and M128:E.4 resp. at low level) must be
held pressed during power-up of the module. In this mode any communication will be directed
through the serial interface. This is useful when the module has already been incorporated into the
hardware application and the application board is thus not available. The serial communication how-
ewer is considerably slower than the USB connection. In serial mode the USB pins are not used and
are thus available to the user for other tasks.

= Since SW1 initiates the serial Bootloader during module start there should be no signal on Port
M32:D.2 and M128:E.4, resp. during power-up of the application since these ports are also usable
as outputs.

© 2013 Conrad Electronic

17

C-Control Pro IDE

2.13

SPI Switch Off (only Megal28)

A signal on the SPI interface during switch on can activate USB communication. In order to awoid
this PortG.4 (LED 2) can be set LOW during switch on. The SPI interface will then not be activated.
The SPI interface can also be manually be switched off by the Interpreter later on using SP| Disable

0.

Interpreter
The Interpreter consists of the following components:

Bytecode Interpreter
Multithreading Support
Interrupt Processing

User Functions

RAM and EEPROM Interface

In general the Interpreter processes the bytecode generated by the Compiler. Further most library
functions are integrated into it in order to allow access of the bytecode program to e. g. the hardware
ports. The RAM and EEPROM Interfaces are used by the IDE’s Debugger to get access to the vari-
ables when the Debugger is stopped at any Breakpoint.

Autostart

If no USB interface is connected and if SW1 has not been pressed during power-up in order to reach
the serial Bootloader mode then the Bytecode (if available) is started in the Interpreter. This means
that in case that the module is inserted into a hardware application the mere connection of the oper-
ating wltage will suffice to automatically start the user program.

= A signal on Mega32: INT_O resp. megal28: INT_4 when the C-Control Pro module is turned on,
can disrupt the startup behavior. Corresponding to the pin assignment of M32 and M128 the pin
INT_O (resp. INT_4) are the same pin as SW1. When SW1 is pressed when the module is turned on,

this will lead to the activation of the serial bootloader mode, and the program is not started automat-
ically.

Mega32 Module

Module Memory

The C-Control Pro Module provides 32kB FLASH, 1kB EEPROM and 2kB SRAM. A supplementary
EEPROM with an 8kB memory depth is mounted on the application board. The latter can be ad-
dressed by an 12C interface.

Note: Detailed information can be found in the IC manufacturer's PDF files on the C-Control Pro Soft-
ware CD-ROM.

ADC-Reference Voltage Generation

The Micro Controller is equipped with an analog-to-digital converter with a 10 Bit resolution. This

© 2013 Conrad Electronic

Hardware 18

means that measured wltages can be represented by integral numbers from 0 through 1023. The ref-
erence wltage for the lower limit is GND lewel, i. e. OV. The reference wltage for the upper limit can
be selected by the user:

e 5V Operating Voltage (VCC)
¢ Internal Reference Voltage of 2.56V
o External Reference Voltage e. g. 4,096V generated by a Reference Voltage IC.

If X is a digital measuring value then the corresponding woltage value u is computed as follows:

u = x * Reference Voltage / 1024

Clock Generation

Clock generation takes place by a 14.7456MHz Quartz Oscillator. All time dependent actions within
the controller are derived from this clock frequency.

Reset

A Reset initiates the return of the Micro Controller system to a defined starting condition. In gerneral
the C-Control Pro Module knows two reset sources:

e Power-On-Reset: is automatically executed after switch on of the operating woltage.
e Hardware-Reset: is executed when the Module’s RESET (Pin 9) is pulled to "low" and released
again by e. g. shortly pressing the connected reset key RESET1 (SW3).

A "Brown-Out-Detection" awids that the Controller can enter undefined conditions in case of drop-
ping operating wltages.

Digital Ports (PortA, PortB, PortC, PortD)

The C-Control Pro Module provides four digital ports at 8 pins each. To the digital ports it is possible
to connect e. g. pushbuttons with pull-up resistors, digital IC's, opto couples or driver circuits for re-
lais. The ports can be addressed either separatly, i.e. pin by pin or byte by byte. Each pin can either
be input or output.

= Never connect two ports directly together which should simultaneously work as outputs!

Digital input pins are high-impedance or wired to internal pull-up resistors and transform an applied
woltage signal into a logical value. For this it is required that the wltage signal is within the limits
defined for TTL and CMOS IC’s high or low lewvels. During further processing in the program the lo-
gical values on the respective input ports are represented as 0 ("low") or 1 (*high"). Pins will take on
the values 0 or 1, Bytes from 0 to 255. Output ports are able to give out digital wltage signals by use
of an internal driver circuit. Connected circuits can draw (at high level) or feed (at low lewvel) a specific
current from or to the ports.

=P Pay attention to the maximum admissable load current for a single port or for all ports in total.
Exceeding the maximal values may lead to destruction of the C-Control Pro Module. After a reset
each port is initially configured as input port. By certain commands the direction of data transport
can be toggled.

© 2013 Conrad Electronic

19

C-Control Pro IDE

=2 |t is important to closely study the pin assignment of M32 and M128 prior to programming since
important functions of the program design (e. g. the USB interface of the application board) will apply
to specific ports. If these ports are re-programmed or if the matching jumpers on the application
board are no longer set then it may happen that the design platform can no longer transfer any pro-
grams to the C-Control Pro. Timer inputs and outputs, A/D converter, 12C as well as serial interface
are also connected to various port pins.

PLM-Ports

There are two timers available for PLM. These are Timer_0 with 8 bits and Timer_1 with 16 bits.
They can be used for D/A conwersion, to control servo motors in pattern making and to output audio
frequencies. A pulse length modulated signal has a period of N so called "Ticks". The duration of one
tick is the time base. If the output value of a PLM port is set to X then the port will hold high lewvel for
Xticks of one period and will then for the balance of the period drop to low lewvel. For programming of
the PLM channels see Timer.

Periodenlinge (N Ticks)

B g
Ausgang 1 g Ausgang 0 5

el

Zeithasis

The PLM channels for Timer_0 and Timer_1 have independent time base and period length. In ap-
plications for pulse width modulated digital to analog conversion the time base and period length are
set once and then only the output value is varied. According to their electrical properties the PLM
ports are digital ports. Please observe the technical boundary conditions for digital ports (max. cur-
rent).

Technical Data Module

Note: Detailed information can be found in the IC manufacturer's PDF files on the C-Control Pro Soft-
ware CD-ROM.

All woltage specifications apply to direct current (DC).

© 2013 Conrad Electronic

Hardware 20

Environmental Conditions

Range of admissable ambient temperature 0°C ... 70°C
Range of admissable ambient relative humidity 20% ... 60%
Power Supply

Range of admissable supply wltage 4,5V ... 55V

Power regirement of the module without external appr. 20mA

loads

Clock

Clock Frequency (Quartz Oscillator) 14.7456MHz

Mechanics

Overall measurements less pins, appr. 53 mm x 21lmm x 8 mm

Weight appr. 90g

Pin pitch 2.54mm

Number of pins (two rows) 40

Distance between rows 15.24mm

Ports

Max. adimissable current from digital ports + 20 mA

Admissable current total on digital ports 200mA

Admissable input wltage on port pins (digital and -0.5V ... 5.5V

A/D)

Internal pull-up resistors (disconnectable) 20 - 50 kOhm
2131 CPU

Mega32 Overview

The Micro Controller ATmega32 originates from the AVR family by ATMEL. It is a low-power Micro
Controller with Advanced RISC Architecture. In the following see a short summary of its hardware re-
sources:

e 131 Powerful Instructions — Most Single-clock Cycle Execution
e 32 x 8 General Purpose Working Registers
e Upto 16 MIPS Throughput at 16 MHz

¢ Nonvolatile Program and Data Memories

© 2013 Conrad Electronic

21 C-Control Pro IDE

32K Bytes of In-System Self-Programmable Hash
Endurance: 10,000 Write/Erase Cycles
In-System Programming by On-chip Boot Program

e 1024 Bytes EEPROM
e 2K Byte Internal SRAM

e Peripheral Features:
Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
Four PWM Channels
8-channel, 10-bit ADC
8 Single-ended Channels
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
Byte-oriented Two-wire Serial Interface (12C)
Programmable Serial USART
On-chip Analog Comparator
External and Internal Interrupt Sources
32 Programmable I/O Lines

¢ 40-pin DIP
e Operating Voltages 4.5 - 5.5V

2132 Pin Assignment

PortA through PortD are for direct pin functions (e. g. Port_WriteBit) counted from O through 31, see
"PortBit".

Pin Assignment for Application Board Mega32

M32 | Port Port |PortBit| Name Layout Remarks

PIN

1 PBO | PortB.0 8 T0 Input Timer/Counter0

2 PB1 | PortB.1 9 T1 Input Timer/Counterl

3 PB2 | PortB.2 10 [INT2/AINO (+)Analog Comparator, external In-
terrupt2

4 PB3 | PortB.3 11 |[OTO/AIN1 (HAnalog Comparator, Output
Timer0

5 PB4 | PortB.4 12 SS USB-Communication

6 PB5 | PortB.5 13 MOSI USB-Communication

7 PB6 | PortB.6 14 MISO USB-Communication

8 PB7 | PortB.7 15 SCK USB-Communication

9 RESET

10 VCC

11 GND

12 XTAL2 Oscillator : 14,7456MHz

13 XTAL1 Oscillator : 14,7456MHz

14 PDO | PortD.0 24 RXD EXT-RXD RS232, serial Interface

15 PD1 | PortD.1 25 TXD EXT-TXD RS232, serial Interface

16 PD2 | PortD.2 26 INTO EXT-T1 SW1 (Tasterl); external InterruptO

17 PD3 | PortD.3 27 INT1 EXT-T2 SW2 (Taster?2); external Interruptl

18 PD4 | PortD.4 28 OoT1B EXT-Al Output B Timerl

19 PD5 | PortD.5 29 OT1A EXT-A2 Output A Timerl

© 2013 Conrad Electronic

Hardware 22

20 PD6 | PortD.6 30 ICP LED1 LED; Input Capture Pin for Pulse/
Period Measurement

21 PD7 [PortD.7 31 LED2 LED

22 PCO | PortC.0 16 SCL EXT-SCL 12C-Interface

23 PC1 | PortC.1 17 SDA EXT-SDA 12C-Interface

24 PC2 | PortC.2 18

25 PC3 [PortC.3 19

26 PC4 [PortC.4 20

27 PC5 [PortC.5 21

28 PC6 | PortC.6 22

29 PC7 [PortC.7 23

30 AVCC

31 GND

32 AREF

33 PA7 | PortA.7 7 ADC7 RX BUSY | ADCY Input; USB-Communication

34 PA6 | PortA.6 6 ADC6 TX REQ ADCE6 Input; USB-Communication

35 PA5 | PortA.5 5 ADC5 KEY_EN ADCS Input; LCD/Keyboard Inter-
face

36 PA4 | PortA.4 4 ADC4 LCD_EN ADC4 Input; LCD/Keyboard Inter-
face

37 PA3 | PortA.3 3 ADC3 EXT_SCK ADC3 Input; LCD/Keyboard Inter-
face

38 PA2 | PortA.2 2 ADC2 EXT_DATA | ADC2 Input; LCD/Keyboard Inter-
face

39 PA1 [PortA.1 1 ADC1 ADCI Input

40 PAO [PortA.0 0 ADCO ADCO Input

© 2013 Conrad Electronic

C-Control Pro IDE

23

Connection Diagram

2.1.3.3

RRUIZIRH g UMeq [0y 0y -

W\ 00NV

010 1A |

0028090

Bl
20

oSNy

el LY
RqunN

w
az5

101d0D

apiL

*
07113-13%008

[[R[E9RS|2

ts]
Sl
z

ano}

]
<

221221212 =]

EE|EE|E[E|E(E

3|9y,

“damTwor~orSHNAIVEEIAR

SBBVEBBIVHNESAIRLIIQ/NA

3

0r11d-38N YHZ LNHOS

(€00) 2ad 3
(1) 9ad nn
(v120) 50d o
(g100) ¥ad
(TINI) €ad =
5 (zso1)20d (0IN1) zad =<
o (osougod (axt) 1ad
S (1aL)sod (@x)0ad 5
o (oanrod <
o (Swpead
A (Mo1)zod (405) 28d 7o
> (vas)tod (0SIW)98d = o
o (18)0od (SOW)Sed ~+—c5— Qo
SS)vad — —
(000/INIV)g8d - .
ﬁzsﬁww% [_ecad N9THNOT
z (120Y) 1vd (0>OX)08d |——raa— £
N (60av) ovd
v (€0av) Svd JE =l = .
(r0av) vvd
vd e N0SHIZ asva .
= zoav) zvd ™ oy _|_ozo a x
0 (10av) Tvd o
*
d Loculs Nxs_ﬁ@oiaﬂ_
> » ! *
9 < <<< NEHAZ 0N A
: 1§ T8 888 ano
IVOT-ZEVOINLYSOI o s X
101 o]
B BN (S8
ansy A
E=R
DAY

Megal28 Module

2.14

Pin Layout of the Module

The Megal28 Module is shipped on 4 dual row (2x8) square pins. For hardware application the cor-

© 2013 Conrad Electronic

Hardware 24

responding socket strips must be organized in the following pitch format:

1 X3
2
2. 4
X
1
Rastermal; x
2.54 4
12
X
o
& X2

In the graph the socket strip X1-X4 and then the first two pins of the socket strip can be seen. Pin 1
of strip X1 corresponds to terminal X1_1 (see Megal28 Pinzuordnung).

Module Memory

The C-Control Pro 128 Module provides 128kB FLASH, 4kB EEPROM and 4kB SRAM. A supple-
mentary EEPROM with an 8kB memory depth and an SRAM with a 64kB memory depth is mounted
on the application board. The EEPROM can be addressed by an I12C interface.

Note: Detailed information can be found in the IC manufacturer's PDF files on the C-Control Pro Soft-
ware CD-ROM.

ADC Reference Voltage Generation

The Micro Controller is equipped with an analog-to-digital converter with a 10 Bit resolution. This
means that measured wltages can be represented by integral numbers from 0 through 1023. The ref-
erence wltage for the lower limit is GND lewel, i. e. OV. The reference wltage for the upper limit can
be selected by the user:

e 5V Operating Voltage (VCC)
¢ Internal Reference Voltage of 2.56V
e External Reference Voltage e. g. 4.096V generated by a Reference Voltage IC.

If X is a digital measuring value then the corresponding voltage value u is computed as follows:

u = x * Reference Voltage / 1024

© 2013 Conrad Electronic

25

C-Control Pro IDE

Clock Generation

Clock generation takes place by a 14.7456MHz Quartz Oscillator. All time dependent actions within
the controller are derived from this clock frequency.

Reset

A Reset initiates the return of the Micro Controller system to a defined starting condition. In gerneral
the C-Control Pro Module knows two reset sources:

e Power-On-Reset: is automatically executed after the operating wltage is switched on.
e Hardware-Reset: is executed when the Module’'s RESET (X2_3) is pulled to "low" and released
again by e. g. shortly pressing the connected Reset push button RESET1 (SW3).

A "Brown-Out-Detection" awids that the Controller can enter undefined conditions in case of drop-
ping operating woltages.

Digital Ports (PortA, PortB, PortC, PortD, PortE, PortF, PortG)

The C-Control Pro Module provides 6 digital ports at 8 pins each and one digital port with 5 pins. To
the digital ports it is possible to connect e. g. push buttons with pull-up resistors, digital IC’s, opto
couples or driver circuits for relais. The ports can be addressed either separatly, i.e. pin by pin or
byte by byte. Each pin can either be input or output.

= Note: Never connect two ports directly together which should simultaneously work as outputs!

Digital input pins are high-impedance or wired to internal pull-up resistors and transform an applied
wltage signal into a logical value. For this it is required that the woltage signal is within the limits
defined for TTL and CMOS ICs high or low levels. During further processing in the program the logical
values on the respective input ports are represented as 0 ("low") oder -1 ("high). Pins will take on the
values 0 or 1, Bytes from 0 to 255. Output ports are able to give out digital voltage signals by use of
an internal driver circuit. Connected circuits can draw (at high lewel) or feed (at low level) a specific
current from or to the ports.

= Pay attention to the Maximum Admissible Load Current for a single port or for all ports in total.
Exceeding the maximal values may lead to destruction of the C-Control Pro Module. After a reset
each port is initially configured as input port. By certain commands the direction of data transport
can be toggled.

=¥ It is important to closely study the pin assignment of M32 and M128 prior to programming since
important functions of the program design (e. g. the USB interface of the application board) will apply
to specific ports. If these ports are re-programmed or if the matching jumpers on the application
board are no longer set then it may happen that the design platform can no longer transfer any pro-
grams to the C-Control Pro. Timer inputs and outputs, A/D conwerter, 12C as well as serial interface
are also connected to various port pins.

PLM Ports

There are three timers available for PLM. These are Timer_0 with 8 bits and Timer_1 as well as

© 2013 Conrad Electronic

Hardware 26

Timer_3 with 16 bits each. They can be used for D/A conwersion, to control sernvo motors in pattern
making and to output audio frequencies. A pulse length modulated signal has a period of N so called
"Ticks". The duration of one tick is the time base. If the output value of a PLM port is set to X then
the port will hold high level for X ticks of one period and will then for the balance of the period drop to
low level. For programming of the PLM channels see Timer.

The PLM channels for Timer_0, Timer_1 and Timer_3 have independent time base and period length.
In applications for pulse width modulated digital to analog conwversion the time base and period length
are set once and then only the output value is varied. According to their electrical properties the PLM
ports are digital ports. Please observe the technical boundary conditions for digital ports (max. cur-
rent).

Technical Data Module

Note: Detailed information can be found in the IC manufacturer's PDF files on the C-Control Pro Soft-
ware CD-ROM.

All woltage specifications apply to direct current (DC).

Environmental Conditions

Range of admissible ambient temperature 0°C ... 70°C
Range of admissible relative ambient humidity 20% ... 60%
Power Supply

Range of admissible operating wltage 45V ... 5.5V
Power consumption of the module without ex- appr. 20mA
ternal loads

Clock

Clock Frequency (Quartz Oscillator) 14.7456MHz
Mechanics

Owerall measurements less pins, appr. 40 mm x 40mm x 8 mm
Weight appr. 90g

Pin pitch 2.54mm
Number of pins (two rows) 64

© 2013 Conrad Electronic

27 C-Control Pro IDE

Ports
Max. admissible current from digital ports + 20 mA
Admissible current total on digital ports 200mA
Admissible input wltage on port pins (digital and -0.5V ... 5.5V
A/D)
Internal pull-up resistors (disconnectable) 20 - 50 kOhm

2141 CPU

The Micro Controller Atmegal28 originates from the AVR family by ATMEL. It is a low-power Micro
Controller with Advanced RISC Architecture. In the following see a short summary of its hardware re-
sources:

e 133 Powerful Instructions — Most Single Clock Cycle Execution

e 32 x 8 General Purpose Working Registers + Peripheral Control Registers
e Fully Static Operation

e Upto 16 MIPS Throughput at 16 MHz

e On-chip 2-cycle Multiplier

¢ Nonvolatile Program and Data Memories
128K Bytes of In-System Reprogrammable Fash
Endurance: 10,000 Write/Erase Cycles
Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program

e True Read-While-Write Operation
4K Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
4K Bytes Internal SRAM
Up to 64K Bytes Optional External Memory Space
Programming Lock for Software Security
SPI Interface for In-System Programming

e JTAG (IEEE std. 1149.1 Compliant) Interface
Boundary-scan Capabilities According to the JTAG Standard
Extensive On-chip Debug Support
Programming of Hash, EEPROM, Fuses and Lock Bits through the JTAG Interface

Peripheral Features

Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes

Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode and
Capture Mode

Real Time Counter with Separate Oscillator

Two 8-bit PWM Channels

6 PWM Channels with Programmable Resolution from 2 to 16 Bits

Output Compare Modulator

8-channel, 10-bit ADC

8 Single-ended Channels

© 2013 Conrad Electronic

Hardware 28

7 Differential Channels

2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
Byte-oriented Two-wire Serial Interface

Dual Programmable Serial USARTs

Master/Slave SPI Serial Interface

Programmable Watchdog Timer with On-chip Oscillator

On-chip Analog Comparator

e Special Microcontroller Features
Power-on Reset and Programmable Brown-out Detection
Internal Calibrated RC Oscillator
External and Internal Interrupt Sources
Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,
and Extended Standby
Software Selectable Clock Frequency
ATmegal03 Compatibility Mode Selected by a Fuse
Global Pull-up Disable

¢ |/O and Packages
53 Programmable I/O Lines
64-lead TQFP and 64-pad MLF
e Operating Voltages

2.7-5.5Vfor ATmegal28L
4.5 -55V for ATmegal28

2142 Pin Assignment

PortA through PortG are for direct pin functions (e. g. Port_WriteBit) counted from O through 52, see
"PortBit".

Pin Assignment for Application Board Megal128

Module|M128| Port | Port|PortBitt Namel [Name2 Internal Remarks
#
1 PEN prog. Enable
X1 16 2 PEO | 4 32 RXDO PDI EXT-RXDO RS232
X1 15 3 PE1| 4 33 TXDO PDO EXT-TXDO RS232
X1 14 4 PE2 | 4 34 AINO XCKO Analog Comparator
X1 13 5 PE3 | 4 35 AIN1 OC3A Analog Comparator
X1 12 6 PE4 | 4 36 INT4 OC3B EXT-T1 Switch 1
X1 11 7 PE5 | 4 37 INT5S 0OC3C TX-REQ SPI_TX REQ
X1 10 8 PE6 | 4 38 INT6 T3 EXT-T2 Switch 2/ Input Timer 3
X1 9 9 PE7 | 4 39 INT7 IC3 EXT-DATA LCD Interface
X1 8 10 [PBO| 1 8 SS SPI
X1 7 11 [PB1] 1 9 SCK SPI
X1 6 12 [PB2] 1 10 MOSI SPI
X1 5 13 [PB3]| 1 11 MISO SPI
X1 4 14 [PB4]| 1 12 0OCo RX-BUSY SPI RX BUSY
X1 3 15 [PB5] 1 13 OC1A EXT-Al DAC1
X1 2 16 [PB6| 1 14 OCi1B EXT-A2 DAC2
X1 1 17 [PB7| 1 15 OCi1C 0C2 EXT-SCK LCD Interface
X2 5 18 [PG3] 6 51 TOSC2 LED1 LED

© 2013 Conrad Electronic

29

C-Control Pro IDE

X2 6 19 [PG4 | 6 52 TOSC1 LED2 LED
X2 3 20 RESET
X4 10| 21 VCC
X4 12| 22 GND
23 XTAL2 Oscillator
24 XTAL1 Oscillator
X2 9 25 | PDO| 3 24 INTO SCL EXT-SCL 12C
X2 10| 26 [PD1]| 3 25 INT1 SDA EXT-SDA 12C
X2 11| 27 [PD2]| 3 26 INT2 RXD1 | EXT-RXD1 RS232
X2 12| 28 [PD3]| 3 27 INT3 TXD1 | EXT-TXD1 RS232
X2 13| 29 | PD4| 3 28 IC1 Al16 IC Timer 1, SRAM bank se-
lect
X2 14| 30 [PD5] 3 29 XCK1 LCD-E LCD Interface
X2 15| 31 [PD6]| 3 30 T1 Input Timer 1
X2 16| 32 | PD7| 3 31 T2 KEY-E LCD_Interface / Input
Timer 2
X2 7 33 | PGO| 6 48 WR WR SRAM
X28| 34 |PG1l| 6 49 RD RD SRAM
X4 8| 35 | PCO| 2 16 A8 ADR SRAM
X4 7 36 | PC1| 2 17 A9 ADR SRAM
X4 6| 37 | PC2| 2 18 A10 ADR SRAM
X4 5| 38 | PC3| 2 19 All ADR SRAM
X4 4] 39 | PC4| 2 20 Al12 ADR SRAM
X4 3] 40 | PC5| 2 21 Al13 ADR SRAM
X4 2 41 | PC6| 2 22 Al4 ADR SRAM
X4 1| 42 | PC7| 2 23 A15 ADR SRAM
X2 4| 43 |PG2| 6 50 ALE Latch
X316 44 [PA7] O 7 AD7 A/D SRAM
X3 15| 45 | PA6] O 6 ADG6 A/D SRAM
X3 14| 46 [PA5] O 5 AD5 A/D SRAM
X3 13| 47 [PA4] O 4 AD4 A/D SRAM
X3 12| 48 [PA3] O 3 AD3 A/D SRAM
X3 11| 49 [PA2] O 2 AD2 A/D SRAM
X3 10| 50 [PA1] O 1 AD1 A/D SRAM
X39 | 51 |PAO| O 0 ADO A/D SRAM
X4 10| 52 VCC
X4 12| 53 GND
X3 8 54 |PF7 | 5 47 ADC7 |TDI-JTAG
X3 7 5 | PF6 | 5 46 ADC6 TDO-
JTAG
X3 6 56 | PF5 | 5 45 ADC5 TMS-
JTAG
X3 5 57 | PF4 | 5 44 ADC4 TCK-
JTAG
X3 4 58 |PF3 | 5 43 ADC3
X3 3 59 |PF2| 5 42 ADC2
X3 2 60 |PF1| 5 41 ADC1
X3 1 61 |PFO| 5 40 ADCO
X4 11| 62 AREF
X4 12 | 63 GND
X4 9 64 AVCC

© 2013 Conrad Electronic

Hardware 30

2.1.43 Connection Diagram

=¥ The shown connection diagram shows the planned C-Control Pro Module with CAN Bus inter-
face. This Module has not been built. Inside the C-Control Pro 128 Module is working a Mega 128
processor, and not a AT90OCAN128 like shown in this diagram. Therefore there is also no ATA6660
CAN-Bus Transceiver inside the C-Control Module.

[
EEEEE]
AT90CAN128

|

schaffel el ectronic gnbh

Proj ect: MEGA128V2

ATA6660

8 E g PCB- Desi gn: MEGA128 MODUL 2/3
E]

ao ao

Lo D
Jom, | gpeet 1 of 1

215 Megal28 CAN Module

Pin Layout of the Module

The Megal28 CAN Module is shipped on 4 dual row (2x8) square pins. For hardware application the
corresponding socket strips must be organized in the following pitch format:

© 2013 Conrad Electronic

31

C-Control Pro IDE

1 X3
2
2. 4
X
1
Rastermal; x
2.54 4
12
ER
o
& X2

In the graph the socket strip X1-X4 and then the first two pins of the socket strip can be seen. Pin 1
of strip X1 corresponds to terminal X1_1 (see Megal28 Pinzuordnung).

=% To enable the simultaneous access of the CAN Bus and the LCD-Display with the C-Control
Megal28 CAN Module, the connections PD5 and PF7 were exchanged! At the C-Control Megal28
CAN pin PD5 is connected with X3_8 and PF7 is connected with X2_14!

Module Memory

The C-Control Pro 128 Module provides 128kB FLASH, 4kB EEPROM and 4kB SRAM. A supple-
mentary EEPROM with an 8kB memory depth and an SRAM with a 64kB memory depth is mounted
on the application board. The EEPROM can be addressed by an I12C interface.

Note: Detailed information can be found in the IC manufacturer's PDF files on the C-Control Pro Soft-
ware CD-ROM.

ADC Reference Voltage Generation

The Micro Controller is equipped with an analog-to-digital converter with a 10 Bit resolution. This
means that measured wltages can be represented by integral numbers from 0 through 1023. The ref-
erence wltage for the lower limit is GND lewel, i. e. OV. The reference wltage for the upper limit can
be selected by the user:

e 5V Operating Voltage (VCC)

¢ Internal Reference Voltage of 2.56V

e External Reference Voltage e. g. 4.096V generated by a Reference Voltage IC.

If X is a digital measuring value then the corresponding voltage value u is computed as follows:

u = x * Reference Voltage / 1024

© 2013 Conrad Electronic

Hardware 32

Clock Generation

Clock generation takes place by a 16MHz Quartz Oscillator. All time dependent actions within the
controller are derived from this clock frequency.

Reset

A Reset initiates the return of the Micro Controller system to a defined starting condition. In gerneral
the C-Control Pro Module knows two reset sources:

e Power-On-Reset: is automatically executed after the operating wltage is switched on.
e Hardware-Reset: is executed when the Module’'s RESET (X2_3) is pulled to "low" and released
again by e. g. shortly pressing the connected Reset push button RESET1 (SW3).

A "Brown-Out-Detection" awids that the Controller can enter undefined conditions in case of drop-
ping operating woltages.

Digital Ports (PortA, PortB, PortC, PortD, PortE, PortF, PortG)

The C-Control Pro Module provides 6 digital ports at 8 pins each and one digital port with 5 pins. To
the digital ports it is possible to connect e. g. push buttons with pull-up resistors, digital IC’s, opto
couples or driver circuits for relais. The ports can be addressed either separatly, i.e. pin by pin or
byte by byte. Each pin can either be input or output.

= Note: Never connect two ports directly together which should simultaneously work as outputs!

Digital input pins are high-impedance or wired to internal pull-up resistors and transform an applied
wltage signal into a logical value. For this it is required that the woltage signal is within the limits
defined for TTL and CMOS ICs high or low levels. During further processing in the program the logical
values on the respective input ports are represented as 0 ("low") oder -1 ("high). Pins will take on the
values 0 or 1, Bytes from 0 to 255. Output ports are able to give out digital voltage signals by use of
an internal driver circuit. Connected circuits can draw (at high lewel) or feed (at low level) a specific
current from or to the ports.

= Pay attention to the Maximum Admissible Load Current for a single port or for all ports in total.
Exceeding the maximal values may lead to destruction of the C-Control Pro Module. After a reset
each port is initially configured as input port. By certain commands the direction of data transport
can be toggled.

=¥ It is important to closely study the pin assignment of M32 and M128 prior to programming since
important functions of the program design (e. g. the USB interface of the application board) will apply
to specific ports. If these ports are re-programmed or if the matching jumpers on the application
board are no longer set then it may happen that the design platform can no longer transfer any pro-
grams to the C-Control Pro. Timer inputs and outputs, A/D conwerter, 12C as well as serial interface
are also connected to various port pins.

PLM Ports

© 2013 Conrad Electronic

33

C-Control Pro IDE

There are three timers available for PLM. These are Timer_0 with 8 bits and Timer_1 as well as
Timer_3 with 16 bits each. They can be used for D/A conwersion, to control sernvo motors in pattern
making and to output audio frequencies. A pulse length modulated signal has a period of N so called
"Ticks". The duration of one tick is the time base. If the output value of a PLM port is set to X then
the port will hold high level for X ticks of one period and will then for the balance of the period drop to
low level. For programming of the PLM channels see Timer.

The PLM channels for Timer_0, Timer_1 and Timer_3 have independent time base and period length.
In applications for pulse width modulated digital to analog conwversion the time base and period length
are set once and then only the output value is varied. According to their electrical properties the PLM
ports are digital ports. Please observe the technical boundary conditions for digital ports (max. cur-
rent).

Technical Data Module

Note: Detailed information can be found in the IC manufacturer's PDF files on the C-Control Pro Soft-
ware CD-ROM.

All woltage specifications apply to direct current (DC).

Environmental Conditions

Range of admissible ambient temperature 0°C ... 70°C

Range of admissible relative ambient humidity 20% ... 60%

Power Supply

Range of admissible operating wltage 45V ... 5.5V
Power consumption of the module without ex- appr. 20mA
ternal loads

Clock

Clock Frequency (Quartz Oscillator) 16MHz
Mechanics

Owerall measurements less pins, appr. 40 mm x 40mm x 8 mm
Weight appr. 90g

Pin pitch 2.54mm
Number of pins (two rows) 64

© 2013 Conrad Electronic

Hardware 34

Ports

Max. admissible current from digital ports + 20 mA

Admissible current total on digital ports 200mA

Admissible input wltage on port pins (digital and -0.5V ... 5.5V

A/D)

Internal pull-up resistors (disconnectable) 20 - 50 kOhm
2151 CPU

AT90CAN Overview

The Micro Controller AT90CAN originates from the AVR family by ATMEL. It is a low-power Micro
Controller with Advanced RISC Architecture. In the following see a short summary of its hardware re-
sources:

¢ Advanced RISC Architecture
133 Powerful Instructions — Most Single Clock Cycle Execution
32 x 8 General Purpose Working Registers + Peripheral Control Registers
Fully Static Operation
Up to 16 MIPS Throughput at 16 MHz
On-chip 2-cycle Multiplier

¢ Non volatile Program and Data Memories
32K/64K/128K Bytes of In-System Reprogrammable Hash (AT90CAN32/64/128)
* Endurance: 10,000 Write/Erase Cycles
Optional Boot Code Section with Independent Lock Bits
 Selectable Boot Size: 1K Bytes, 2K Bytes, 4K Bytes or 8K Bytes
* In-System Programming by On-Chip Boot Program (CAN, UART, ...)
» True Read-While-Write Operation
1K/2K/4K Bytes EEPROM (Endurance: 100,000 Write/Erase Cycles) (AT90CAN32/64/128)
2K/4K/4K Bytes Internal SRAM (AT90CAN32/64/128)
Up to 64K Bytes Optional External Memory Space
Programming Lock for Software Security

¢ JTAG (IEEE std. 1149.1 Compliant) Interface
Boundary-scan Capabilities According to the JTAG Standard
Programming Hash (Hardware ISP), EEPROM, Lock & Fuse Bits
Extensive On-chip Debug Support

« CAN Controller 2.0A & 2.0B - ISO 16845 Certified ()
15 Full Message Objects with Separate Identifier Tags and Masks
Transmit, Receive, Automatic Reply and Frame Buffer Receive Modes
1Mbits/s Maximum Transfer Rate at 8 MHz
Time stamping, TTC & Listening Mode (Spying or Autobaud)

¢ Peripheral Features
Programmable Watchdog Timer with On-chip Oscillator
8-bit Synchronous Timer/Counter-0

© 2013 Conrad Electronic

35 C-Control Pro IDE

» 10-bit Prescaler

 External Event Counter

» Output Compare or 8-bit PWM Output
8-bit Asynchronous Timer/Counter-2

» 10-bit Prescaler

 External Event Counter

» Output Compare or 8-Bit PWM Output

» 32Khz Oscillator for RTC Operation

Dual 16-bit Synchronous Timer/Counters-1 & 3
» 10-bit Prescaler

* Input Capture with Noise Canceler
 External Event Counter

* 3-Output Compare or 16-Bit PWM Output
» Output Compare Modulation

8-channel, 10-bit SAR ADC

* 8 Single-ended Channels

« 7 Differential Channels

» 2 Differential Channels With Programmable Gain at 1x, 10x, or 200x
On-chip Analog Comparator

Byte-oriented Two-wire Serial Interface
Dual Programmable Serial USART
Master/Slave SPI Serial Interface

* Programming Hash (Hardware ISP)

e Special Microcontroller Features
Power-on Reset and Programmable Brown-out Detection
Internal Calibrated RC Oscillator
8 External Interrupt Sources
5 Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down & Standby
Software Selectable Clock Frequency
Global Pull-up Disable

I/O and Packages

53 Programmable I/O Lines
64-lead TQFP and 64-lead QFN
e Operating Voltages: 2.7 - 5.5V

e Operating temperature: Industrial (-40°C to +85°C)

Maximum Frequency: 8 MHz at 2.7V, 16 MHz at 4.5V

2152 Pin Assignment

PortA through PortG are for direct pin functions (e. g. Port_WriteBit) counted from O through 52, see
"PortBit".

=» To enable the simultaneous access of the CAN Bus and the LCD-Display with the C-Control
Megal28 CAN Module, the connections PD5 and PF7 were exchanged! At the C-Control Megal28
CAN pin PD5 is connected with X3 8 and PF7 is connected with X2_14!

© 2013 Conrad Electronic

Hardware 36

Pin Assignment for Application Board Megal128 CAN

Module|M128| Port | Port[PortBitft Namel [Name2 Internal Remarks
#
1 PEN prog. Enable
X1 16 2 PEO | 4 32 RXDO PDI EXT-RXDO RS232
X1 15 3 PE1]| 4 33 TXDO PDO EXT-TXDO RS232
X1 14 4 PE2 | 4 34 AINO XCKO Analog Comparator
X1 13 5 PE3 | 4 35 AIN1 OC3A Analog Comparator
X1 12 6 PE4 | 4 36 INT4 OC3B EXT-T1 Switch 1
X1 11 7 PE5S | 4 37 INT5 OC3C TX-REQ SPI TX REQ
X1 10 8 PE6 | 4 38 INT6 T3 EXT-T2 Switch 2/ Input Timer 3
X1 9 9 PE7 | 4 39 INT7 IC3 EXT-DATA LCD Interface
X1 8 10 | PBO| 1 8 SS SPI
X1 7 11 [PB1] 1 9 SCK SPI
X1 6 12 [PB2] 1 10 MOSI SPI
X1 5 13 | PB3| 1 11 MISO SPI
X1 4 14 [PB4] 1 12 0Co RX-BUSY SPI RX BUSY
X1 3 15 | PB5| 1 13 OC1A EXT-Al DAC1
X1 2 16 [PB6] 1 14 OCi1B EXT-A2 DAC2
X1 1 17 [PB7| 1 15 QCl1C 0cC2 EXT-SCK LCD Interface
X2 5 18 |PG3| 6 51 TOSC2 LED1 LED
X2 6 19 |PG4| 6 52 TOSC1 LED2 LED
X2 3| 20 RESET
X4 10| 21 VCC
X4 12| 22 GND
23 XTAL2 Oscillator
24 XTAL1 Oscillator
X29 | 25 | PDO| 3 24 INTO SCL EXT-SCL 12C
X2 10| 26 [PD1]| 3 25 INT1 SDA EXT-SDA 12C
X2 11| 27 [PD2]| 3 26 INT2 RXD1 | EXT-RXD1 RS232
X2 12| 28 [PD3]| 3 27 INT3 TXD1 | EXT-TXD1 RS232
X2 13| 29 | PD4| 3 28 IC1 Al16 IC Timer 1, SRAM bank se-
lect
X3 8| 30 | PD5| 3 29 XCK1 | TXCAN LCD-E LCD Interface
X2 15| 31 [PD6]| 3 30 T1 RXCAN Input Timer 1
X2 16| 32 | PD7| 3 31 T2 KEY-E LCD_Interface / Input
Timer 2
X2 7] 33 |PGO| 6 48 WR WR SRAM
X28| 34 |PGl| 6 49 RD RD SRAM
X4 8| 35 | PCO| 2 16 A8 ADR SRAM
X4 7] 36 |PC1L| 2 17 A9 ADR SRAM
X4 6| 37 | PC2| 2 18 A10 ADR SRAM
X4 5| 38 | PC3| 2 19 All ADR SRAM
X4 4] 39 |PC4| 2 20 Al12 ADR SRAM
X4 3| 40 | PC5| 2 21 Al13 ADR SRAM
X4 2| 41 | PC6| 2 22 Al4 ADR SRAM
X4 1| 42 | PC7| 2 23 A15 ADR SRAM
X2 4| 43 |PG2]| 6 50 ALE Latch
X316 44 [PA7] O 7 AD7 A/D SRAM
X3 15| 45 |PA6] O 6 AD6 A/D SRAM
X3 14| 46 [PA5] O 5 AD5 A/D SRAM

© 2013 Conrad Electronic

37

C-Control Pro IDE

X3 13| 47 [PA4] 0 | 4 AD4 A/D SRAM
x312| 48 | PA3| 0 | 3 AD3 A/D SRAM
X311 49 |[pPA2| 0 | 2 AD2 A/D SRAM
Xx310| 50 | PAL| 0 | 1 AD1 A/D SRAM
x39| 51 [Paol 0| o ADO A/D SRAM
X4 10| 52 vVCC
x4 12 | 53 GND
x2 14| 54 |PF7| 5 | 47 | ADC7 [TDITAG @
X37| 55 |PF6 | 5 | 46 | ADC6 | TDO-
JTAG
X36| 56 |PF5| 5 | 45 | ADC5 | TMS-
JTAG
X35 | 57 |PF4a| 5 | 44 | ADC4 | TCK-
JTAG
X34 | 58 |PF3| 5 | 43 | ADC3
x33| 59 |PF2| 5 | 42 | ADC2
x32| 60 |PFL| 5 | 41 | ADC1
x31]| 61 |PFo| 5 | 40 | Abco
X4 11| 62 AREF
x4 12| 63 GND
x4 9 | 64 AVCC
X4 13 CAN-L
X4_14 CAN-H

© 2013 Conrad Electronic

Hardware

2153 Connection Diagram

38

= The connection diagram shows the new C-Control Pro Megal28 CAN module with CAN bus.

© 2013 Conrad Electronic

C-Control Pro IDE

Liot eeus | 1L thew | s9 01026010 | :pebudus
So 007£0eT “amop
u
H. 3 wNFZ<O HOS'LLATHUNT BZLNYD @4
WS INTO 00 00 00| *IN 49p30
D0 TONHOIL O .F o
AVANOD |LYI QOL/#%0 [N y9eloud

HUN 8TZINVD Odd [043u0d-0 8LYI

dZ1-Z1TMa
dZ1L-Z1TIE
dT1-Z11Na
d21-Z1TN0
dZ1-Z1TIa
AR AR
dT1-21TNa

dT1-Z1TN0

ans ans
)
2
F]
o 438A sifg
S| TNV axd [y
HNVD Ol
z - T
s
8
o “ o0ggaviv
€090 AGLTNOOL zn
vo
ano =<
wwwwww S
Coryx |
v
Oy !
el 121-602102-1L—NE:
O W< o
I 5] ang
S
X e N
: &R
Oy 2 o o
ans ang 222

£0907 A0S dZZ
z0

£0907A0S”dZZ
19

NTZHND00'9I~0

ADSTNOL
2
3

o
@

€090

32T

oLsve
1a
—

£090

Z1v1x
1vix
194 Lad
934 sad
s2d s0d for—1
¥2d ad o5
£2d £ad[%
204 20475
194 laa[5S
004 004 (2%
N¥8I-8ZINVO06LY
Lvd n L8d
9vd s8d
svd sed
wva vad
£vd a4
vd 28d
6] Wvd l8d
Ta{ ovd 08d o
L4d L34
teigaa 930
5o 64d s3d
75 v4d y3d
o1 £4d £3d
ol Tdd 23d
el 13d
%51 04d s s 03d
8 8
o R
ane B R
£030™ASLTNOOL
£
20v0™A9LTNOOH
aan

ang

39

© 2013 Conrad Electronic

Hardware 40

2.16

Mega32 Application Board

USB

The "C-Control Pro Application Board MEGA 32" (Conrad Item no. 198245) provides a USB interface
for the program’s loading and debugging. Because of the high data rate of this interface data trans-
mission times are considerably shorter compared to the serial interface. Communication takes place
through a USB Controller by FTDI and an AVR Mega8 Controller. The Mega8 provides its own Reset
push button (SW5). During USB operation the status of the interface is indicated by two light emit-
ting diodes (LD4 red, LD5 green). When only the green LED lights up the USB interface is ready for
operation. During data transmission both LED’s will light up. This also applies to the Debug mode.
Flashing of the red LED indicates an error condition. Is a program started in the Interpreter, the red
LED is turned on during the runtime. For USB communication the SPI interface of Mega32 is used
(PortB.4 through PortB.7, PortA.6, PortA.7), which must be connected by their respective jumpers.

Note: Detailed information on the Mega32 can be found in the IC manufacturer's PDF files on the C-
Control Pro Software CD-ROM.

On-Off Switch

The switch SW4 is located on the front of the application board and seres the power-up (On) or
power-down (Off) of the wltage supply.

Light Emitting Diodes (LED)

There are 5 light emitting diodes (LEDs). The LD3 (green) is located on the front below the DC ter-
minals and lights up when supply wiltage is applied. LD4 and LD5 indicate the status of the USB in-
terface (see Section USB). The green LEDs LD1 and LD2 are located next to the four push buttons
and are freely available to the user. They are connected to VCC through a dropping resistor. By
means of jumpers LD1 can be connected to PortD.6 and LD2 to PortD.7. The LEDs will light up
when the corresponding pin port is low (GND).

Push Buttons

There are four push buttons provided for. SW3 (RESET1) will initiate a reset with Mega32 while SW3
(RESET2) will do the same with Mega8. The push buttons SW1 and SW2 are freely available to the
user. Through jumpers SW1 can be connected to PortD.2 and accordingly SW2 to PortD.3. There is
the possibility to connect switches SW1/2 to either GND or VCC. The possibilities to choose from
are determined by JP1 and JP2 resp. In order to have a defined level at the input port while the push
button is open the corresponding pull-up should be switched on (see Section Digitalports).

= Pressing SW1 during power-up of the board will activate the Serial Bootloader Mode.

LCD

An LCD module can be plugged onto the application board. It displays 2 lines at 8 characters each.
In general also differently organized displays can be operated through this interface. Each character

© 2013 Conrad Electronic

41

C-Control Pro IDE

consists of a monochrome matrix of 5x7 pixels. A flashing cursor below any one of the characters
will indicate the current output position. The operating system provides a simple software interface
for output on the display. This display is connected to connector X14 (16 poles, double row). By
means of a mechanical protection a faulty connection and thus the confusing of poles is awided.

The LCD module used is of type Hantronix HDM08216L-3. Further information can be found on the
Hantronix Webseite http://www.hantronix.com and in the data sheet list on the CD-ROM.

The display is operated in the 4-Bit data mode. Data bits are set to the EXT-Data output, and then
clocked into the 74HC164 shift register with triggering EXT-SCK. When LCD-E is set, the 4 Bits are
applied to the display.

LCD Contrast (LCD ADJ)

Direct frontal view will allow best readability of the LCD characters. If necessary the contrast must be
trivially re-adjusted. The contrast can be adjusted by means of potentiometer PT1.

Keyboard

For user inputs a 12 character keyboard (0..9,*,#) is provided (X15: 13 pole connector). The keyboard
is organized 1 out of 12, i. e. there is one line assigned to each key. The keyboard information is
read-in serially through a shift register. If no keyboard is used the 12 inputs can be used as addi-
tional digital inputs. The keyboard uses a 13 pole terminal (single row) and is plugged to X15 in such
a way that the keys will point towards the application board.

With activating the PL (parallel load - KEY-E) input of the 74HC165 all 12 keyboard wires are trans-
ferred in the 74HC165 shift register. After that all information bits are latched to Q7 with triggering of
CP (clock input - EXT-SCK). There they can be read with the EXT-Data Port. Since one 74HC165
holds only 8 Bit information, Q7 of the 1st 74HC165 is connected with DS of the 2nd 74HC165.

I2C Interface
Through this interface serial data can be transmitted at high speed. To do this only two signal lines

are necessary. Data transmission takes place according to the I2C protocol. To effectively use this
interface special functions are provided (see Software Description 12C).

12C SCL 12C Bus Clock Line PortC.0

12C SDA I12C Bus Data Line PortC.1

Power Supply (POWER, 5 Volts, GND)

Power is provided to the application board by means of a 9V/ 250mA Mains Plug-in Power Supply.
Depending on additionally used components it may later become necessary to use a power supply
with higher power rating. A fixed wltage control generates an internally stabilized 5V supply voltage.
This woltage is provided to all circuit components on the application board. Due to the power reserve
of the Plug-In Power Supply this woltage can also be used to power external ICs.

=¥ Please obsere the Maximum Drawable Current. Exceeding this current may lead to immediate
destruction! Because of the relativelly high current consumption of the application board in the vicin-

© 2013 Conrad Electronic

http://www.hantronix.com

Hardware 42

ity of 125mA it is not recommended for use in devices consistently battery operated. Please see the
note on short time breakdowns of the power supply (see Reset Characteristics).

= If you turn the application board to a position where the interface connectors (USB and serial)
show to the upper side, the leftmost column on the breadboard is GND and the rightmost column is
VCC.

Serial Interfaces

The Micro Controller Atmega32 contains in its hardware an asynchronous serial interface according
to RS232 standards. The format (Data Bits, Parity Bit, Stop Bit) can be determined during initializa-
tion of the interface. The application board contains a high value level conversion IC to transform the
digital bit streams to Non Return Zero Signals in accordance with the RS232 standards (positive
wltage for low bits, negative wltage for high bits). The level conwversion IC makes use of an improved
protection against woltage transients. Voltage transients can in electro-magnetically loaded surround-
ings (e. g. in industrial applications) be induced in the interface cables and thus destroy connected
electrical circuits. By means of jumpers the data lines RxD and TxD can be connected to the Con-
troller PortD.0 and PortD.1. During quiescent condition (no active data transmission) a negative
wltage of several wlts can be measured on Pin TxD against GND. RxD is of high impedance. The 9
pole SUB-D socket of the application board carries RxD on Pin 3 and TxD on Pin 2. Pin 5 is the
GND connection. No handshake signals are being used for serial data transmission.

Ve
O C1
Ips
H {GND _,5‘%_5__
JOONE SOV GND —+o ™
=2 1C1 R —3 >(—4_O
NF/307 LOONF/ 50 1 I
2 = : W 3 —\d
= VT :: '\. 6 A‘-D '_ (J
ci- ol TXD v J e
o, =10
—r i B o
& X B
_ IOONE S0V SUB-DS-AGFEMALE
¢ B2
riovt 4 IXD
B
i |3 RXD
8 v T20UT (%
S+ R2OLT o

MASZ 02

gl— (ND

The cable with connection to the NRZ Pins TxD, RxD and RTS may hawe a length of up to 10
meters. It is recommended to use shielded standard cables. When using longer lines or non-shiel-
ded cables interferences may detract correct data transmission. Only use cables of which the pin
assignments are known.

= Newer connect the serial transmission outputs of two devices directly together! Transmission
outputs can usually be identified by their negative output woltage in quiescent condition.

© 2013 Conrad Electronic

43

C-Control Pro IDE

216.1

Testing Interfaces

The 4 pole pin strip X16 is to be used for testing purposes only and will not necessarily be armed
with components of any kind on every application board. For the user this pin strip is of no import-
ance.

One further testing interface is the 6 pole pin strip (two rows at 3 pins each) at JP4. This pin strip too
is only meant for internal use and may likely no longer be fitted with components in future board
series.

Technical Data Application Board
Note: Detailed information's can be found in the IC manufacturer's PDF files on the C-Control Pro

Software CD-ROM.
All woltage specifications are referring to direct current (DC).

Mechanics
Owerall measurements, appr. 160 mm x100 mm
Pin pitch wiring field 254 mm

Environmental Conditions

Range of admissible ambient temperature 0°C ... 70°C
Range of admissible relative ambient humidity 20% ... 60%

Power Supply

Range of admissibly operating woltage 8V... 24V
Power consumption without external loads appr. 125mA
Max. admissibly permanent current from a stabil- 200mA

ized 5V power supply

Jumper Application Board

Jumper

By use of jumpers certain options can be selected. This applies to seweral ports which are provided
with special functions (see Pin Assignment Table for M32). E. g. the serial interface is relized
through Pins PortD.0 and PortD.1. If the serial interface is not being used then the corresponding
jumpers can be removed and these pins will then be available for other functions. Besides the port
jumpers there are additional jumpers which are described in the following.

Ports Athrough D

The ports available with the Mega32 Module are inscribed in this graph. Here the right side is con-

© 2013 Conrad Electronic

Hardware 44

nected to the module while the left side connects to the components of the application board. If any
jumper is pulled then the connection to the application board is suspended. This may lead to ob-
structions of USB, RS232, etc. on the board.

JP1 and JP2

These jumpers are assigned to push buttons SW1 and SW2. There is the possibility to operate the
push button against both GND or VCC. In the basic setting the push buttons are switching to GND.

 HEmmREEEaEEE ces-ccc0e

DDDDGDGGDDDD cBooesensd
REyese L XX XL R XXX
B ot - JHE -) ERIIS338S

@-c- o{ilee-[=}e : e
e Port A7 pe
E'.—"-ED—'@ — - @ ————— 8
—T |
: &3 :-lE‘IP'l‘
::lln o5 80
= 00w

[A EEXX]
@)
&
o
]
®
]
®
®
®

[LLTR]0]]

B
a0 BDED
X]
EE
I3
I
ae
- h
] |
i
=
[|
w B
e

L B B

XX ERE N X
JP1 JP2? | LR LE LR X

balo FROZ

— e @
o ., %5 eecscses

a8 .:,..:..:.u:— ‘--.-l::
| (O] [6] ma: ®®iemos be

Jumperpositions at delivery

JP4

JP4 serves to toggle the operating wltage (Mains Plug-In Power Supply or USB). The application
board should be operated using Plug-In Power Supply and woltage control (Shipping Condition). The
maximum current to be drawn from the USB interface is lower than from the Plug-In Power Supply.
Exceeding this current can lead to damage on the USB interface of the computer.

© 2013 Conrad Electronic

45

C-Control Pro IDE

JP6

When using the displays the LED back lighting can be switched off by use of JP6.

PAD3

PADS (to the right of the module, below the blue inscription) is required as ADC_VREF_EXT for func-
tions ADC_Set and ADC_Setlnt.

© 2013 Conrad Electronic

46

Hardware

Connection Diagram

I CIT| DSPEATORIIVD 5
ST b wS] WD 5EQ
v = voamnLy &
uosvay sy | e aw aw
proguomalfidy o - SE-TI0HNSETIOHN SETOHN SETOHN
o o WS ACSHNOTT AGBHNOOT
g e =T [%
Asng-xd ﬁzmw‘m
02X]
LERT (4 CY & ™
WSNIS 20A 200
®NoSN
FA 2
e
e | mameie
VIVaLa awe ao ae ae ae ae aw
GRIE0
- foxsian
AGEHNDOT AGEHNDOT wont | oo
8 8 — 1seHN, ASHNO,
A A FTEE pie 51 1 o X/ ey
H b v
s 5| —&-
g g Y {4 e . X
QBVHONTIE DD BESIRHINS 1L oo L oo e
PIOAE) z z :
| [P [g o 9 LONVARNS \/4
Y — 3B ® = L
ey — @ & [— & m
6y — & 5 — & Aw
8y | — & & [& —
v s s [— @ 8 O3
v — & T [— ® o
sy — &5 & [— @ 9
o — & & [— s
Y — % Y@ v
W — Wy — @ 2 e
v ® z z .
oy — o & — 1t 1A
6 [— & £ [— 60 =
8V [— &€ & [6
v — € § — 00 .
WroEe T m o 0r10-13%008
SY — € & — 8 v = I3 @
Y — & & (— m L £ — z a
Y — & g (— m 9 z _. 3 a
av — e (— @] T o 13 a
Wz ' [— 1 v| e 3 a
o — @ 6 — o € % a
ov [& o — 6 z z P -
o[o g —® =H @ af %
& | & | 2 = e ae L4201 VIZWIE i g drm
Wl amn—o DR 3 n
Y — O 6 [— S n aNo—H & o
5 | S 2 | 2 1 sl P0SENT | rognor E= 2 M=
& (9 §1—8 8 9 - S 8
o/ lmm|? 3 |malS o © 2 s M= 0 Vo] % i
o=
Wiz T 9 y € 9
VIX X o H L o] o1 By * B
€ 1 elg & €
¢ | LJwwia g g
o | = £qyd 0 L i o
23 Tavd @ i
By
ae
@exvn ﬁﬂ
Yines & o
%1 1oz Nz
@ | N 1OW I GxeDa
[i kel N T aaDa
= oI5
TWNEHOW6A-ES L GEHNDOE
2L : :
o
, X g @ |3
’ <
T o@ st g Mk
ACSHNOOT BN
£ Bl
o——X >
nosaoor (5
fare i I T
o el Il
) 0N 0N 2N
201

2.16.2

© 2013 Conrad Electronic

C-Control Pro IDE

i Agure | 5
€ 10 P | 5ea
e 2 YOINLY w
uospey quTN o3
o 5o ane ano ano
pie0g Lo 0l Ky
el o T oA ‘_‘
soroHn. |
LA 5
= E g B X
ao ao ae ae g
iy 14 D
Al & A G | Mm
AGGHNOOT | AGSHNOOT | AOSHNOOT | AGSHNOOT
160! [&0 &0: f Lt ra 30 g
MO FORE] mm__ o —
0A3 =1 ERE]
LAy Al 1a
20N 201 200 A ane TN o1 R LR
Q
LA 0 sa o
ol EYEY]]
£ =
iy
= D 20A
iy
e ane wd LOAD ano ane
£ 3 iy ‘_‘
w J ol & A S9TOHIL_|®
o — - 3 B
5 ol VOAD 5
8 ezl a "o
9 ano «
5 & S 5 R,
3 3 Ep
¥ T0A3 L : €0
Hwire A I UE WAT a W
¢ A / 5 10
o] 7
SIX s
200 S
A_w 0l
20N
)
ano
YITOHIL ‘_H_
-0-MISS 2 ||u T 21
N4 0 &
a g _ Ha
T €T va-ad1 Ty g un -
am - il
& o7) _ e
g . ST0T B 5 TS
w M = _ MM MMM ¢ YLva-1x3
2 T 90-a01 0o T viva-1xa
[o 2
X MSOPIOT S0 ,_v
Tid \
ae 200 Mo o =0
1G0T

47

© 2013 Conrad Electronic

% RBUXd Ag umeiq | ElEl
EE_ 10 BAgS | 2RrQ
o 0L5avd 0L5-Qvd 070L0-QYd
e Z YOINLY
uosyed P - Mlnzw Mlazw @l_n_zw
Teavd STavd 6avd
m preog Lo edlddy 0/5-0vd 0/-5-0vd 0v0L0-Qvd
© oML @lvog @lvo% @Iv8>
= s> 5 02avd Iavd 80vd
o 0,5avd 0L5-avd 0n0L0-Qvd ano
M CBMWO—m— r .
3 GIN 3 ano
RO 2% IND
T Ceon> SOW 61avd €10vd 10vd i ﬂl X
—= 0,5-avd 0,5-Qvd 070L0-Qvd
= Ej @ m @ WOEB ESNaXL m
| MOS MOS MOS asn-axy
\E ASNg-Xy 81avd 21avd 9avd S M% O_M m
Tl 0/s-avd 0.5-avd 07020-0¥d VW S
O3 XL A_M 91X
m RE=T] m RE=T @W BE=T g SR &9 207
8y b L10vd TI0vd Savd / Eell
/ s 8 0L5avd 025-avd 07020-0¥d 200
anNoano m 1SON m S @ 1SON ano
9Tavd oTavd avd
20N 20A
@ ovg-1gvoaNLY AOSHNOOT
aNo ano ano ano 2302
2 (INIY) LGd
I i]
s,mumﬂ o 9 Neswzld o 3 M
©LpiX) vad 4 9 9 3 eehl
i ot L
| pay O —E— WS
= 0av (@x)00d e YIVOE o
(10560QV)S0d R e
. (vaSK0aV) v0d(08) 58 5 e o= L2531
S Xy | =5y € 0H
(€0av)edd (OSIW)vad 3T A NJTHEE
= (200v)20800/1S0N)ESd SON
7 (10v)10d (55/8100) z8d 'S 1no1x _|_n_zo
- (0oav)ood zﬁuo“ﬂmn_ = A=A
. 01)08d @
1 @ o] = N:_s@_H_
avol—— ey O 555y a N9THdEE
I NJTHdEE q_ 81| o AT _|_n_zo
18dieX e A6 gq
CEALS 1] 5 o =
Wﬁ o [0} a o == 7 FEEEL] ano
ZHNZ6S0'TT d 62.19-8-85N-
D _ a @ o8 e —s
< < N9THdEE a
a9 Il | a & =l g
¥ O 0 0 98X vy jano dagsn 7 — €
1l < > wassn y— 3
o [~ QI 720 8 s s 3 8 ERIER] T
\ 0O o o0 0 Il o|=|_n_zo . X
—a 3 |0 g 71 ATENE €0 20A BN
oo >suz_uNow anol >8mz§=
| @
AOSHNOOT AOSHNOOT | 304
3 Gall] i ER) vﬂu_ o
A
00A0A A0SHNoOT | |
ano} ol
| Aosnoor | |
ano} cali
/ VvV
O0A 00N OJ0A DJOA

© 2013 Conrad Electronic

C-Control Pro IDE

49

Component Parts Plan

2.1.6.3

W @;ooooooooooooooooooooooomxooooooooooooo

00000000000000000000000000)
0000000000000000000000000)0)

000000000000000000000001000)

00000000000000000000000000
000000000000000000000000 =

0...0..0......00..0...00”
0000000000000000000000000

0000000000000000000000000)
0000000000000000000000000)
0000000000000000000000000)
0000000000000000000000000) i
00000000000000000000000000 11O
00000000000000000000000000 '1°
000000000000000000000000" © IO

000000000000000000000000(00 “1°
00000000000000000000000000 O°°

00000000000000000000000000 o
00000000000000000000000000
0000000000000000000000000)°
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000

000000000000000000000000°

0000000000000000000000 oQum 9—0 -0 00 oo
([) 0000000000000000000000 2 ol o] |e ®
000000000000000000000 000 EAWJ.
00000000000000000000000000) 00 -0 00 0O
00000000000000000000000000) Roocioon! e u
000000000000000000000000(00) 00 = T g

000000000000000000000000(00 mv

00000000000000000000000000) &
0000000000000000000000000)0)
00000000000000000000000000) i

%

00000000000000000000000000)

%

00000000000000000000000000)

| | o
(A] g1 QLR
|

00000000000000000000000 EEEEEEEEEEREES

aislslalalafslslslnlnls

0000000000000000000000 ENEEEEEEEEESR
iR R -l
gggggggggggg
eeeeeeeeeeee

<
T
a

| W [ual =

0000
L X X X]

=
P a!-ﬂ%
s|@| m@—| o .v,
jopre— X
G1D A NS __
) ©

o-}ee e
£
o{-[ree o mu(:

G2

mm 883

| R 21
g HENE
._lml_.::.

vzd

i+
00000000
00000000,

© 2013 Conrad Electronic

Hardware 50

2.1.7 Megal28 Application Board

USB

The "C-Control Pro Application Board MEGA 128" (Conrad Item no. 198258) provides a USB inter-
face for the program’s loading and debugging. Because of the high data rate of this interface data
transmission times are considerably shorter compared to the serial interface. Communication
takes place through a USB Controller by FTDI and an AVR Mega8 Controller. The Mega8 provides
its own Reset push button (SW5). During USB operation the status of the interface is indicated by
two light emitting diodes (LD4 red, LD5 green). When only the green LED lights up the USB inter-
face is ready for operation. During data transmission both LEDs will light up. This also applies to
the Debug mode. Flashing of the red LED indicates an error condition. Is a program started in the
Interpreter, the red LED is turned on during the runtime. For USB communication the SPI interface
of Megal28 is used (PortB.0 through PortB.4, PortE.5), which must be connected by their re-
spective jumpers.

Note: Detailed information on the Mega8 can be found in the IC manufacturer's PDF files on the C-
Control Pro Software CD-ROM.

On-Off Switch

The switch SW4 is located on the front of the application board and seres the power-up (On) or
power-down (Off) of the wltage supply.

Light Emitting Diodes (LED)

There are 5 light emitting diodes (LEDs). The LD3 (green) is located on the front below the DC ter-
minals and lights up when supply woltage is applied. LD4 and LD5 indicate the status of the USB in-
terface (see Section USB). The green LEDs LD1 and LD2 are located next to the four push buttons
and are freely available to the user. They are connected to VCC through a dropping resistor. By
means of jumpers LD1 can be connected to PortG.3 and LD2 to PortG.4. The LEDs will light up
when the corresponding pin port is low (GND).

Push Buttons

There are four push buttons provided for. SW3 (RESET1) will initiate a reset with Megal28 while
SWS5 (RESET2) will do the same with Mega8. The push button SW1 and SW2 are freely available to
the user. Through jumpers SW1 can be connected to PortE.4 and accordingly SW2 to PortE.6.
There is the possibility to connect switches SW1/2 to either GND or VCC. The possibilities to
choose from are determined by JP1 and JP2 resp. In order to have a defined level at the input port
while the push button is open the corresponding pull-up should be switched on (see Section Digital-

ports).

= Pressing SW1 during power-up of the board will activate the Serial Bootloader Mode.

LCD

© 2013 Conrad Electronic

51

C-Control Pro IDE

An LCD module can be plugged onto the application board. It displays 2 lines at 8 characters each.
In general also differently organized displays can be operated through this interface. Each character
consists of a monochrome matrix of 5x7 pixels. A flashing cursor below any one of the characters
will indicate the current output position. The operating system provides a simple software interface
for output on the display. This display is connected to connector X14 (16 poles, double row). By
means of a mechanical protection a faulty connection and thus the confusing of poles is awided.

The LCD module used is of type Hantronix HDM08216L-3. Further information can be found on the
Hantronix Webseite http://www.hantronix.com and in the data sheet list on the CD-ROM.

The display is operated in the 4-Bit data mode. Data bits are set to the EXT-Data output, and then
clocked into the 74HC164 shift register with triggering EXT-SCK. When LCD-E is set, the 4 Bits are
applied to the display.

LCD Contrast (LCD ADJ)

Direct frontal view will allow best readability of the LCD characters. If necessary the contrast must be
trivially re-adjusted. The contrast can be adjusted by means of potentiometer PT1.

Keyboard

For user inputs a 12 character keyboard (0..9,*,#) is provided (X15: 13 pole connector). The keyboard
is organized 1 out of 12, i. e. there is one line assigned to each key. The keyboard information is
read-in serially through a shift register. If no keyboard is used the 12 inputs can be used as addi-
tional digital inputs. The keyboard uses a 13 pole terminal (single row) and is plugged to X15 in such
a way that the keys will point towards the application board.

With activating the PL (parallel load - KEY-E) input of the 74HC165 all 12 keyboard wires are trans-
ferred in the 74HC165 shift register. After that all information bits are latched to Q7 with triggering of
CP (clock input - EXT-SCK). There they can be read with the EXT-Data Port. Since one 74HC165
holds only 8 Bit information, Q7 of the 1st 74HC165 is connected with DS of the 2nd 74HC165.

SRAM

The application board holds an SRAM chip (K6X1008C2D) made by Samsung. By using this the
available SRAM memory is extended to 64kByte. Mentioned SRAM uses Ports A, C and partly
G for triggering. If the SRAM is not used then it can be de-activated by JP7 and then these
ports become available to the user.

=¥ To deactivate the SRAM the jumper JP7 has to be moved to the left side (orientation: serial inter-
face shows to the left), such that the left pins of JP7 are connected.

= Even though the used RAM chip has a capacity of 128kb only 64kb can be used for reason

of the memory model.

© 2013 Conrad Electronic

http://www.hantronix.com

Hardware 52

I12C Interface

Through this interface serial data can be transmitted at high speed. To do this only two signal lines
are necessary. Data transmission takes place according to the 12C protocol. To effectively use this
interface special functions are provided (see Software Description 12C).

12C SCL 12C Bus Clock Line PortD.0
12C SDA 12C Bus Data Line PortD.1

Power Supply (POWER, 5 Volt, GND)

Power is provided to the application board by means of a 9V/ 250mA Mains Plug-in Power Supply.
Depending on additionally used components it may later become necessary to use a power supply
with higher power rating. A fixed wltage control generates an internally stabilized 5V supply voltage.
This woltage is provided to all circuit components on the application board. Due to the power reserve
of the Plug-In Power Supply this wltage can also be used to power external ICs.

=¥ Please obsere the Maximum Drawable Current. Exceeding this current may lead to immediate
destruction! Because of the relativelly high current consumption of the application board in the \vicin-
ity of 125mA it is not recommended for use in devices consistently battery operated. Please see the
note on short time breakdowns of the power supply (see Reset Characteristics).

= If you turn the application board to a position where the interface connectors (USB and serial)
show to the upper side, the leftmost column on the breadboard is GND and the rightmost column is
VCC.

Serial Interfaces

The Micro Controller Atmegal28 contains in its hardware two asynchronous serial interfaces accord-
ing to RS232 standards. The format (Data Bits, Parity Bit, Stop Bit) can be determined during initial-
ization of the interface. The application board contains a high value level conversion IC for both inter-
faces to transform the digital bit streams to Non Return Zero Signals in accordance with the RS232
standards (positive wltage for low bits, negative woltage for high bits). The lewvel conwersion IC makes
use of an improved protection against wltage transients. Voltage transients can in electro-magnetic-
ally loaded surroundings (e. g. in industrial applications) be induced in the interface cables and thus
destroy connected electrical circuits. By means of jumpers the data lines RxDO (PortE.0), TxDO
(Porte.1) and RxD1 (PortD.2), TxD1 (PortD.3) can through the Controller be connected to the level
converter. During quiescent condition (no active data transmission) a negative wltage of several wlts
can be measured on Pin TxD against GND. RxD is of high impedance. The 9 pole SUB-D socket of
the application board carries RxDO on Pin 3 and TxDO on Pin 2. Pin 5 is the GND connection. No
handshake signals are being used for serial data transmission. The second serial interface is lead to
a 3 pole pin strip. Here RxD1 occupies Pin 2, TxD1 occupies Pin 1 while Pin 3 is GND.

The cable with connection to the NRZ Pins TxD, RxD and RTS may hawe a length of up to 10
meters. It is recommended to use shielded standard cables. When using longer lines or non-shiel-
ded cables interferences may detract correct data transmission. Only use cables of which the pin
assignments are known.

© 2013 Conrad Electronic

53

C-Control Pro IDE

2171

= Never connect the serial transmission outputs of two devices directly together! Transmission out-
puts can usually be identified by their negative output wltage in quiescent condition.

Testing Interfaces

The 4 pole pin strip X16 is to be used for testing purposes only and will not necessarily be armed
with components of any kind on every application board. For the user this pin strip is of no import-
ance.

One further testing interface is the 6 pole pin strip (two rows at 3 pins each) at the lower right next
to JP4. This pin strip too is only meant for internal use and may likely no longer be fitted with com-
ponents in future board series.

Technical Data Application Board
Note: Detailed information's can be found in the IC manufacturer's PDF files on the C-Control Pro

Software CD-ROM.
All woltage specifications are referring to direct current (DC).

Mechanics
Ovwerall measurements, appr. 160 mm x100 mm
Pin pitch wiring field 254 mm

Environmental Conditions

Range of admissible ambient temperature 0°C ... 70°C

Range of admissible relative ambient humidity 20% ... 60%

Power Supply

Range of admissibly operating woltage 8V... 24V
Power consumption without external loads appr. 125mA
Max. admissibly permanent current from a stabil- 200mA

ized 5V power supply

External RAM

The Application Board of Mega128 carries external RAM. This RAM is automatically recognized by
the Interpreter and used for the program to be carried out. For this reason a program memory of
appr. 63848 Bytes rather than appr. 2665 Bytes is available. For this it is not necessary to newly
compile the program.

= If the SRAM is not needed it can be deactivated by JP7 and the ports will be free for other uses.

© 2013 Conrad Electronic

Hardware 54

To deactivate the SRAM the jumper JP7 has to be mowed to the left side (orientation: serial interface
shows to the left), such that the left pins of JP7 are connected.

2.1.7.2 Jumper Application Board

Jumper

By use of jumpers certain options can be selected. This applies to several ports which are provided
with special functions (see Pin Assignment Table for M128). E. g. the serial interface is realized
through Pins PortE.O and PortE.1. If the serial interface is not being used then the corresponding
jumpers can be removed and these pins will then be available for other functions. Besides the port
jumpers there are additional jumpers which are described in the following.

T n
3 - e 00000000000000 [4
O g| oooooooo | <EEEEEBEEREEE goooooom ree aa00coo0ogo0o O
80000000 [@o00o000000od xs LuLIOOEE0000000 =
MO0 Port EOOOOCOO0OOOOOOO
LIce UuUoooooooooooon,
TTIOOT o o
¥7 _ 0000000000000000
0000000 Pore FOOOOOOD
00O0oaRaaan
000000000
00000a0000
Port cOO0000000OO0O0
0000000000000000
o o o o
0000000000000000
00000 00000
00008
00000
00000
000000

Poct ROOODO
ooooooo

[m]
]
jm]

LD3

LIS

a
d
|
d

O
O
O
O
O

PROAL]

OO0O0O00000000004d
OO0O00000000000040

O

O

O

O

O

(0]

Li]
ey ﬁ?%
1 OOOOOOO0=<
ooo
oog
ooo
ooo
ooog
oog
oo
O0oooooooooooon

=

|
]
g

n

o
=]
O
[m]
[m]
O
O
[m]
]
[m}
[m]
[m}
[m]
0

JFS
EEl
[ElE
i
iy
I

=
[Ze]
oo
I3

OrPADZ2
mDPﬂD G
[
i
OiGQl<sA
) LIJLJ
[
O
O
O
O
[
O
O
]
[m]m}
oo
[m]m}
oo
00

[m]

O

[m]

E
OO0O000O00000000000000000000000000
OO0O00000000000000000000000000000

|6\ OOOOO0O0O0000000000000000000000000

=
el
s
-}
n
-

o)
(O]
@ &
&

@
BIE|EE=TIH

-
=
mn

Reszt2 Resetl

Jumperpositionen im Auslieferzustand

Ports Athrough G

The ports available with the Megal28 Module are inscribed in this graph. Here the yellow side is con-
nected to the module while the light blue side connects to the components of the application board.
If any jumper is pulled then the connection to the application board is suspended. This may lead to
obstructions of USB, RS232, etc. on the board. The gray marking indicates the first Pin (Pin 0) of
the Port.

© 2013 Conrad Electronic

55

C-Control Pro IDE

JP1 and JP2

These jumpers are assigned to push buttons SW1 and SW2. There is the possibility to operate the
push button against both GND or VCC. In the basic setting the push buttons are switching to GND.

JP4
JP4 serves to toggle the operating wltage (Mains Plug-In Power Supply or USB). The application
board should be operated using Plug-In Power Supply and woltage control (Shipping Condition). The

maximum current to be drawn from the USB interface is lower than from the Plug-In Power Supply.
Exceeding this current can lead to damage on the USB interface of the computer.

JP6

When using the displays the LED back lighting can be switched off by use of JP6.

JP7

If the SRAM on the application board is not needed it can be de-activated by use of JP7. These ports
will then be available to the user.

=» To deactivate the SRAM the jumper has to be mowed to the left side (orientation: serial interface
shows to the left), such that the left pins of JP7 are connected.

J4

To jumper J4 the second serial interface of the Megal28 is connected through a level converter.

Pin 1 (left, gray) TxD
Pin 2 (center) RxD
Pin 3 (right) GND
PAD3

PAD3 (to the right of the module) is required as ADC_VREF_EXT for functions ADC_Set and
ADC_Setint.

© 2013 Conrad Electronic

Hardware 56

21.7.3 Connection Diagram

MOD1 MOD3
il) EXT- SCL
T N vee EXT- SDA
= s EXT- RXDL
T
= : 3 o> EXT- TXDL
12 4 LCD-E
oy = a\D >
™ L KEY- E
s
g
9 X3 - X3B =
i " ; fm2 SK
" : fmia MOS|
° 12 s 3 =]
° 13 N o - M SO
5
1 s s i1 RX- BUSY
: 15 A a 2 EXT- AL
z 16 s L lmi2 EXT- A2
T - 8 [EXT- SCK
™ X3A
MOD2 MoD4 PAD_GND Oi X5 XA
= ol a\D
v TP La it EXT- RXDO
PEO '
- i RESET PAD1 O———¢ s 2 il o TX00
T 3 il
PE2 (s
T : VYo e uam— PE3 il s
= s PE4 5t S EXT-T1
” 1 =] PE5 & fmrt TX- REQ
- = 3 = PE6 z L EXT-T2
* vee PE7 |2 tm! {mi® EXT- DATA
. =i
T a\D w w 4 X2
: 8 T8 T = e
: RO TE o 2o}
g [s I
3 [4 iad 4l
= g Jp "0 —— —
i = e =D S il o
2 Tl 7l
a0 3 8 s i
VIN s
Pl name e VREG schaffel electronic gnbh
: ;géé o——o Project: MEGA128app_V2
s oLy
P OTs
PCB- Desi gn: MEGA Appl . - Board
-
;m—"m¢ Sheet 1 of 4
vee 1C7 LoD D7 vee vee vee f;[l o
L g T g o v
(=2} o
LCD-RS Vee . ~
EXT-SCK : al =~ gl gls 1 514. 2
. < 3 4 LCD- RS
EXT- DATA &H%L@ j : gLCDE
9 10
- LS5 TA u 12 Lo D5
U FS Led D6 13 14 LCD- D7
g 7] 16
g 7
&)
GL[SHI FT]
C2[LOAD)
e 1<t
a
3D
2D X15
2D -
= -
7 _
74HCLE5 .
109 =
SRG8 =
GL[SHI FT] =
C2[LOAD) =
w3 1<t
a
3D
%B schaffel electronic gnbh
Project: MEGA128app_V2
PCB- Desi gn: MEGA Appl . - Board
s
74
74HC165 }m_nm‘ Sheet 2 of 4

© 2013 Conrad Electronic

C-Control Pro IDE

24 1 e C19
E jr e i b08OS] 0
i = s G\D
s 428] 1G5
T XTALL § 8
8 fxtaL2 > Vel
29| reer avoo |18
RESET-
12 | pgy (&) AREF |—20
13 | pgy 0
S 4 aops
i il j
SO 1| g G\ND
RES_FT R S I 2
>3] = o
DL 2 b poo |23
02 e oo |26 DL
w22 3 P [e D2
o = —— I
20 D5 — Pos o
OR Res r = o 06 D6 10 by pos |28 DB
. 2 @] Eve——— D7 uln
26 v @ &) R) P
£ ’ e
L o |10
w15
w00 | G\D
w12
e > sw
o > puwren
schaffel electronic gnbh
Proj ect: megal28app_v2
PCB- Desi gn: MEGA Appl . - Boar d
}_‘IOnm Sheet 3 of 4
1c11

EEE
il
Lﬁ’

LT
Il

: D 5 vl 12 ol
3 1 u 1
4 1 10 15
s i
. 18
: 10
8 20
9 e L2
2HCS73
VoS SRAM CANH]—e
ne 128kx8 I1
.91
K6X1008C2D o= ais
CANL 7
3
8
4
9
5
2% E
glst 23t
w
ig g 14 oD |G\D
2| XDL 1l
IClL T
MAX202 RXDL | 2t
3
V4 2z)
V- S\D schaffel electronic gnbh
Proj ect: negal28app_v2
Tiaur
T2aur
RUN
RIN PCB- Design: MEGA Appl . - Board
=
D L0mm | sheet 4 of 4

© 2013 Conrad Electronic

Hardware

2174

Component Parts Plan

megall28app_ve bb
o

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
) [O)—

o0o00oooooodnoooogon
tbooooooobooooooog
Oooooooooboooooonoog
O gooogo

oooog

ooooooooooo O

ooboooooooooo oobooooooooog O
Oobooooooooboooooooboooooooooooooooong
000000000o0oooocoo0boooooooonoooooooong
000000000o0oooocoo0boooooooonoooooooong
oobooooooooboooooooboooooooooooooooono
oobooooooooboooooooboooooooooooooooono
oooooooogooo goboooooobbooooobooooonoono
oooooooooooo goboooooooooo oooooo
ogoo O O og

O

oooo

g
og oooooo ooboooooooboooooooo
oooooooooooo goboooooboooooooooooo
Oobooooooooboooooooboooooooooooooooong
00000o0000oooooooo0boooooooooooooooonoo
ooboobooooboooooooobooooooboooooooogogao

oo
oo
oo
oo

Ooooooogooogo
LOf000O00ooooogoo

DX

T

<O IS0
o 0
X 6EX UEX

O

‘XE
X5

©
o
v

o
5]
o

J1

]
<
o

~
™
v

=
<
o

(@)
[}
.

D
I}
o

]
5]
o

=
0
v

)
o
v

o
1]
o

090
w
0 0

=
@
o

]
m
v

N
—
X

X14

IRERE
D[k

(1]
IEERN

QU]

%D
.|
FlE

Hel
O
LD3 (%)E

58

© 2013 Conrad Electronic

59 C-Control Pro IDE

2.1.8 Mega32 Projectboard

The C-Control Projectboard PRO32 (Conrad Item no. 197287) provides a economic alternative to the
application board MEGA32 (Conrad-Order no. 198 245). Compared to the C-Control Pro application
board, it's range of functions is significantly limited, and is used mainly for own hardware develop-
ments related to the MEGA32 UNIT. The Projectboard includes the most important components
needed to operate the MEGA32 UNIT. Furthermore, the Projectboard features a power supply (USB /
AC adapter), a interface converter (RS232) and a large prototype area available for own development.
By default, the Projectboard is designed for programming via RS232. Optionally, the RS232-USB
conwerter (Conrad-Order no. 197 257) can be used for programming the MEGA32 UNIT via USB. In
this case the programming is done \ia the serial connection of the MEGA32 UNIT (UART), so the
program transfer is not as fast as the USB transfer on the application board MEGA32.

22_743_5
S0 0000000000000000000000000
L L]

SA-TLIEADDIIDG HOU_S5v_SW3.5

:

[ZIITIIX Y]
es000NOO
0000080

[T XTITTIYY]
[XXX TIXY]
[TIXTIXY]

e The MEGA32 UNIT is so plugged that the signature of the UNIT is readable, if the programming
and power connectors show out to you.

¢ In the baseline condition with no-USB-RS232 conwerters the jumpers J4/J3 are put like shown in
the figure.

= When using the RS232-USB converter (not included), the jumper must be reconnected to USB.

e The jumper J2 is used to select the supply wltage. With the jumper set to "network”, the clamps
J11 are used for the power supply (stabilized DC power supply or power adapter min. 100mA, de-
pending on application). If the jumper J2 is replugged to USB, the board can be operated via the
USB power supply of the computer.

= Attention! A maximum current of 100mA through USB should not be exceeded!

¢ The switch S3 and the power supply pin headers JP7/JP5 and the pins for Vcc / GND on the pro-

© 2013 Conrad Electronic

Hardware 60

totype area are no longer energized when using USB operation. This supply is used only for test
applications, when there is no external power supply available.

e The appropriate COM port (serial port) must be selected in the C-Control Pro IDE software. Also
the programming via USB is made through the serial interface of the C-Control PRO32 UNIT. Prior
to that check, when necessary, the Windows device manager, which COM ports are available, or
which was installed by the RS232-USB conwerter.

e [fthe I12C bus is used, the jumper JP2 and JP1 hawe to be inserted, if you provide no external pull-
up resistors by your own.

UNIT-BUS

SCL @ @ |SDA

RXDO| @ @ TXDO

+5V @ @ |GND

¢ The bus unit is used to connect 12C-bus expansion modules of the CC1-family and can be used for
custom applications. The interface layout can be found in the figure.

¢ The ports of the MEGA32 UNIT are passed out on headers J1, J5, J6 and J7.

¢ Before you can transfer a program in the unit, the key (BOOT / STOP) must be pressed, to switch
the C-Control PRO32 into programming mode.

¢ When the wiltage is supplied, the user program stored in the memory of the C-Control MEGA32 is
started automatically. This program can be stopped with the (BOOT/STOP) button. Then the C-
Control PRO32 is in BOOT mode, which is required for program transmission.

¢ The program start can be triggered via the IDE or on the button (RESET / START).
¢ When using Msg_Write... to output variables, it is advisable to use the software start from the IDE.

Technical data

Operating wiltage: 8 - 16V DC

Current consumption without load and without external USB-RS232 Converter: about 40mA
Max continuous current from the stabilized 5V wltage: 100mA (without cooling)

Prototype area: 2.54 mm

Range of the permissible ambient temperature: 0° Cto 70 ° C

Admissible relative humidity environment .. 20-60% non-condensing

Dimensions: 60 * 100 * 21mm (including MEGA32 UNIT)

© 2013 Conrad Electronic

61

C-Control Pro IDE

2.1.9

Megal28 Projectboard

The "C-Control PRO 128 Projectboard" (Conrad Item no. 197313) provides a economic alternative to
the "Application-Board MEGA128" (Conrad-Order no. 198258). Compared to the C-Control Pro ap-
plication board, it's range of functions is significantly limited, and is used mainly for own hardware
developments related to the "MEGA128 UNIT" and the "MEGA128CAN UNIT". The Projectboard also
offers a connector "J3", which provides the CAN bus interface of the "MEGA128CAN". On the Pro-
jectboard the "MEGA128" or the "MEGA128CAN" can optionally be used. The Projectboard PRO
128 includes the most important components needed to operate the "MEGA128 UNIT". Furthermore,
the Projectboard features a power supply (USB/AC adapter), a interface conwerter (RS232) and a
large prototype area available for your own dewvelopment. By default, the Project Board is designed
for programming via RS232. Optionally, the RS232-USB conwerter (Conrad-Order no. 197257) can be
used for programming the "MEGA128 UNIT" via USB. In this case the programming is done via the
serial connection of the "MEGA128 UNIT" (UART), so the program transfer is not as fast as the USB
transfer on the "Application-Board MEGA128".

°
200000000 OOS
0000 OOOOOOOROBDOORS
o000 OOOOOOOORORES
00000000000 OROOOROS
o000 OROOOROS
o000 00GS
oso00Ree
Ll

e The "MEGA128 UNIT" is so plugged that the signature of the UNIT is readable, if the (RESET/RUN
& BOOT/STOP) button shows to you.

¢ In the baseline condition with no-USB-RS232 converters the jumpers JP4/JP5 are put like shown
in the figure.

=% When using the RS232-USB converter (not included), the jumper must be reconnected to USB.

e The jumper J2 is used to select the supply wltage. With the jumper set to "network", the clamps
J11 are used for the power supply (stabilized DC power supply or power adapter min. 100mA, de-
pending on application). If the jumper J2 is replugged to USB, the board can be operated via the
USB power supply of the computer.

© 2013 Conrad Electronic

Hardware 62

= Attention! A maximum current of 100mA through USB should not be exceeded!

e The switch S3 and the power supply pin headers J17/J18 and the pins for Vcc / GND on the proto-
type area are no longer energized when using USB operation. This supply is used only for test ap-
plications, when there is no external power supply available.

e The appropriate COM port (serial port) must be selected in the C-Control Pro IDE software. Also
the programming via USB is made through the serial interface of the C-Control "MEGA128 UNIT".
Prior to that check, when necessary, the Windows device manager, which COM ports are avail-
able, or which was installed by the RS232-USB converter.

e [fthe I12C bus is used, the jumper JP2 and JP1 hawe to be inserted, if you provide no external pull-
up resistors by your own.

UNIT-BUS

SCL @ @ |SDA

RXDO| @ @ TXDO

+5V @ @ |GND

¢ The bus unit is used to connect 12C-bus expansion modules of the CC1-family and can be used for
custom applications. The interface layout can be found in the figure.

¢ The ports of the "MEGA128 UNIT" are passed out on headers J1, J2, J5, J6, J7, J14 and J15.

= For more information on the exact characteristics of the ports, see the documentation/help file
in the C-Control Pro software.

¢ Before you can transfer a program in the unit, the button (BOOT/STOP) must be pressed, to
switch the "MEGA128 UNIT" into programming mode.

¢ When the wiltage is supplied, the user program stored in the memory of the "MEGA128 UNIT" is
started automatically. This program can be stopped with the (BOOT/STOP) button. Then the
"MEGA128 UNIT" is in BOOT mode, which is required for program transmission.

¢ The program start can be triggered via the IDE or on the button (RESET/START).

¢ When using Msg_Write... to output variables, it is advisable to use the software start from the IDE.

Technical data

Operating wiltage: 8 - 16V DC
Current consumption without load and without external RS232-USB conwerter: 50 mA

© 2013 Conrad Electronic

63

C-Control Pro IDE

2.2

221

2211

Max continuous current from the stabilized 5V wltage: 100 mA (without cooling)
Prototype area: 2.54 mm

Range of the permissible ambient temperature: 0° Cto +70° C

Admissible relative humidity environment .. 20 - 60% non-condensing

Dimensions: 160 x 100 x 23 mm (including "MEGA128 UNIT" or "MEGA128CAN UNIT)

AVR32Bit

Installation

In this chapter the installation of hardware and software of the C-Control Pro AVR32Bit is described.

=% On delivery, the Autostart jumper is set. Please remove, otherwise no program transfer is pos-
sible.

Software

To get the current development software, sample programs, the manual and useful information,
please visit: www.c-control.de The manual is also available as a help file in the dewvelopment environ-
ment of the C-Control PRO IDE and the PDF file is in the installation folder of the C-Control Pro in
the "Manual" directory.

Direct IDE Download Link: http://www.c-control-pro.de/updates/C-ControlSetup.exe

=¥ For the time of software and USB driver installations the user must be registered as adminis-
trator. During normal operation of the C-Control Pro this is not necessary.

At the beginning of the installation first select the language in which the installation should take
place. After that you can choose whether you want to install C-Control Pro into the standard path or
whether you want to specify your own target directory. At the end of the installation process you will
be asked if an icon should be created on your desktop.

When the installation process is completed you can choose whether you want to see the "ReadMe"
file, have the shortform introduction displayed or directly start the C-Control Pro design platform.
MAC Address

To awid connection problems, the MAC address should be set to a new value in the C-Control Con-
figuration before switching on the Ethernet support. To this end, its own MAC address is generated
and supplied on a label for each C-Control Pro AVR32Bit. This label is located on the bottom of the

UNIT.

See figure:

© 2013 Conrad Electronic

http://www.c-control.de
http://www.c-control-pro.de/updates/C-ControlSetup.exe

Hardware 64

2212 USB

Driver Installation

e Now connect the Unit with the supplied mini-USB cable to the PC (the cable is enclosed the Ap-
plicationboard or Mainboard). The PC is trying to install a driver for a "C-Control Pro AVR32"
device. You can find the appropriate driver in the directory USB Driver\ AVR32 USB Driver in the in-
stallation directory of the C-Control Pro IDE.

e [f all the connections are made, start the IDE.

¢ In the IDE the corresponding COM port (virtual serial port) must be selected. Check first in the win-
dows device manager, which was the assigned COM port nhumber (see illustration).

4 7% Ports (COM & LPT)
-.J5' C-Control Pro AVR32Bit (COM15)
Picture device manager Comport

=» Drivers and software for the C-Control Pro do not support Windows operating system before

Windows 2000.

Press the reset button on the C-Control PRO AVR32Bit UNIT. In the output of the IDE should now
appear the following message:

T | E——|
| Messages | Output | Search |
I 2 | L zril

Conrad C-Control Pro 2013

C-Control PRO IDE output after successful
installation of the UNIT

© 2013 Conrad Electronic

65

C-Control Pro IDE

222

2221

Now you can already transfer a program to the Unit. The demo programs can be found if you click in
the IDE under "Help" on "Demo Programs".

Firmware

The operating system of the C-Control Pro consists of the following components:

e Bootloader
* |nterpreter

Bootloader

The boot loader is always available. It starts the interpreter or performs an upload when a new ver-
sion of the interpreter is available.

e A power-on reset (turn power switch off and on) module brings the AVR32Bit always first in the
boot loader (if the Autostart-Jumper is not set). This is a safety feature to always allow access,
even if the interpreter should work incorrectly. In this state the UNIT can always be brought to its
original condition with a "Reset Module".

¢ Pressing the reset button brings the module directly from the bootloader in the firmware when a
valid interpreter is loaded. As a result, the number of USB driver interruptions are minimized during
normal development.

Interpreter
The interpreter consists of several components:

Bytecode Interpreter
Multithreading support
Interrupt processing

User functions

RAM and EEPROM interface

In the main, the interpreter executes the byte code that was generated by the compiler. Further,
most library functions are integrated in interpreter so that the byte code program can e.g. access
hardware ports. The RAM and EEPROM interface is used by the IDE debugger to get access to vari-
ables when the debugger has stopped at a breakpoint.

Autostart

Autostart

If the Autostart Jumper is set (J1 on AVR32Bit UNIT), the user program is started directly after a re-
set or a power on. Since the Autostart-Jumper bridges the connection to the Start/Stop button per-
manently, the Start/Stop button has no effect if the jumper is set.

© 2013 Conrad Electronic

Hardware 66

=» The library function ForceBootloader(), as well as a change in the "C-Control Configuration"
AVR32Bit Unit options lead to an internal reset, where the Autostart behavior is ignored. This is done
on purpose in order to make remote maintenance possible. In this case the user program can also
be launched from the IDE, or a pressure on the reset button triggers Autostart again.

= On delivery, the Autostart jumper is set. Please remove, otherwise no program transfer is pos-
sible.

Remote Maintenance

To senice an application with the AVR32Bit from afar, the application can use EorceBootloader() to
jump into the bootloader. If the Autostart-Jumper is set, an update of the application would again
start the program. You can prevent this, if you activate the Disable Autostart option in the C-Control
configuration after a ForceBootloader. When the application update and the desired option changes
are done, set Disable Autostart to off and restart the application from the IDE.

2222 USB Troubleshooting

The USB Support C-Pro AVR32Bit Control is executed by the microcontroller itself, and not by an
external chip, like e.g. on the C-Control Pro Mega Applicationboard. This is problematic as far as the
Windows operating system does not always process interruptions of the USB system correctly. You
will notice this in ewveryday life, when sometimes a USB device (stick, hard disk or USB-to-serial
converter) only works when you plug it in a second time. To counteract this, several measures have
been taken to minimize the number of USB restarts:

e The C-Control Pro AVR32Bit unit stays as long as possible in the firmware and seldom jumps to
the bootloader like the C-Control Pro Mega Units.

e You can use the Start/Stop button to stop the Unit without having to perform a reset.

¢ Pressing the reset button skips the USB initialization in the boot loader, and starts the firmware
directly. Only a power-on reset leaves the AVR32Bit module in the bootloader (if the Autostart-
Jumper is not set).

= In rare cases, it may happen that the unit is not detected at power-on. This can be seen in the
Windows device manager, if there C-Control AVR32Bit COM port does not appear when you turn on
the unit. Please detach from the USB Hub (if any) and replug in, or if that does not help, perform a
restart of Windows. Then the C-Control Pro Unit is recognized again.

=% If the user program is started directly by a Autostart, no message "Interpreter started" is issued.
The reason is that the USB subsystem needs up to 2 seconds to activate the virtual COM port.
Since the user program starts running immediately, all the outputs of the first 2 seconds are lost.
Also debug messages are not visible in this time with an active Autostart. A start of the program
through the start button when the unit is in bootloader (e.g. after a power-on reset), behawves like a
Autostart. Therefore, there are also no outputs in the first 2 seconds.

IDE does not respond

During the execution of programs on the AVR32Bit, overwriting foreign memory can have an impact
to the IDE. In this case, the USB CDC protocol is no longer performed error-free by the AVR32, and
the virtual COM port on the PC can get into a blocking state, that will the IDE only allow to accept
data with delays (timeouts) . The IDE then no longer works properly. In normal case the IDE can be
get out of this situation by pressing the reset button on the AVR32Bit module, but sometimes it just
helps to quit the IDE with the Windows Task Manager.

© 2013 Conrad Electronic

67

C-Control Pro IDE

2.2.3

Module

The C-Control Pro AVR32Bit UNIT (Conrad Order No.: 192573) is currently the fastest microcontrol-
ler unit of the C-Control Pro family (Atmel AT32UC3C1512C). The unit is equipped with a powerful
AVR32 32-bit DSP microcontroller with FPU (Floating Point Unit) for the calculation of floating point
numbers. This microcontroller has been specially designed for industrial and automotive applica-
tions, thus meeting a high standard of performance and reliability. The C-Control Pro AVR32Bit UNIT
has already a wealth of facilities to peripheral, a web serer, CAN-, | SD-, USB interface and much
more is included for programming and debugging on this small unit.

To operate the UNIT you only need a stabilized 3.3V / 200mA power supply and a mini-USB cable to
the Unit to connect to your PC. The easiest way to do this for development purposes is with the op-
tional application board (Conrad Order No.: 192587). This board is specifically designed for the devel-
opment of hardware and software and provides already a variety of additional peripherals.

For rapid prototyping and small series also the AVR32Bit Mainboard (Conrad Order No.: 192702)
can be used. This board can be expanded with additional boards depending on the application.

The programming of the AVR32Bit UNIT is made in the for several years proven and constantly im-
proved C-Control Pro development environment in Basic, CompactC and graphically.

The Unit provides the following features:

Powerful 32-bit microcontroller (91MIPS internal) 66 MHz clock
512 KB high-speed FLASH (160 KB reserved for interpreter)
64 KB high-speed SRAM (14 KB reserved for interpreter)

1x CAN bus (2.0A & 2.0B) with CAN driver + jumper enabled terminator
2x SPI interfaces

1x 12C (TWI)

2x wltage reference input for ADC

1x 16-channel 12-bit ADC

1x USB interface (Mini USB) for programming and debugging
3x USART interface (serial interface)

1x External I2C EEPROM 512 Kbit

1x Real Time Clock (RTC) with 32.768 kHz clock crystal

1x LAN interface (external LAN port)

1x y SD card holder (supports SDHC)

1x reference woltage input for DAC

2x Analog comparator

1x 4-channel 20-bit PWM Controller

2x 16-bit timer with 3 channels

7x interrupt inputs

57x digital inputs outputs (depending on the use of the other functions)
Jumper selectable Autostart option

Start-stop button

Reset button

2 pin connectors, each with 2x23 pins in pitch 2.54mm

Pinout in pitch 2.54mm, also ideal for breadboards

© 2013 Conrad Electronic

Hardware 68

Scheme of the AVR32Bit Unit

Q0000000000000 O0O0O0O0O0OOO0
OC000O00O0O0O0O0O0O0OO0OOOOOOOO0OO0

RESET START/STOP
S1 S2

PHY
CON1 U1

usSB AT32UC3C1512C
EE

TOP

o)

Iﬁ%j C-CONTROL PRO

J
POWER AVR32BIT ® o |o o
O0000000O0O000O0OO0O0O00O0O0OO0
O000000O0O00O0O0O0O0OOOOOO0OO0

1 J2

OO
OO

Picture UNIT (view from abowe)

45 46

45 46

mircoSD-Card

:| I BOTTOM

Cc

Picture UNIT (view from below)

© 2013 Conrad Electronic

69

C-Control Pro IDE

Jumper:

J1: enables Autostart of user application
J2: enables CAN 1200hm terminator

Pin layout of the Module

+UB
GND
+3.3V
GND
P1
P3
P5
P7
P9
P11
P13
P15
P17
P19
P21
P23
P25
P27
P29
P31
SCK
CS
CANL

TOP

Picture UNIT Pinout

=» [or a port list, see the chapter Pin Assignment.

Power Supply

The CON X1 Unit pins 3.3V and GND must be connected to a stabilized supply woltage. The four

© 2013 Conrad Electronic

Hardware 70

3.3V and the GND pins are connected to each other! The "POWER" LED indicates that the Unit is
receiving power.

= The C-Control PRO UNIT has no inverse polarity protection, so the UNIT is destroyed by
reversed polarity of the power supply!

CON X1
+3.3V |O Of+3.3V
GND |OO|GND

+3.3V [O OJ]+3.3vV
GND |[O O|GND
—d
Picture UNIT Power
Supply

uSB

Through the mini-USB connector, the C-Control Pro AVR32Bit module is connected to the PC. The
USB port is used for programming and debugging of user software. All C-Control Pro UNIT's have a
debugger. The debugger can set breakpoints and variables can be monitored and analyzed at
runtime.

=% The module is not supplied with power via USB!

Reset

A reset causes the return of the micro-controller system in an initial state. The C-Control Pro Module
AVR32Bit knows basically three sources of reset:

¢ Power-on reset: Executed automatically after switching on the operating wltage. The UNIT is then
again in bootloader mode. It can be reset or a new module is transferred to the interpreter unit.

¢ Brown-out Reset: Automatically runs when the core wltage is less than 1.65V. This prevents the
controller unit to get in undefined states at a drop of the supply wltage. If the wltage is signific-
antly higher again, then the module starts anew.

¢ Hardware reset: Executed when the RESET button of the module is pressed.

Start/Stop Button

With the start/stop button, the program will start. In a renewed pressure, the program is stopped. A
stop with this is preferable to the reset button, as with a reset, the USB subsystem is started again
from scratch and the connection is renegotiated. Is the Autostart Jumper (J1) is inserted, the applic-
ation is started directly after a reset and the start/stop button remains without effect.

Autostart

© 2013 Conrad Electronic

71

C-Control Pro IDE

If the Autostart Jumper (J1) is inserted, the user program immediately restarts after a reset.

= On delivery, the Autostart jumper is set. Please remove, otherwise no program transfer is pos-
sible.

Clock Generation

The clock generation of the microcontroller is performed by a 12 MHz quartz crystal. In the controller
the 12 MHz are clocked up to 66Mhz with a PLL-oscillator. All timings of the controller, as well as
the 48Mhz of the USB subsystem are derived from this clock.

Real-Time Clock

The C-Control Pro AVR32Bit Unit has a separate oscillator with a 32.768 kHz clock crystal. This
precise quartz watch can be set and read by software. This clock is ideal for applications such as
time-accurate timers, etc.

Digital Ports

The C-Control Pro AVR32Bit module has 57 digital inputs and outputs that can be used with special
functions such as PWM, ADC, etc. depending on the configuration. You can connect the digital in-
puts/outputs to for e.g. buttons with pull-up/pull-down resistors, digital ICs, optocouplers or driver cir-
cuits that are connected to relays. The pins are addressed individually, bitwise in each port. Each
pin can be either input or output.

=» Never connect two pins that are configured as outputs at the same time. This can des-
troy the C-Control Pro AVR32Bit UNIT!

Digital input pins are high impedance or connected with an internal pull-up/pull-down resistors and
lead an applied wiltage signal to a logical value. The prerequisite is that the signal wltage is within
the specified range for low or high level. In the further processing of the program, the logical values of
individual input pins are represented as 0 ("low"), or 1 ("high"). Output ports can output digital wltage
signals via an internal driver circuit. Connected circuits can draw a certain current of the ports (at
high level) or supply in these (at low lewvel).

=» Never connect a voltage greater than 3.6V to one of the pins of the C-Control Pro
AVR32Bit UNIT!

Note the maximum load current for a single port and for all ports in total. Exceeding the maximum
values can lead to the destruction of the C-Control Pro AVR32Bit module. After a reset each pin is
initially configured as input. Use certain functions to change the data direction.

© 2013 Conrad Electronic

Hardware 72

+5V I:

220R

AVR32Bit
Qutput

LED
=

10K

BSS138

100K

GND GND

Since the outputs of the AVR32Bit Unit can not be owverly stressed, a small driver stage should al-
ways (see picture) be used downstream. In the example an LED is driven, according to consumer a
corresponding FET or transistor must be used. This circuit is used for loads up to 100mA. For in-
ductive loads a freewheeling diode must be connected in parallel to the load.

=» With the C-Control Pro AVR32Bit UNIT pins are no longer configured with
"Port_DataDir" or "Port_DataDirBit"! Since the AVR32Bit UNIT offers more options to config-
ure the pins, here the function "Port_Attribute"” is introduced.

= |tis important to study the pin_assignment of the AVR32Bit before programming, since
important functions of the program development (eg, LAN, USB) are on certain pins.

ADC Reference Voltage

The microcontroller has an Analog-to-Digital conwverter with a selectable resolution of 8/10/12 bits.
This means that measured woltages can be represented as whole numbers from -2048 to 2048, since
the AD-conwerter always works differential. In addition, an ADC preamplifier gain of 1, 2, 4, 8, 16, 32,
64 can be set by software.

© 2013 Conrad Electronic

73

C-Control Pro IDE

The following reference voltage sources are available:

¢ 0,6 * VDDANA internal (0,6 * 3.3V = 1,98V)

e internal reference wltage of 1V
¢ two external reference woltage inputs, e.g. 2.048V generated by reference-voltage-IC

If "x" is a digital measurement value, calculate the corresponding wltage value "u" as follows:

The resolution depends on the configuration of the ADC.

Resolution Maximal Value
8 Bit -128 to +127
10 Bit -512 to +511
12 Bit -2048 to +2047

Formula for calculating the present ADC voltage:

u = X * reference woltage / resolution

CAN Terminating Resistor

Jumper (J2) enables the CAN bus 120 ohm termination resistorus. For more information on CAN-

BUS and its properties, see the chapter CAN bus!

LAN

On pins VCC2 (+3.3 V), GND, RD, RD +, RD, TD +, LED_L and LEDA the connections for the LAN
port are lead through. On the Applicationboard or Mainboard a LAN socket is already present, which
is hardwired to the connectors of the UNIT. In their own applications, where the UNIT is used "stand
alone", the user can retrofit an Ethernet jack himself like shown in the below diagram.

© 2013 Conrad Electronic

Hardware 74

I
veez [
c23 ||
1U_10V_0603
| |
LAN c22 || o
W_10V_0603 R
R E— (&)
GND >
J4 D
RJ45LAN_WE7499011121A
LAN_TD+ [> 2| TD+
CT1
LAN_TD— [311D- YE_LED_A ‘130 R15
g YE_LED_K 1 <] LAN_LED_LINK
LAN_RD+ [> % E?Z 100R_5%_0603
LAN_RD— [——+—8{RD- GN_LED_A 11 R16
. GN_LED_K 2 1] LAN_LED_ACT
e 100R_5%_0603

GND.

Technical Data

GND
SHIELD SHIELD
G

power supply VCC

3 to 3.6V Nominal 3.3V / >200mA (stabilized)

maximum woltage at the pins

-0.3V to 3.6V

maximum woltage at all pins (sum) 120mA
ReuLue VO 5to 26 kKOhm
ReuLoown VO 2 to 16 kOhm
input Low-level wltage I/O 0.3*VCC
input high-level voltage I/1O 0.7 *VCC

output low-level wltage /O

-3.5 to -14mA dependent on configuration®

output high-lewvel voltage 1/1O

3.5 to 14mA dependent on configuration®

deviation RTC

+/- 20ppm

environmental temperature (Ta)

0to 70°C

dimensions

60x40x8mm (without pin connectors)

weight

approx. 189

@

-3.5/ 3.5mA and Pins are: PB02 (P57), PC04 (P34), PCO5 (P35), PC06 (P33).

-7/ 7mA and -14/ 14mA able Pins are: PB06 (P7), PB21 (P29), PD02 (SPI0-SCK).
The remaining pins PAxx, PBxx, PCxx, PDxx work with -3.5/3.5 mA resp. -7/ 7TmA. The

pin

© 2013 Conrad Electronic

75

C-Control Pro IDE

2231

output driver strength is programmable with the Port_Attribute() function.

Pin Assignment

Port A through Port D are for direct pin functions (e. g. Port_WriteBit) counted from 0 through 127,

see "PortBit".

Pin Assignment for C-Control Pro AVR32Bit Unit and Application Board

1 0
X1.10 PAO1 2 1 CAN1-RX
X1.11 PAO2 3 2
X1.12 PAO3 4 3 Ext Intl
X1.13 PB04 7 36 SPI1-MOSI
X1.14 PB05 8 37 SPI1-MISO
X1.15 PB06 9 38 SPI1-SCK
X1.16 PA16 22 16 ADCREFO
X1.17 PA04 10 4 ADCO
X1.18 PA05 11 5 ADC1
X1.19 PA06 12 6 ADC2 AC1AP1
X1.20 PAQO7 13 7 ADC3 AC1AN1

Ext Int2

X1.21 PAO8 14 ADC4 AC1BP1
X1.22 PA09 15 ADC5
X1.23 PA10 16 10 ADC6 Ext Int4
X1.24 PA11 17 11 ADC7 ADCREF1
X1.25 PA19 25 19 ADC8
X1.26 PA20 28 20 ADC9 ACOAPO
X1.27 PA21 29 21 ADC10
X1.28 PA22 30 22 ADC11 ACOANO
X1.29 PA23 31 23 ADC12 ACOBPO
X1.30 PA24 32 24 ADC13
X1.31 PA25 33 25 ADC14
X1.32 PA13 19 13 ADC15 AC1ANO
X1.33 PA12 18 12 AC1APO
X1.34 PA14 20 14 AC1BPO
X1.35 PA15 21 15

© 2013 Conrad Electronic

Hardware 76

X1.36 PB20 43 52 | TIMER0-B

X1.37 PB21 44 53 | COUNTA-1

X1.38 PB22 45 54 | TIMER2-A

X1.39 PB23 46 55 | TIMER2-B

X2.42 PCO1 50 65 | TIMERS-A

X2.41 PCO06 57 70 | COUNTA-2

X2.18 PCO04 55 68 SDA (2C) | ExtInt3

X2.17 PCO5 56 69 SCL (12C)

X2.40 PC17 65 81 | USART3-TX| PWMH_O

X2.39 PC18 66 82 | USART3-RX| PWML 0

X2.38 PC15 63 79 | USARTO-RX| PWMH_1

X2.37 PC16 64 80 | USARTO-TX| PWML 1

X2.36 PC19 67 83 PWML_2

X2.35 PC20 68 84 PWMH 2 | PORT T1

X2.34 PC12 60 76 PWML 3 | PORT T2

X2.33 PC11 59 75 | COUNTA-0 | PWMH 3 | PORT T3

X2.32 PC13 61 77 Ext Int7 PORT T4

X2.31 PC14 62 78 PORT T5

X2.30 PC21 69 85

X2.29 PC22 70 86

X2.28 PC23 71 87 PORT_LED1

X2.27 PC24 72 88 PORT LED2

X2.26 PC31 73 95 | TIMER1-B

X2.25 PDO7 78 103 | USART4-TX| ExtInt5
USART4-RX

X2.24 PDO8 79 104 | COUNTB-2 | Ext Int6

X2.23 PD21 88 117

X2.22 PD22 89 118 | TIMER4-A

X2.21 PD23 90 119

X2.20 PB19 42 51 | TIMERO-A

X2.19 PBO2 99 34 | TIMER3-A

X1.43 PDO3 77 99

© 2013 Conrad Electronic

77

C-Control Pro IDE

+UB
GND
+3.3V
GND
P1
P3
P5
Pl
P9
P11
P13
P15
P17
P19
P21
P23
P25
P27
P29
P31
SCK
CS
CANL

TOP

UNIT Pinout

GND
RD+
D*
LED A
CT2
GND
SDA
P56
P54
P52
P50
P48
P46
P44
P42
P40
P38
P36
P32
RES_M
GND

© 2013 Conrad Electronic

Hardware

78

96 PB00 32 RTC Xin32

97 PB01 33 RTC Xout32

a7 PB30 62 System Clock Xin0

48 PB31 63 System Clock XoutO
X2.03 34 VBUS USB-Debug
X2.02 35 DM USB-Debug
X2.01 36 DP USB-Debug

X1.42 74 PDO0 96 SPI SPI0-MOSI

X1.40 75 PDO1 97 SPI SPI0-MISO

X1.41 76 PD02 98 SPI SPI0-SCK
49 PCO0 64 SD-Card SPI0-NPCS[1]
93 PD28 124 MAC MACB_CRS
95 PD30 126 MAC MACB_TX EN
51 PCO2 66 MAC MACB_MDC
52 PCO03 67 MAC MACB_MDIO
84 PD11 107 MAC MACB_TXD[0]
86 PD13 109 MAC MACB_RXD[0]
85 PD12 108 MAC MACB_TXD[1]
87 PD14 110 MAC MACB_RXD[1]
091 PD24 120 MAC POWER_DOWN
92 PD27 123 MAC MACB_RX ER
94 PD29 125 MAC MACB_TX CLK

© 2013 Conrad Electronic

79

C-Control Pro IDE

© 2013 Conrad Electronic

80

Hardware

Zio1 jeeys 7 Sl A8y | SO 210Z°€0°¥1 :pebuoyd
S9 oLz’ vo'ce umoJsp
JUN ZSYAY — L098¥Z-9¥3BNNT-ESN—ININ ane
HOS'SLATHUNT ZEUAY Iy ano]
3
WNALNID 00 00 00| N 40pi0 .] 1363y
3190T0NHO3L g z
avaNod 5061 /G) [N y9foug 7 2 2\
ano ° 2
2
HUN ZEIAVY Od¥d 1043u0d—-0 GOGI 5 - S
p———_Jaesn
wwwwwwwwwwwwwwwwwwwwww , _ N
T NTL3S34 =3
ang | 2
et X : g % G g
N—L3S3d | F E ®
Lav1is NOJ | s [N |
zed MEFMEE] g
£5d | | | <]
9cd | 3 2
e 1 da~BSNTNOD 3 3
8cd Wa~BSN”NOD
65d | SNBATBSNTNOD -
ord |
Lvd | 4
Zrd a
Srd | z
e ! anNe ans
! 3 3
9vd | H b4 g @ ano
Lvd 2 Z 2 H
v | [N [N [[N
6vd 2 2z 2 2— 0 22— o @ o N anNo £n
0gd 1 Dy &g 2 N EEN & & o <
1sd | 2 5 2 5 2 2 2 2 2 1£0d vas—ozi"ved
S 5 222 2 2 = — I
25d i I 8 I 5 5] d0 R s g v20d [c- 10500 ggd > 105 ov [k
£5d <c|Na 282 28 £dfy 3 di W
MMM | B SNEA Ed T20d 004 OV [}
| ane ano 120d
95d I 5 " 7| Na3unoay 0cod -
[3 2 ¢ £5{ d438n0av 610d NBZLSOYTLY
l i i 810d 20v0” AGLTNODL
I W, & o 8 o N9 [——57| YNVaNS 115d fog
NNV ! N 8 g 72| YNYaA 212459 rces [
. ol 5 o
“c+ (LOTNYT 3 - - i)
M EEWY ! B 3 H NTL3838 D55 N 1353 703 75 o
NI”X178vesado =5 050d 219d [y
LX~8racada Te(620d Uod fge
aNe ane 5¥078v8£8d0 51 BZad 20d g5
3 w 43~ X4~ 8¥8£8d0 3o L2ad 90d (72
g 4 NMO¥MdT8YEC8da St vzad 53d 52
; | s5d o £20d ¥2d ga
3 0 @ o 754 552204 £0d (75 0ION"848£8d0
2 N 4 o esd Soizad zod (g J0N ™ BY8ERAd
N o 1~ ax¥”8v8¢8da Se| viad 15d |5 zed
4 0”ax¥”areseda £1ad 09d s37as
2 8 1~ a1~ 8+8c8da o8l %iaa &7 ano ano
0 aXL™8¥8E8da Lol Had s2Vd (o £2d 8 8
T8]010d ¥NV-02ISIOEONTELY v2vd [5e zzd 5 5
ane ane o 60d n £zZvd 1zd N - o -
3 u 80d Tzvd 0zd g 2 8 2
8 g 571 L0d L2vd 6id | @ D N
i I 17 €0d 0zvd 8ld ° °
3 3 o) 57120d 6ivd id 3 5
z [® OSINIdS <7]'0¢ aLvd ad N Tall »
Yy s 1SON™IdS 7 004 sivd (24 H[H
s B yivd 924
S 01nox icad v2d = -
N ONIX beny vl oo SP104ELD- ZHMB9L'ZET0
1ed czad Lvd 9id Lo
ans ans o¢d zzad ouva [sld
3 w 6zd 128d 6vd or 7id
g G 8zd 0zad avd cid % x
i | 95d 6lad Lvd [zid 2 H
5 o 8 o 2d 984 9vd (7 iLd a 3
2 3 2 9d sad Svd old S
o ° b N sd 7] v8d v o7 6d
2 S Lavis gor] £8d .5 < £vd [y SNLZovLrTvd
R 5 Iy wejc8d < < _ 598 2vd ¢ 0aL"ovirTed
ey SSs g2 3% W [+ 101-9V1r~2d o aNe
TENIX 551084 222 FL3 ovd (7 MOLTOVLrTLd
ano ano ans g8 2 ad N 8
3 u @ o [0 @ @ = i v
IS S g NI @ @ [o ane ans g g
2 i I A 8 g o
I o @] N v P Py ~
5 2 2 o < 2 ° i) 5
ET b 5 K R 5 3
S 2 5 2 3 ~ ~
N ® S +
2
2 i -
] TN ZANGO0TI~0
z
ane ane ano
- - 5 x
a3i~coe0” 031 = P < 3
XN Yo I o | ° S
e] £ 8 5
200~ %5~ H089 TR AT
- -
< Ase+

Connection Diagram

2232

© 2013 Conrad Electronic

C-Control Pro IDE

ano

ND

[

ZOVOTXSTHOO)

{Jas~as

<] 0SINTIdS

L] MosTIds
s

20¥0” %S X004

e+ [O— 1
3]
20707 %G~

00t

ISON™ |
s97as

z 40z jeeus 7 GL A8y | SO 210Z°€0° ¥l :pabuoyd
$9 0L0Z°70°22 umoap
JUN ZEUAY — .
HOS'SLA™ HUN™ ZEUAY solld
NNYLINIO 00 00 00| N 2P0
3I90TONHOIL vl—l v
avaNoeD $0g! 1/GL|#aN y00foad
HUN ZEUAY O¥d 1043U00-0 SOGI
o o e
I
I
l ano
8515-Y¥300A%-NOO-Q4Y0-USOHIIN —T
I
QT3S |t
I QT3NS [t
l QT3NS ;-1
| oo g < Aeet
I g
I
l L1va g
LnoLva/oLva
I aNo (g—
I 210
I a0A 5
_ NILYQ/and
| $07Q01 s9/€Lva
I TIva =
I g
! ans = s |
l N wl |2
I 20+0” AL TNOOL NEER
v‘ o
1 ¢ 2
3
I 8
I 0o
! 0
+ x
I & &
I o o
< 2
I
l
I
I
I
I
l oTTxTus
I zr
I
I

I 5|oN
VO[> 5] VD
HNYO [7| HNYD

4{2
ano z

20A

0Z£ZAAHSONS [
on

ACE+

A

20¥0TA9LTNOOL

199

voAOTnLY

| —a1mNvY
! H
2
! i
a 1=
! Kb ano
| & zovo~rei"NoaL
I
| ASE+
! a
| ,a 5§50
| SRR
| M
LR
| ol
s
I 8 _
i CJ+auwa
|
| -aw vl
! a
F}
! i
SRE
i REE ano
I bl -
I =T 20r0~A9LTNOOL W
I 8
| ATE+ =
! @
H
; 159 o
I e
! g [z o
| 5 z
! g &
i e o
i =
ans
i o
| Ey
I Acc+ ANOTNYT
I
|
| e
Z0v0” %500
i V@[D> [} <] 10v-a3T NV
! ang £
I e
o 2070 %5001
1 Z0v0~ X128 AT 031 > <] INNTa3IT Y
| au
| 6
ano ans
| g g
| _ane ans _ N 3 e
| g g [[
I Z g Z 2 g 2 2 (Lo~NvT)
I 3 o L o 3 ° 5 5 © ATEd
I = g2 F g 8 s -
! © DA s s RavA
| : > : ano
I 8 5 lﬁ
|
I uunmwimugwm -
| 83333339333 g
i SESun2a TV 2T ¢ GNo N9 ON®
| 20707 %5 SN ©2das®z *° R R 1]
| At O— SUEE S S S5
37 _ oo W2 bl]a bl =
| _ 7] ing zanse P RIERRERE
LovTo3 [N3“NY/L0v~a31 152l |
I
i _ INv/a33ds—a3n MAIBrEEedd SNL g, 4 4 g
| INITZ031 ONV/HINIT a3 oal f¢ R 8 2
1 _N"13s3y N L3S38 %L ——
| OION—8¥8cada oIaN LNI/NMOO” dMd [;—<__] NMO™¥Md™8v8£8da
20N~ 8vEERAD oan 300K~ INS/£”axL
| ACE+ ££0aA0l zZax1 ——
| feex » \maxL s \~ax1”8reseda
| IX"8v888da [- Fe X x @ ppm3 07axl ¢ 0_dxL~8+8¢8da
aNs [gg|anoal ol 5853 NITXL (3 N3~ XL"8r8seda
| 9 + anoa EF LESNN) 07XLE
2 5 N DO v
I 3 2Osiesty o
| | 259833333 5
L, 22C552P23F 2
8 A BXIIZZL55
| o oG8 5555288
8 Seslhdzess2y
I 8 SEm2zZ328a%54
I £ ane NN ans
| Z o SEEEERERES e
| [y Za¥a~ AL NOODL Z0v0T AL NES
| 9 °
P vJ g Y|A
I ¢ °
| 3 CJASe+ ze £50
|

>
S
"
¥

8v8£8dQ
8v8¢8dd

axy
~axy
>
ATE+
°
8

S¥O~8+8£840
¥3- Xy 8veceda

[
v

20¥0TASLTNOOL

8udsyl3 — AHd

81

© 2013 Conrad Electronic

Hardware 82

2.2.4 Applicationboard

The C-Control PRO AVR32Bit Applicationboard (Conrad Order No.: 192587) is the standard dewelop-
ment board for the C-Control PRO AVR32Bit UNIT. The application board contains all the compon-
ents that are needed to operate the C-Control PRO AVR32Bit UNIT. In addition, the board has a very
good and comprehensive peripheral equipment.

The board offers the following features:

1x power supply (3.3V & 5V)

1x on/off switch

1x LAN connector (RJ45)

1x 2.048V woltage reference

1x CAN port

1x Dual Power MOS-FET (2x Open Drain)
1x directional keys (5 buttons)

2x analog sensor (trimmer)

2x16 character LC display (blue/white)
1x contrast control for LCD

8x LED's with driver for signaling

1x power relay (24V/ 7A)

1x USB to UART conwerter

1x RS232 to UART conwerter

1x audio amplifier

1x UNIT-Bus (3.3V to 5V)

2x breadboard for custom circuitry

/]
ON_‘OFF

J3
©) u e |[= w @©)
a S6 LAN usB Audio RS232
UNIT-BUS
UB 7,5V DC
LED10 LuE:IIJ:lg
Audio
+33V GII\TD 12¢
+3.3v[OOlscL
ggﬁ K2 Y22 GND SDA
USB TO UART Y23
RXD[O O] XD
GND GND O oispay ©
Y5 Contrast|
RS232
RXDTXD il
GND|O O] GND
G
UNIT BUS
x2 RXD[O O] XD 33V
GND|O O aND E 33V
3 33V
POTI GND
p[0OP2 GND
GNDGND a O O
LYE% LED1LED2 LED3 hE:%Al L[EIJ:IS LED6 LED7 LED8 LED11 E
LEDWOOLEDZJPS P1 P2 e e 0 o REE];]us 3
LED3O O|LED4[® @]IP7 min max min max +3.3V §
o LED5O OJLED 15 [000000000000000Q] <
01 0| c-Control Pro AVR32Bit Unit Péﬁggggiga O00000000000O0000O 8
45 26 0000000000000000 o
OUTPUT CTRL Y10 0000000000000000 =
REF[OO|GND 888888888888888 1[0 0]z TACT SWITCH T T2 13 5000000000000000 5
Y14 Y15 TIOO[2 [e e]wPt 0000000000000000 £
000000000000000 OO [e el 0000000000000000 S
6 000000000000000 V19G]sy THIO OloN [e el 73 ©
= 000000000000000 R e = 8660066600666066 s O
@ 9008908909999 SHoureur +33v RELAIS [e]/P5 @ 0000066660000000 |22 @
e 000000000000000 o1l%|oz +3‘3VRELGND 6ND[0000 000000000000 \{Fsamne

Applicationboard with Component markings

© 2013 Conrad Electronic

83

C-Control Pro IDE

Installation / Commissioning

¢ The C-Control PRO AVR32Bit UNIT is attached that the mini-USB socket of the Unit shows in the
direction of the on/off switch (see mark on Applicationboard).

¢ In base condition, the jumper (JP1 to JP7) for LED1, LED2 and keyboard are not plugged.

e The power supply of the Applicationboard occurs via a stabilized power supply or a laboratory
power supply with an output woltage of 7.5V and a minimum current of 500mA.

e Install the C-Control PRO Dewelopment Environment "IDE" (Integrated Development Environment).
See installation software.

¢ Install the USB driver.

Power Supply

The Applicationboard is powered by a stabilized plug-in or laboratory power supply (7.5 V/500mA).
Depending on the additional circuitry of the application motherboards it may be necessary later to
use a mains adapter with a higher power. Two fixed woltage regulators on the application board gen-
erate the stabilized internal supply wltage of 3.3V and 5V. The two LEDs LED9 and LED10 indicate
the functionality of the power supply. All circuit components on the application board are supplied
with these wltages (see diagram). On the board, some ports are available to allow you to tap out the
different woltages. Make sure that the two wltage regulators are not getting too hot when using cus-
tom circuitry with higher loads. For larger loads, it is recommended to feed them externally!

=% The mass between external circuitry (power supply) and the Applicationboard must be the same!

=» The cooling surface of the wltage regulator is warm to hot during operation, depending on the
connected consumer!

On/Off Switch

The switch S6 is located at the back, next to the power supply socket of the Applicationboard and is
used to turn on/off the main power supply.

Jumper

The jumper JP1 to JP5 connect the buttons of the keyboard to the pins of the UNIT (T1 = P41, P42 =
T2, T3 = P43, P44 = T4, T5 = P45). The jumpers JP6 and JP7 connect the LEDs LED1 and LED2 to
the pins of the UNIT (P48 = LED1, LED2 = P49). See also Pin Assignment in AVR32Bit Module
chapter.

LC-Display

The LCD display is used to represent variables and characters. It is controlled via the 12C bus. A port
expander (PCA8574) is available on the application board, which is responsible for communication
between UNIT and LCD display over the 12C bus. The display is operated in 4-bit mode. Port P46 is
responsible to turn the backlight on/off. The operating system provides a simple software interface for
outputs to the display. The small circuit for driving the LCD can easily be applied to your own cir-
cuits. It will support most “"standard dot matrix" LCD's. (see connection diagram and LCD data
sheet).

© 2013 Conrad Electronic

Hardware 84

©
* us
R18 LCD_EC1602A1
vcez b [veet
@ 100R_S%_1206 | 45|
g >| o 16l
S @ 2 R—VAR—CAGY—10K)
o veet 3| ver s
5 o R19 L Vi -
o CND } >] g
10K_5%_0603 | 9 H =
1] a0 & 4 8 " L vss o
veez[5]AD0> PO N | pe =
AD1 P1 > LCD_RS R & L o
31ap2 P2 3 S LCD_R/W | +[14 GN %DD
— P3 LCD_E x e Ers
BIWT pal2 S LCD_D4 = = " 2 b2 ©
P35_l2C_sCL p5 HO "~ Sico_ps = e 3 Wlp3 =
> seL peHl > LCD_D6 GND GND I LCD_D4 o4 &
SDAw P7 [>Lcp_p7 o LCD_D5 13103
P34_I2C_SDA g g LCD_D6 i D6
- 7) D7 o
b p gl LCD_D S
PCAB574PW J— > Leo_Rrs [4IRS _ -
GND . LCD_R/W Z R/W
2 LCD_E > E
Q
<!

0
-
o

Connection Diagram cutout of 12C-LCD

LC-Display contrast control

The best visibility of the LCD character arises in frontal view. If necessary, the contrast needs to be
adjusted. The contrast can be set with the trimmer R19 ("Contrast" to the left of the LCD screen).

UN

BUS

U_SCL 6]
U_RXD 4
veoe! 2

T
@
&
@

L5
S
1

U_SDA
TXD_5V
GND

UNIT-BUS Pin Configuration

I2C and UNIT-Bus

The pins on the socket connector Y23 (Block 4) are permanently connected to the pins P34 (SDA)
and P35 (SCL). At the pins on the socket connector Y8 (4 pin) a free UART interface can be as-
signed to the UNIT-bus. The UNIT-bus lewels the 3.3V of the UNIT to 5V and 5V signals to 3.3V (bi-
directional lewvel shifter). C-Control | peripheral like 12C modules and other 5V circuitry can be con-

nected to this bus.

© 2013 Conrad Electronic

85

C-Control Pro IDE

/]
ONDOFF

J1 S6

©

UB 7,5V DC

LED10
+3,3V

LAN

usB
CON

Y2

X2

USB TO UART

RXD XD

GND|O O|GND
Y5

RS232

RXD| XD

GND|O O GND
Y6

UNIT BUS

RXD[O O] TXD
GND|O OJGND
Y8
POTI
Pt P2
GND|O O| GND
Y9

TACT SWITCH

O Ojr2 [¢ o]

o Ol m P2

+5\/ T5/0 OIGND m JP3
+5v Y11

+3 3V RELAIS JPS

o OUTPUT

o 01E|oz 33 REL-GND

J2
UsB

Contrast

+3.3V
+3.3V
GND
GND
GND

[53
2llE ©
Audio RS232
UNIT-BUS
Audio
N l 12¢
GND +3,3VSCL
Y22 GND |O O|SDA
Y23
O bispLay O
2x16
O
LED1 LED2 LED3 LED4 LED5 LED6 LED7 LED8 LED11 ﬁ
[0 [0 [0 [0 o [im1] N
VT RELAIS 2
- >
T5 [eYeYeYeYeleYeleYoloYoloYoYoYo)o]| <
O000000000000000 (o)
0000000000000 O00O0 K1 5
O00000000O000O00O0O =
T T2 3 0000000000000000 o
000 (e)e] O00000 E
O00000000O000O0000 8
™ 000000000000000 T
0000000000000000 %' o
Q0000000000000 00
eND[0000000000060000] \Seomm

LED's

Beispiel: LED3 und LED4 an P33 und P32

Examplel connect LED3 and LED4 to P32 and P33

The pins of the connector strips Y10 (10 pin) are permanently connected to the LED's LED1 to
LEDS8. The LED's are driven via a high impedance FET (about 100K). So that the port can also be
used for other purposes, and the LED's signal the port status in addition. The jumpers JP6 and JP7
wire the first two LED's LED1, LED2 to the pins of the UNIT P48 and P49.

Reference Voltage

The pins on the socket connector Y14 provide a stable reference wltage for the ADC (Analog Digital
Converter). They can be connected to the ADCREFx inputs of the UNIT. This allows you to provide a
stable external reference wltage to the ADC.

© 2013 Conrad Electronic

Hardware 86

J3
" 2 8 i m

i 6 LAN usB Audio RS232
UNIT-BUS

IN 12¢
ChiD +3.3v[OOscL
Y22 GND |0 O|SDA

USB TO UART Y23

RXD[O O] TXD
GND i O DispLay @]
5

Contrast

RS232
RXD| XD
GND|O O] GND
Y6
UNIT BUS
RXD XD
GND|O O|GND
Y8
POTI
P1 P2
GNDIO O| GND
Y9

2x16

,_
m
=
-
m
o
i~}
=
m
=}
3
=
m
=}
v
=
m
=}
=
N
m
o
=3
2
m
=}
<
=
m
=}
8

LED11
[im1

g

RELAIS

00000000 |(OOOO0000000000000000000,

O

g

o

%]

['4

1 0000000000000000] z

GND [O Of GND 0000000000000 00O0 o

e 0600608600000008| | =

9009000000009 10Q)2 TACTSWITCH T T2 T 0000000000000000 °

0000000000000 Y15 [ee]upt 0000000000000000 £

0000080000000 JPZ 0000000000000000 o

i 8888808888888 *5V T5 GNDJ” Ta 0000000000000000 2

| e +5v i 0000000000000000 SIS

@ 0368668606068506 Louryr [Disx _ reas e 0000000066066666 QDD @
CANLCANHOOOOOOOOOOOOO 01%02 vaEL-GND GND[OOOOOO0O0O0O0O000000] N‘—’OCOMNC

Beispiel: Referenzspannung 2.048V mit ADCREFO verbinden
Example connect reference voltage to ADCREFO

CAN Bus

At clamp J6 the CAN bus (CANO) is led out of the UNIT and can be used directly. It must be followed
by no driver, since it is a driver already available on the UNIT.

Audio Amplifier

At the pins on the socket connector Y22 a PWM signal can be connected directly from the UNIT to
the audio output. Headphones, small speakers (min. 8 Ohms) or an active speaker can be connec-
ted to the jack. Please note that the audio can be very noisy depending on the signal, and improper
use can lead to hearing damage!

Analog Sensor

The pins on the socket connector Y9 (4 pin) are connected to the trimmer P1 and P2. The trimmers
are connected as a variable woltage divider and fed from the 2.048V reference wltage. Thus, an out-
put wltage can be set between 0 and 2.048V. The outputs of the female connector can be connec-
ted directly to the analog inputs of the UNIT.

© 2013 Conrad Electronic

87

C-Control Pro IDE

ON OFF
[] 3
" s 8 a7 m
J1 S6

LAN UsB Audio RS232
UNIT-BUS
UB7,5VDC
LED10 LED9
jimI] jimi] Audio
+33V +5V 0
Y3 12 Y4 12 GND 12¢
+u [O0]+us |[@O]Y1 USB Y2 DP o +3.3VSCL
GND |[OO|GND | [E O] CON VBUS GND [O O|SDA
+33v [OO|+33v| O O GND GND USBTO UART Y23
GND |OO|G6ND | [T 0] RD- OO RD+ RXDTXD
P (00| P2 |IOD . 00 O pispLar @)

1D+ GND|O OIGND
Y5

P3 |00 P4 (OO LED_L{O O|LED_ A

Contrast

ooo0oooo0ooon

P5 [OOQ| ps | (OO cT1 [O Q| cT2 RS232 2516
K,BZrG'O pe IO 0] GND |[O Of GND RXDTXD
P 00 SCL [OO| SDA GND[Q OfGND
Y6

P11 [OQLPIZTIE

DEIEIDDDEIEI/%E
OO00000J00000000000000000]
1 EEEIDDEIDDS |
22222
; ¢}
o

P13 |OQ] (mlm O O| P54 UNIT BUS
P15 |O Q| P16 X1 X2 P53 |[O@RP RXDTXD +3.3V
P17 |[OQ| P18 P51 U, GND|O O|GND +3.3V
P19 |OQ| P20 ||O N Y8 +3.3V
P21 88 P22 g %
P23 P24
P25 (00| P26 [[O O O
P27 |OQ| P28 |0 - LED £
P29 |OQf P30 (O LED [imi} aQ
P31 [OO[Miso |0 g|| e LEDIO OLED2[® o] WP6 T o
sck [0 Owos!| [T 0| px LED3|O OLED4[e] P -2
cs [OQ|eND (|0 OJf [START LED5|O OJLEDS 00000 <
chL [O Olcant| [T Of c-Controt Pro AvR328it Unit [T O] | GND PED7(O OI|PEDS 00000000 o
\ 45 46 45 46 GND(?(%GND 00000000 K1 E
OUTPUT CTRL
rerlaglons 900000000000000 RIS TACT Cairen eSS 5
s 000000000000000 'S5 oo [Ee]p! 30388300 £
000000000000000 Hoo [eew S 5
6 900000000000000 Y1905y T5[0 OloND [o_e] 3 00000000 Q
—— 000000000000000 +5v S e Y 3063633006 55 O
@ Jeielonce s o sl sy, Ol res [=eles 00006000000000000 % @
A eHO0 0000000000000 01%02 +33VRELGND GND[OOOOOOO000000000] \Feamnc

Beispiel: Poti mit ADC verbinden
Example connect trimmer to ADCO and ADC1 with external reference voltage 2.048V

Keypad

For user inputs a 5-button keypad (key cross) is available. The pins on the socket connector Y11 (6
pin) are connected to the switches T1 to T5. Through the jumper JP1 to JP5 the buttons T1 to T5
can be connected directly to the pins of the UNIT (P41 to P45). If another assignment is desired, the
jumper must be removed and the button are connected via jump wire from the socket connector Y11
to the UNIT. The switches are connected to the application board with 47 kOhm pull-up resistors. No
pull-up/down resistors need to be activated in software. Reading a switch in the idle state (not
pressed), a "1" is detected on the port, because of the 3.3V that is carried to the pin though the pull-
up resistor.

LAN Port / Ethernet

The LAN port can be directly connected with an FTP cable to a switch or router. With the Ethernet
interface of the C-Control PRO AVR32Bit a web serner can easily be implemented (see Examples).
Furthermore, via the Ethernet bootloader the UNIT can be programmed across the network. The LAN
connector is permanently connected to the pins of UNIT (see pin assignment in the manual).

Relay

The pins on the socket connector Y13 are connected to the relay K1. The relay is switched by an
FET driver, and the "REL" connector of Y13 can be connected directly to a port of the UNIT. The re-
lay is used to switch smaller loads.

© 2013 Conrad Electronic

Hardware

88

[]

©

J1 S6

% 00 00
——] 00000000
00000000

@ 22 560666000

CANLCANHOO OO 0000

000000000000000
REFBOICN. 5656606000000000

OUTPUT CTRL
10012

Y15

T[OQ[2 [¢e]

OO [o o]

+5v T5[0 OlGND [_e]
+5V Y11

+3‘3v [o o]

Ja

UsB

Aud

USB TO UART
RXD XD
GNDIO OfGND

Y5
RS232
RXD| ™
GND|O O GND
Y6
UNIT BUS
RXD @D
GND|O OfGND
Y8
POTI
P1 P2
GNDIO Of GND
Y9
LED

LED1[O OJLED2[[o]
LED3{O O|LED4[e o]
LED5{O OJLEDG

PED7|O OPEDS
GNDIO O[6ND

Y10
ACT SWITCH

IN
GND

UNIT-BUS

Audio RS232

io

12C

+3.3v[0O]scL
Y22 GND SDA

Y23

O DispLar @
Contrast
2x16
R19
+3.3V
+33V
+3.3V
GND
GND
GND O ©)
LED1 LED2 LED3 LED4 LEDS LED6 LED7 LED8 LED11 g
. imi iy [m)| 8
JP7 min max min max +3.3V RELAIS g
15 [CO0000000000000J] <
0000000000000 0O0O0 (o]
000000000000 O000 K1 E
0000000000000 000 =
T1 12 I3 0000000000000000 2
JP1 0000000000000 000 €
P2 0000000000000 0O0O0 8
JP3 0000000000000 00O0 5 O
Fied 0000000000000 000 Y01%) ©
JPS 0000000000000 000
GND[OOOOOO0O00O00O00O000J0] ’\“mlc

FET driver

Beispiel: Relais

Example connect Relay to P54

The pins of the socket strip Y15 are connected to the open-drain FET driver. Hereby ohmic con-
sumers (max. 12VDC / 2A) can be controlled directly. The OUTPUT CTRL pins can be connected
directly to a port on the UNIT. It can also be used to control PWM signals. At pin header Y18 open-
drain outputs are ready for usage. These outputs are connected to the consumers - power supply

().

=» When switching inductive loads, a free-wheeling diode must be attached to the open-
drain outputs. The diode hast to be attached as close as possible to the the consumer.

© 2013 Conrad Electronic

89

C-Control Pro IDE

owl [OFF

©)

A 6 LAN

uB 7,5V DC

USB TO UART
RXD @D
GND[O OfGND
Y5
RS232
RXD| XD
GNDIO OfGND
Y6
UNIT BUS
RXD ™
GND[O O[GND
Y8
POTI
P1 P2
GNDIO O GND
Y9

NO00000000000000

OO0000E]
0000000R0000000000000

J3

UNIT-BUS

RS232

12C

+3.3V|0 O|ScL
GND [0 O|SDA
Y23

O DISPLAY O

Contrast

2x16

LED1 LED2 LED3 LED4 LED5 LEDG LED7 LEDS ~ LED11
o [im1}

+3.3V RELAIS

[O0O0O0000000000000]

min max min max

C-Control PRO AVR32Bit | O

Kok (O] 5385332558328582
00000000000000 0 URUICTRL 0000000000000000|
REF[OQJGND 000000000000000 2 TACT SWITCH T1_ T2 3 0000000000000000
Y14 000000000000000 ' HoQp2 [s el 0000000000000000
100U [s el 0000000000000000
L 888886000660000 VoRLy OO [= = Ta 0000000000000000
>0 888888888888888 v YiT e elPd 0000000000000000 i
3000060060006000 OUTPUT +3‘3v RELAIS [o]JP5 0000000000000000 [0V @
A GAIHO O 0000000000000 01"7—:!;02 +33VRELGND 6ND[OO @O0 000000000000 \{ssamne
LOAD
e
max. 12V/2A 1 I
GND

Example FET driver with load controlled by P53

USB to UART Converter

The pins on the socket connector Y5 (4 pin) are co

nnected to the UART to USB conwerter (Silabs

CP2104). At the USB connector (type B) the board is connected to the PC. The conwerter is used for

serial data output from the Unit to the PC.

= Install the driver first before making a connection.

The drivers for the converter module can be fou

nd at:

http://www.silabs.com/PROducts/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

http://www.silabs.com

© 2013 Conrad Electronic

http://www.silabs.com

Hardware 90

[]

©

J1

UB 7,5V DC

LED10
+3,3V

usB Y2
CON

X2

REFBOICN 5656606000000000
000000000000000

5% 000000000000000
—3 000000000000000
000000000000000
@ = 000000000000000
CANL CANHOOOOOO0O0OO0O000000

Y19
+5v
OUTPUT +33v
o1|§joz +3.3V REL-GND

Ja

RS232
XD ™
NDIO Of GND
Y6
UNIT BUS
RXD ™D
GND|O OfGND
Y8

POTI
Pt P2
GNDIO O|GND
Y9

LED
LED1[O O|LED2[®_9]4P6
LED3{O O|LED4[® o] JP7
LEDS{O O|LED6
PED7|O OlPEDS
GND|O OlGND

Y10

45 46

TACT SWITCH

o Oz [+_e]wp1
o ol m JP2
+5V 5/0 O|GND [_e]JP3

Y11 [e o]Jr4

RELAIS [e]JP5

usB

Contrast

+3.3V
+3.3V
+3.3V
GND
GND
GND

10

J3
e ©
Audio RS232
UNIT-BUS
Audio
IN I 12¢
LD E +3.3v[O OlscL
¥22 GND [0 O|sDA
Y23
O bispLay O
2x16
O O
LED1 LED2 LED3 LED4 LED5 LED6 LED7 LED8 ~ LED11 =
[T [[0 1 0 1 [imi] N
P2 RELAIS 2
min max min max +3.3V <
15 [eYeYeleYoYoXeloYoloYoloXoloYo)o)| <
O000000000O0O00000 o)
O000000000000O000 K1 g
0000000000000 000 =
12 0000000000000 000O 9
O000000000000000O €
0000000000000 000 8
0000000000000 000 R
0000000000000 000O %) o
Q0000000000000 000
eND[0000000000000000! Seamms

Beispiel: USB zu UART Konverter mit UARTO verbinden

Example connect USB-UART converter to UARTO

RS232 to UART Converter

The pins on the socket connector Y6 (4 pin) are connected to the RS232 converter (MAX3232). At
the 9-pin SUB-D connector the board is connected to the PC or a RS232 device. The conwerter is
used to conwert the 3.3V of the UNIT to the standard level of the RS232 serial interface (+/-12V).
Through this interface data can be send data to a PC or a another RS232 device (e.g. meter).

© 2013 Conrad Electronic

91

C-Control Pro IDE

/]
ONI_[OFF

J1 S6

©

UB 7,5V DC

LED10
+3,3V

usB Y2
CON

X2

000000000000 000

J3
J4 J2 J8 J7 @
LAN usB Audio| RS232
UNIT-BUS
LED9
Audio
IN I 12¢
GHD E +3.3v[OQlscL
Y22 GND |O O|SDA
USB TO UART 23
RXD[O O] XD
GNDGND O DispLay ©
Y5 Contrast|
2x16
P R19
'/ UNIT BUS
/" RXD[O O] XD +33V
GND GND E +33V
Y8 +33V
POTI GND
p1[OQ|P2 GND
GNDGND a O (@)
L\g) LED1 LED2 LED3 LED4 LEDS LED6 LED7 LED8 LED11 5
LEDI[OOJLED2[® o]UP6 g (IR REI TR IP CIRTIRET RFEIS S
LED3IO OLED4[® @]JP7T min max min max +3.3V §
LEDS|O O|LED6 5 [O00000000000000J0] <
PED7|O OJPEDS 0000000000000 000 o
45 46 GNDO Of6ND 0000000000000000 K1 e
OUTPUT CTRL Y10 Q000000000000 000 =
1 2 TACT SWITCH T T2 I3 0000000000000000 [
Y15 TI[OQ2 [e_e]uPt O000000000000000O €
TJOO[T4 [o e]sr2 0000000000000 000 8
Y19+5V TS0 O[GND [@_e]JP3 O0000000000OO0000 5O
+5V Y11 [o o]up4 0000000000000 000 Q00 2
OUTPUT +3‘3v RELAIS [e e]JP5 Q0000000000000 00
01%02 3.3V RELGND 6ND[0O0 00 000000000000 \seommc

Beispiel: RS232 mit UARTO verbinden

Example connect RS232 to UARTO

This product complies with the applicable national and European requirements. The "I2C bus" is a
registered trademark of Philips Semiconductors. All other company and product names mentioned
are trademarks of their respective owners. All rights reserved.

=» The cooling surface at the voltage regulators (between on/off switch and LAN con-

nector) becomes hot during

Technical Data

operation!

power supply external

7,5VDC / 500mA (stabilized)

power supply internal

3.3V and 5V

environmental temperature

0 to 60°C

dimensions

190x110mm

weight without UNIT

approx. 160g

Scope of delivery

1x Mini-USB cable

e 7X jumper

e 1m wire wrap for jumpers
Quick Guide

1x C-Control PRO AVR32Bit Applicationboard

© 2013 Conrad Electronic

Hardware

92

© 2013 Conrad Electronic

C-Control Pro IDE

93

Connection Diagram

2241

z401 10ous | 9 noy | s9 Z0ZL0ZO| POBUDND | | m— ——m - o m o m oo oo ___
ans
Jp0quonboildd SO 0L02°80°C0 sumoJp |
pJooquolipaliddy ZEHAY v y——— g | 03UILS-ANG'E-HOVr
26070NH 3 O |_| o 00 00 00| N 9990 | | peconn 2 rz7
I £0907 01
QVINOD 906! 11/91 [N yo9foid | - T
. E o T T
5
piooquoijpolddy ZEYAY O¥d 1043U00—0 90GI ' g-9n 820
|
e
! ano
! ane 3 NO ano ane ang an
1 ° 3 3 s
| dre-ssTING Of g H 8]
g A s | i | N9 50807031
| STESETING Oy .' w ° 3 o 3 2 by onga1 ZN¥
” dZ€-5'3TI¥a 8-9s M ° Ty = @ T, C L £090” %5001
1 aze-gaTINa ¢ - Ech:m & 8 Bl g s
! Iz Pr——anr Z{NA 100 [Z55n >2o9n
€a £'6-X10VLULBSHT .
1 on AS'E+
” 100+ 4ns
! 00 AvL — 8
1 ATddNS d3ImOod
I
I aNe 5 aNe ans G ans ans
I ans H 3 3 5
| b £ £ 5 nomsosoTan g
! 2 3 3 o of
I 2 [jp——— o 2-—=2 2 < _ e
I 000S00MIETL-MS +] 2 N = N T !, £0e0”xs"¥ozz
! v-9s 10074nS g 2 3 3 s
" — u - = > 1o0n
' T iant TMA tnofz (LRI
°a uL-laaveonasl
i " L i AG+
| 126191 LIH00S ™ ATddNS " dMd roorans
! N
” sa

6°0-8'1avd

HUN ZTEYAV ©Odd |043u0l-)

SWLTOVLI vd SALTOVIr vd
0QLOVINed 0QLTOVLr—¢d
1070V~ 2d 10L7OVLr2d
MOLTOVLMTLd MOLT9OVLrLd

60-8avd

o
g
3
a
a
P
3
&1
5
ER
2
S
o
>
I
I
| 3 1
I g |
= b
2 2!
] I
& Z
. S
! |
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
! i
I
, olany !
|
wwwwwwwwwwwwwwwwwwwww I
|mmmmmoomoom—-oo——-——
! anNo ano ano |
I
I c
| olsX -~ H
I S)
= 2
| 5 g 8
I 8
ABYOZ a8 €
I N
N H |
1 e
| osx O !
I
4397 Amuuxx;
i £080” K00 I
1N [Oo—"_ 1+
I 85y i
! I
ano
@
BYLX 8ex ¢—0O fIx
BriX 8ex +—0O X
X 0EX ¢—O UxX
ooLx 62x
86X o0zx
Tox 6L
19X BLx
65x ox
85x ax 4O #x
8% six 4O £x
obx wx O ex
86X 68X
6% 88X
96X 8%
69X 98X
89X sex
9% vax
99X £8x
Y 28
vox 18x
oBx
< <
53 3
8 a
8 g

i
I
I ans ans 1
I
i
I
, ; ”
I Bl l
1 [RECICRETT I
I
I —
i £090”X5~ 8001 i
' 12¥7 3TNV muuvxxxxxmuuuuwxxxxxxﬂﬂ‘x a3T_N9 _
I oLy ¥ 03T N9 —Q¥TNYY ”
I
| €090~ %5~ 001 +QTNYT
\ AN aIT N [o—— 1} T RERETS _ !
I BT L Va3t —aimN !
I
| TN
! |
I VHZHI066Y LIMTNYIGHY !
| "
! |
I = ang i
I 8 - i
I Q £0907AGIT L
! @22 NV i
I f\\\i
! - |
I £0907 A0
I 34
| T\AH_ ZI0A !
! i
|
www I
T T
i
I
[1
[
I !
! oo NS
4 ano HOOTEZEXVN £0907AGITNOO
[vn 010 g
I fxxxxxug
[i - » R
|2 E c0s0™ o1 NooL Slo 3|x #secsnsa
E I
s e I
I = ot
| A Al es 8|
[l 3 H =fusa !
I [z sosomasinoot 4 2 5| aNe i
I S080TASITNOOL [gr{00A +LOf] Z{u1a !
I @0 h\\\\\+ axL
| axy !
1 £080~ A" NOO} 2 m ol zg9 190 1
| uo La LF v=ir i
| S——<¢— !
I s 5 s [AAY]
I 8 e 3 2
I ~ & a
I
i
www l
e ittt
! o GND ane |
! o = 3 |
I @ g g
I o L z I
I ~ 2 s
| 6 ST —8 2@
! o3 s
i Bl 2
I <
" ~ zsnaA— asn
! _ oo ano
I
I
g ans ans ,u,u,msﬁz I [s
cozn<z o @ g ano
Lo 3357083 R ELel
I 55 cg) Sp—
I I olgz{ao R 9= 2 a2 +
| s o & < v g
I 3 &7 VoD aan
| > Hoowd opoizas ON[E s
! 5 |<S0S £n 8 —g_ssn 2
! 91| ddA +0 F0-asn [T |
I 70 dsns ano 1 ano 3 !
I grsio [N T
i o”aBoi00-6zagTI0S B Esn |
i EEFEEE i
I ¥55%38
- ALEEE esn |
-1 ano TZRNER
-,
s
l
= I
[
-
[TX9"39 1
[X1 da |
Pos !
[|
|

© 2013 Conrad Electronic

94

g oz 133us i 81 A3y | SO 2102°L0°20 :pabuoyd

SO 0L02°90°20 UMDIP

£090” %5~ ¥0ZT

pJooquoloolddy ZEYAY

an ang ang 2/5°€ddd

Hardware

ano

i
HOS'QIA™ 40V~ ZEuAY 14 1007 ” ” 3 or ”
- IR 5
WNYLN3D 00 00 Q0| :'IN JopiO Ol-HESE™ 13Y | = z INVD INVD |
3190TONHO3L o|_|o £/9'8ddd [2 el e ,mHo i Izémwl.%é

AVINOD 9061 /91 |*aN ¥0efoud o oo 9% ® ” R 3 ”

w clg e o AN |
aN e 2 & £090” %6 0L 13 8 8 |
pipoquolpoliddy ZEHAY 0¥d 1043U00-0 904! nes [V ox | 1@ m% NVO
® [I I

;
H 3 [|
|

£090” %5701

\\\ 0/v808
| ano [[L |
5 I I I
| 3 D P18 3 !
1 = 37027 z e ne 1l g b ane
Il M/¥—aon ® o aNe ! L¥X 200A ! x| |5 * !
| — sy S¥~a01 < w Md¥L58Y0d b ewx [N ['
| o] - P en [190A i)9 S |
I o a 147001] L o 1 18 g
2are e v G ves oerved | v0889504 ! ! <J100A !
i sa - - Ld @vas I sn S - I
! W va [va a1 3 r{od 108 me_ [£0907xGTHOL TRLOTLNO I | |
| X £ato, F oS 1050z S8 I ano zhx |
) g W[]= vd LN 1 1 O vex |
| Laty 2| |2 €d (- [ano axan |
I 00f7 ans | za zav [[R i
o z ° € zino [¥ 5]
I 5 g 1d Loy i | g | 8
a S 04 goav ff zoon | X - = 3 ! z !
|] SSAIT B L I . 5 |
! [=} = ! o ol |m ! N
! 6 g H _ann L T Gk P o i
I Iy 334 L2 Q s - g - [a !
| S < 100A z [tno 9 € S | cosoTxgTyoL LWLOTINO 1 1
I » H0L—ABVO-HYA—Y 5 1 o [5 g e I
M % | 9 | i
l v i o | l
1 9021~ xS 001 3 [[!
| 100A g 290A ' b !
1¥2091037001 EE]
! o C %L 1lndLlno po !
| | I
ww o _____ I
I
I
\\\ I
” ! . . . » ,
I I I
! ano aNs ano aNo aNo aNg ! ans IS ane & ane 9 ang . |
i g g n U U b g
I I I
I g g e v iU v STzxTus v STzuTus [!
= = ! = = var = cdr = zdr = ! !
I ' 3 ' 3 [o e B e 1 e B I
] 3 F- E E E Tu
! zuva-n 2 2 wva-n 8 2 [=2\ mm | mm =8 mm 2 [NLOEATS W |
LeX o 96X o ” I @ 3 I ki @ E o ” 2L ”
il 2 @ 8 g 8 8 g g
I 2] e e e I
, I e IR ETE A 0 O S O 0 B N ,
| > > ” | O rex O sex O zex ” | ”
i i - » > » >
3 IS 1 3 5 3 5 3 1 1
I R 2 = 2 3 |
i H S N [b= [P [1= G-l ! ang
I h h b X R MEES % & *| |& % | Lo 5 !
T T | 2 5 B & 4 | 3 |
g 2 . g g g g HOLIMS g !
i 2 3 2 2 2 ! r _ ang
B s ! “ 200 r zoon “ 200 r 200N “ 200 ! 2 2 8 !
l 5 H l i E =]
Z-1 1L0d 2 g ! ! [z !
| | I 3 3
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Y B 8 | cosoxemowe g2
| 100A [N !
3 i S I
I ano ane ano ano ano ano ano ano ano ane ano ano ano ano ang ans . nosaas (o \
I = = = = I o\ ra e
! 8 g 8 g Vo t— Z| oo !
| R H H H | -
| I I I I | & b
ol |2 = ol |2 2 ol |2 2 ol |2 \ 3 g | \
Igsisse scissa x| |G 5158 & scissa xR EREE 5 seissa X[y ssiss8 8 ssissa x| |R . S RES 1
[y oL ' uL oL s 6L e s L oL b Lo : ° 1
= = = m = m = = I e I
[8 = 8 = 8 = 8 = B = 3 8 = I &
3 3 3 3 3 3 ! 5 !
o L 2 o H by 2 o H b 2 o L 2 [o 8% I
8 3 o, & o 3 ol 8 o 3 b, 8 3 b, | S| rex BEERL sng—-ocl
[[N R A [RSN BES R N £ TR b |8 o I AL P 2| £2x O—5m H 8 |
I 2WNE bl EAVIN RN ERV/INCER ERVINERANL EAV/INCEREL R ERAV/INCEREL [> m ,w !
18 S ~ 8 S e 3 S o & S s 8] @ 3 S S = 3 | LRI P I Y
Vo 8037 8 8| com 8 8| e 8 S| san S 8| v S 8| ean 8 zaa1 8 8 w1 g oFE !
-t s2x g zx g 9zx g szx g o g fzx g ex g zx! il N
| I
Do g]]] g] g P gl @ !
) - 20007 ABLTNOOL
Lo 5 5 5 5 5 g ey 8 43ty o 1057021553 |
3 2 3 2 2 2 2 2 _‘L 20aA
“ o 120A “ “ 100A “ o 100A “ o ! L Jvas™ozrved !

© 2013 Conrad Electronic

95

C-Control Pro IDE

2.2.5

Mainboard

The C-Control PRO AVR32Bit Mainboard (Conrad Order No.: 192702) is a compact experimental
and development board for the C-Control PRO AVR32Bit UNIT. The C-Control PRO AVR32Bit Main-
board contains all the components required for the operation of the C-Control PRO AVR32Bit UNIT.
In addition, the board has a good basic set of peripherals.

J13
© oxxnl(©)
HR&EQ
G o
fau bo =" PORT-1
+ S
-1 LED LeD ps|| oo |rs
J12 1m [T P711OO||r8
+3,3V +5V
, pfoo]P0
ooy i 2[00 el as | e
. oo CON L PI5HOO | [Pt6
2o]2 oo 0o P17 P18
SR oo o0 00
2 PIIH OO | |P20
c OO oOo
S o P3|l OO | |P2
Tod o oo ood
2SR P51 OO | |P26
o9 JP3 oo aog
<[ee oo™ [ee] |IOO 0o P27 QO | |P28
@ (o] +33]1 [O Q| |GND
cs®2e REF |[OO oo
SST > 2048V OO oo
00| x1 x2|00 PORT-2
OO OO
EE gg UNIT 29| | OO | [Pt
LAN-PORT oo ool | ﬁg; 88 E§§
od OO
aiE ool fle1 7| [0O | [P3
00 o0 UART3PI| [QO | | P4
s a6 r2ll oo | |P43
[| C-Control Pro AVR32Bit Unit |[] [] gj‘é | 00 Ej?
oo oo 00
6 a6 P[0 O || P49
%% Ll psol OO [|P53
oo psa[OO [| P55
oo [C-Control PRO Pss| [0 O || P57
AVR32Bit M |90 [0
LED:-RORT UNIT-BUS CAN 1WIRE
© L || 2o oo ©
® @ @
— CANL CANH DAT GND +5V

Mainboard Overview

© 2013 Conrad Electronic

Hardware 96

The board offers the following features:

1x power supply (3.3V & 5V)

1x LAN connector (RJ45)

1x 2.048V external reference wltage

1x signal generator (Buzzer)

2x CAN connector

1x LCD-PORT for connection to the I2C LCD's (Conrad Order No.: 192602)
1x 12C-BUS connector

1x 1-Wire connector

2x I/O-PORT with 26 pins

1x UNIT-Bus (3.3V to 5V) for various sensors and actors

Installation / Commissioning

e The C-Control PRO AVR32Bit UNIT is attached so that the mini-USB socket corresponds to the
marking (USB CON) on the Mainboard.

¢ In the baseline condition, the jumper (JP1, JP2 and JP3) are not plugged.

e The power supply of the Applicationboard occurs via a stabilized power supply or a laboratory
power supply with an output woltage of 7.5V and a minimum current of 500mA.

¢ Install the C-Control PRO Dewelopment Environment "IDE" (Integrated Development Environment).
See installation software.

¢ Install the USB driver.

Power Supply

The Applicationboard is powered by a stabilized plug-in or laboratory power supply (7.5 V/500mA).
Depending on the additional circuitry of the application motherboards it may be necessary later to
use a mains adapter with a higher power. Two fixed woltage regulators on the application board gen-
erate the stabilized internal supply wltage of 3.3V and 5V. The two LED's +3.3V and +5V indicate
the functionality of the power supply. All circuit components on the application board are supplied
with these woltages (see diagram). On the board, some ports are available to allow you to tap out the
different wltages. Make sure that the two wltage regulators are not getting too hot when using cus-
tom circuitry with higher loads. For larger loads, it is recommended to feed them externally!

=» The mass between external circuitry (power supply) and the Applicationboard must be the same!

=» The cooling surface of the wltage regulator is warm to hot during operation, depending on the
connected consumer!

I2C, UART and UNIT-Bus

The pins on connector J8 are firmly connected to the pins P34 (12C SDA) and P35 (12C SCL). The
UART4 interface is available at connector J9. The 12C bus is also connected directly to the UNIT-
BUS. The UNIT-bus lewels the 3.3V of the UNIT to 5V and 5V signals to 3.3V (bi-directional level
shifter). C-Control | peripheral like 12C modules and other 5V circuitry can be connected to this bus.
The UARTS interface can be placed on the UNIT-BUS via the jumpers JP1 and JP2.

© 2013 Conrad Electronic

97

C-Control Pro IDE

UNIT-BUS

U_SCL 6[g o |5 U_SDA
U_RXD 4| g ¢ [3 TXD_5V
VCC1 2| g o [L GND

UNIT-BUS Pin Configuration

Reference Voltage

The jumper JP3 connects the external 2.048V reference wltage to the ADCREFO (P8) pin of the
UNIT.

CAN Bus

At the clamp with the marking "CAN" the CAN bus (CANO) is led out of the UNIT and can be used
directly. It must be followed by no driver, since it is a driver already available on the UNIT. On the
socket connector J10 the second CAN bus (CAN1) is led out. This does not have a CAN driver and
can be used as a normal input/output.

LAN Port

The LAN port can be directly connected with a switch or router. The LAN connector is permanently
connected to the pins of UNIT (see pin assignment in the manual). With the Ethernet interface of the
C-Control PRO AVR32Bit a web server can easily be implemented (see demo programs). Further-
more, Via the Ethernet bootloader (see manual chapter AVR32Bit Firmware bootloader) the UNIT can
be programmed from afar.

LCD Port

At the 6-pin socket header with marking "LCD PORT" the C-Control PRO AVR32Bit LCD1602 board
(Conrad Order No. 192602) can be attached. The Mainboard is connected with the LCD module via a
6-pin ribbon cable with a pin header connector (female). Because depending on the application, the
cable lengths are varying, we offer these components for self-assembly using the following order
numbers:

¢ Ribbon cable RM1.27 0.05mm?2; Order No. 607237
¢ Pin header connectors 2x3 RM:2.54mm: Order No. 742063

© 2013 Conrad Electronic

Hardware 98

e Matching connection cable pre-assembled (length 35cm) Order No. 198876

1-WIRE

At the screw clamp labeled "1WIRE" the pin P3 of the UNIT is led out. At this pin a 1-WIRE sensor
such as a temperature sensor (Conrad Order No. 198284) can be connected. This pin can also be
used as a normal digital input/output.

PORT-1, PORT-2

At the 26-pin pin header connectors labeled "PORT 1" and "PORT 2" the free pins are brought out of
the AVR32Bit UNIT. Here, the experiment board (Conrad Order No. 192615) can be connected to the
pin headers \ia two 26-pin ribbon cables.

¢ Ribbon cable 26-pin RM1.27 0.05mm2 Order No. 607222
¢ Pin header connectors 2x13 RM:2.54mm: Order No. 742185

Available pins at pin header connector PORT-1:
P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22, P23,
P24, P25, P26, P27, P28, +3.3V, GND

Available pins at pin header connector PORT-2:
P29, P30, P31, P32, P33, P36, P37, P38, P39, P41, P42, P43, P44, P45, P46, P47, P48, P49,
P50, P53, P54, P55, P56, P57, +3.3V, GND

This product complies with the applicable national and European requirements. The "I12C bus" is a
registered trademark of Philips Semiconductors. All other company and product names mentioned
are trademarks of their respective owners. All rights reserved.

=» The cooling surface at the voltage regulators (near the mini-USB socket of the UNIT) be-
comes hot during operation!

Technical Data

power supply external 7,5VDC / 500mA (stabilized)
power supply internal 3.3V and 5V

environmental temperature 0 to 60°C

dimensions 110x95mm

weight ohne UNIT approx. 659

Scope of Delivery

e 1x C-Control PRO AVR32Bit Mainboard
e 1x Mini-USB cable

© 2013 Conrad Electronic

99

C-Control Pro IDE

e 3x Jumper
® Quick Guide

© 2013 Conrad Electronic

100

: “60°C) :pobuoya
e 10045 i yL noy | SO 2102°60°S ' .
s9 +0T°0L°'9T JukoJp ans 4T -G 1IN
e N s T
PIDOQUIDN ZEUAY ooz - g + e ,
RR !
- L I
Ui — 90 00 00} TN P20 3 2 dEE-gISTING QWIHS 0T3HS I |
3190TONHO3L O 11/61|=IN 3000da e PN oo lg !
) Qvanod 269l / H szE-ssr coszswon | S ” ,
@ | : R o R L |
- ~ovLrT Ta3IT NV
(] PJIDOQUIDN ZEYAY 0O¥d 10431Uu0D-D 269 aNo oax gix 1a1=ovLrZd 10v~a3T ZQS\E\%Q ziofe o | Vs
W \\\\\\\\\\\\\\\\\\\ — sx aX SWIZovirvd d PR, 3 o ”
T | zo0n L 00179V £d T L Y —armw !
© 1 ! aNo ox X MOLTOVLFThd SNTTa3T NV 5 o !
= 1oane ans ano | i B sarmwvr | ,
© ! 3 | av ' ,
| H
! § i VIZUL066 Y LINNYISPRY I !
2 3 a ! £/9°€ddd s | g
! EEDEe ! ur . o 1 |
| Y
g | | T B 3 £080™AGITNL i I
! 2 I JAIML ano| HE—<fane_ 8 a0 !
! ozauts ! VivQ) <] oarovirTed 00N !
| ' 1d40d—-NV1 g i
! £090” %5704 ! Jercaso | |
i i - ans ! !
| g I
17808 ! — HNYO | < THNvD £090™X5T54004 '
i 2 i 0 NVO wvd| 3 E 2w ! ,
| |
! |
o IS
; ! ! o - ' o
AR ; ! XN 2 | vas-ozr 1
I s X o oo
P -] 1a1movLrzd < vasd: !
DB 2 | ITNYO |8 = § | ,
a a | ! XITNYD 3 ! g
B) o ! s | T197NYT |
! Is LLOTNY] |
! 1 P | 1ova3TTNva i
! 1 5 | ONIT IRV i
! E | +QLNYT i
! ! —01NV1 i
! ! | +QHTNYT i
i ' ano ans ! e !
I
| |
| _ ,
I ! 3 - H 1 ar| I
! i 3 B | snan-esn i
' e 8 | Wa_asn |
i I N — T oen !
i aTzxTuTs 8 g !
| ! car 2 ! I
| Yo en | |
| I e ,
| | AsvOZ L ________
! ! 43y
| i i
I |
| e
- o 2 O ,
— I
I ! 140d4—-0017 wo = ane ano ane ano ano
, I I ane H s 5 5 ”
! MSTEIXETZZIS I g 3 g 8 R
I ! r I o b I g b NoTsosd o oy |
3 o g
I | I o] P — - @ < v S cosgxs wo0n !
| ! !] 2 o 2 g |2 |
! X Loov4ns I 2 g g s
, XN
, | | o D - Sl inoje Z90A < I
| X 290A T zan+ g
| ! ! X FOOA a SToXLgyHBSIT ASTE+ !
|
m I
! | i 1007408 g
a 1 I _ ang ” ,
I 3 1 o 5] I !
— | f—] E ! ! I
: I
(o)) |
I e
£090” %5~ eNE ! ! !
! ano
®© | 100 I e = ane ans aNe ane !
- — o | 1 s 5 R - ,
I 2 8 E =
| ! z = | N9TG080 031 4 |
D I
” MOERG % i I ana & [N M o m o 4
c ! Q =g 2 [J— S |
, i I 2/5'cdda * [s o ST L, £0907x5 wozT 1
. " | I ur +] 2 H 2 g 2 1
1 100¥4nS » 4 El 14
° i | & L Jioon
+— ” E g i | 2 Pt—amr TINA_ Lnofz VoA !
= @ ¢ | ' - oneLl o+
O ! - gl |z ! | 5 HL-108YS A !
| L I | n
i g 8 | i 10074ns I
()] | It 2 ! . an+ |
< i sl | 100 A6 - 6L B !
o 0z |
oz sgd
c ! g e ! ! Alddns ¥3mod §
1 SNg-072l 8 vosTozrved | [
o T eme v 1 Teed e ememme
(@] I
[

© 2013 Conrad Electronic

101

C-Control Pro IDE

2.2.6

UNIT-BUS Exp. Board

The C-Control PRO AVR32Bit UNIT BUS Exp. Board (Conrad Order No.: 192659) is designed to ex-
pand the functionality of the C-Control PRO AVR32Bit products. The product is designed as an open
circuit board with six single 6-pin pin header sockets, and only determined for the UNIT-BUS of the
C-Control PRO AVR32Bit and the C-Control | product family (extensions) and their sockets. The
control of the individual modules is done via software. The software can be found in the folder of the
example programs (see demo programs) and at www.c-control.de.

Connection and commissioning

Make sure that before you connect the modules to your C-Control PRO AVR32Bit base product (e.g.
AVR32Bit Application Board - Order No. 192587 or Mainboard - Order No. 192702) all connections to
connected devices are separated and wltage free. On the C-Control PRO AVR32Bit basic products
there is also a 6-pin connector labeled UNIT-BUS. This pin header connector is suitable for connect-
ing UNIT-BUS expansion modules. Each of these jacks includes the lines SDA, SCL, RxD,

TxD, +5V and GND. The C-Control PRO AVR32Bit Unit works with 3.3V lewvel, and the UNIT-BUS ex-
tensions, as well as the older C-Control 12C-bus modules, use 5V. Therefore a level conwerter is
placed between the C-Control PRO AVR32Bit UNIT and the UNIT-BUS that conwerts the 3.3V sig-
nals of the UNIT to 5V signals of the UNIT-BUS. The UNIT-BUS Expander is used to distribute the
12C bus signals SDA and SCL and the UART signals RxD and TxD. In addition, the +5V supply and
GND pins. The Expander can can be mounted in your application with its outer mounting holes (hole
diameter: 2.5 mm).

When using C-Control | extension modules please study the documentation of the C-Control exten-
sion modules. You can find there more technical information on the individual products. Unless
stated otherwise, all expansion modules are supplied with the required operating woltage via their re-
spective connectors on the base unit. Because depending on the application, the cable length can
vary, we offer you these components for self-assembly in the following order numbers:

¢ Ribbon cable RM1.27 0.05mmz2: Order No. 607237
¢ Pin header connectors 2x3 RM:2.54mm: Order No. 742063
e Matching connection cable pre-assembled (length 35cm) Order No. 198876

n@ >©

%%_oo oo ||l {leoee||[[{loee||[{oe||[{ee ;<08

JZ>E,')) e e e e o0 oo |8

PC Heo||[Hoo||Heoeeo||Heoeeo||lHeoe|[[[Heoe Eg

el =]

@L s ol s ? o ¢ oI @
& & = & ~ =

Expander Overview

Technical Data

dimensions 72mm x 20mm x 12mm (LXWxH)
pin header pitch 2.54mm
weight 129

© 2013 Conrad Electronic

http://www.c-control.de

102

Hardware

Connection Diagram

226.1

LioL esus | oL A% | 59 Z10220'sL | pabuous
$9 11022110 umop
Jopuodx3 sNE—-LINN ZEHAY ——
HIS'0IA”dX3NTZEUAY @4
WNNLINID 00 00 00| N 49p40
31907TONHOIL 0 |—| o
avaNed xxx| 1L/62 |3N 1o3foug

pioog Jepuodx3 SNE—LINN ZEYAY O¥d 1043U0D=D XXX|

ane

d9'2-¢'¥ 10 O
€A
d9'g-g'v1 80 O
A
d9'z-g'v 1180 O
X
d9'z-¢'¥1 80 O
78

»STExZTTTIs

sng—1INn

»sTexzTTTIs
sr

sna—1INN

YSTexZ 2T
o0

sSnE—L1INN

MSTexzTzT1s
e

SN8—L1INN

YSTEXZTeTIS
o

sna-L1INn
ASTEXTTTTIS
i
I s -0 A
N T es =
sSna-—L1INn

axd_n
RESH]

© 2013 Conrad Electronic

103

C-Control Pro IDE

2.2.7

LCD1602 Board

The C-Control PRO AVR32Bit LCD1602 board (Conrad Order No. 192602) is designed to expand the
functionality of the C-Control PRO AVR32Bit products. The product is configured as open circuit
board. The module is equipped with a two-line 16 character LCD display with backlight and a 6-pin
header connector, and is only determined for the C-Control PRO AVR32Bit Mainboard (Conrad Order
No. 192702) . The board is used to display data from the AVR32Bit UNIT (Conrad Order No. 192573)
in conjunction with the AVR32Bit Mainboard. The control of the individual modules is done via soft-
ware. The software can be found in the folder of the example programs (see demo programs) and at
WWW.c-control.de.

© ©

140d-ao1

tdh|e e
idi|e e
ldrje e
)

© ©

PCB Front View

Connection and Commissioning

Make sure that before you connect the modules to your C-Control PRO AVR32Bit Mainboard all
connections to connected devices are separated and wltage free. On the C-Control PRO AVR32Bit
Mainboard a 6-pin header connector is labeled LCD PORT. This pin header connector is suitable for
connecting the LCD1602 boards. The pins 12C, P46, 3.3V and +5 V are passed out. The LCD1602
board has an 12C bus port expander that is responsible for driving the LCD. As a result, fewer pins
are assigned to the UNIT.

© 2013 Conrad Electronic

http://www.c-control.de

Hardware 104

J1
o
o @ 3
eeo ||
— e o | |O
Py
.....1

tdf (e e
idi|e e
idf|e e
0O

© ©

PCB Rear View

=¥ [s the base address of the LCD used (equal to the application board), the jumper must be re-
moved on the LCD board. See also LCD_SetDispAddr.

LCD—-PORT

+5V VCC1 ; oo i GND
+3.3V VCC2 2loo % P46
P34 _12C_SDA 00 P35 _12C_SCL
J1

LCD Port Connectors

The Mainboard is connected to the LCD1602 Board via a 6-pin ribbon cable with pin header con-
nector (female). Since the cable may vary according to the application, we offer these components
for self-assembly using the following order numbers:

¢ Ribbon cable RM1.27 0.05mmz2: Order No. 607237
¢ Pin header connectors 2x3 RM:2.54mm: Order No. 742063
e Matching connection cable pre-assembled (length 35cm) Order No. 198876

=9 Tip: The pin header connectors can be easily pressed together with a small vise. Cut the cable
to proper length and straight it in the plug (guide groowves in the plug), and then clamp between the
two vise jaws, and turn it carefully until the connector clicks into place.

Addressing:

© 2013 Conrad Electronic

105

C-Control Pro IDE

The 12C address jumpers JP1 and JP3 are located on the back of the LCD1602 module. With the
use of multiple LCD modules (max. 8), the jumper must be set according to the desired address as

follows (Jumper JP1 = points to IC):

JP3 JP2 JP1 address
- - - Hex 27
- - X Hex 26
- X - Hex 25
- X X Hex 24
X - - Hex 23
X - X Hex 22
X X - Hex 21
X X X Hex 20
x=Jumper set / - = not set

= Attention: Other I2C bus modules use the same 12C expander chips (PCA8574). Therefore the
maximum number of modules with this chip is limited to 8!

@2,5mm (4x)

@3,5mm

28mm

40mm

37mm

27mm

11mm
-

78mm

1mm
<

93mm

95mm

98mm

Technical Data

CAD

44>‘ f— 3mm

dimensions 98mm x 40mm x 26mm (LXWxH)
pin header pitch 2.54mm

operating woltage 3.3V (LCD) and 5V (backlight)
current consumption w/o backlight 3mA

© 2013 Conrad Electronic

Hardware

current consumption with backlight

13mA

weight

55¢g

106

© 2013 Conrad Electronic

C-Control Pro IDE

107

Connection Diagram

2271

140 1®3ys 7 oAy s 2102°90°L2 :pabuoys
100 59 T102°£0°S1 ‘umoup DIZW
v m mm: Nnm>< HOSLLATZ091AD 1™ ZE¥AY d9'2-6'¥11¥a
NNYINIO 00 00 00| N J3pig 49'2-5'v 1140
3I90TONHO3L O P o
Qv¥NOO 1691 2L/ %0 |#IN Y00foud 49'2-6"7 1A

pJioog 2091007 CLAAVY Odd

1043U0D5—=3 169I

dNg'Z1IRa O
Sk

2091937001
n

_ ano
]
afg 37091 ‘
Mg M/4"0o1) ane
— Y5 sy a1 ,A k&4 Md¥L58VId
(o] - =) en
o L0 57 £07001 a
90 for 907001 @ & _ JSTEXZTEE1S
sq 597091 14 @vas vas~oTvEd 13
2L = N zl SL - aNg
» va [¥a=ad1 5 s GW:MW_E e o
= £41g1 3 oL 59 as~ozr
o e Wl]a v g
2 o
Iz I zd zav
o Qa7 ano s T
3 g A t
E SSA T “
=B 2l g| g o
a z s _ano i i i €dr ‘zdr ‘ldf
-~ 3 Gl Gl ol
vy 8] 2 2 9 |» sedwinp
@ g - Beissa z SRS N
il Lo i ol ol ol
w 0L-AVO-dVA—Y = S 3 3 8
,D
3
o ZI0A

© 2013 Conrad Electronic

Hardware 108

2.2.8 Port-Ext-Board

The Port-Ext-Board (Conrad Order No. 192615) is constructed to expand the functionality of the C-
Control PRO AVR32Bit Mainboard (Conrad Order No. 192702). The product is designed as an open
breadboard experimental circuit board with a pitch of 2.54mm. It is equipped with two single 26-pin
header connectors and suitable only for the port outputs (PORT-1/PORT-2). The board senes to
build your own circuits in conjunction with the C-Control PRO AVR32Bit Mainboard. For circuit
design and the comfortable replica the circuit board is printed with a coordinate system. The board
can directly be mounted under or next to the Mainboard. PCB spacers are needed for "sandwich”
mounting with a minimum of 20mm length and a thread diameter of 3mm.

Connection and Commissioning

Make sure that before you connect the modules to your C-Control PRO AVR32Bit Mainboard all
connections to connected devices are separated and wltage free. On the C-Control PRO AVR32Bit
Mainboard there are two 26-pin header connectors, labeled PORT-1 and PORT-2. This pin header
connectors are suitable for connecting the Port-Extension-Board. On this pins the free ports of C-
Control PRO UNIT AVR32Bit are lead through (see Port-Extension-Board Oveniew):

Available pins at pin header connector PORT-1:
P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22, P23,
P24, P25, P26, P27, P28, +3.3V, GND

Available pins at pin header connector PORT-2:
P29, P30, P31, P32, P33, P36, P37, P38, P39, P41, P42, P43, P44, P45, P46, P47, P48, P49,
P50, P53, P54, P55, P56, P57, +3.3V, GND

The Port-Extension-Board is connected to the Mainboard via two ribbon cable with pin header con-
nectors (female). Since the cable length may vary according to the application, we offer these com-
ponents for self-assembly using the following order numbers:

¢ Ribbon cable 26-pin RM1.27 0.05mm2 Order No. 607222
¢ Pin header connectors 2x13 RM:2.54mm: Order No. 742185

= Tip: The pin header connectors can be easily pressed together with a small vise. Cut the cable
to proper length and straight it in the plug (guide groowves in the plug), and then clamp between the
two vise jaws, and turn it carefully until the connector clicks into place.

© 2013 Conrad Electronic

= Lo = L (e] Lo
Lo =

OOOOOOOOOOOOWOOOOOOOOOOOOOOOOOOOO

O
)
©)

0000000000000 OOOOIOOOO0OOOOOOOOIOOO

oJojolele/elojololo eloleleleolelolele) elelelele elelelole) elelelele,
oJolelolo/oleolololo/clelelele/clololole olelolole elelelolo) 01010101,
0]0]0]0]0,0]0]0]0]0)0]0]010]0)0]1010]0]0)¢]0]0]0]0)e]e]e]0]e)

OOOOQO0O0OOI0OOOOI0OOOOI0OOOOI0OO0OO
0000000000000 0LOOOOILOOOOILOOOO
000000000000 OOLOOOOLOOOOLOOOO
0000000000000 OOIOOOOILOOOOLOOOO
0000000000000 OIOOOOI0O0OQI0OO00

OO0O0OQO0O0OO0OOOOLOOOOLOOOOLOOOO
OO0Q0OQOI0O0OOI0OO0OOI0OOOOILOOOOI0OOOO
OO0OOQOI0OOOO0OOOOLOOOOOOOOOOOO
OO0OOQOI0O00OOI0OO0O0I0OO0O0I0OOOOIOOO0O
o]o]o]e]e)0]0]0]0]0)0]0]0]0]0)0]10]0]0]6)¢]0]e]0]e) e]e]C]0]e)

OCOOOOI0O0OO0OOOOI0OO0OOI0OOOOI0OO0O0
OO00OOQOI0O00OO0O0OOIOOO0ILOOOOIOO0OO
ojolojolo/olololole olelolele/elololele) elelelele) O1elelele)

000000000000 OOOCOOOOIO
Q000000000000 OLOOOOIO

C-Control Pro IDE

Zilele (il elejejole) elelelole)clelelele o101el01e)e)
P50[OOfP53 OO OO OO0 OO OI0OO OO OI0OO0O0QOI0
i ele il elelelele) elele]o]e)elelelele 6101010 1e)e)
P56 [O OfP57 (OO OO O[O0 OO OO0 0O OO0 0000
+33|[0OIGNDO O OO OO0 OO OO OO OO0 OO QIO

oJolololo/olololole clololelo/cloleloleleleleele) 010101010,
0000000000000 OIOO0OOI0O0OOI0OO00
000000000 OLOOOOLOOOOLOOOOLOOOO
O00O0Q0I0OOOO0OOOOIOOOOLOOOOLOOOO
0000000000000 O0OOOOOOOOOOOO
OO00OQO0OO0OO0OOOOOOOOI0OOOOIOO0OO
OOOOOOOOOOOOOOOOOWOOOOOOOOOOOO
~f®f55aaabnaaad whEEREasoa
0000000000000 200000000
mOOOOOOOOOOOOO mOOOOOOOO
el T W W TN ol 2l 2l AEREEEA A A

0]e)
(o]0
o]e)
(o]e)
(o]e)
(o]e)
00
oJo)
oJe)
0]e)
0]e)
o]0
(o]0
oJe)
0]e)
o]e)
o]e)
0]e)
o]0
00O
(o]0
OO
(o]0
(o]0
oJe)
0]e)

o
=

J1

%
@)
O
O
@)

© 2013 Conrad Electronic

Port Extension Board

Port-Extension-Board Overview

C-CONTROL PRO AVR32BIT

000000000 OCOOOOOOOOOIO
00000000 OCOOO0OOOOOO0O

000000000 OCOOOOOOOOOIO

©

109

Hardware 110
= 110mm -

100mm
84mm

<3 =
43mm
i
n T

O = : = O

i
i
l

3 3

| 1 :

Y i i
i
7 |
i
i
i
i
i
i
i
i
:
7 & i
= i
:
E !
S i
L i
i
i
i
i
i
i
i
i
i
i
i
E @ 3mm (4x) :
2 i

vvvo [: O
CAD

Technical Data:

dimensions

110mm x 90mm x 13mm (LxWxH)

pin header pitch

2.54mm

breadboard pitch 2.54mm
breadboard size 25x40 pins
weight 35g

© 2013 Conrad Electronic

111

C-Control Pro IDE

2.2.9

REL4-Board

The C-Control PRO AVR32Bit REL4 Board (Conrad Order No. 192631) is designed to expand the
functionality of the C-Control PRO AVR32Bit products. The product is configured as open circuit
board. The board is equipped with 4 relays for switching loads, and is intended only for C-Control
PRO products.

Connection and Commissioning

Make sure that before you connect the modules to your C-Control PRO AVR32Bit Applicationboard
or Mainboard, all connections to connected devices are separated and wiltage free. On the C-Control
PRO systems there is a 6-pin header connector labeled UNIT-BUS. This pin header connector is
suitable for connecting the REL4 boards. At these pins, 12C, UART and +5 V are lead through. The
REL4 board has an 12C-BUS port expander, which is responsible for controlling the relay. Through
the 12C bus control no additional I/O pins of the UNIT are required.

UNIT-BUS

U_SCL 6| 5 U_SDA
U_RXD 4 TXD_5V
VCC1 2] GND

coo
000
=l

UNIT-BUS Pin Configuration

The REL4-Board is connected via a 6-pin ribbon cable to the pin header connector (UNIT-BUS) and a
screw terminal labeled "VREL". Since the cable length to the UNIT BUS may vary according to the
application, we offer these components for self-assembly using the following order numbers:

¢ Ribbon cable RM1.27 0.05mm?2; Order No. 607237
¢ Pin header connectors 2x3 RM:2.54mm: Order No. 742063
e Matching connection cable pre-assembled (length 35cm) Order No. 198876

=% Tip: The pin header connectors can be easily pressed together with a small vise. Cut the cable
to proper length and straight it in the plug (guide groowves in the plug), and then clamp between the
two vise jaws, and turn it carefully until the connector clicks into place.

The REL4-Board-Board has two UNIT-BUS connections that are mutually connected 1:1. Thus, e.g.,
one of the connectors can be plugged to the Applicationboard or Mainboard, and the second port
can be used as a junction that connects to another UNIT-BUS module. The cable length must not

© 2013 Conrad Electronic

Hardware

112

exceed 2m, since this will cause communication errors. However, when longer lines are needed, it is
helpful to put an 12C power driver (Order No. 198280) in-between.

The RELBUS-Board is supplied by the screw clamp "VREL" with power. The UNIT-BUS is used in
this module only as a communication interface, and for the supply of the digital electronic part of the
circuit. The relays are powered externally via "VREL"!

@ + UNIT-BUS-1 UNIT-BUS-2 @
@@ ® @ o e © 0
o e 0o 0 C I) e o]
VREL L] L] — ﬁ
C-Control PRO AVR32BIT
LED1 LED2 LED3 LED4
1m1| o on 1|
K1 K2 K3 K4
RELAIS1 RELAIS2 RELAIS3 RELAIS4
NO COM NC NO COM NC NO COM NC NO COM NC
@ 12C-REL4-BOARD @
REL4-Board overview
Addressing:

The 12C address jumpers J1 to J3 are located on the front of the REL4-Board. When using several
modules and depending on the desired address the jumper must be set as follows:

Address
Hex 27
Hex 26
Hex 25
Hex 24
Hex 23

J3 J2 Ji

XX IX |
XX e X |

© 2013 Conrad Electronic

113

C-Control Pro IDE

X - X Hex 22
X X - Hex 21
X X X Hex 20

x=Jumper set / - = not set

= Attention: Other I2C bus modules use the same 12C expander chips (PCA8574). Therefore the
maximum number of modules with this IC is limited to 8!

5 T Py
; {) UNIT-BUS-1 : UNIT-BUS-2 O
00 | u
VREL — : — 43
i
i
i
i
i
i
i
i
i
|
5] § | (R PSR SRR SIS e o sown s s [e ey |
|
i
i
!
|
RELAIS1 RELAIS2 : RELAIS3 RELAIS4
|
i
QOO |COCO || OO0 ONONE®
I
i
|
7 !
)
1Y : P
- 65mm >‘
- 72mm
CAD

@3mm (4x)

=¥ Info: The REL4-Board can be mounted on a DIN rail by Phoenix Contact DIN rail carrier of the

series "UMK".

Technical Data

dimensions

76mm X 72mm x 18mm (LxWxH)

pin header pitch

2.54mm

relay

NC/NO, max. 24V/7A

© 2013 Conrad Electronic

Hardware

operating woltage 12v
current consumption 120mA
weight 709

114

© 2013 Conrad Electronic

C-Control Pro IDE

115

Connection Diagram

2291

Lol 3934s i) 2102'70°61 pabuoyd

s9 10Z'11°60 umoip

PIPo8 $73d CTLHAY HOS'ZLAT P13~ ZEUAY oll4

WNYINIO 00 00 00| N 40pi0
3I90TONHOIL O |—| o

QVANOD ¥69I LL/LZ |#IN y00fouid

pioog $713¥—0C1 ZEUAY

42'e-5'5 10 O
<X
dee—gsTa O
VA
dere—gsTma O
[
dee—gsTa O
28

0dd |043u03—-0 +69I

ane

>wmo.m\m\oﬁ~x<

>wmc.mwm\oﬁ~x<

2anzL
Q0AS DI-HEEE T3Y

o
18
H
0337£0907031
&
¥031
<] 1004

=
982
202
o
8
H
e
1
v 4
\ <5
I
M
| |
eyl
1
<
+a
£090~ %57 @0
G
£090” ¥¢

A-BO'G—€/00LZAV
o

N0k

(=2

ON
ngs Vot
H«, -

ano
g]
s 2
2 -
AN} U
,E o
by
Sq|
o g
= i
£ by
2l 2
Ve E
IRV NI 8
B b
8
3

48d81E020TWIHI <] +13d

48d4LEOS6 TN
£l

1388 [

A-BO'G-£/00LZAV
of

o
;
3
2
2
B
4S
=
034~ £0907 031
&
zaa
<] 199A

< e
oh:wom

£090A9ITNOO

.
:
3
E
2,
'3
18
L{
034 £090 031
a3l
<] 100

<13y

2/§°€ddd
or
aNo
138N AZL+

noy | 3T ned
Z v=2x 4 V=i
oN | 32 5 8 ON | ¢ e
_ I I
- - S\e 2 9 2 - ——
8- wMNz 3 a 8-
fn Hv o] ® S o ﬂv
&
484Y¥1£0€6TNTNI 48dY¥LEOCETN NI
P <o
€090 %G ALV
m
B 0 0
€090 %S MLV aNg M M
A E
94 MdrL58VId © ©
in
€090 XS LY
<
5
1] Ld PVASep aN9
94 105
AG+ cq ¥l cogoxs oL AG+
1ooA [yd N <100
1€d Y
gled TaV ¢
={1d Lav [ano 9T ExiTuIsS
7|04 500V T T e vas < °° [g s N

£0907A9ITNOOK

<
&3

3
<2

Z—snga-—L1INN

cHE:

27zx TS
or

2|5

9TEXTUIS
il

STNETASLT LY
2

2
&

AS+

e

- L—=sSNg—-L1INN

NG+
L00A

£090"X5 0L
€y
xS0
(]
xS0

£090
£090

> 1907

© 2013 Conrad Electronic

Hardware 116

2.2.10 RELBUS-Board

The C-Control PRO AVR32Bit RELBUS-Board (Conrad Order No. 192645) is designed to expand the
functionality of the C-Control PRO AVR32Bit products. The product is configured as open circuit
board. It is equipped with 8 open source switching stages (high-side switch) to switch 8 consumers
with small loads such as relay and intended only for the C-Control PRO UNIT-BUS.

Connection and Commissioning

Make sure that before you connect the modules to your C-Control PRO as AVR32Bit Application-
board or Mainboard, all connections to connected devices are separated and wltage free. On C-Con-
trol PRO systems there is a 6-pin header connector labeled UNIT-BUS. This pin header connector is
suitable for connecting the RELBUS-Boards. At these pins, 12C, UART and +5V are lead through.
The RELBUS-Board has an 12C bus port expander for driving the load (e.g. relay) is responsible.
Through the 12C bus control no additional I/O pins of the UNIT are required.

UNIT-BUS

U_SCL 6 5 U_SDA
U_RXD TXD_5V
VCC1 GND

4]
2]

coo
000
=l

UNIT-BUS Pin Configuration

The RELBUS-Board is connected via a 6-pin ribbon cable to the pin header connector (UNIT-BUS).
Since the cable length to the UNIT BUS may vary according to the application, we offer these com-
ponents for self-assembly using the following order numbers:

¢ Ribbon cable RM1.27 0.05mm?2; Order No. 607237
¢ Pin header connectors 2x3 RM:2.54mm: Order No. 742063
e Matching connection cable pre-assembled (length 35cm) Order No. 198876

=% Tip: The pin header connectors can be easily pressed together with a small vise. Cut the cable
to proper length and straight it in the plug (guide groowves in the plug), and then clamp between the
two vise jaws, and turn it carefully until the connector clicks into place.

© 2013 Conrad Electronic

117 C-Control Pro IDE

@ UNIT-BUS-1 UNIT-BUS-2 O
® ® 0 ® ® @
e e o T)
I I I I
e ol
e e|/)?
LED1 e o|J3 LED5S
(1m]] (Im]|
LED2 LED6
1m1] (1m1]
LED3 LED7
(1M1 (11|
LED4 LEDS8
11| 11
©
S
m
o DD DD| 4
ELQE e e e e e s g
o
00000 Q
o< =
+ + Q5 Q6 Q7 Q8
@ - «~ Q1 Q2 Q3 Q4O

RELBUS-Board overview

The RELBUS-Board has two UNIT-BUS connections that are mutually connected 1:1. Thus, e.g.,
one of the connectors can be plugged to the Applicationboard or Mainboard, and the second port
can be used as a junction that connects to another UNIT-BUS module. The cable length must not
exceed 2m, since this will cause communication errors. However, when longer lines are needed, it is
helpful to put an I2C power driver (Order No. 198280) in-between.

The RELBUS-Board is powered by the UNIT-BUS with power. The consumer power supply is made
at the screw clamps labeled "+" and "-" . The UNIT-BUS is used in this module only as a communic-
ation interface, and for the supply of the digital electronic part of the circuit. Consumers are powered
externally via the ports "+" and "-"!

© 2013 Conrad Electronic

Hardware 118

@ UNIT-BUS-1 UNIT-BUS-2 O

® o 0 ® @& @

® @ @ @ @ @

| 1 | |

® o|/l
e o|l?

LED1 e |3 LED5
(im1] {1m 1]
LED2 LED6
im1] (w1]
LED3 LED7
1mi} (1]
LED4 LEDS
1w} 1]
o
o
5
o
0| QLD Q| o
&l— — B —— I —— | E
S5 :
= 1
2| QDO
(I)<f| -

Bl + os5]as Q7 Qs
Gl

5-12V/DC
LOAD
GND £

Beispiel Verbraucheranschluss an Ausgang Q1

= Attention: Other I12C bus modules use the same 12C expander chips (PCA8574). Therefore the
maximum number of modules with this IC is limited to 8!

Addressing:

The 12C address jumpers J1 to J3 are located on the front of the RELBUS-Board. When using sev-
eral modules and depending on the desired address the jumper must be set as follows:

J3 J2 J1 Address
- - - Hex 27
- - X Hex 26
- X - Hex 25
- X X Hex 24
X - - Hex 23
X - X Hex 22
X X - Hex 21

© 2013 Conrad Electronic

119

C-Control Pro IDE

| X | X X Hex 20
x=Jumper set / - = not set
@3mm (4x) }
|
A & i
— |
—1O @ O

|
i
i
i
i
i
@
E| E !

B o e e S e e e s e e e e L =
S i
@
|
|
|
|
i
5
v |

! O { O
o 65mm o
o 72mm e
CAD

= Info: The RELBUS-Board can be mounted on a DIN rail by Phoenix Contact DIN rail carrier of

the series "UMK".

= Attention: The outputs are not short-circuit proof and can be destroyed in a short to ground!

Technical Data

dimensions

42mm x 72mm x 22mm (LxWxH)

pin header pitch

2.54 mm

output implementation

open-source (high-side switch)

output load max. per output 200mA (5V to 12V DC)
operating woltage 5V via UNIT-BUS

current consumption 20mA

weight 309

© 2013 Conrad Electronic

120

Hardware

2.2.10.1 Connection Diagram

Lo 19248 i $9 Z102°40°61 :pobuoyo

00 s9 WOT'I'TT :umosp

U m w:ml_um Nnm>< HOS'UATSNETIYTZEUAY P4

WNYINID 00 00 00| TN 42pig
A90TONHOIL O |—| o

QVINOD $69! LL/LT |°IN y90foud

pJoog SNET3Y—ITI TLAAY Odd

ano

s

d2°e-5'STIHa
d2°e-5'5TI4a

d2°e-5'STIHA

ano
3
)
2 =
)
e
aNo A
2 3
- sl R
80 I8 W]o o)
S{g
= MEES
V8 x5
& 5 of
I
48dN1E0S6THTY
rE
547808
= oL
5 ans
£0907A9ITNOOL
+
8 oo
2
ano
M
8
|
E =
AN
& 4
aNs &
2 3
- sl %
+0 - !
e ¥ 2R
z INEE
& b L
] 3
3 2
g &
48d¥LEOEETHTR

= 2L

o,+838

3 ano
£0907A9ITNOOH
9

<] 1ooA

<] 100n

1043U0D—-0 G69I

<J a3y

<] i3y

813y
L7134
913y
513y
P13y
N
z13d
80°5-9/SINSAMWIN 1138
or
70
20
€0
0
20
. 50
80°5-9/SINSOMIN
oir
10
S0
ano
AZ+
ano
: Az
ano
S
D
RS
f
£
o A
2 3
_ a 2
20 N W]z u
Se
2 HEER
2SN
] o o
gl ¢
48d¥LEOE6 TN Y
o1v808
» aL
® ano
£0907 A9 NOOL
80
ano
o
g
D
S -
SWN B
i g
e A
2 3
@ 2
c h
0 Sye 9|2
N
@ | '
S 3
2 3
2 G
48dMLEOE6TNTY

osv808
£ e
s ano
£0907ABITNOOK

- 52

<] 1oon

<] 100n

ang
Md¥£68Ydd
in
&
Ld ©vas
Los os|ir ——
oH Sd £090~ 50 AG+
vd N <1008
sd va
zd 20V g ane 0TEXITUIS
Ld Lav (7 - er
0d <oav(f
g o
: ==
&
3 9TTXITUIS
8 o s
z »
N Py 3
5 1815 =
feJp— z1° -8 L
5 i
g 9TzaTus h 8
2 " b T3
o< I8
£ @
He |13 ne+
3 8 8 <] 109A
o I I
+5 m b ,w FJ ,u E]
Ya =1 ol ol
<= 3 8 3 l=sng-1INn
4 I e AG+
129A
ans ans
n s n s
° 8 ° 8
] o g o
NS U SN - 0
“ m “ m
P g o 4
N M @ N9 m @
2 2 2 3
- ¢ 7 c oM. o
90 1N [sb I8
s 9|3 3|8 rVe # 2= 2
E [N E I I °
& ' o 3 5 of
3 3 3 3
484Y¥1£0£8TNTNI 48441£0£67TN TN
oL
anPAE \ <] o3 < s13d
JL¥808 oL¥808
» vl » s
L ano L aNg
£0907A9LTNOOL £0907 A9LTNOOL
+ +
S 82 S Lo
2 2
ane QN9
= < o <
8 8 8 8
5 2 L a
Vi U Vi U
h 3 | 8
aNo A ~ e @
2 =} 3 2 3
S el EhE
I | £
3 e By s R R R o Ee ¢z ¢ 3
@ 2 I = oo » A I I ~
3 ' b 5 @ 5 L
2 g 3 S 3
3 3 3 2 3
G H H S 2
48dH1E0SETNTAI 48dH1S0SETHT
< Je1 <z <J 13y

acveol
o
ano

£0907 AL TNOOK

S

+0

oLv808

3

6L
ang
£0907A9ITNOOH

€0

© 2013 Conrad Electronic

121 C-Control Pro IDE

2.2.11 UNIT-BUS Ext-Board

The C-Control PRO AVR32Bit UNIT BUS Ext board (Conrad Order No. 192673) is designed to ex-
pand the functionality of the C-Control PRO AVR32Bit products. The product is designed as an open
breadboard experimental circuit board with a pitch of 2.54mm. It is equipped with two 6-pin header
connectors and is intended only for the C-Control UNIT-BUS. The board serves to build your own cir-
cuits. For circuit design and the comfortable replica the circuit board is printed with a coordinate
system. The board can directly be mounted under or next to the Mainboard. PCB spacers are
needed for "sandwich” mounting with a minimum of 20mm length and a thread diameter of 3mm.

Connection and Commissioning

Make sure that before you connect the modules to your C-Control Pro AVR32Bit Mainboard all con-
nections to connected devices are separated and wltage free. On the C-Control PRO AVR32Bit Ap-
plicationboard and Mainboard, a 6-pin header connector is labeled UNIT-BUS. This header connector
is suitable for connecting the UNIT-BUS Extension boards. On these pins, 12C, UART and 5V are
passed out. The C-Control PRO AVR32Bit Unit works with 3.3V lewel, and extensions, as well as the
older C-Control 12C-bus modules, use 5V. Therefore, between the C-Control PRO AVR32Bit UNIT
and the UNIT-BUS are level converters that converts the 3.3V signals of the UNIT to 5V signals of the
UNIT-BUS.

UNIT-BUS

U_SCL 6 ' 5 U_SDA
U_RXD TXD_5V
VCC1 GND

4 K
2 1

UNIT-BUS Pin Configuration

The UNIT-BUS Extension board gets connected via a 6-pin ribbon cable with pin header connector
(female). Because depending on the application, the cable lengths are varying, we offer these com-
ponents for self-assembly using the following order numbers:

¢ Ribbon cable RM1.27 0.05mm?2; Order No. 607237
¢ Pin header connectors 2x3 RM:2.54mm: Order No. 742063
e Matching connection cable pre-assembled (length 35cm) Order No. 198876
[]

To get a clean signal for long cable lengths and high transmission capacity use the 12C line driver
(Order No. 198280)

© 2013 Conrad Electronic

Hardware 122

= Tip: The pin header connectors can be easily pressed together with a small vise. Cut the cable
to proper length and straight it in the plug (guide groowves in the plug), and then clamp between the
two vise jaws, and turn it carefully until the connector clicks into place.

10 15 20

0000000000000 0O0
0000000000000
elejolelelelelolele/elelelele]
0000000000000
O00OOLOOOOOOOOO
elelolelelelelelele/elelelele)
olejelelolejelololo/elolelele)
ololololelololelolo/elololele)
0000000000000
0000000000000
O00O00OOOOOOOOO0O
0000000000000
0000000000000 0O0
0000000000000
O00O0OLOOOOILOOOO
elojolelelelelolele/elelolele)
0000000000000
ololololelololololo/olololele]
0000000000000
0000000000000
OO00O0OLOOOOOOOOO
0000000000000
0000000000000 00
0000000000000 0O
000000V OOI0O0O0
olelojoleloleololelo/eleolelele)

oo @)
O|o @)
O|o D)

®)

GND
VCC
XD
RXD
SDA
SCL

GND[O-O
vee |00
XD OO
RXD|O-O
@30
(030)

SDA
SCL

530530

UNIT-BUS

0000000 OOOOOOIOOOOJIOOOOICOOOO
00000000 OOOOOIOOOOJIOOOOIOOOO
00000000 OOOOOIOOOO0OOOOICOOOO
0000000000000 OOOOOOOOOOILOOOO

olele
000
olele]
o]ele
000
CHOlDLO)]
olelele
DO
000
SH(@re)
0000

SISHE1o)
CO000OOO0OILOOOOIOCOOOIOOOOIOOOOIN
(@)

(@]
O
&)
o

0000000000000 O0OOCOO0O0O0CO000|™
O0O0O0QOOOOO00I0OCOOICOOOOILOOCOOOOO
COCO0QOOOOO0OLOOOOILOOOOILOOOOIOOOO|w»

0000000000000 OOOOOOOOOOILOOOO
0000000000000 OOOOOOOOOOILOOOO

[ojojejo]e)[e]e)

© ~ ©
C-CONTROL PRO AVR32BIT UNIT-BUS EXT BOARD

PCB Overview

O
O
@]

© 2013 Conrad Electronic

123

C-Control Pro IDE

110mm

<} =
100mm
84mm
<3 =
43mm
i
T
A O Q ‘ Q O
i
i
i
i
i
- ! el
o | o
‘ 2 ‘ ‘ 3
4 4
f ik
i
i
]
b i
i
i
i
i
i
i
i
i
i
i
E i
= E oo Lo i i R i e A L e e i e e e i e A i e R i e
o i
= i
i
i
£ !
£ I
e i
i
i
i
i
i
i
i
i
i
i
i
i
£ @ 3mm (4x) !
£ i
2 i
i
= ‘ O
v v
CAD

Technical Data:

dimensions

110mm x 90mm x 13mm (LxWxH)

pin header pitch

2.54mm

hole grid pitch (PCB) 2.54mm
dimensions hole grid 30x30 pins
weight 30g

© 2013 Conrad Electronic

Hardware 124

2.2.12 USB-Board

The C-Control PRO AVR32Bit USB-Board (Conrad Order No. 192688) is designed to expand the
functionality of the C-Control PRO AVR32Bit products. The product is configured as open circuit
board. It is equipped with a USB Type-B connector and a 3-pin header connector (pitch: 2.54mm) for
connection to a 3.3V UART interface of the C-Control PRO AVR32Bit.

Connection and Commissioning

Make sure that before you connect the modules to your C-Control PRO system all connections to
connected devices are separated and wltage free. The C-Control PRO AVR32Bit UNIT has several
UART interfaces (see manual) that can be connected to the USB board. On the boards, e.g. Applic-
ationboard or Mainboard, are the UART interfaces accessible through contacts at which the board
can be connected. The USB board acts as an interface between the UNIT UART interface and a PC
USB port to share data.

=» Under the following link you can download the driver for the product: http://www.sil-

abs.com
0O QN
E5 8
e o o|J2 =
oE UART3.3V 2
o O a
o & <
(xp]
Q& Q
Oz o
(W8]
USB 2
|

PCB Overview

© 2013 Conrad Electronic

http://www.silabs.com
http://www.silabs.com

125

C-Control Pro IDE

height: 11mm

O / : O i 7
| e o
Rpocaco, I O I~ - -~ -
| @ o @ &
| W

v

@2,5mm (4x) |

O i & Loy

[
25mm

Y

27mm

V

Technical Data:

CAD

dimensions 23mm x 25mm x 12mm (LxWxH)
UART pin pitch 2.54mm

USB Type-B

operating woltage powered by USB port

UART lewel 3.3V RxD/TxD

weight 59

© 2013 Conrad Electronic

126

Hardware

22121 Connection Diagram

130}

10ous | R

s 2102°v0°'81 :pabuoya

pJoog €SN ZLAAY

s9 LOZ' 1S tumosp

HOS'LATESN ™ ZEUAY.

WNYIN3IO
J1907TONHO3L O H o
AviNOD

00 00 00| N 43P0

xxg1 LL/TZ [N Y00foud

pioog gSN YAV Odd [043U0Q—0] XXX|

49°'2-§'¥ 11180
49°'T-§' v 1I8a

49'2-6'7 1A

Ny

AOK

ano

Z
&1

}_{

|
1
€0

L uid o3 2s0|3
£090-AQITNL

£0907 ABITNDOL

ans

SneA—esn
L ano ans
3 8
3] N
ano ane o [5
ol |5 ¢ 2 ans
s b——ggm= e
H 3 2
o g 2 NEE
aan
o2
= —qasn
o +a-asn [
ano 5 ano

axy Lavn

ax1Lavn

07 4780100-6Z£197 104 B 8SN

asn

© 2013 Conrad Electronic

127 C-Control Pro IDE

2.3 LCD Matrix

The complete datasheets are on the CD-ROM in the directory "Datasheets".

CHARACTER MODULE FONT TABLE (Standard font)

Character modules with built in controllers and Character Generator (CG) ROM & RAM will display 96 ASCII and spe-
cial characters in a dot matrix format. Then first 16 locations are occupied by the character generator RAM. These

locations can be loaded with the user designed symbols and then displayed along with the characters stored in the CG
ROM.

[CHARACTER FONT TABLE |

LoweR Yes | 0000 | 0010 1010 (1011{1100 (1101|1110 |1111
0000 CG(JF.Q)AM
0001 @
0010 ® ”
0011 @
0100 ®)
0101 © | “n
0110 @
0111 ® |
1000 w | L
1001 @
oo | @ | R LTS A E m | T v L]
1011 @ | | 3
1100 ® e | L
1101 ©@ | ™| ==
1110 @ . | o
1111 @ | | L
Page 47

© 2013 Conrad Electronic

129

C-Control Pro IDE

3

IDE

The C-Control Pro User Interface (IDE) consists of the following main elements:

Sidebar for Project Files
Editor Window

Compiler Messages

C-Control Outputs
Variables Window

Here seweral files can be filed to form a project
In order to edit files as many editor windows as necessary can be

opened.

Here error messages and general compiler informations are displayed
Distribution of the CompactC program’s debug messages
Here monitored variables are displayed

-
& c-Control Pro IDE

: Fle Edit Project C-Control Debugger Toolk Window Help

B H_j |_§% i | @ "— »

LG coms [l B e s EH iR RERZ. 98

- LED3
o LED3ucc

Projectfiles

& o3 @]

¢~ LED2_On {int delay_val)
i main { void)

int dpkseiis
Editor Tabs

1 i
22 (name: LEDZ On =
3 input: int delay wval
22 |putput: 5
25 description: turn LED2 on and off |
26 A0
* H|void LED2 On(int delay_val) E|
28 { |
-] ~ Bort WriteBit (PORT LED2Z, PORT ON): S/ turn LEDZ on | |
. omimagy asday val) // delay delay val ms
e Breakpaints. - t (PORT_LED2, PORT_OFF) ; // turn LED2 off LI
» ¥
33
@ |/
25 name: main
Function Overview * |input: =
a7 output: =
38 description: main program
L] '
¢ [|void main (void)
41 {
. delwal=2000; /{ delay time Zsec
. Port_Attribute (PORT_LED2, PORT_ATTR_OUTPUT | PORT_ATTR INIT LOW); // set LED:
. Port Attribute (PORT_T1, PORT ARTTIR INPUT): f// set SW1l port to input
5
48 while {true)
- 47 {
Compiler Messages, . while (Port_ReadBit (PORT_T1)): /{ wait for SW1
Output & Search . LED2_COn(delval) ; ff function call with delay time i
1] 1 | {3

j P
Messages Duipu;Seardﬂ

Interpreter started - &4kb RAM

4 |Wariables

iVaIue |

delval

Niriian 2000 (0x7d0)
in Debugger

29:0 Ins

P NUM 50

© 2013 Conrad Electronic

IDE 130

3.1 Projects

Ewvery program for the C-Control Pro Module is configured through a project. The project states which
source files and libraries are being utilized. Also the settings of the Compiler are noted. A project
consists of the project file with the extension ".cprj" and the appropriate source files.

3.1.1 Create Projects

In the menu Project the dialog box Create Project can be opened by use of item New. Here a project
name is issued for the project. Then the project is created in the sidebar.

=¥ |t is not necessary to decide in advance whether a CompactC or a BASIC project will be created.
In a project CompactC or BASIC files can be arranged combined as project files in order to create a
program. The source text files in a project will determine which programming language will be used.

Files with the extension “*.cc* will run in a CompactC context while files with the extension “*.cbas*"
are translated into BASIC.

-~

T T
Projekt erstellen ﬁ
Projektnanme
|
k. Abbrechen
- -

3.1.2 Compile Projects

Messages | Output | Search |

Compiling Project LED3

C-Control Pro Compiler (C) 2013 Conrad Electronic
Running Pass 1

Running Pass 2

E:\SRCVCP-Control\CPro. Projects\AVR.32 tests\LED 3Y.ED3.cc{29,5): Semantic Error - function Port_ WritBit not defined

one Error - compilation aborted.
Writing Symbols - 10509 bytes. .

© 2013 Conrad Electronic

131

C-Control Pro IDE

3.1.3

In menu Project the current project can be translated by the Compiler by use of Compile (F9). The
Compiler messages are displayed in a separate window section. If errors arise during compilation
then one error will be described per line. The form is:

File Name(Line, Colutm): Error Description

The error positions can be found in the source text by use of commands Next Error (F11) or Previous
Error (Shift-F11). Both commands are found in menu item Project. Alternative the cursor can in the
Editor be placed onto the error position by use of a double mouse click on the Compiler's error mes-
sage.

After successful compilation the Byte Code will be filed in the project list as file with the extension
"*.bc".

By a right mouse click in the area of the compiler messages the following actions can be initiated:

o delete — will delete the list of compiler messages
e copy to clipboard — will copy all text messages onto the clipboard
Project Management

A right mouse click on the newly created project in the sidebar will open a pop-up menu with the fol-
lowing options:

B2 Add File
Add Mew File
Rename
> Compile F9
E4 Options

Newly Add — A new file will be set up and simultaneously an editor window will be opened.

Add — An existing file will be attached to the project.

Rename — The name of the project will be changed (This is not necessarily the name of the project
file).

Compile — The compiler for the project is started.

Options — The project options can be changed.

Adding of Project Files

When clicking Add project file the file Open Dialog will appear. Here the files to be added to the pro-
ject can be selected. Any number of files can be selected.

Alternative by use of Drag&Drop files from the Windows Explorer can be transferred into the project
management.

© 2013 Conrad Electronic

IDE 132

Project Files

When files have been added to the project these can be opened by a double mouse click onto the
file name. By use of a right click further options will appear:

Up
Down
Rename

“| Open File Path

= Remove
E< Options

Up — The project file will move up the list (also with Ctrl - Arrow up).
Down — The project file will move down (also with Ctrl - Arrow down).
Rename — The name of the project file will be changed.

Delete — The file will be deleted from the project.

Options — The project options can be changed.

© 2013 Conrad Electronic

133

C-Control Pro IDE

3.14

Project Options

-

Project Options

y{x]
Avthor

Werzion

Comments

Options
CPL:

EJI Create Debug Code

[¥] Create Map File

[7] Check Aray Indey Limits

[¥] Peephale Optimizer

[¥] Fecoghize Unused Code

[¥] W arming type of &rgument changed in Call
[¥] " arning Parameter iz of type Pointer

[¥] " arning &rray Yariable too small for String
[¥] " amning type of return Parameter changed

[e T ol TSR R o WG T R] R PR IR IR ey

I Configure Libranies]

m

| ok | | Cancel

For each project the compiler settings can be changed separately.

The items Author, Version, Commentary can be freely inscribed. They serve as memory support in

order to better remember the project details at a later date.
In "CPU" the target platform of the project is determined.

Configure Libraries calls the Library Management.

Options

Option

Meaning

© 2013 Conrad Electronic

IDE 134

3.15

Create Debug Code

Creates Debug Code. If Debug Code is compiled the Byte Code be-
comes insignificantly longer. For each line in the source text which
contains executable commands the Byte Code will be one Byte
longer.

Create Map File

Generates a map file that shows the address and length of vari-
ables.

Check Array Index Limits

Code will be inserted code that checks the index of array ac-
cesses. Use only for testing, since the runtime is increased.

Peephole Optimizer

Optimizes special code sequences. Turn always on.

Recognize Unused Code

Unused code will be optimized away. Turn always on.

Warning type of Argument
changed in Call

The type of a variable was converted in a function call.

Warning Parameter is of type
Pointer

The type of a pointer variable (array) is of a different type than ex-
pected by the called function.

Warning Array Variable too
small for String

The string does not fit fully in the assigned array variable.

Warning type of return Para-
meter changed

The return value is of a different type than expected in the expres-
sion.

Warning Floating Point type

changed in Initialization

The floating point value is converted during initialization to another
type.

Library Management

In the Library Management the source text libraries can be chosen that will be compiled in addition

to the project files.

© 2013 Conrad Electronic

135 C-Control Pro IDE

r)
Select Library @

[DCF_Lib.cc
[¥] IntFunc_Lib.co
[key Lib.co
[]LCD_Libeec
[] String_Lib.co

Librarpname E]

Inzert Replace Clear
[|lpdate Library]
I] l [Cancel ‘

Only those files will be used for compilation whose CheckBox has been selected.

The list can be altered by use of the path text input field "Library Name" and the buttons in the dia-
log:

e Add — The path will be added to the list.

¢ Replace — The selected entry in the list is replaced by the path name.

¢ Delete — The selected list entry is deleted.

e Update Library — Files present in the Compiler Presetting but not in this list will be added.

3.1.6 Thread Options

Since \ersion 2.12 of the IDE the thread configuration is no longer made in the project options.
Please see the new syntax in Threads.

© 2013 Conrad Electronic

IDE 136

3.1.7 Todo Liste

On the Project menu a simple todo list can be called. The content is stored together with the pro-

ject.
(@ Todo ESREESE)
o SRt . Competon Priory Created |
Mew Entry] [Delete l l Close
3.2 Editor

Several windows can be opened in the C-Control Pro Interface. Each window can be altered in size
and displayed text detail. A double mouse click on the title line will maximize the window.

© 2013 Conrad Electronic

137

C-Control Pro IDE

I

bt

Sf main program
£

void main(void

delval=1000;

while {1}

LED Loop (delwval);

gt

Functions Overview

LED _Loop {int delay_val)
main { void)

£

delay time:

1000m=

Ji function call with delay time

i

as parameter

A mouse click in the area to the left of the text will there set a Breakpoint. Prior to this the source
text must be compiled error free with "Debug Info" and in the corresponding line really executable
program text must be placed (i. e. no commentary line o. e.).

On the left side is an oveniew of all syntactically correct defined functions. The function names with
parameters are expressed in this view. The function where the cursor in this moment resides is
drawn with a grey bar in the background. After a double click on the function name the cursor jumps
to the beginning of that function in the editor.

© 2013 Conrad Electronic

IDE 138

Code Folding

To maintain a good ovenview ower the source code, the code can be folded. After the syntactical ana-
lyzer, that is built into the editor, recognizes a defined function, beams are drawn on the left side
along the range of the function. A click on the minus sign in the small box folds the text, so that only
the first line of the function can be seen. Another click on the small plus sign, and the code unfolds

again.

| 6 o @)

16 x’x’x’x’x’x’x’x’n’n’n’n’######################x’x’x’x’x’x’x’x’x’a’a’a’a’######################x’x’x’x’x’x’x’x’x’n’/ -~

17

1B int delwal;

15

0

1 S F————————————

iz name: LEDZ Cn

b input: int delay wval

4 cutpat: S

25 description: turn LED2 on and off =

- L7
'-.rc_d

33

24 S ——

5 name : main

26 input: =

37 ocutput: =

18 description: main program

W | ¥y
Efvoid

53

54

55 P L

56 * Info

57 LA S R R R R R AR R R R AR R EE SR LRSS RREREEEEEEEEEEERREEEEEEREEEEEEREEREEREEEEEEEEEEEEEREESES]

58 * Changelog:

5 * -

0 * i

< [oam | 3

To fold or unfold all functions in an editor file, the options Full Collapse and Full Expand are select-
able in the right click editor pull-up menu.

Syntactical Input Help

The editor now has a syntactical input help. When the beginning of a reserved word or a function
name from the standard library is typed into the editor, the input help can be activated with Ctrl-
Space. In dependency from the already entered characters, a popup select box opens, that shows
the words that can be inserted into the source code.

© 2013 Conrad Electronic

139 C-Control Pro IDE

delval=2000;
Fr:urtl(PORT LED2, PORT ATTR O
i B, PORT

PORT_ATTR_OUTPUT P

PORT_ATTR_PULL DOWN

kit (PORT

Parameter Input Help

Nach einer erfolgreichen Kompilierung werden auch die Parameter einer Function analysiert. Tippt
man einen bekannten Funktionsnamen und Klammer auf "(", so wird in gelb die erwarteten Typen
der Funktionsparameter angezeigt.

After a successful compilation, the parameters of all function are analyzed. If you tap a known func-
tion name and a parenthesis "(", the expected types of the function parameters displayed in yellow.

-rxxxxxx#x###*|hvteﬁl_ramddr[], char path[], byte mode h
res=SDC_Fopen ([fil, "0:/logl.txt”, FA WRITE|FA CREATE ALWAYS):

3.2.1 Editor Functions

Under menu item Edit the most important editor functions can be found:

e Undo (Ctrl-2) — will execute an Undo operation. The possible number of Undo steps depends on
the settings in Undo Groups.

e Restore (Ctrl-Y) — will restore the editor condition that has been changed by previous use of the
Undo command.

e Cut (Ctrl-X) — will cut out selected text and will copy it to the clipboard.

e Copy (Ctrl-C) — will copy selected text to the clipboard.

¢ Insert (Ctrl-V) — will copy the contents of the clipboard to the cursor position.

e Select All (Ctrl-A) — will select the entire text.

e Search (Ctrl-F) — will open the Search dialog.

e Continue Search (F3) — will continue the search using the set search criteria.

¢ Replace (Ctrl-R) — will open the Replace dialog.

e Go To (Alt-G) — will allow to jump to a definite line.

© 2013 Conrad Electronic

IDE 140

Search/Restore Dialog

- i ™
Search/Replace @

|Search lF‘ruject Search | Replace

Text to find: | Izl
Replace with |E|
Options Direction
EI Case sensitive g
. @ Forward
[7] whole wards only
[Regular expressions i Backward
[] Prompt on replace
Origin
S_EDDE i@ From cursar
@ Global _
) Selected text (2 Entire scope

e Text to find — Input field for the text to be searched for.

e Replace with — Text that will replace the text found.

e Case Sensitive — makes the distinction between upper and lower case writing.

e Whole words only — will find only whole words rather than part character chains.

e Regular expressions — activates the input of Regular Expressions in the search mask.
e Prompt on replace — prior to replacing the user will be asked for approval.

Next, the search direction (Forward, Backward) can be predetermined, if the entire text (Global) or
only a selected area (Selected text) is searched. Also sets whether the search starts at the cursor
(From cursor) or the beginning of the text (Entire scope).

Project Search

In project search, a text is searched in more than one file.

All project files - Searches the text in all stored project files, even if they are not open in the editor.
All open files - Scans all files open in the editor. It will, howewver, not consider unsaved changes.

3.2.2 Print Preview

To deliver the source code as Hard Copy or for archiving purposes, the C-Control Pro IDE has built in
printer functions. The following options can be selected from the File Pull-Down Menu:

© 2013 Conrad Electronic

141

C-Control Pro IDE

3.2.3

Print:

Print Preview:
Printer Setup:
Page Setup:

Prints the indicated pages
Shows a print preview

Choose the printer, paper size and orientation

Header and Footer lines, line numbers and other parameters can be selected

D318320.cprj
IntFunc 1ik.co

D318320.cc

CCERO-TE2M

15.02.2011

One¥Wire functions

Hote:
Sample Code to read D318320 cemperature sensor from Dallas Maxim

!

name: main

inpus: =

cutput: =;

description: read from semsor

woid main[void)

{

char text[£1];

ins rew, i, bemp;
byce rom code(B];
byce scraeh pad[s];

ret= COneWire Reset [FORTSZ);

ifizes = 0]

t
text= "no device found”;
Mag_WriteText (text);
goto end;

b

OneWire Write(0x22]; // zead slave’'s €4-bit ROM code cmd
for [1=0;i<B;i++)
8
rom_code[i]l= CneWire Read(); // read ROM code byte
Mag_WriteHex [rom_code[il);

'
Mag_WriteChar('\c');

OneWire_Reset [FORTSZ) ;
OneWire Write[Oxco):

Keyboard Shortcuts

© 2013 Conrad Electronic

© 2013 Conrad Electronic

143 C-Control Pro IDE

Cil+ K+ B Marks the beginning of a block
Cirl + K+ K Marks the end of a block
Esc Reset selection

Ctrl + digit (0-9)

Go to Bookmark digit (0-9)

Shift + Ctrl + (0-9)

Set Bookmark digit (0-9)

Ctrl + Space

Auto completion popup

3.2.4 Regular Expressions

The search function in the editor supports Regular Expressions. With this function character chains
can highly flexible be searched for and replaced.

n A Circumflex at the beginning of the word finds the word at the beginning of &
line

$ A Dollar Sign represents the end of a line

. A Dot symbolizes an arbitrary character

* A Star stands for the repeated appearance of a pattern. The number of repeti-
tions may also be Zero

+ A Plus stands for the multiple or at least solitary appearance of a pattern

[1] Characters in square brackets represent the appearance of one of the characters

B A Circumflex in square brackets negates the selection

[-] A Minus in square brackets symbolizes a character range

{} Tailed braces will group separate expressions. Up to ten levels may be nested

\ A Back Slash will take the special meaning from the following character

Examples

Example will find

~oid the word "wid" only at the beginning of a line

$ the Semicolon only at the end of a line

~oid$ Only "woid" may stand in this line

vo.*d e. g. "wod","woid","wgqd"

vo.+d e. g. "wid","vgqqd" but not "vod"

[gs] the letters 'q' or 's'

[gs]port "qport" or "sport"

["gs] all letters other than'q' or 's'

[a-g] all letters from 'a’ through 'g' (including)

{tg}+ e. g. "tg", "tgtg", "tgtgtg" asf.

\$ '$

© 2013 Conrad Electronic

IDE 144

3.3

33.1

C-Control Hardware

Under menu item C-Control all hardware relevant functions can be executed. These include transfer
and start of the program on the hardware as well as password functions.

Interface Selection

In the toolbar the COM interface that addresses the C-Control Pro module can be directly selected in
a drop-down menu.

In this list all interfaces are labeled COM, regardless of whether it really is a serial port or a USB-
connected virtual comport.

| [7] comis [+]
#] Refresh COM
4 Search Unit

The menu entry Search Unit searches for connected C-Control Pro modules. The function Refresh
COM looks for changes of the connected COM interfaces. If for example a USB cable is connected,
and a new COM port is available.

v COMS [x],

A click on the plug icon turns the COM port off (red cross), another click on again.

3 MUM =

The green "LED" display indicates that the COM Port is open. If the indicator is red, the COM Port is
closed.

=% An open COM Port (green) does not necessarily mean that a C-Control is connected, it could
be another device e.g. a USB-serial conwerter. Only a Search Unit checks whether there is a con-
nected C-Control module,

© 2013 Conrad Electronic

145

C-Control Pro IDE

3.3.2

3.3.3

Start Program

Program Transfer
After a project has been translated free of errors the Bytecode must first be transferred onto the C-
Control Pro module before it can be executed. This is done by use of the command Transfer (Shift-
F9) in menu C-Control.

= After an update of the IDE, if necessary, not just the bytecode is transferred to the module, but
also the latest version of the interpreter is sent to the C-Control module.

Program Transfer without source

If you want to transfer a program from which you have only the bytecode (.bc) and no source code,
then you can load the bytecode to the C-Control Pro Module by pressing Transfer File.

Start

By Start (F10) the execution of the Bytecode is started. On the Mega Applicationboard this is
signaled by turning on the red LED.

Stop

During normal operation a program will be stopped by pressing RESET1 (Mega) or the start/stop but-
ton (AVR32Bit). For performance reasons the program execution on the Module is during normal op-
eration not being stopped by use of software. This can however be performed with the IDE function
Stop Program when the program runs in Debug Mode.

=% In rare cases the system can get jammed during USB operation (only C-Control Pro Mega Ap-
plicationboard) when the RESET1 button is pressed. To overcome this please also press RESET2 in
order to issue a Reset pulse to the Mega8, too. The Mega8 is on the Application Board responsible
for the USB interface.

Auto Start

If the module is installed in a hardware application, it is often wanted that the user program is started
automatically. See Autostart (Mega) and Autostart (AVR32Bit).

C-Control Configuration

The function C-Control Configuration allows to change the hardware settings of the C-Control Pro
AVR32Bit. Here you cannot control settings of the C-Control Pro Mega modules.

© 2013 Conrad Electronic

IDE 146

- _ '
C-Centrol Configuration &J

[¥] Ethernet Suppart Metwark
7] Allow Pi
!ﬁ. ;Jr'l':b‘l:'ga ” HostName C-Control AVE32
Ef_] save DHCP settings
[F] Lock Options access IP-address 192.168.000.105
[] Disable Autostart
[T 2 sec. Autostart Delay Netmask 255.255.255.000
[] Prahibit external Program Stop
Gateway 192.168.000.001
Bootoader Port 50234
MAC
TCRTP Memory (kb) 18
Edit MAC Address ok | [cancel]

You can enter the current network settings, the UDP port of the bootloader and the MAC address.

=% To awoid connection problems, the MAC address should be set to a new value before switching
on the Ethernet support. To this end, its own MAC address is generated and supplied on a label for
each C-Control Pro AVR32Bit. See Software Installation.

Options

Ethernet Support - Switches on Ethernet support.

Allow Ping - ICMP echo requests are answered.

Lock Options Access - The C-Control configuration cannot be changed. Only Reset Module only al-
lows this again.

Disable Autostart - Autostart is not performed (see Autostart).

Enable DHCP - Gets network information from a DHCP server.

save DHCP settings 2Changed DHCP data is stored.

Prohibit external Program Stop - A program cannot stopped by software.

2 sec. Autostart Delay - Autostart is delayed by 2 seconds so that USB is powered up.

3.3.4 Search Ethernet

If Ethernet Support is enabled, the C-Control Pro AVR32Bit module is visible on the local Ethernet
LAN. As the search is performed via UDP broadcast, it is limited to the local subnet, since routers
generally do not forward broadcasts. The default UDP port for the Ethernet access is 50234. This
port should not be restricted by a local firewall on the PC.

© 2013 Conrad Electronic

147 C-Control Pro IDE

= Currently, the Ethernet support is limited to program update.

. =)

Search Ethernet

IF Mame P MALC
ETH1 C-Control AVR32 192,168.0.105 | cO:df:77:00:00:01

(8]4] I Cancel

3.3.5 Outputs

For display of Debug messages there is an "Outputs" window section.

Mezsages | Cutput | Search |

Interpreter started - &4kb RLM
Hello World

Interpreter stopped
Time Oms | f

4 | m | b

Here is shown when the Bytecode Interpreter has been started and terminated and for how long (in
milliseconds) the Interpreter was in operation. The operation time howewer is not very useful if the In-

terpreter has been stopped during Debug Mode.

The Outputs window can also be used to display the user's own Debug messages. For this there are

© 2013 Conrad Electronic

IDE 148

3.3.6

3.3.7

several Debug Functions.

With a right mouse click in the Debug Outputs section the following commands can be selected:

¢ Delete — will delete the list of Debug outputs
e Copy to Clipboard — will copy all text messages onto the clipboard

PIN Functions

Some solitary functions of the Interpreter can be protected by use of an alpha-numeric PIN. If an In-
terpreter is protected by a PIN normal operations are prohibited. By means of a new transfer the In-
terpreter can be overwritten, the PIN will however stay presened. Also a normal start other than the

Autostart behaviour is no longer allowed. Furthermore the scans of hardware and firmware version

numbers are locked.

If access to a forbidden function is tried a dialod with the following text will be displayed: "C-Control
is Password protected. Operation not allowed!".

Through inscription of the PIN with Enter PIN in the C-Control Menu all operations can again be re-
leased.

In order to enter a new PIN or to delete a set PIN there are the commands Set PIN and Delete PIN in
the C-Control Menu. If there is an old PIN in exitence then the Module must of course first be un-
locked by entering the old PIN. The PIN can have a length of up to 6 alpha-numeric characters.

=¥ In case the password has been lost there is an emergency function which can be used to reset
the Module to its initial state. In C-Control there is the option Reset Module which can be used to de-
lete PIN, Interpreter and Program.

- it
Password Protection ﬁ

Entry

0K | Cancel |

Version Check

Since the C-Control Pro Mega Series supports various hardware platforms it is important to closely
monitor the current version numbers of Bootloader, Interpreter and Hardware. This is possible by use
of item Hardware Version in the C-Control menu.

© 2013 Conrad Electronic

149

C-Control Pro IDE

3.4

r ™
Hardware Information [é]
Bootloader ersion 1.00
Interpreter Yersion 1.00
Hardware Yerzion m
Hardware C-Control &WVE 328t
Connection Maode 1SB Part
Debugger

In order to activate the Debugger the project must first be compiled in Debug Code free of errors and
then transferred to the Module. The file holding the Debug Code (*.dbg) must be present in the pro-
ject list.

In the Debugger menu all Debugger commands can be found. The Debugger ist started with Debug
Mode (Shift-F10). If at this point of time no Breakpoint is set then the Debugger will stop at the first
executable instruction.

If in Debug Mode, the next Breakpoint will be reached by use of Start (F10). If no Breakpoint is set
then the program will be executed in its normal way. There is the exception however that the pro-
gram flow can be stopped by use of Stop Program. This only works providing that the program has
been started from the Debug Mode.

If the Debugger has stopped in the program (a blue bar is displayed) then the program can be ex-
ecuted in single steps. The instructions Single Step (Shift-F8) and Procedure Step (F8) respectively
will execute the program code up to the next code line and will then stop again. Opposing to Single
Step the function Procedure Step will not jump into the function calls but will overpass them. If the
program has stopped all breakpoints can be changed.

=¥ If a loop contains only one code line then one single step will execute the entire loop since only
after this branching out to a new code line will take place.

With the instruction Leave Debug Mode the Debug Mode will be terminated.
= During active Debug Mode the program text can not be altered. This is because line numbers

holding set Breakpoints must not be moved out of place. Otherwise the Debugger would not be able
to synchronize with the Bytecode onto the C-Control Module.

© 2013 Conrad Electronic

IDE 150

3.4.1 Breakpoints

The editor allows to set up to 16 Breakpoints. A Breakpoint is entered by a mouse click to the left of
the beginning of a line (see IDE or Editor Window).

| @ Lep2c E|

4 e ¥d -

+ H|void main (void)
4z ;

42 byte i,n;
4

Bl|#ifdef AVR32

. Port Attribute (PORT LED1, PORT ATTR OUTPUT|PORT ATTR INIT LOW):
47 #else
48 Port_DataDirBit (PORT_LED1, PORT_OUT); /f set LED1 port to ouput

8 | $endif
while (1)

.
51
+ for (i=0; i<5:; i++)
53
* delval=1004+i*100;
+ for (n=0: n<3: ntt)
L3 i |
g LED Loop(delval): // function call with delay time I |
8 3 - ff as parameter
1

=% The number of Breakpoints is limited to 16 because this information is carried along in RAM dur-
ing operation of the Bytecode Interpreter. Other Debuggers on the Market will set Breakpoints dir-
ectly into the program code. In our case this is not desirable since it would drastically reduce the life
time of the flash memory (appr. 10,000 writing accesses).

3.4.2 Variable Watch Window

The contents of variables can be displayed within the Debugger. To do this the mouse pointer is
placed owver the variable. Within approximately 2 seconds the content of the variable is displayed in
form of a Tooltip. The variable is first displayed in accordance to its data type and then, separated by
a comma, as Hex number with a preceeding "0x".

If several variables need to be monitored then the variables can be comprised in a list.

© 2013 Conrad Electronic

151

C-Control Pro IDE

Wariables 1‘-.-’alue]
delval 100 (0x6<)

.| main:n 0 (00}

In order to enter a variable into the list of monitored variables there are two possibilities. For one the
cursor can be placed in the text editor at the beginning of a variable and then Insert Variable can be
selected by a right mouse click.

Cut

Copy

Paste Ctrl+V
Context Help Ctrl+F1
Find Ctrl+F

Full Collapse
Full Expand

Insert Variable
Show Array

The other possibility is by use of the context menu in the variables list which can also be activated
by a right mouse click.

When Insert Variable is selected then the variable to be monitored can as text be entered into the
list. In case of a local variable the function name with a preceeding colon (Function Name : Vari-
able Name) is entered. With Change Variable the text entry in the list can be altered and with De-
lete Variable the variable can be entirely erased from the list. Prior to this the line holding the variable
to be deleted must be selected. The command Remowe All Variables will delete all entries from the
list.

;T{.,-_s Insert UariaBIé
Ef-;".- Edit Variable
;’/ Edit Value

| G Remove Wariable
[Refresh Variable

E‘L Remove all Variables

Auto Refresh

© 2013 Conrad Electronic

IDE 152

Under certain circumstances an error message is shown instead of a value in the list:

no Debug Code No Debug Code has been generated

wrong Syntax During text entry invalid characters have been entered for a vari-
able

Function unknown The Function Name is not known

Variable unknown The Variable Name is not known

not in Debug Mode The Debug Mode has not been activated

no Context Local variables can only be displayed while within this function

not actual The content of the variable has not been updated

If a high number of variables is entered in the monitor list it may during single step operation take
guite some time until all variable contents from the module have been scanned. For this reason the
Option Auto Actualize can be switched off for individual variables. The contents of these variables will
then only be displayed after the command Actualize Variable is executed. This way the Debugger
can quickly be operated in single steps and the contents are only actualized on demand.

= Variables of the Character type are displayed as single ASCII characters.
3.4.3 Array Window

In order to monitor the contents of Array Variables it is possible to call up a window with the array
contents. To do this the pointer is placed over the variable and Show Array is selected by a right

mouse click.
Cut
Copy
Paste Ctrl+V
Context Help Ctrl+F1
Find Ctrl+F
Full Collapse
Full Expand
Insert Variable
Show Array

On the left side the Array indices are shown while the contents are displayed on the right side. It
should be noted that with multi-dimensional arrays the indices on the right will gain at the faster
pace.

© 2013 Conrad Electronic

153 C-Control Pro IDE
& Array: txt l = | |ﬁ]
Index | Wert]
1 H'[0x48] =
1 'e' [0x65] |z |
2 1 —
3 I' [0xBc)
4 "o’ [OxEf)
5 020
E "' (0457
7 "o’ [OxEf)
a8 T [072)
9 I [0xBc)
10 'd' [0xB4)
1 " [Od)
12 MUL, 0x00 =
4 1 . 3
A Refiesh | | 0K
The contents of an array window may at every stop of the Debugger or at every single step no longer
be actual. If with each single step in the Debugger several array windows are newly brought up-to-
date then delays may occur since the data must always be loaded from the Module. For this reason
there are three operating modes:
@ Auto Refresh
Refresh at Breakpoint
manual Refresh
Auto Actualize Actualize at Single Step and Breakpoint
Actualize at Breakpoint Actualize only at Breakpoint
Manually Actualize Only by clicking switch "Actualize"
3.5 Tools

In the Tools menu you can start the simple built-in terminal program, add your own programs and

change the IDE options.

© 2013 Conrad Electronic

IDE 154

Terminal Window

"Té'rm'i nal : = FEI!E

el ' (2

[T sendC/R [Preserve Input

ASCII |

o . [Send J [Parameter J

Received characters are directly shown in the terminal window. Characters can be send in two differ-
ent ways. On the one hand the user can click into the terminal window and directly type the charac-
ters from the keyboard, on the other hand the text can be entered in to the ASCII input line and send
with the Send button. Instead of ASCII the characters can be defined as integer values in the Integer
input line. Is send C/R selected, a Carriage Return (13) is sent at the end of the line. Enable Pre-

serve Input to prevent that the input lines are cleared after pressing the Send button. The Parameter

button opens the Terminal settings dialog from the IDE settings.

3.5.1 Syntax Highlighting

In this Dialog the user can change the specific Syntax Highlighting for CompactC and BASIC. The
chosen language for the setting is CompactC or BASIC in dependency on what language is used in
the actual selected editor window.

© 2013 Conrad Electronic

155

C-Control Pro IDE

-

= ™
Syntax Highlighting ﬁ
Element Style type Mertical alignment
Disfault B [Custom font | |center =l
Symbal
Mumber Background Eont colar
Sitring Maone - Windowe Test A
| dentifier “:l "—] |. “—]
Rezerved word i Font style 1
Camment = Bold Set custom font .. |
Er;:;:-r';:ulEL:pnaasrsa-:tllr:l : 7 Italic | Capitalization effect
Sub background ¥ Underline 1L|n|:hanged _:_J
Marked block [¥ Skike out
Librany - !
[+ Hidden [+ BeadOnly
[Multiline border
i Borders ..
Left | ~| [Black -]
Top] LJ]. Elack j
Right | ~| [Black -]
Bottom v] B Elack v]
1 f£f Syntax highlighting -
z #define MAX(a, b) \ |_
2 -
void Proc(wvoid) Jf/ aaa 3
s]|« |
3 while B
7 i
8 3
& int Humber = 232ul; [/ View integer number styl:>
< [3
Ok Cancel

You can change the attributes of the font, and the foreground- and background color. With Multiline
border a colored border can be drawn around the highlighted strings. Also case changes can be

made with the option Capitalization

Effect. The selectable Elements have the following meaning:

Symbol: all non alpha-numeric characters

Number: all numeric characters

String: all characters that are recognized as strings

Identifier: all names that are not reserved words or part of the library

Reserved Word: all reserved words of the destination language

Comment: comments

Preprocessor: preprocessor statements
Marked Block: marked editor blocks
Library: function names of the standard library

© 2013 Conrad Electronic

IDE 156

Default, Line separator and Sub background are not used.

= Due to technical limitations, this dialog is always displayed in English!

3.5.2 Editor Settings

i b’
Editor Options &J

E ditor options

[ivenwrite mode: v Dwenwite blocks [~ Float markers

v Auto indert miod [Show caret in read only mode W Undo after save

[¥ Backspace unindents [Copy to clipboard as RTF | Digable selection

[Group undo I Enable column selection [Draw curent line focus
[Group redo v Hide selection [ro focusz) [Hide curzor on type
[Keep caretin text v Hide dynamic [no focus) Iv Scroll to last line

[~ Double click line v Enable text dragaing [Greedy selection

[~ Fived line height [T Collapse empty lines [~ Keep selection mode
[Perzistent blocks [Keeptrailing blanks [Smart caret

[“Word break onrght margin [Waord wrap [Ophirnal fill

[Fised column move [Wariable harizontal scroll bar [Unindent keep align

Unda limit; | 1000 :] Tab mode: |Insert spaces v| Blockindent: |2 :
Collapze lewel |-1 = Tab stops: |4

Gutter Fight margin
Visible W wiidth |34 4 Vistle [Positior; |30 =
Calor; ||:| Button Face ﬂ Calor; | Silver :J
Fonts
B ackground Color [~ Line numeration
Editor font “:l clhadirdan ﬂ Line numbers |Default l_|

] ok LCancel |

¢ Owerwrite mode — Inserts text at the cursor overwriting existing text.

¢ Auto indent mode - Positions the cursor under the first non blank character of the preceding non
blank line when you press Enter.

e Backspace unindents - Aligns the insertion point to the previous indentation level (outdents it)
when you press Backspace, if the cursor is on the first non blank character of a line.

e Group undo - Undo operation will not be performed in small steps but in blocks.

e Group redo - Ifit is set Redo will involve group of changes.

e Keep caret in text - Allows move caret only into text like in Memo.

¢ Double click line - Highlights the line when you double-click any character in the line. If disabled,

© 2013 Conrad Electronic

157

C-Control Pro IDE

only the selected word is highlighted.

¢ Fixed line height - Prevents line height calculation. Line height will be calculated by means of De-
fault Style.

¢ Persistent blocks - Keeps marked blocks selected even when the cursor is moved using the arrow
keys, until a new block is selected.

¢ Owerwrite blocks - Replaces a marked block of text with whatever is typed next. If Persistent
Blocks is also selected, text you enter is appended following the currently selected block.

e Show caret in read only mode - Shows caret in read only mode.

e Copy to clipboard as RTF - Copies selected text also in RTF format.

¢ Enable column selection - Enabled column selection mode.

¢ Hide selection - Hides selection when editor loses focus.

¢ Hide dynamic - Hides dynamic highlighting when editor loses focus.

e Enable text dragging - Enables drag & drop operation for text movement.

¢ Collapse empty lines - Collapse empty lines after text range when this rang have been collapsed.

e Keep trailing blanks - Keeps any blanks you might hawve at the end of a line.

e Float markers - If it is set markers are linked to text, so they will move with text during editing.
Otherwise they are linked to caret position, and stay unchanged during editing. Also markers save
scroll position.

e Undo after save - Stay undo buffer unchanged after save with SaveToFile method.

¢ Disable selection - Disables any selection.

e Draw current line focus - Draws focus rectangle around current line when editor have focus.

e Hide cursor on type - Hides mouse cursor when user type text and mouse cursor within client
area.

e Scroll to last line - When it is true you may scroll to last line of text, otherwise you can scroll to
last page. When this option is off and total text height less then client height vertical scroll bar will
be hidden.

e Greedy selection - If this option is set selection will contain extra column/line during column/line
selection modes.

¢ Keep selection mode - Selection enabled for caret movement commands (like in BRIEF).

e Smart caret - Acts on the caret movement (up, down, line start, line end). Caret is mowed to the
nearest position on the screen.

e Word wrap - Determines whether the editor wraps text at the right side of text area.

e Word break on right margin - Determines whether text wraps (word-wrap mode) on the right margin
instead of right side of client area.

e Optimal fill - Begins every auto indented line with the minimum number of characters possible, us-
ing tabs and spaces as necessary.

¢ Fixed column move - Keeps X position of caret before editing text, this position is used when mow
ing up/down caret.

¢ Variable horizontal scroll bar - Sets range of horizontal scroll bar to the maximal width of only vis-
ible lines. Hides horizontal scroll bar if visible lines fit client width.

¢ Unindent keep align - Restricts unindent operation when at least one of lines can not be uninden-
ted.

At Block indent the number of blanks is inscribed by which a selected block can be indented or
backed by use of the Tabulator key.

The input field Tab stops determines the width of the tabulator by numbers of characters.

=2 Due to technical limitations, this dialog is always displayed in English!

© 2013 Conrad Electronic

IDE 158

3.5.3 IDE Settings

Separate aspects of the IDE can be configured.

IDE Options S

IDE Eﬂmlhhmﬁummethmﬂmﬂﬂmmlﬁmmmlﬁmb|

check for Tranzfer after Compilation IDE Style

Reopen last project Mative Stle |E|
[show Splash only for short bime

[] Allow mare than one C-Contral instance

[¥] Transfer at Program Start
[] RPE USE Interface AutoConnect

list of recently used projects
ligt of recently uzed files

k. | ’ Cancel

e check for Transfer after Compilation — After a program has been compiled but not transferred to the
C-Control Module then the user will be questioned whether or not the program should be started.

* Reopen last Project — The last open project will be re-opened when the C-Control Pro IDE is star-
ted.

¢ show Splash only for short time - The Splashscreen is only displayed until the main window
opens.

¢ Allow more than one C-Control instance — When the C-Control Pro interface is started several
times it may create conflicts with regard to the USB interface.

¢ Transfer at Program Start - The program is transferred automatically when the program is started
from the IDE.

e RP6 USB Interface AutoConnect - Supports the hardware interface of the RP6 robot.

Also here the lists of the "last opened projects” as well as the "last opened files" can be deleted.

© 2013 Conrad Electronic

159 C-Control Pro IDE

3531 Editor

(IDE Options s
IDE

itor Internet Update | Compiler DefaurtlTerrninallTunts |

] Editor Tabs Filez before compilation

@ Azk before save
[tultiling E ditor T abs

EE : : o (71 Save changed eventime
|| open editor windows maximized]
1 Mever zave changed
[zpell check comments
[automatic comect rezerved words

[automatic comection before compile

Spell Chedking

]S] I Cancel

e Editor Tabs - Different files are displayed in Editor Tabs.

e Multiline Editor Tabs - The Tabs are displayed as multiple-rows.

¢ open editor windows maximized — When a file is opened the editor window will automatically be
switched to maximum size.

¢ spell check comments - The comments within the editor are checked for spelling errors.

¢ automatic correct reserved words - While writing all reserved words and known library functions the
case is corrected.

e automatic correction before compile - When the compiler is started the case of all reserved words
and known library functions is corrected.

¢ Files before compilation - Determines the action for changed files when compiling.

The button Spell Checking displays the spell checking configuration dialog.

© 2013 Conrad Electronic

IDE 160

3.5.3.2 Internet Update

In order to check if any improvements or error corrections have been issued by Conrad Electronic the
Internet Update can be activated. When the selection box "Update Check Every n Days" is selected
then an update will be searched for in the Internet at an interval of n days at every start of the IDE.
The parameter n can be set in the input field on the right.

The button "Update Check Now" will immediately activate an update search.

=% In order to have the Internet update function correctly the MS Internet Explorer must not be in
"Offline” Mode.

IDE Options 5

IDE Editor Compiler Default ‘ Terminal i Tools |
Interval
[¥] Check all n days for update i
[Check, for Update
Priowy Settings
[uze Prosy

Prowy address
Prowy uzer name

Prowy pazzword

]S ‘ ’ Cancel

If e. g. the Internet access is restricted by a Proxy due to a firewall then the Proxy settings such as
address, user name and password can be entered in this dialog.

=» |f there are Proxy data set in the MS Internet Explorer then they will be of higher priority and will
thus overwrite the settings in this dialog.

© 2013 Conrad Electronic

161 C-Control Pro IDE

3.5.3.3 Compiler Presetting

In the Compiler Presetting the standard values can be configured which will be stored during creation
of a new project. Presetting can be reached under Compiler in the Options menu.

s z ™
IDE Options S

|IDE |Ed'rtur |Internet Update [\C

{| Terminal I Tools |

Defaulkz far new Projects
CPU: | C-Control £VR32B1 [x]

[¥/] Create Debug Code

[Create Map File

[¥] Check &may Index Limits

[] Peephale Optimizer

[¥/] Recognize Unuzed Code

[¥] Wharning type of Argument changed in Cal

[&] W arning Parameter iz of type Painter

[&] W arning frmay Wariable too zmall for Sting

[&] Wwarning type of return Parameter changed

[] W arming Floating Point type changed in Initialization

[Configure Libraries

]S] ’ Cancel

A description of the options can be found under Project Options. The selection box "Configure
Library" is identical to the description in chapter Projects.

3534 Terminal

Here you can set the serial parameter for the built in terminal program. For the Port entry an avail-
able serial COM Port can be chosen from. Further the standard baudrates, the number of Data Bits
and Stop Bits, and the Flow Control is selectable.

© 2013 Conrad Electronic

IDE 162

'S ™y
IDE Options e S
| IDE |E1:I'rt1:rr | Internet Update | Compiler Default E_Erm:rﬂl Tools
Part _D” E|
Eaud 38400]
Data Bits 8 |z|
Stop Bitz 1 |z|
Flow Contral Hone |z|
Q.] I Cancel
= -

3535 Tools

In the Tool settings the user can insert, delete and edit entries that defines external programs that
can be executed fast and simple from the IDE. The names of the programs can be found in the Tools
pulldown menu and can be started with a single click

© 2013 Conrad Electronic

163

C-Control Pro IDE

3.6

r ™
IDE Options e S

|DE |Ed'rt1:rr |Intﬂrnet Update | Compiler Default | Terminal || Tools

M ame

Fath @]

Parameter

pdd | | Delte | | Edt |

ok || Cancel

" ot

For each program that is inserted, the user can choose the name, the execution path and the para-
meters that are submitted.

Windows

When there are several windows opened within the editor area they can automatically be arranged
by use of commands in the Window Menu.

¢ Overlap — The windows will be arranged on top of each other with each successive window placed
fractionally lower and more to the right than the preceding one.

Beneath — The windows are placed vertically beneath each other.

Side By Side — Will arrange the windows next to each other from left to right.

Minimize All — Will minimize all windows to symbol size.

Close — Will close all active windows.

© 2013 Conrad Electronic

IDE 164

3.7 Help

Under menu item Help the Help file can be opened by use of Contents (Key F1).

Menu item Program Version will open the window "Version Information" and will at the same time

copy the contents onto the clipboard.

These informations are important if a Support E-Mail needs to be sent to Conrad Electronic. Since
these informations are automatically placed onto the clipboard when Program Version is called up
the data can easily be added to the end of an E-Mail.

-
Version Information

C-Control IDE “Wergion: 2.30.0.53

Compact-C Compiler Version:1.70.0.74

Bootloader YWerzior: 1.00 |nterpreter Version: 1.00
Hardware:C-Control AR 3281t Hardware Rew: 01
Connection Type:JSE Port

Total Mem: 16855310336 Free mem: 12912746496
Windows ¥ Ulkimate Service Pack 1

Build: Y01 - *WinDir: C:WWindows

Screen Resaolution: 132041080 BitzperPixel: 32

If the user needs to find a certain search term in the Help file the Context Help may be of advantage.
If e. g. in the Editor the cursor stands ower the word "AbsDelay" and the correct parameters are
searched for then Context Help should be selected. This function will automatically use the word un-
der the cursor for a search term and will consequently show the results in the Help File.

© 2013 Conrad Electronic

165

C-Control Pro IDE

Cui

Copy

Paste Ctrl+V
Context Help Ctrl+F1
Find Ctrl+F

Full Collapse
Full Expand

Inzert Variable
Show Array

The command Context Help is also available in the editor window after a right mouse click.

© 2013 Conrad Electronic

167

C-Control Pro IDE

4.1

41.1

Compiler

General Features

This domain provides information on the Compiler's properties and features which are independent of
the programming language used.

Preprocessor

=% The Gnu Generic Preprocessor used here provides some additional functions which are docu-
mented under http://nothingisreal.com/gpp/gpp.html. Only the functions described here however have
also together with the C-Control Pro Compiler been thoroughly tested. Using the here undocumented
functions will thus be at your own risk!

The C-Control development system contains a complete C-Preprozessor. The Preprocessor pro-
cesses the source text prior to Compiler start. The following commands are supported:

Definitions

By the command "#define" text constants are defined.

#defi ne synbol text constant

Since the Preprocessor runs ahead of the Compiler at each appearance of symbol in the source text
the symbol will be replaced by text constant.

Example

#define Pl 3.141

=2 If a project consists of several sources then #define is a constant for all source files existing fol-
lowing the file, in which the constant has been defined. It is thus possible to change the order of
source files in a project.

Conditional Compiling

#i f def synbol

#éi se // optional

#endi f

It is possible to monitor which parts of the source texts are really being compiled. After a #ifdef sym-

bol instruction the following text is only compiled when symbol has also been defined by #define
symbol.

© 2013 Conrad Electronic

http://nothingisreal.com/gpp/gpp.html

Compiler 168

If there is an optional #else instruction then the source text will be processed after #else if the sym-
bol has not been defined.

Insertion of Text

#i ncl ude path\file nane

By this instruction a text file can be inserted into the source code.

= Because of some restrictions in the Preprocessor a path within a #include instruction must not
contain any blank characters!

41.1.1 Predefined Symbols

In order to ease the work with different versions of the C-Control Pro series there are a number of
definitions which are set depending on target system and Compiler project options. These constants
can be called up by #ifdef, #ifndef or #if.

Symbol Meaning
MEGA32 Configuration for Mega 32
MEGA128 Configuration for Mega 128
MEGA128CAN Configuration for Mega 128 CAN Bus
AVR32 Configuration for AVR 32
MEGA128 ARCH Mega 128 or Mega 128 CAN
CANBUS SUPP CAN Bus is supported
DEBUG Debug Data will be created
MAPFILE A Memory Layout will be computed

The following constants contain a string. It is sensible to use them in conjunction with text outputs.

Symbol Meaning
DATE Current Date
TIME Time of Compiling
LINE Current Line in Sourcecode
FILE Name of Current Source File
FUNCTION Current Function Name

Example

Line number, file name and function name will be issued. Since file names may become quite long it
is recommended to dimension character arrays somewhat generous.

char txt[60];

© 2013 Conrad Electronic

169 C-Control Pro IDE

txt=__ LINE__;
Msg WiteText(txt); // Issue Line Number
Msg WiteChar(13); /'l LF
txt=__FILE _;
Msg WiteText(txt); // Issue File Nunber
Msg WiteChar(13); /'l LF
txt=__FUNCTI ON__;
Msg WiteText(txt); // lIssue Function Nanme
Msg_WiteChar(13); /'l LF

4.1.2 Pragma Instructions
By use of the #pragma instruction output and flow of the Compiler can be controlled. The following
commands are authorized:
#pragma Error "xyz..." An error is created and text "xyz..." is issued
#pragma Warning "xyz..." A warning is created and text "xyz..." is issued
#pragma Message "xyz..." The text "xyz..." is issued by the Compiler
Example
These #pragma instructions are often used in conjunction with Preprocessor commands and Pre-
defined _Constants. A classical example is the creation of an error message in case specific hard-
ware criteria are not met.
#i f def MEGA128
#pragnma Error "Counter Functions not with Tiner0O and Megal28"
#endi f

4.1.3 Map File

If during compilation a Map File has been generated then the memory size of the used variable can
there be ascertained.

Example

The project CNTO.cprj generates the following Map File during compilation:

G obal Vari abl e Length Position (RAM Start)

Total Length: O bytes

Local Vari abl e Lengt h Position (Stack relative)
Function Pul se()

count 2 4

i 2 0

© 2013 Conrad Electronic

Compiler 170

4.2

42.1

Total Length: 4 bytes

Functi on mai n()
count

n 2 0
Total Length: 4 bytes

N
N

From this list can be seen that no global variables are being used. There are further the two functions
"Pulse()" and "main()". Each one of these functions consumes a memory space of 4 Bytes on local
variables.

CompactC

One possibility to program the C-Control Pro Mega 32 or Mega 128 is offered by
the programming language CompactC. The Compiler translates the language
CompactC into a Bytecode which is then processed by the Interpreter of the C-
Control Pro. The language wlume of CompactC does essentially correspond with
ANSI-C. It is however reduced to some extent since the firmware had to be imple-
mented in a resource saving way. The following language constructs are missing:

e structs/ unions

e typedef

e enum

¢ constants (const instruction)
pointer Arithmetic

Detailed program examples can be found in directory C-Control Pro Demos which was installed
along with the design interface. There example solutions can be found for almost every field of pur-
pose.

The following chapter contains a systematic introduction into syntax and semantics of CompactC.

Program

A program consists of a number of instructions (such as "a=5;") which are distributed among vari-
ous Functions. The starting function, which must be present in every program, is the function "main
()". The following is a minimalistic program able to print a number into the output window:

voi d mai n(voi d)

{

Msg Witelnt(42); [// the answer to anything
}
Projects

A program can be separated into several files which are combined in a project (see Project Manage-
ment). In addition to these project files Libraries can be added to the project which are able to offer
functions used by the program.

© 2013 Conrad Electronic

171 C-Control Pro IDE

4.2.2 Instructions

Instruction

An instruction consists of several reserved command words, identifiers and operators and is at the
end terminated by a semicolon (;"). In order to separate various elements of an instruction there are
spaces in between the instruction elements which are called "Whitespaces". By “spaces” space
characters, tabulators and line feeds ("C/R and LF") are meant. It is of no consequence whether a
space is built by one or several "Whitespaces".

Simple Instruction:
a= b5;

=» An instruction does not necessarily have to completely stand in one line. Since line feeds do
also belong to the space category it is legitimate to separate an instruction across several lines.

i f(a==5) /1 instruction across 2 |ines
a=a+10;

Instruction Block

Seweral instructions can be grouped into a block. Here the block is opened by a left tailed bracket
("{"), followed by the instructions and closed at the end by a right tailed bracket ("}"). A block does
not necessarily have to be terminated by a semicolon. I. e., if a block builds the end of an instruction
then the last character in the instruction will be the right tailed bracket.

i f(a>5)
{

a=a+l; /1 instruction bl ock
b=a+2;

Comments

There are two types of commentaries, which are the single line and the multi line commentaries. The
text within commentaries is ignored by the Compiler.

¢ Single line commentaries start with "//" and end up at the line’s end.
o Multi line commentaries start with "/*" and end up with "*/".

/* a
mul ti 1ine
comentary */

/1 a single line conmentary

© 2013 Conrad Electronic

Compiler 172

Identifier

Identifier are the names of Functions or Variables.

Valid characters are letters (A-Z,a-z), numbers (0-9) and the low dash (')
An identifier always starts with a letter

Upper and lower case writings are differentiated

Reserved Words are not allowed as identifier

The length of identifiers is unlimited

Arithmetic Expressions

An arithmetic expression is a quantity of values connected by Operators. In this case quantities can
either be Figures, Variables and Functions.

A simple example:
2 + 3

Here the numerical values 2 and 3 are connected by the Operator "+". An arithmetic value again rep-
resents a value. In this case the value is 5.

Further examples:

a- 3

b + f(5)

2 +3*6

Following the rule "Dot before Line" here 3 times 6 is calculated first and then 2 is added. This prior-
ity is in case of operators called precedence. A list of priorities can be found in the Precedence
Table.

=% Comparisons too are arithmetic expressions. The comparison operators return a truth value of
"1" or "0", depening on whether the comparison was true or not. The expression "3 < 5" yields the
value "1" (true).

Constant Expressions

An expression or portions of an expression can be constant. Portions of an expression can already
be calculated during Compiler runtime.

So e. g. the expression
12 + 123 - 15
is combined by the Compiler to

120.

© 2013 Conrad Electronic

173

C-Control Pro IDE

4.2.3

In some cases expressions must be constant in order to be valid. E. g. also see Declaration of Ar-
ray Variables.

Data Types

Values always are of a certain data type. Integer values (integral values; whole numbered values) in
CompactC are of the 8, 16 or 32 Bit wide data type, floating point values are always 4 byte long.

Data Type Sign Range Bit
char Yes -128 ... +127 8
unsigned char No 0...2558 8
byte No 0...2558 8
int Yes -32768 ... +32767 16
unsigned int No 0... 65535 16
word No 0 ... 65535 16
long (no Mega32) Yes -2147483648 ... 32

2147483647
unsigned long (no No 0 ... 4294967295 32
Mega32)
dword (no Mega32) No 0 ... 4294967295 32
float Yes +1.175e-38 to £3.402e38 32

As one can see the data types "unsigned char" and byte, "unsigned int" and
word as well as "unsigned long" and dword are identical.

=% Due to size restrictions of the interpreter, 32-Bit Integer are not available on
the Mega32.

Strings

There is no explicit "String" data type. A string is based on a character array. The size of the array
must be chosen in such a way that all characters of the string fit into the character array. Addition-
ally some space is needed for a terminating character (decimal Zero) in order to indicate the end of
the character string.

Type Conversion

In arithmetic expressions it is very often the case that individual values are not of the same type. So
the data types of the following expression are combined (a is of type integer variable).

a+ 55

In this case a is first converted into the data type float and then 5.5 is added. The
data type of the resultis also float. For data type conversion there are the following
rules:

¢ Ifin a linkage of 8 Bit or 16 Bitinteger values one of the two data types is sign afflic-
ted ("signed") then the result of the expression is also sign afflicted. I. e. the opera-

© 2013 Conrad Electronic

Compiler 174

4.2.4

tion is executed "signed".
¢ If one of the operands is of the float type then the resultis also of the float type. If

one of the two operands happens to be of the 8 Bit or 16 Bit data type then it will be
converted into a float data type prior to the operation.

Variables

Variables can take on various values depending on the Data Type by which they have been defined.
A variable definition appears as follows:

Type Vari abl e Narg;

When several variables of the same type need to be defined then these variables can be stated sep-
arated by commas:

Typ Nanel, Nane2, Nane3, ...;

As types are allowed: char, unsigned char, byte, int, unsigned int, word, long, dword, float
Examples:

int a;

int i,j;

float xyz;

Integer variables may have decimal figure values or Hex values assigned to. With Hex values the
characters "0x" will be placed ahead of the figure. Binary numbers can be created with the prefix
"0b". With variables of the sign afflicted data type negative decimal figures can be assigned to by
putting a minus sign ahead of the figure.

=¥ Numbers without period or exponent are normally of type signed integer. To explicitly define an

unsigned integer write an "u" direct after the number. To declare a number to be 32-Bit, either the
value is greater 65535 or put an "I" after the number. Can be combined with "u" from unsigned.

Examples:

char c;

word a;

int i,j;

c=5;

c='a'; /1 single quotes defines the ASCII val ue
a=0x3ff; /'l hex digits are always unsigned
x=0b1001; /1l binary nunber

a=50000u; /'l unsigned

a=100ul ; /1 unsigned 32 Bit (dword)

i =15; /1 default is signed

j =-22; /1 signed

© 2013 Conrad Electronic

175

C-Control Pro IDE

Floating Point Figures (data type float) may contain a decimal point and an exponent.

float x,y;

x=5.70;

y=2. 3e+2;

x=-5. 33e-1;

sizeof Operator

By the operator sizeof() the number of Bytes a variable takes up in memory can be determined.

Examples:

int s;
float f:

s=sizeof (f); [// the value of s is 4

=¥ \With arrays only the Byte length of the basic data type is returned. On order to calculate the
memory consumption of the array the value must be multiplied by the number of elements.

Array Variables

If behind the name, which in case of a variable definition is set in brackets, a figure value is written
then an array has been defined. An array will arrange the space for a defined variable manifold in
memory. With the following example definition

int x[10];

a tenfold memory space has been arranged for variable x. The first memory space can be addressed
by X[0], the second by x[1], the third by x[2], ... up to x[9] . When defining of course other index
dimensions can also be chosen. The memory space of C-Control Pro is the only limit.

Multi dimensional arrays can also be declared by attaching further brackets during variable definition:

int x[3][4]; /1l array with 3*4 entries
int y[2]1[2][2]); /] array with 2*2*2 entries

= Arrays may in CompactC have up to 16 indices (dimensions). The maximum value for an index
is 65535. The indices of arrays are in any case zero based, i .e. each index will start with a 0.

= Only if the compiler option "Check Array Index Limits" is set, there will be a verification whether
or not the defined index limits of an array have been exceeded. Otherwise, if an index becomes too
large during program execution the access to alien variables will be tried which in turn may create a
good chance for a program breakdown.

Table support by predefined Arrays

Since version 2.0 of the IDE arrays can be predefined with values:

© 2013 Conrad Electronic

Compiler 176

byte glob[10] = {1,2,3,4,5,6,7,8,9,10};
flash byte fglob[2][2]={10, 11, 12, 13};

voi d mai n(voi d)

{
byte loc[5]= {2,383, 4,5, 6};
byte xloc[2][2];
xl oc= fgl ob;

}

Because there is more flash memory than RAM available, it is possible with the flash keyword to
define data that are written in the flash memory only. These data can be copied to a RAM array with
same dimensions with an assignment operation. In this example this is done through "xloc= fglob".
This kind of assignment is not available in normal "C".

Direct Access to flash Array entries

With version 2.12 it is possible to access single entries in flash arrays:
flash byte glob[10] = {1,2,3,4,5,6,7,8,9, 10};

voi d mai n(voi d)

{

int a;

a= gl ob[2];
}

=¥ There is still one limitation: Only references to arrays that lie in RAM can be passed as function
parameters. This is not possible with references to flash arrays.

Strings

There is no explicit "String" data type. A string is based on a character array. The size of the array
must be chosen in such a way that all characters of the string fit into the character array. Addition-
ally some space is needed for a terminating character (decimal Zero) inorder to indicate the end of
the character string.

Example for a character string with a 20 character maximum:

char stri[21];

As an exception char arrays may have character strings assigned to. Here the character string is
placed between quotation marks.

strl="hallo world!";

You may embed special characters in strings that are started with a "\" (backslash). The following
sequences are defined:

© 2013 Conrad Electronic

177

C-Control Pro IDE

Sequence Char/Value

\\ \

v :

\a 7
\b 8
\t 9
\n 10
\v 11
\f 12
\r 13

= Strings cannot be assigned to multi dimensional Char arrays. There are however tricks for ad-
vanced users:

char str_array[3][40];
char single_str[40];

single_str="A String";

/1l will copy single str in the second string of str_array
Str_StrCopy(str_array, single_str, 40);

This will work because with a gap of 40 characters after the first string there will in str_array be room
for the second string.

Visibility of Variables

When variables are declared outside of functions then they will have global visibility. I. e. they can be
addressed from ewvery function. Variable declarations within functions produce local variables. Local
variables can only be reached within the function. An example:

int a,b;

voi d funcl(void)

{ .
int a, Xx,vy;
/1 global b is accessable
/1 global a is not accessable since conceal ed by |local a
/'l local x,y are accessable
/1 uis not accessable since |local to function main
}

voi d mai n(voi d)

{ .
int u;
/'l globale a,b are accessabl e
/1 local u is accessable

© 2013 Conrad Electronic

Compiler 178

/'l x,y not accessable since local to function funcl

Global variables have a defined memory space which is available throughout the entire program run.

=¥ At program start the global variables will be initialized by zero. Local Variables get not initialized
at the begin of a function!

Local variables will during calculation of a function be arranged on the stack. I. e. local variables ex-
ist in memory only during the time period in which the function is executed.

If with local variables the same name is selected as with a global variable then the local variable will
conceal the global variable. While the program is working in the function where the identically named
variable has been defined the global variable cannot be addressed.

Static Variables

With local variables the property static can be placed for the data type.

voi d funcl(void)

{
}

static int a;

In opposition to normal local variables will static variables still keep their value even if the function is
left. At a further call-up of the function the static variable will have the same contents as when leaving
the function. In order to have the contents of a static variable defined at first access the static vari-
ables will equally to global variables at program start also be initialized by zero.

425 Operators

Priorities of Operators

Operators separate arithmetic expressions into partial expressions. The operators are then evaluated
in the succession of their priorities (precedence). Expressions with operators of identical precedence
will be calculated from left to right.

Example:

i= 2+3*4-5; // result 9 => first 3*4, then +2, finally -5

The succession of the execution can be influenced by setting of parenthesis. Parenthesis have the
highest priority.

If the last example should strictly be calculated from left to right, then:

i= (2+3)*4-5; // result 15 => first 2+3, then *4, finally -5

A list of priorities can be found in Precedence Table.

© 2013 Conrad Electronic

179 C-Control Pro IDE

4.25.1 Arithmetic Operators

All arithmetic operators with the exception of Modulo are defined for Integer and Floating Point data
types. Modulo is restricted to data type Integer only.

=% It must be observed that in an expression the figure 7 will have an Integer data type assigned to
it. If a figure of data type float should be explicitly created then a decimal point has to be added: 7.0

Operator | Description Example Result
+ Addition 2+1 3
3.2+4 7.2
- Subtraction 2-3 -1
22-1.1el 11
* Multiplication 5*4 20
/ Division 712 3
7.0/2 3.5
% Modulo 15% 4 3
17% 2 1
- Negative Sign -(2+2) -4
4252 Bit Operators
Bit operators are only allowed for Integer data types
Operator [Description Example Result
& And 0x0f & 3 3
0xf0 & OxOf 0
| Or 1|3 3
0xf0 | OxOf Oxff
n exclusive Or Oxff ~ OxOf 0xfo
0xf0 OxOf Oxff
~ Bit inversion ~Oxff 0
~0xf0 0x0f

4253

Bit-Shift Operators

Bit-Shift operators are only allowed for Integer data types. With a Bit-Shift operation a 0 will always

be mowved into one end.

Operator Description Example Result
<< shift to left 1<<2 4
3<<3 24
>> shift to right Oxff >> 6 3

© 2013 Conrad Electronic

Compiler 180

| | 16 >> 2 | 4 |

4254 In- /Decrement Operators

Incremental and decremental operators are only allowed for variables with Integer data types.

Operator Description Example Result

variable++ first variable value, after access variable at+ a
gets incremented by one (postincrement)

variable-- first variable value, after access variable a-- a
gets decremented by one (postdecrement)

++variable value of the variable gets incremented by ++a atl
one before access (preincrement)

--variable value of the variable gets decremented by --a a-1
one before access (predecrement)

4255 Comparison Operators

Comparison operators are allowed for float and Integer data types.

Operator Description Example Result
< smaller 1<2 1
2<1 0
2<2 0
> greater -3>2 0
3>2 1
<= smaller or equal 2<=2 1
3<=2 0
>= greater or equal 2>=3 0
3>=2 1
== equal 5== 1
1== 0
1= not equal 21=2 0
21=5 1

4256 Logical Operators

Logical operators are only allowed for Integer data types. Any value unequal null is meant to be a lo-
gical 1. Only null is valid as logical 0.

Operator Description Example Result

© 2013 Conrad Electronic

181

C-Control Pro IDE

4.2.6

426.1

4.2.6.2

&& logical And 1&&1 1
5&&0 0

Il logical Or 0]|0 0
1]|0 1

! logical Not 12 0
10 1

Control Structures

Control structures allow to change the program completion depending on expressions, variables or
external influences.

Conditional Valuation

With a conditional valuation expressions can be generated which will be conditionally calculated.
The form is:

(Expressionl) ? Expression2 : Expression3

The result of this expression is expression2, if expressionl had been calculated as unequal 0, other-
wise the result is expression 3.

Examples:
a = (i>5) ?i : O
a= (i>b*2) ? i-5: b+1;

while(i> ((x>y) ? x 1 y)) i++

do .. while

With a do .. while construct the instructions can depending on a condition be repeated in a loop:

do Instruction while(Expression);

The instruction or the Instruction Block is being executed. At the end the Expression is evaluated. If
the result is unequal O then the execution of the expression will be repeated. The entire procedure
will constantly be repeated until the Expression takes on the value 0.

Example:
do
a=a+2;

whi | e(a<10);

do

© 2013 Conrad Electronic

Compiler 182

{
a=a*2;
X=a;

} while(a);

= The essential difference between the do .. while loop and the normal while loop is the fact that
ina do .. while loop the instruction is executed at least once.

break Instruction

A break instruction will leave the loop and the program execution will start with the next instruction
after the do .. while loop.

continue Instruction

When executing continue within a loop there will immediately be a new calculation of the Expres-
sion. Depending on the result the loop will be repeated at unequal 0. At a result of O the loop will be
terminated.

Example:

i f(a>10) break; // will term nate | oop
} while(l); // endless |oop

426.3 for

A for loop is normally used to program a definite number of loop runs.
for(lnstructionl, Expression; Instruction2) |nstruction3;

At first Instructionl will be executed which normally contains an initialization. Following the evalu-
ation of the Expression takes place. If the Expression is unequal O Instruction2 and Instruction3 will
be executed and the loop will repeat itself. When Expression reaches the value 0 the loop will be ter-
minated. As with other loop types at Instruction3 an Instruction Block can be used instead of a
single instruction.

for(i=0;i<10;i++)
{
if(i>a) a=i;
a- -

}

=¥ It must be observed that variable i will within the loop run through values 0 through 9 rather than 1
through 10!

© 2013 Conrad Electronic

183 C-Control Pro IDE
If a loop needs to be programmed with a different step width Instruction2 needs to be modified ac-
cordingly:
for(i=0;i<100;i=i+3) [// variable i does now increnment in steps to 3
{
a=b*i ;
}
break Instruction
A break instruction will leave the loop and the program execution starts with the next instruction
after the for loop.
continue Instruction
continue will immediately initialize a new calculation of the Expression. Depending on the result In-
struction2 will be executed at unequal 0 and the loop will repeat itself. A result of O will terminate the
loop.
Example:
for(i=0;i<10;i++)
{
i f(i==5) continue;

}

4264 goto

Even though it should be awoided within structured programming languages, it is possible with goto
to jump to a label within a procedure:

/1 for loop with realized with goto
voi d mai n(voi d)

{ .

Int a;

a=0;
| abel O:

at++;

i f(a<10) goto | abel O;
}

© 2013 Conrad Electronic

Compiler 184

4265 if .. else

An if instruction does hawve the following syntax:

i f(Expression) Instructionl;
el se Instruction2;

After the if instruction an Arithmetic Expression will follow in parenthesis. If this Expression is evalu-
ated as unequal 0 then Instructionl will be executed. By use of the command word else an alternat-
ive Instruction2 can be defined which will be executed when the Expression has been calculated as
0. The addition of an else instruction is optional and is not necessary.

Examples:
i f(a==2) b++;

i f(x==y) a=a+2;
el se a=a-2;

An Instruction Block can be defined instead of a single instruction.
Examples:

i f(x<y)
{

Cc++;

i f(c==10) c=0;
}

el se d--;

i f(x>y)

{
a=b*5;
b--;

42.6.6 switch

If depending on the value of an expression various commands should be executed a switch instruc-
tion is an elegant solution:

switch(Expression)
{
case constant _1:
I nstruction_1;
br eak;

© 2013 Conrad Electronic

185

C-Control Pro IDE

case constant _2:
I nstruction_2;
br eak;

case constant _n:
I nstruction_n;

br eak;

defaul t: /1 default is optional
I nstruction_O;

H

The value of the Expression is calculated. Then the program execution will jump to the constant cor-
responding to the value of the Expression and will continue the program from there. If no constant
corresponds to the value of the expression the switch construct will be left.

If a default is defined within a switch instruction then the instructions after default will be executed
if no constant corresponding to the value of the instruction has been found.

Example:

switch(a+2)
{
case 1:
b=b* 2;
br eak;

case 5*5:
b=b+2;
br eak;

case 100&0xf:
b=b/ c;
br eak;

defaul t:
b=b+2;
}

= The execution of a switch statement is highly optimized. All values are stored inside a
jumptable. Therefore exists a constraint that the calculated Expression is of type signed 16 Bit In-
teger (-32768 .. 32767). For this reason a e.g. "case > 32767" is rather senseless.

break Instruction

A break will leave the switch instruction. If break is left out ahead of case then the instruction will
be executed even when a jump to the preceeding case does take place:

switch(a)
{
case 1:
a++;

© 2013 Conrad Electronic

Compiler 186

case 2:
a++; // is also executed at a value of a==1

case 3:
a++; // is also executed at a value of a==1 or a==2

}

In this example all three "a++" instructions are executed if a equals 1.

42.6.7 while

With a while instruction the instructions can depending on a condition be repeated in a loop.

whi |l e(Expression) Instruction;

At first the Expression is evaluated. If the result is unequal O then the Expression is executed. After
that the Expression is again calculated and the entire procedure will constantly be repeated until the
Expression takes on the value 0. An Instruction Block can be defined instead of a single instruction.

Example:

whi | e(a<10) a=a+2;

whi | e(a)

{
a=a*2;
X=a;

}

break Instruction

If a break is executed within the loop then the loop will be left and the program execution starts with
the next instruction after the while loop.

continue Instruction

An execution of continue within a loop will immediately initialize a new calculation of the Expres-
sion. Depending on the result the loop will be repeated at unequal 0. A result of 0 will terminate the
loop.

Example:

while(l) // endless |oop
{

a++;

i f(a>10) break; // will termnate the |oop

© 2013 Conrad Electronic

187

C-Control Pro IDE

4.2.7

Functions

In order to structure a larger program it is separated into several sub-functions.
This not only improves the readability but allows to combine all program instruc-
tions repeatedly appearing in functions. A program does in any case contain the
function "main”, which is started in first place. After that other functions can be
called up.

A simple example:

voi d funcl(void)

{
/'l instructions in function funcl
}
voi d mai n(voi d)
{
[l function funcl will be called up tw ce
funcl();
funcl();
}

Parameter Passing

In order to enable functions to be flexibly used they can be set up parametric. To do this the para-
meters for the function are separated by commas and passed in parenthesis after the function name.
Similar to the variables declaration first the data type and then the parameter name are stated. If no
parameter is passed then void has to be set into the parenthesis.

An example:

void funcl(word paraml, float paranR)
{
Msg WiteHex(paranl); // first paraneter out put
Msg WiteFl oat (parank); [// second paraneter output
}

=¥ Similar to local variables passed parameters are only visible within the function itself.

In order to call up function funcl by use of the parameters the parameters for call up should be writ-
ten in the same succession as they have been defined in funcl. If the function does not get paramet-
ers the parenthesis will stay empty.

voi d mai n(voi d)
{
word a;
float f;

funcl1(128,12.0); [// you can passs nunerical constants

a=100;

f=12.0;

funcl(a+28,f); // or yet variables too and even nunerical expressions

© 2013 Conrad Electronic

Compiler 188

}

=2 \When calling up a function all parameters must always be stated. The following call up is inad-
missible:

funcl(); /1 funcl gets 2 paraneters!

funcl(128); /1 funcl gets 2 paraneters!

Return Parameters

It is not only possible to pass parameters. A function can also offer a return value. The data type of
this value is during function definition entered ahead of the function name. If no value needs to be re-
turned the data type used will be void.

int funcl(int a)

{
}

return a-10;

The return value is within the function stated as instruction "return Expression". If there is a function
of the void type then the return instruction can be used without parameters in order to leave the
function.

References
Since it is not possible to pass on arrays as parameters the access to parameters is possible
through references. For this a pair of brackets is written after the parameter names in the parameter

declaration of a function.

int StringLength(char str[])

{
int i;
i =0;
while(str[i]) i++ // repeat character as |long as unequal zero
return(i);
}
voi d mai n(voi d)
{
int len;
char text[15];
text="hello world";
| en=StringLengt h(text);
}

In main the reference of text is presented as parameters to the function StringLength. If in a function
a normal parameter is changed then the change is not visible outside this function. With references
this is different. Through parameter str in StringLength the contents of text can be changed since str

© 2013 Conrad Electronic

189 C-Control Pro IDE
is only the reference (pointer) to the array variable text.
= Presently arrays can only be passed "by Reference"!
Pointer Arithmetic
In the current C-Control Pro software also arithmetic on a reference (pointer) is permitted, as the fol-
lowing example shows. The arithmetic is limited to addition, subtraction, multiplication and division.
voi d mai n(voi d)
{
int len;
char text[15];
text="hello world";
| en=StringlLengt h(text+2*3);
}
=¥ Pointer arithmetic is currently experimental and may possibly still contain errors.
Strings as Parameter
Since Version 2.0 of the IDE it is possible to call functions with a string as parameter. The called
function gets the string as reference. Since references are RAM based and predefined strings are
stored in the flash memory, the compiler creates internally an anonymous variable, and copies the
data from flash into memory.
int StringlLength(char str[])
{
}
voi d nmai n(voi d)
{
int len;
| en=StringLength("hallo welt");
}
4.2.8 Tabellen
4.28.1 Operator Precedence
Rang Operator
13 @]
12 ++--1 ~ - (negatives Vorzeichen)
11 * I %

© 2013 Conrad Electronic

Compiler

4.2.8.2 Operators

190

© 2013 Conrad Electronic

191 C-Control Pro IDE

4283 Reserved Words

The following words are reserved and cannot be used as identifier:

© 2013 Conrad Electronic

Compiler 192

4.3 BASIC

The second programming language for the C-Control Pro Mega Module is BASIC. The Compiler
translates the BASIC commands into a Bytecode which is then processed by the C-Control Pro In-
terpreter. The language wlume of the BASIC dialect used here corresponds to a large extent to the
industry standard of the large software suppliers.

The following language constructs are missing:

¢ Object oriented programming
e Structures
e Constants

Detailed program examples can be found in directory C-Control Pro Demos which was installed
along with the design interface. There example solutions can be found for almost every field of pur-
pose of the C-Control Pro Module.

The following chapters offer a systematical introduction to syntax and semantics of C-Control Pro
BASIC.

431 Program

A program consists of a number of instructions (such as e. g. "a=5;") which are distributed among
various Eunctions. The starting function, which must be present in every program, is the function
"main()". The following is a simplistic program able to print a number into the output window:

Sub mai n()
Msg Witelnt(42) // the answer to anything
End Sub

Projects

A program can be separated into several files which are combined in a project (see Project Manage-
ment). In addition to these project files Libraries can be added to the project which are able to offer
functions used by the program.

© 2013 Conrad Electronic

193

C-Control Pro IDE

4.3.2

Instructions

Instruction

An instruction consists of several reserved command words, identifiers and operators and is at the
end terminated by the end of the line. In order to separate various elements of an instruction there
are spaces in between the instruction elements which are called "Whitespaces". By “spaces” space
characters, tabulators and line feeds ("C/R and LF") are meant. It is of no consequence whether a
space is built by one or several "Whitespaces".

Simple Instruction:

a= 5

= An instruction does not necessarily have to completely stand in one line. By use of the char-

acter (low dash) it is possible to extend the instruction into the next line.

If a=5 _ ' instruction across two |ines

a=a+10

=¥ |t is also possible to place more than one instruction into the same line. The ":" character (colon)
will then separate the individual instructions. For reason of better readability however this option
should rather seldom be used.

a=1l : b=2: c=3

Comments

There are two types of commentaries, which are the single line and the multi line commentaries. The
text within commentaries is ignored by the Compiler.

¢ Single line commentaries start with a single quotation mark and end up at the line’s end.
o Multi line commentaries start with "/*" and end up with "*/".

/* a
mul ti 1ine
comentary */

a single line comentary

Identifier
Identifiers are the names of Functions or Variables.

Valid characters are letters (A-Z,a-z), numbers (0-9) and the low dash (')
An identifier always starts with a letter

Upper and lower case writings are differentiated

Reserved Words are not allowed as identifiers

The length of an identifier is unlimited

© 2013 Conrad Electronic

Compiler 194

Arithmetic Expressions

An arithmetic expression is a quantity of values connected by Operators. In this case quantities can
either be Figures, Variables or Functions.

A simple example:
2 + 3

Here the numerical values 2 and 3 are connected by the Operator "+". An arithmetic value again rep-
resents a value. In this case the value is 5.

Further examples:

a- 3

b + f(5)

2 +3*6

Following the rule "Dot before Line" here 3 times 6 is calculated first and then 2 is added. This prior-
ity is in case of operators called precedence. A list of priorities can be found in the Precedence
Table.

=% Comparisons too are arithmetic expressions. The comparison operators return a truth value of
"1" or "0", depending on whether the comparison was true or not. The expression "3 < 5" yields the
value "1" (true).

Constant Expressions

An expression or portions of an expression can be constant. Portions of an expression can already
be calculated during Compiler runtime.

So e. g. the expression

12 + 123 - 15

is combined by the Compiler to
120.

In some cases expressions must be constant in order to be valid. E. g. also see Declaration of Ar-
ray Variables.

433 DataTypes

Values always are of a certain data type. Integer values (integral values; whole numbered values) in
BASIC are of the 8, 16 or 32 Bit wide data type, floating point values are always 4 byte long.

© 2013 Conrad Electronic

195 C-Control Pro IDE
Data Type Sign Range Bit
Char Yes -128 ... +127 8
Byte No 0...255 8
Integer Yes -32768 ... +32767 16
Ulnteger No 0 ... 65535 16
Word No 0 ... 65535 16
Long (no Yes -2147483648 ... 2147483647 32
Mega32)
ULong (no No 0 ... 4294967295 32
Mega32)
Single Yes +1.175e-38 to +3.402e38 32
=¥ Due to size restrictions of the interpreter, 32-Bit Integer are not available on
the Mega32.
Strings
There is no explicit "String" data type. A string is based on a character array. The size of the array
must be chosen in such a way that all characters of the string fit into the character array. Addition-
ally some space is needed for a terminating character (decimal Zero) in order to indicate the end of
the character string.
Type Conversion
In arithmetic expressions it is very often the case that individual values are not of the same type. So the data types
a + 5.5
In this case a is first converted into the Single data type and then 5.5 is added.
The data type of the resultis also Single. For data type conversion there are the follow-
ing rules:
¢ Ifin alinkage of 8 Bit or 16 Bitinteger values one of the two data types is sign afflic-
ted then the result of the expression is also sign afflicted.
¢ If one of the operands is of the Single type then the resultis also of the Single type. If
one of the two operands happens to be of the 8 Bit or 16 Bit data type then it will be
converted into a Single data type prior to the operation.
4.3.4 Variables

Variables can take on various values depending on the Data Type by which they have been defined.
A variable definition appears as follows:

Di m Vari abl e Nane As Type

When several variables of the same type need to be defined then these variables can be stated sep-
arated by commas:

© 2013 Conrad Electronic

Compiler 196

Di m Nanel, Nane2, Nanme3 As I|nteger

As types are allowed: Char, Byte, Integer, Word, Single

Examples:

Dim a As Integer

Dimi,j As Integer

Dim xyz As Single

Integer variables may have decimal figure values or Hex values assigned to. With Hex values the
characters "&H" will be placed ahead of the figure. Just as with CompactC it is also allowed to place
the prefix "Ox" ahead of the Hex values. Binary numbers can be created with the prefix "0B". With
variables of the sign afflicted data type negative decimal figures can be assigned to by putting a
minus sign ahead of the figure.

=¥ Numbers without period or exponent are normally of type signed integer. To explicitly define an
unsigned integer write an "u" direct after the number. To declare a number to be 32-Bit, either the
value is greater 65535 or put an "I" after the number. Can be combined with "u" from unsigned.

Examples:

Dimc As Char
Dima As Wrd

Dimi,j As Integer

c=5;

c=&"a"; " syntax for ASCI| val ue

a=&H3f f " hex nunbers are al ways unsi gned
a=50000u ' unsi gnhed

x=0b1001 ' binary nunber

a=100ul " unsigned 32 Bit (ULong)

i =15 ' default is signed

j =-22 ' signed

a=0x3f f " hex nunbers are al ways unsi gned

Floating Point Figures (data type Single) may contain a decimal point and an exponent.
Dimx,y As Single

x=5.70

y=2. 3e+2

x=-5.33e-1

SizeOf Operator

By the operator Size Of() the number of Bytes a variable takes up in memory can be determined.

Examples:

Dims As Integer

© 2013 Conrad Electronic

197

C-Control Pro IDE

Dimf As Single
s=SizeOf(f) ' the value of s is 4

= \With arrays only the Byte length of the basic data type is returned. On order to calculate the
memory consumption of the array the value must be multiplied by the number of elements.

Array Variables

If behind the name, which in case of a variable definition is set in parenthesis, a figure value is written
then an array has been defined. An array will arrange the space for a defined variable manifold in
memory. With the following example definition

Di m x(10) As Integer

a tenfold memory space has been arranged for variable x. The first memory space can be addressed
by X[0], the second by x[1], the third by x[2], ... up to x[9] . When defining of course other index
dimensions can also be chosen. The memory space of C-Control Pro is the only limit.

Multi dimensional arrays can also be declared by attaching further indices during variable definition,
which have to be separated by commas:

Dimx(3,4) As Integer ' array with 3*4 entries
Dmy(2,2,2) As Integer ' array with 2*2*2 entries

=% Arrays may in BASIC hawe up to 16 indices (dimensions). The maximum value for an index is
65535. The indices of arrays are in any case zero based, i .e. each index will start with a 0.

= Only if the compiler option "Check Array Index Limits" is set, there will be a verification whether
or not the defined index limits of an array have been exceeded. Otherwise, if an index becomes too
large during program execution the access to alien variables will be tried which in turn may create a
good chance for a program breakdown.

Table support by predefined Arrays

Since version 2.0 of the IDE arrays can be predefined with values:

Dimglob(10) = {1,2,3,4,5,6,7,8,9,10} As Byte
Fl ash fglob(2,2)={10, 11, 12,13} As Byte

Sub nmai n()
Dimloc(5)= {2,3,4,5,6} As Byte
Dim xloc(2,2) As Byte

x|l oc= fgl ob
End Sub

Because there is more flash memory than RAM available, it is possible with the flash keyword to
define data that are written in the flash memory only. These data can be copied to a RAM array with
same dimensions with an assignment operation. In this example this is done through "xloc= fglob".

© 2013 Conrad Electronic

Compiler 198

Direct Access to flash Array entries
With version 2.12 it is possible to access single entries in flash arrays:
Flash glob(10) = {1,2,3,4,5,6,7,8,9, 10} As Byte

Sub mai n()
Dima As Byte

a= gl ob(2)
End Sub

=¥ There is still one limitation: Only references to arrays that lie in RAM can be passed as function
parameters. This is not possible with references to flash arrays.

Strings

There is no explicit "String" data type. A string is based on an array of data type Char. The size of
the array must be chosen in such a way that all characters of the string fit into the character array.
Additionally some space is needed for a terminating character (decimal Zero) inorder to indicate the
end of the character string.

Example for a character string with a 20 character maximum:

Dimstr1(21) As Char

As an exception Char arrays may have character strings assigned to. Here the character string is
placed between quotation marks.

strl="hallo world!"

You may embed special characters in strings that are started with a "\" (backslash). The following
sequences are defined:

Sequence Char/Value

\\ \

v .

\a 7
\b 8
\t 9
\n 10
\v 11
\f 12
\r 13

=¥ Strings cannot be assigned to multi dimensional Char arrays. There are however tricks for ad-
vanced users:

© 2013 Conrad Electronic

199

C-Control Pro IDE

Dim str_array(3,40) As Char
Di m Si ngl e_str(40) As Char

Single_str="A String"
"will copy Single_str in the second string of str_array
Str_StrCopy(str_array, Single_str, 40)

This will work because with a gap of 40 characters after the first string there will in str_array be room
for the second string.

Visibility of Variables

When variables are declared outside of functions then they will have global visibility. I. e. they can be
addressed from every function. Variable declarations within functions produce local variables. Local
variables can only be reached within the function. An example:

Dima, b As Integer

Sub funci()
Dima, x,y As |Integer
" global b is accessible
gl obal a is not accessible since concealed by lIocal a
|l ocal x,y is accessible
u is not accessible since local to function min
End Sub

Sub mai n()
Dimu As Integer
' global a,b is accessible
|l ocal u is accessible
X,y U is not accessible since local to function nain
End Sub

Global variables have a defined memory space which is available throughout the entire program run.

=¥ At program start the global variables will be initialized by zero. Local Variables get not initialized
at the begin of a function!

Local variables will during calculation of a function be arranged on the stack. I. e. local variables ex-
ist in memory only during the time period in which the function is executed.

If with local variables the same name is selected as with a global variable then the local variable will
conceal the global variable. While the program is working in the function where the identically named
variable has been defined the global variable cannot be addressed.

Static Variables

With local variables the property Static can be placed for the data type.

© 2013 Conrad Electronic

Compiler 200

Sub funci()
Static a As Integer
End Sub

In opposition to normal local variables will static variables still keep their value even if the function is
left. At a further call-up of the function the static variable will have the same contents as when leaving
the function. In order to have the contents of a Static variable defined at first access the static vari-
ables will equally to global variables at program start also be initialized by zero.

435 Operators

Priorities of Operators

Operators separate arithmetic expressions into partial expressions. The operators are then evaluated
in the succession of their priorities (precedence). Expressions with operators of identical precedence
will be calculated from left to right.

Example:

i= 2+3*4-5 ' result 9 => first 3*4, then +2, finally -5

The succession of the execution can be influenced by setting of parenthesis. Parenthesis have the
highest priority.

If the last example should strictly be calculated from left to right, then:

i= (2+3)*4-5 ' result 15 => first 2+3, then *4, finally -5

A list of priorities can be found in Precedence Table.

43.5.1 Arithmetic Operators

All arithmetic operators with the exception of Modulo are defined for Integer and Floating Point data
types. Modulo is restricted to data type Integer only.

=¥ It must be observed that in an expression the figure 7 will have an Integer data type assigned to
it. If a figure of data type Single should be explicitly created then a decimal point has to be added:

7.0

Operator | Description Example Result

+ Addition 2+1 3

3.2+4 7.2

- Subtraction 2-3 -1

22-1.1el 11

* Multiplication 5*4 20

/ Division 712 3

7.0/2 35

Mod Modulo 15 Mod 4 3

17 Mod 2 1

© 2013 Conrad Electronic

201 C-Control Pro IDE

| - | Negative Sign -(2+2) -4
4.3.5.2 Bitoperators
Bit operators are only allowed for Integer data types
Operator Description Example Result
And And &HOf And 3 3
&Hf0 And &HOf 0
Or Or 10r3 3
&Hf0 Or &HOf &Hff
Xor exclusive Or &Hff Xor &HOf &HfO
&Hf0 Xor &HOf &Hff
Not Bit inversion Not &Hff 0
Not &Hf0 &HOf

= All these Operators work arithmetically: E.g. Not &H01 = &Hfe. Both values are evaluated to
true in an If expression. This is different to a logical Not operator, where Not &HO01 = &HOO.

4.35.3 Bit-Shift Operators

Bit-Shift operators are only allowed for Integer data types. With a Bit-Shift operation a 0 will always
be mowed into one end.

Operator Description Example Result
<< shift to left 1<<?2 4
3<<3 24
>> shift to right &Hff >> 6 3
16 >>2 4

4354 In- /Decrement Operators

Incremental and decremental operators are only allowed for variables with Integer data types.

© 2013 Conrad Electronic

Compiler 202

Operator Description Example Result

variable++ first variable value, after access variable a++ a
gets incremented by one (postincrement)

variable-- first variable value, after access variable a-- a
gets decremented by one (postdecrement)

++variable value of the variable gets incremented by ++a a+l
one before access (preincrement)

--variable value of the variable gets decremented by --a a-1
one before access (predecrement)

=» These operators are normally not a part of a Basic dialect and have their origin in the world of C
inspired languages.

4.3.5.5 Comparison Operators

Comparison operators are allowed for Single and Integer data types.

Operator Description Example Result
< smaller 1<2 1
2<1 0
2<2 0
> greater -3>2 0
3>2 1
<= smaller or equal 2<=2 1
3<=2 0
>= greater or equal 2>=3 0
3>=2 1
= equal 5=5 1
1=2 0
<> not equal 2<>2 0
2<>5 1

436 Control Structures

Control structures allow to change the program completion depending on expressions, variables or
external influences.

43.6.1 Do Loop While

With a Do ... Loop While construct the instructions can depending on a condition be repeated in a
loop:

© 2013 Conrad Electronic

203 C-Control Pro IDE

Do
I nstructions
Loop Wil e Expression

The instructions are being executed. At the end the Expression is evaluated. If the result is unequal
0 then the execution of the expression will be repeated. The entire procedure will constantly be re-
peated until the Expression takes on the value 0.

Examples:

Do
a=at+2
Loop Wile a<10

Do
a=a*2
X=a

Loop Wiile a

= The essential difference between the Do Loop While loop and the normal Do While loop is the
fact that in a Do Loop While loop the instruction is executed at least once.

Exit Instruction

An Exit instruction will leave the loop and the program execution starts with the next instruction after
the Do Loop While loop.

Example:
Do
a=a+l
If a>10 Then
Exit ' WII term nate |oop
End |f

Loop Wiile 1 ' Endless |oop

4.3.6.2 Do While

With a while instruction the instructions can depending on a condition be repeated in a loop:

Do Wil e Expression
I nstructions
End Wil e

At first the Expression is evaluated. If the result is unequal O then the expression is executed. After
that the Expression is again calculated and the entire procedure will constantly be repeated until the

Expression takes on the value 0.

Examples:

© 2013 Conrad Electronic

Compiler 204

Do Wile a<10

a=a+2
End Wil e
Do Wiile a

a=a*2

X=a
End Wil e

Exit Instruction

If an EXxit instruction is executed within a loop than the loop will be left and the program execution
starts with the next instruction after the While loop.

Example:
Do Wiile 1 " Endl ess | oop
a=a+l
If a>10 Then
Exit ' WII term nate |oop
End | f
End Wi le

4.3.6.3 For Next

A For Next loop is normally used to program a definite number of loop runs.

For Counter Variable=Startvalue To Endval ue Step Stepw dth
I nstructions
Next

The Counter Variable is set to a Start Value. Then the instructions are repeated until the End Value
is reached. With each loop run the value of the Counter Variable is increased by one step width
which may also be negative. The stating of the step width after the End Value is optional. If no Step
Width is stated it has the value 1.

=¥ Since the For Next loop will be used to especially optimized the counter variable must be of the
Integer type.

Example:

For i=1 To 10
If i>a Then
a=i
End | f
a=a-1
Next

© 2013 Conrad Electronic

205

C-Control Pro IDE

43.6.4

4.3.6.5

For i=1 To 10 Step 3 'Increnment i in steps of 3
If i>3 Then
a=i
End If
a=a-1
Next

=% In this location please note again that arrays are in any case zero based. A For Next loop
should thus rather run from 0 through 9.

Exit Instruction

An Exit instruction will leave the loop and the program execution starts with the next instruction after
the For loop.

Example:

For i=1 To 10

If i=6 Then
Exit
End If
Next
Goto

Even though it should be awided within structured programming languages, it is still possible with
goto to jump to a label within a procedure. In order to mark a label the command word Lab is set in
front of the label name.

" For loop with goto will realize
Sub mai n()
Dima As Integer
a=0
Lab I abel 1
a=a+1
I f a<l10 Then
Goto | abel 1
End If
End Sub
If .. Else

An If instruction does have the following syntax:

I f Expressionl Then
I nstructionsl
El sel f Expression2 Then

© 2013 Conrad Electronic

Compiler 206

I nstructions2
El se

I nstructions3
End | f

After the if instruction an Arithmetic Expression will follow. If this Expression is evaluated as un-
equal 0 then Instructionl will be executed. By use of the command word else an alternative Instruc-
tion2 can be defined which will be executed when the Expression has been calculated as 0. The ad-
dition of an else instruction is optional and not really necessary.

If directly in an Else branch an If instruction needs again to be placed then it is possible to initialize
an If again direcly by use of an Elself. Thus the new If does not need to be interlocked into an Else
block and the source text remains more clearly.

Examples:

If a=2 Then
b=b+1
End If

If x=y Then
a=a+2
El se
a=a- 2
End | f

I f a<5 Then
a=a- 2

El sel f a<10 Then
a=a-1

El se
a=a+l

End | f

43.6.6 Select Case

If depending on the value of an expression various commands should be executed then a Select
Case instruction seems to be an elegant solution:

Sel ect Case Expression
Case constant _conpari sonl
Instructions_1
Case constant _conpari son2
I nstructions_2

Case constant_conpari son_x
I nstructions_x

' Else is optional
I nstructions

El se

© 2013 Conrad Electronic

207

C-Control Pro IDE

End Case

The value of the Expression is calculated. Then the program execution will jump to the first constant
comparison that can be evaluated as true and will continue the program from there. If no constant
comparison can be fulfilled the Select Case construct will be left.

For constant comparisons special comparisons and ranges can be defined . Here examples for all
possibilities:

=» The new features that allow to use comparisons are introduced for Select Case statements with
IDE version 1.71. This extension is not available for CompactC switch statements.

=» The execution of a Select Case statement is highly optimized. All values are stored inside a
jumptable. Therefore exists a constraint that the calculated Expression is of type signed 16 Bit In-
teger (-32768 .. 32767). For this reason a e.g. "Case > 32767" is rather senseless.

Exit Instruction
An Exit will leave the Select Case instruction.

If an Else is defined within a Select Case instruction then the instructions after Else will be ex-
ecuted if no constant comparison could be fulfilled.

Example:

Sel ect Case a+2

Case 1
b=b*2

Case = 5*5
b=b+2

Case 100 And &Hf
b=b/c

Case < 10
b=10

Case <= 10
b=11

Case 20 To 30
b=12

Case > 100
b=13

© 2013 Conrad Electronic

Compiler 208

4.3.7

Case >= 100
b=14
Case <> 25
b=15
El se
b=b+2
End Case

=# [n CompactC the instructions will be continued after a Case instruction until a break comes up
or the switch instruction is left. With BASIC this is different: Here the execution of the commands
will break off after a Case, if the next Case instruction is reached.

Functions

In order to structure a larger program it is separated into several sub-functions.
This not only improves the readability but allows to combine all program instruc-
tions repeatedly appearing in functions. A program does in any case contain the
function "main", which is started in first place. After that other functions can be
called up from main. A simple example:

Sub funcl()
" Instructions in function funcl

End Sub

Sub mai n()
" Function funcl will be called up twce
funcl()
funcl()

End Sub

Parameter Passing

In order to enable functions to be flexibly used they can be set up parametric. To do this the para-
meters for the function are separated by commas and passed in parenthesis after the function name.
Similar to the variables declaration first the parameter name and then the data type is stated. If no
parameter is passed then the parenthesis will stay empty.

An example:

Sub funcl(paraml As Word, paranm2 As Single)
Msg WiteHex(paranl) ' first paraneter out put
Msg_WiteFl oat (parank) ' second paraneter output
End Sub

=¥ Similar to local variables passed parameters are only visible within the function itself.
In order to call up function funcl by use of the parameters the parameters for call up should be writ-

ten in the same succession as they have been defined in funcl. If the function does not get paramet-
ers the parenthesis will stay empty.

© 2013 Conrad Electronic

209

C-Control Pro IDE

Sub mai n()
Dima As Wrd
Dimf As Single

funcl1(128,12.0) ' you can pass Nunerical constants

a=100

f=12.0

funcl(a+28,f) ' or yet variables too and even nunerical expressions
End Sub

=% When calling up a function all parameters must always be stated. The following call up is inad-
missible:

funcl() ' funcl gets 2 paraneters!
funcl(128) " funcl gets 2 paraneters!

Return Parameters

It is not only possible to pass parameters. A function can also offer a return value. The data type of
this value is during function definition entered after the parameter list of the function.

Sub funcl(a As Integer) As Integer
Return a-10
End Sub

The return value is within the function stated as instruction "return Expression”. If there is a function
without return value then the return instruction can be used without parameters in order to leave the
function.

References

Since it is not possible to pass on arrays as parameters the access to parameters is possible
through references. For this the attribute "ByRef" is written ahead of the parameter name in the
parameter declaration of a function.

Sub StringLength(ByRef str As Char) As |nteger
Dimi As Integer

i =0
Do While str(i)
i=i+1 ' Repeat character as |long as unequal zero
End Wil e
Return i
End Sub
Sub mai n()

Dim Len As Integer
Di m Text (15) As Char

© 2013 Conrad Electronic

Compiler 210

4.3.8

Text="hel l o worl d"
Len=Stri nglLengt h(Text)
End Sub

In main the reference of text is presented as parameters to the function StringLength. If in a function
a normal parameter is changed then the change is not visible outside this function. With references
this is different. Through parameter str can in StringLength the contents of text be changed since str
is only the reference (pointer) to the array variable text.

= Presently arrays can only be presented "by Reference"!

Pointer Arithmetic

In the current C-Control Pro software also arithmetic on a reference (pointer) is permitted, as the fol-
lowing example shows. The arithmetic is limited to addition, subtraction, multiplication and division.

Sub mai n()

Dim Len As Integer
Di m Text (15) As Char

Text="hell o worl d"

Len=Stri nglLengt h(Text +2*3)
End Sub

=¥ Pointer arithmetic is currently experimental and may possibly still contain errors.

Strings as Parameter
Since Version 2.0 of the IDE it is possible to call functions with a string as parameter. The called
function gets the string as reference. Since references are RAM based and predefined strings are
stored in the flash memory, the compiler creates internally an anonymous variable, and copies the
data from flash into memory.
Sub StringLength(ByRef str As Char) As Integer
End Sub
Sub nmai n()

Dim Len As I|nteger

Len=StringLength("hallo welt")
End Sub

Tables

© 2013 Conrad Electronic

211 C-Control Pro IDE

4.3.8.1 Operator Precedence

43.8.2 Operators

© 2013 Conrad Electronic

Compiler 212

4.3.8.3

4.4

44.1

Xor

exclusive Or

Not

Bit inversion

Reserved Words

The following words are reserved and cannot be used as identifiers:

And As ByRef Byte Case
Char Dim Do Else Elself
End Exit False For Goto

If Integer Lab Loop Mod
Next Not Opc Or Return
Select Single SizeOf Static Step
Sub Then To True While
Word Xor ULong Long Ulnteger
Assembler

With IDE Version 2.0 it is possible to integrate Assembler routines into a project. The used Assem-
bler is the GNU Open Source Assembler AVRA. The sources of the AVRA Assembler can be found
in the installation directory "GNU". Assembler routines that are called from CompactC and Basic run
in full CPU speed, in contrary to the Bytecode Interpreter. It is possible to pass parameters to
Assembler procedures and get their return values. Also global CompactC and Basic variables can be
accessed. The compiler recognizes assembler files with their ".asm" ending. Assembler sources are
added to a project like CompactC or Basic files.

=¥ The programming in assembly language is only recommended for the advanced user of the sys-
tem. The programming is very complex and error prone, and should only be used by these people
that have a very good knowledge of the system.

=¥ There is no free assembler available for AVR32 Unit. Since the C-Control Pro AVR32Bit is also
much faster than the C-Control Pro Mega series, no assembly support is planned for the AVR32.

Literature

You can find manifold literature about assembly language programming on the internet and in the
book trade. Important are the "AVR Instruction Reference Manual" that can be found on the Atmel
website and in the "Manual" directory of the C-Control Pro installation, and the "AVR Assembler
User Guide" from the Atmel website.

An Example

The structure of assembly routines is explained in the following example (also included in the demo
programs). In the project the CompactC source code file must have the ending ".cc”, the assembler
source files have to end with ".asm".

© 2013 Conrad Electronic

213

C-Control Pro IDE

/1 Conpact C Source
void procl $asn("tagl")(void);
int proc2 $asm("tag2")(int a, float b, byte c);

i nt globil;
voi d mai n(voi d)
{ .
Int a;
procl();
a= proc2(1l1, 2.71, 33);
}

The procedures procl and proc2 must first be declared, before they can be called. This happens with
the keyword $asm. The declaration in Basic looks similar:

' Basic delaration of assenbler routines

$Asm("tagl") procl()

$Asm("tag2") proc2(a As Integer, b As Single, ¢ As Byte) As |nteger

The strings "tagl" and "tag" are visible in the declaration. These strings are defined in a ".def" file, if
the Assembler routines are really called from the CompactC and Basic source. In this case the
".def" file looks like:”

; .def file

.equ globl = 2
.define tagl 1
.define tag2 1

When all the routines in the Assembler sources are placed in ".ifdef ..." directions, only the routines
are assembled that are really called. This saves space at the code generation. Additionally the posi-
tion of the global variables are stored in the definition file. The ".def" file is automatically included in
the translation of the assembler files, it needed not to be manually included.

Here follows the assembler source of procedure procl. In this source the global variable globl is set
to the value 42.

; Assembl er Source
.ifdef tagl
procl:
; global variable access exanple
i wite 42 to gl obal variable globl

MOVW R26, R8 ; get Ranmflop fromregister 8,9
SUBI R26, LON gl obl) ; subtract index fromglobl to get address
SBCI R27, Hl GH(gl ob1)

LDl R30, LOA(42)
ST X+ R30

© 2013 Conrad Electronic

Compiler 214

4.4.2

CLR R30 ; the high byte is zero
ST X R30

ret
.endif

In the second part of the assembler sources the passed parameters "a" and "c" are added as in-
tegers, and then the sum is returned.

.ifdef tag2
proc2:

; exanple for accessing and returning paraneter
; we have int proc2(int a, float b, byte c);
; return a + c

MOVW R30, R10 ; nove paraneter stack pointer into Z
LDD R24, z+5 ; load paraneter "a" into R24,25

LDD R25, Z+6

LDD R26, Z+0 ; load byte paraneter "c" into X (R26)
CLR R27 ; hi byte zero because paraneter is byte

ADD R24, R26 ; add X to R24,25
ADC R25, R27

MOVW R30, R6 ; copy stack pointer from R6
ADI W R30, 4 ; add 4 to sp - ADIWonly works for R24 and greater
MOVW R6, R30 ; copy back to stack pointer |ocation
ST Z+, R24 ; store R24,25 on stack
ST Z, R25
ret
.endif
Data Access

Global Variables

In the Bytecode Interpreter in the register R8 and R9 lies the 16-Bit pointer to the end of the global
variable memory. If a global variable that is defined in the ".def" file should be accessed, the address
of the variable can be calculated when the variable position is subtracted from the R8, R9 16-Bit
pointer. This looks like:

; global variable access exanple

; write 0042 to global variable globl

MOVW R26, R8 ; get Ram Top fromregister 8,9

SUBI R26, LON gl obl) ; subtract index fromglobl to get address
SBCI R27, Hl GH(gl ob1)

© 2013 Conrad Electronic

215

C-Control Pro IDE

When the address of the global variable is in the X register pair (R26,R27), the desired value (in our
example 42) can be written there:

LDl R30, LOA(42)

ST X+, R30
CLR R30 ; the high byte of 42 is zero
ST X R30

Parameter Passing

Parameters are passed on the stack of the Bytecode Interpreter. The stackpointer (SP) lies in the
register pair R10,R11. Are parameters passed, they are written one after another onto the stack.
Since the stack grows to the bottom, in our example (integer a, floating point b, byte c) the memory
layout looks like this:

SP+5: a (type integer, length 2)
SP+1: b (type float, length 4)
SP+0: ¢ (type byte, length 1)

If the variables a and ¢ should be accessed, a will be found at SP+5 and ¢ at SP. In the following
Assembler code the stack pointer SP (R10,R11) will be copied in the register pair Z (R30,R31), and
the parameters a and c are loaded indirect via Z.

; exanple for accessing and returning paraneter
; we have int proc2(int a, float b, byte c);

MOVW R30, R10 ; nove paraneter stack pointer into Z
LDD R24, Z+5 ; load paraneter "a" into R24,25

LDD R25, Z+6

LDD R26, Z+0 ; load byte paranmeter "c" into X (R26)
CLR R27 ; hi byte zero because paraneter is byte

The parameter a and ¢ are now in the register pairs X and R24, R25. Now they can be added:

ADD R24, R26 ; add X to R24, R25
ADC R25, R27

Return Parameters

In the routine proc2 the sum is returned. Return parameters are written on the Parameter Stack
(PSP) of the Bytecode Interpreter. The pointer to the PSP lies in the register pair R6,R7. To return a
parameter the PSP pointer must be increased by 4 before the parameter can be written. In opposite
to the normal parameter passing the type of the return parameter is not important. All parameter on
the Parameter Stack have the same length of 4 bytes.

= Ewven with a declared 8-bit return value, the interpreter expects always a 16-bit value. This is

© 2013 Conrad Electronic

Compiler 216

done to sawe bytecodes in the interpreter. Is the assembly routine declared as byte, a word must
be a written as the return value, if the assembly routine is of type char, an int is required. In all other
cases no change is needed.

, return a + c

MOVW R30, R6 ; copy stack pointer from R6

ADI W R30, 4 ; add 4 to sp - ADIWonly works for R24 and greater
MOVW R6, R30 ; copy back to stack pointer |ocation

ST Z+, R24 ; store R24, R25 on stack

ST Z, R25

443 Guideline

The most important topics on how to program in Assembler for C-Control Pro are explained here:

e Assembler calls are atomic. An Assembler call cannot be interrupted by Multithreading or an
Bytecode Interruptroutine. This is similar to Library calls. An interrupt is recorded immediately by
the internal interrupt structure, but the corresponding Bytecode interrupt routine is called after the
assembler procedure has been ended.

e Do not change the Y Register (R28 and R29), it is used from the interpreter as a data stack
pointer. Assembler interrupt routines use the Y-Register to save register contents and might else
be crash.

e The register RO, R1, R22, R23, R24, R25, R26, R27, R30, R31 can be used in Assembler routines
without backup. If other register are used, the contents must be sawved first. Normally these values
are stored on the stack. E.g.

at begin: PUSH R5
PUSH R6

at end: POP R6
POP R5

* An Assembler routine is left with a "RET" instruction. At this point the CPU stack must be in the
same state as before the call. The contents of the register that need to be backuped must be re-
stored.

¢ Debugging only works in the Bytecode Interpreter, it is not possible to debug in Assembiler.

e The Bytecode Interpreter has a fixed memory layout. In no case use Assembler directives like
.byte, .db, .dw, .dseg or similar. In an access to the data segment this would cause the Assem-
bler to overwrite memory that is used by the Bytecode Interpreter. If global variables are needed,
they should be declared in CompactC and Basic, and then can be accessed like described in the
chapter Data Access.

¢ Do not set the address of an Assembler routine with .org. The IDE generates itself a .org directive
when starting the AVRA Assembler.

© 2013 Conrad Electronic

217

C-Control Pro IDE

4.5

ASCII Table

ASCII Table
CHA |DEC HEX |BIN Description
NUL |000 000 00000000 | Null Character
SOH 001 001 00000001 | Start of Header
STX 1002 002 00000010 | Start of Text
ETX |003 003 00000011 |End of Text
EOT |004 004 00000100 | End of Transmission
ENQ |005 005 00000101 | Enquiry
ACK |006 006 00000110 [Acknowledgment
BEL |007 007 00000111 |Bell
BS 008 008 00001000 |Backspace
HAT |009 009 00001001 | Horizontal TAB
LF 010 00A 00001010 |Line Feed
VT 011 00B 00001011 | Vertical TAB
FF 012 0ocC 00001100 | Form Feed
CR 013 00D 00001101 | Carriage Return
SO |014 00E 00001110 | Shift Out
Sl 015 O00F 00001111 | ShiftIn
DLE |[016 010 00010000 |Data Link Escape
DC1 |017 011 00010001 |Device Control 1
DC2 |018 012 00010010 |Device Control 2
DC3 |019 013 00010011 | Device Control 3
DC4 020 014 00010100 |Device Control 4
NAK (021 015 00010101 | Negative Acknowledgment
SYN |022 016 00010110 | Synchronous Idle
ETB 023 017 00010111 | End of Transmission Block
CAN (024 018 00011000 | Cancel
EM 1025 019 00011001 |End of Medium

© 2013 Conrad Electronic

Compiler 218

026 01A 00011010 | Substitute
027 01B 00011011 |Escape
028 01C 00011100 |File Separator
029 01D 00011101 [Group Separator
030 01E 00011110 [Requestto Send, Record Separator
031 01F 00011111 | Unit Separator
SP 032 020 00100000 | Space
! 033 021 00100001 | Exclamation Mark
“ 034 022 00100010 | Double Quote
035 023 00100011 | Number Sign
$ 036 024 00100100 |Dollar Sign
% 037 025 00100101 |Percent
& 038 026 00100110 | Ampersand
‘ 039 027 00100111 | Single Quote
(040 028 00101000 | Left Opening Parenthesis
) 041 029 00101001 |Right Closing Parenthesis
* 042 02A 00101010 |Asterisk
+ 043 02B 00101011 |Plus
' 044 02C 00101100 | Comma
- 045 02D 00101101 [Minus or Dash
046 02E 00101110 | Dot
CHA |DEC HEX |BIN Description
/ 047 02F 00101111 |Forward Slash
0 048 030 00110000
1 049 031 00110001
2 050 032 00110010
3 051 033 00110011
4 052 034 00110100
5 053 035 00110101

© 2013 Conrad Electronic

219

C-Control Pro IDE

6 054 036 00110110
7 055 037 00110111
8 056 038 00111000
9 057 039 00111001
058 03A 00111010 | Colon
; 059 03B 00111011 | Semi-Colon
< 060 03C 00111100 |Less Than
= 061 03D 00111101 |Equal
> 062 03E 00111110 | Greater Than
? 063 O3F 00111111 | Question Mark
@ 064 040 01000000 | AT Symbol
A 065 041 01000001
B 066 042 01000010
@ 067 043 01000011
D 068 044 01000100
E 069 045 01000101
F 070 046 01000110
G 071 047 01000111
H 072 048 01001000
I 073 049 01001001
J 074 04A 01001010
K 075 04B 01001011
L 076 04C 01001100
M 077 04D 01001101
N 078 04E 01001110
@] 079 04F 01001111
P 080 050 01010000
Q 081 051 01010001
R 082 052 01010010
S 083 053 01010011
T 084 054 01010100

© 2013 Conrad Electronic

Compiler

220

U 085 055 01010101

\Y 086 056 01010110

W 087 057 01010111

X 088 058 01011000

Y 089 059 01011001

z 090 05A 01011010

[091 05B 01011011 |Left Opening Bracket

\ 092 05C 01011100 |Back Slash

] 093 05D 01011101 |Right Closing Bracket

A 094 05E 01011110 | Caret

CHA |DEC HEX [BIN Description

_ 095 O5F 01011111 {Underscore
096 060 01100000

a 097 061 01100001

b 098 062 01100010

c 099 063 01100011

d 100 064 01100100

e 101 065 01100101

f 102 066 01100110

g 103 067 01100111

h 104 068 01101000

[105 069 01101001

j 106 06A 01101010

k 107 06B 01101011

I 108 06C 01101100

m 109 06D 01101101

n 110 06E 01101110

o 111 06F 01101111

p 112 070 01110000

© 2013 Conrad Electronic

221

C-Control Pro IDE

q 113 071 01110001

r 114 072 01110010

S 115 073 01110011

t 116 074 01110100

u 117 075 01110101

Y 118 076 01110110

w 119 077 01110111

X 120 078 01111000

y 121 079 01111001

z 122 07A 01111010

{ 123 07B 01111011 |Left Opening Brace
| 124 07C 01111100 | Vertical Bar

} 125 07D 01111101 |Right Closing Brace
= 126 O7E 01111110 |Tilde

DEL |127 07F 01111111 |Delete

© 2013 Conrad Electronic

223

C-Control Pro IDE

5

5.1

5.2

521

Libraries

In this part of the documentation all attached Help functions are described which allow the user to
comfortably gain access to the hardware. At the beginning of each function the syntax for CompactC
and BASIC is shown. After that the description of functions and involved parameters will follow.

Internal Functions

To allow the Compiler to recognize the internal functions present in the Interpreter these functions
must be defined in library "IntFunc_Lib.cc". If this library is not tied in no outputs can be performed
by the program. The following would e. g. be a typical entry in "IntFunc_Lib.cc":

void Msg_WiteHex$Opc(0x23) (Word val);

This definition states that the function ("Msg_WriteHex") in the Interpreter is called up by a jump vec-
tor of 0x23 and a word has to be transferred to the stack as a parameter.

=% Changes in the library "IntFunc_Lib.cc" may cause that the functions declared there can no
longer be executed correctly.

General

In this chapter all single functions are collected that cannot be categorized to other chapters in the
library.

AbsDelay

General Functions

Syntax
voi d AbsDel ay(word ns);

Sub AbsDel ay(nms As Word);

Description
The function Absdelay() waits for a specified number of milliseconds.

=¥ This function works in a very accurate manner, but suspends the bytecode interpreter. A thread change
will not happen during this time. Interrupts are recognized, but will not be processed since the interpreter
is necessary for this operations.

=9 Please use Thread Delayinstead of AbsDelay if you work with threads. If you call an AbsDelay(1000)
in an endless loop nevertheless, the following will happen: Since the thread is changing after 5000 cycles
(default value) to the next thread, the next thread will begin after after about 5000 * 1000ms. This happens
because an AbsDelay() call will be treated like on cycle.

© 2013 Conrad Electronic

Libraries 224

Parameter

nms wait duration in mlliseconds

5.2.2 ForceBootloader (AVR32Bit)

General Functions

Syntax
voi d For ceBoot | oader (voi d);

Sub For ceBoot | oader () ;

Description
Jumps into the bootloader. After that, the unitis again available for commands, eg to update the software.
Parameter

None

5.2.3 Sleep (Mega)

General Functions

Syntax

void Sl eep(byte ctrl);

Sub Sl eep(ctrl As Byte)

Description

Using this function the Atmel CPU is set in one of the 6 different sleep modes. The exact functionality is
provided in the Atmel Mega Reference Manual in the chapter "Power Management and Sleep Modes". The
value of ctrl is written into the bits SMO and SM2. The sleep enable bit (SE in MCUCR) is setand an assem-
bler sleep instruction is executed.

Parameter

trl Initialization (SMO to SM2)

Sleep Modes
SM2 SM1 SMO Sleep Mode
0 0 0 Idle

© 2013 Conrad Electronic

225

C-Control Pro IDE

5.3

53.1

53.11

53.1.2

0 0 1 ADC Noise Reduction
0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby

1 1 1

Extended Standby

Analog-Comparator

Mega

The Analog Comparator allows to compare two analog signals. The result of this comparison is returned
as either "0" or "1". Voltages of between 0 and 5V can be compared at the positive and negative inputs.

AComp
AComp Functions Example

Syntax
voi d AConp(byte node);

Sub AConp(nmode As Byte);

Description
The Analog Comparator allows to compare two analog signals. The result of this comparison is returned
as either "0" or "1". (Comparator Output). The negative input is Mega32: AIN1 (PortB.3), Megal28: AIN1

(PortE.3). The positive input can either be Mega32: AINO (PortB.2), Megal128: AINO (PortE.2) , or an internal
reference woltage of 1,22V.

Parameter
mode working mode

Mode Values:

00 (Hex) |external inputs (+)AINO and (-)AIN1 are used
40 (Hex) [external Input (-)AIN1and internal reference voltage are used
80 (Hex) |Analog-Comparator gets disabled

AComp Example

Example: Usage of Analog-Comparators

/1 AConp: Anal og Conpar at or

© 2013 Conrad Electronic

Libraries 226

/1 Mega32: Input (+) PB2 (PortB.2) bzw. band gap reference 1,22V

/1 I nput (-) PB3 (PortB.3)
/1 Megal28: Input (+) PE2 (PortE.2) bzw. band gap reference 1,22V
/1 I nput (-) PE3 (PortE. 3)

/1l used Library: IntFunc_Lib.cc

/1 The function AConp returns the value of the conparator.

/1 If the voltage on input PB2/PE2 is greater than the input PB3/PE3 the

/1 function AConp returns the val ue 1.

/'l Mbde:

/1 0x00 external inputs (+)AINO and (-)AINl are used

/1 0x40 external input (-)AINl1 and the internal reference voltage are used
/1 0x80 the Anal og- Conparator is disabled

/1 In this exanple you can call AConp with paraneter 0 (both inputs are used)
/1 or with Ox40 (int. reference voltage on (+) input, external I|nput PB3/PE3)

e e e
/1 main program
I
voi d mai n(voi d)
{
while (true)
{
i f (AConp(0x40)==1) /1 1Input (+) band gap reference 1,22V
{
Msg WiteChar('1l'); /1l Qutput: 1
}
el se
{
Msg WiteChar('0'); /1l Qutput: O
}
/1l the conparator value is read all 500ns
AbsDel ay(500);
}
}

5.3.2 AVR32Bit

The Analog Comparator allows to compare two analog signals. The result of this comparison is returned
as either "0" or "1". Voltages of between 0 and 3.3V can be compared at the positive and negative inputs.

© 2013 Conrad Electronic

227 C-Control Pro IDE

5.3.21 AC Disable
Analog Compare Functions Example

Syntax
voi d AC Di sabl e(byte ctrl);

Sub AC Disable(ctrl As Byte);

Description
Turns the specified Analog Comparator off.
Parameter

ctrl Analog Comparator (0 - 1)

53.22 AC_Enable
Analog Compare Functions Example

Syntax
voi d AC _Enabl e(byte ctrl, byte in_pos, byte in_neg);

Sub AC_Enabl e(ctrl As Byte, in_pos As Byte, in_neg As Byte);

Description

Turns the Analog Comparator on. The Atmel AVR32 has 2 Analog Comparators. The table shows
which portinputs can be used for which comparator (Ctrl 0, Ctrl 1), and for what input parameter (in_pos or
in_neq). Only inputs on the same comparator can be compared, but both comparators can work on the
same time. Ahysteresis of 0 is used.

=¥ Due to the used TQFP100 version of the processor, Analog Comparator 0 has fewer choices for
the selection of the input pins than Comparator 1.

Parameter
ctrl Analog Comparator (0 - 1)

in_ pos InputV_ip
in_neqg InputV_in

Table Analog Comparator Pin Selection

#define Value Ctrl 0 Ctrl 1

AC ACOAPO 0 in_pos -

© 2013 Conrad Electronic

Libraries

AC ACOANO
AC ACOBPO
AC ACI1APO
AC AC1AP1
AC AC1ANO
AC AC1AN1
AC ACI1BPO
AC AC1BP1

5.3.2.3 AC_InpHigher

Analog Compare Functions

POS

POS

neg

neg

neg

galbhjwNEFION |-

neg

Example

228

Syntax

byte AC_I npHi gher(byte ctrl);

Sub AC Disable(ctrl As Byte) As Byte;

Description

Returns whether the voltage of in_pos is greater than the voltage of in_neg.

Parameter
ctrl Analog Comparator (0 - 1)

Return Parameter

Not zero, ifin_pos is greater than in_neg.

5.3.24 AC Example

/1 AVR32Bit Anal og Conparator Exanple

voi d mai n(voi d)

AC_Enabl e(0, AC_ACOAPO, AC_ACOANO);

i f (AC_I npHi gher (0)) Msg_W iteText ("AC_ACOAPO > AC_ACOANO\r");

el se Msg_WiteText("AC ACOAPO < AC _ACOANO\Tr");

{
whi | e(1)
{
AbsDel ay(500);
}
}

/1 500ns del ay

© 2013 Conrad Electronic

229

C-Control Pro IDE

5.4

54.1

Analog-Digital-Converter

Mega

The Micro Controller has an Analog Digital Converter with a resolution of 10 Bit. I. e. measured
wltages can be displayed as integral numbers from 0 through 1023. Reference wltage for the lower
limit is GND level (OV). The reference wltage for the upper limit can be selected at will.

e External Reference Voltage

¢ AVCC with capacitor on AREF

¢ Internal Reference Voltage 2.56V with capacitor on AREF

Analog Inputs ADCO ... ADC7, ADC_BG, ADC_GND

For the ADC the Inputs ADCO ... ADC7 (Port A.0 to A.7 with Mega32, Port F.0 to F.7 with
Megal28), an internal Band Gap (1.22V) or GND (0V) are available. ADC_BG and ADC_GND can
be used for review of the ADC.

If x is a digital measuring value then the corresponding wltage value u is calculated as follows:
u = x * Reference Voltage / 1024

If the external reference wltage e. g. produced by a reference wltage IC is 4.096V, then the differ-
ence of one bit of the digitized measuring value corresponds to a wltage difference of 4mV, or:

u=x*0,004v

=¥ The result of an AD conversion can be influenced, if any Port Bit (configured for output) on the same
Port as the AID channel, is changed during the measurement.

Differential |

ADC22x 10 Differential Inputs ADC2, ADC2, Gain 10 ; Offset Measurement
ADC23x 10 Differential Inputs ADC2, ADC3, Gain 10

ADC22x200 Differential Inputs ADC2, ADC2, Gain 200 ; Offset Measurement
ADC23x200 Differential Inputs ADC2, ADC3, Gain 200

ADC20x 1 Differential Inputs ADC2, ADCO, Gain 1
ADC21x1 Differential Inputs ADC2, ADC1, Gain 1
ADC22x 1 Differential Inputs ADC2, ADC2, Gain 1 ; Offset Measurement
ADC23x1 Differential Inputs ADC2, ADC3, Gain 1
ADC24x 1 Differential Inputs ADC2, ADC4, Gain 1
ADC25x 1 Differential Inputs ADC2, ADC5, Gain 1

ADC2 is the negative input.

The ADC can also perform differential measurements. The result can either be positive or negative.
The resolution during differential operation amounts to +/- 9 bit and is displayed in Two's Comple-
ment format. For differential operation an amplifier with gains of V: x1, x10, x200 is available. If x is a
digital measuring value then the corresponding woltage value u is calculated as follows:

© 2013 Conrad Electronic

Libraries 230

u = x * Reference Voltage / 512 / V

5411 ADC _Disable
ADC Functions

Syntax
voi d ADC_Di sabl e(voi d);

Sub ADC_Di sabl e()

Description

This function disables to the A/ID-Converter to reduce power consumption.

Parameter

None

5412 ADC_Read
ADC Functions

Syntax
word ADC_Read(void);

Sub ADC Read() As Word

Description

The function ADC_Read delivers the digitized measured value from one of the 8 ADC ports. The port num-
ber (0..7) has been given as a parameter in the call of ADC_Set(). The resultis in the range from 0 to 1023
according to the 10bit resolution of the A/D-Converter. The analog inputs ADCO to ADC7 can be measured
against ground, or differentiation measurement with gain factor of 1/10/100 can be made.

Return Parameter

measured value atthe ADC-Port

54.1.3 ADC_ReadInt
ADC Functions

Syntax

word ADC_Readl nt (voi d);

© 2013 Conrad Electronic

231 C-Control Pro IDE

Sub ADC_Readlnt() As Word

Description

This function is used to read the measurement value after a successful ADC-Interrupt. The ADC-Interrupt
gets triggered after the AD conversion is completed and a new measurement value is available. See
ADC_Setintand ADC_ Startint. The function ADC_Read delivers the digitized measured value from one of
the 8 ADC ports. The port number (0..7) has been given as a parameter in the call of ADC_Set(). The result
is in the range from 0 to 1023 according to the 10bit resolution of the AID-Converter. The analog inputs
ADCO to ADC7 can be measured against ground, or differentiation measurement with gain factor of
1/10/100 can be made.

Return Parameter

measured value of ADC-Port

5414 ADC_Set
ADC Functions

Syntax
word ADC Set(byte v _ref, byte channel);

Sub ADC Set(v_ref As Byte, channel As Byte) As Word

Description
The function ADC_Set initializes the Analog-Digital converter. The reference woltage and the measurement
channel number is selected and the A/ID converter is prepared for usage. After the measurement the value

is read with ADC Read().

=¥ The result of an A/D conversion can be influenced, if any Port Bit (configured for output) on the same
Port as the A/D channel, is changed during the measurement.

Parameter

channel port number (0..7)of ADC (Port A0 to A7 at Mega32, Port F.0 to F.7 at Megal128)

v_ref reference voltage (see table)
Name Value (Hex) Description
ADC_VREF BG Co 2,56Vinternal reference voltage
ADC VREF VCC 40 supply voltage (5V)
ADC VREF EXT 00 external reference voltage on PAD3

For the location of PAD3 see Jumper Application Board M32 or M128.

© 2013 Conrad Electronic

Libraries 232

54.15 ADC_Setint
ADC Functions

Syntax
word ADC Setlnt(byte v _ref, byte channel);

Sub ADC Setlint(v_ref As Byte, channel As Byte) As Word

Description
The function ADC_Setlint initializes the Analog-Digital converter for interrupt usage. The reference voltage
and the measurement channel number is selected and the A/D converter is prepared for the measure-
ment. An interrupt service routine must be defined. After successful interrupt the value can be read with
ADC_Readint().

=¥ The result of an A/D conversion can be influenced, if any Port Bit (configured for output) on the same
Port as the A/D channel, is changed during the measurement.

Parameter

channel port number (0..7)of ADC (Port A.0 to A7 at Mega32, Port F.0 to F.7 at Mega128)

v_ref reference voltage (see table)
Name Value (Hex) Description
ADC VREF BG (of0] 2,56Vinternal reference voltage
ADC VREF VCC 40 supply voltage (5V)
ADC VREF EXT 00 external reference voltage on PAD3

For the location of PAD3 see Jumper Application Board M32 or M128.

54.1.6 ADC_Startint
ADC Functions

Syntax
void ADC Startlnt(void);

Sub ADC Startlnt()

Description

The measurement is started if the AID converter has previously been initialized to interrupt service with a
call to ADC_ SetInt(). After the measurementis ready, the interrupt gets triggered.

Parameter

None

© 2013 Conrad Electronic

233 C-Control Pro IDE

542 AVR32Bit

The microcontroller has an Analog-to-Digital converter with a selectable resolution of 8/10/12 bits.
This means that measured wltages can be represented as whole numbers from -2048 to 2048, since
the AD-converter always works differential. In addition, an ADC preamplifier gain of 1, 2, 4, 8, 16, 32,
64 can be set by software.

The following reference voltage sources are available:
e 0,6 * VDDANA internal (0,6 * 3.3V = 1,98V)
¢ internal reference wltage of 1V

¢ two external reference wltage inputs, e.g. 2.048V generated by reference-wltage-IC

If "x" is a digital measurement value, calculate the corresponding wltage value "u" as follows:
The resolution depends on the configuration of the ADC.

Resolution Maximal Value
8 Bit -128 to +127
10 Bit -512 to +511
12 Bit -2048 to +2047

Formula for calculating the present ADC voltage:
u = X * reference wltage / resolution

5421 ADC Disable
ADC Functions

Syntax
voi d ADC_Di sabl e(voi d);

Sub ADC_Di sabl e()

Description

The function ADC_Disable turns off the AID-Converter to reduce power consumption.
Parameter

None

54.2.2 ADC_Enable
ADC Functions

Syntax

voi d ADC_Enabl e(byte node, dword speed, byte ref, byte input_cnt, char

© 2013 Conrad Electronic

Libraries 234

of fset);

Sub ADC Enabl e(npde As Byte, speed As ULong, ref As Byte, input_cnt As
Byte, offset As Char)

Description

The ADC sequencer in the AVR32 can carry up to 8 A/D-conwersions at the same time. An A/D-con-
version can be a differential measurement between an ADC pin and GND, or a differential measure-
ment between two pins. See ADC_SetInput.

For the mode parameter various properties can be ORed (this of course only makes sense with one
ADC resolution). Owversampling and Sample & Hold can be turned off. If enabled, an interrupt is
triggered when an ADC measurement is finished (see interrupt Table).

ADC_Start has to be called for each new measurement. The end of the measurement can be dis-
played via interrupt, or use ADC_GetValues with the parameter ADC_GET_WAIT. Is the Free Run-
ning mode selected, ADC_Start is called only once, after that the inputs are continuously measured,
and ADC_GetValues always returns the value of the last measurement.

=¥ Please look into the datasheet AT32UC3C for the exact meaning of oversampling and sample &
hold, and the impact on the measurements.

= |f ADC is set to very high speeds and the interrupt is enabled, this can overwhelm the inter-

preter.
Parameter
mode work modes (see Table)
speed ADC Clock (32khz - 1.5Mhz)
ref reference Voltage (see Table)
input_cnt number of ADC Pins (1-8)
offset correction factor (-128 to 127)
Mode Table
Definition Function
ADC_MODE_12BIT ADC 12-Bitresolution
ADC_MODE_8BIT ADC 8-Bitresolution
ADC_MODE_10BIT ADC 10-Bitresolution
ADC_MODE_NO_ OVERSAMP turns Oversampling off
ADC MODE_ENAB IRQ activates ADC IRQ
ADC_MODE_NO_ SAMPHOLD no Sample & Hold
ADC_MODE_FREE_RUN activates Free Running

Reference Voltage Table

Definition Function

ADC REF1V internal 1V Reference

© 2013 Conrad Electronic

235

C-Control Pro IDE

5.4.2.3

5.4.2.4

ADC REFO6VDD

internal 0.6 x VDDANA Reference

ADC ADCREFO

external ADCREFO Reference

ADC ADCREF1

external ADCREF1 Reference

ADC_GetValue
ADC Functions

Syntax

i nt ADC_GCet Val ue(byte indx);

Sub ADC_GCet Val ue(indx As Byte) As Integer

Description

The function reads a measured value from the A/D-converter. The indx parameter corresponds to the entry
in the inputs array in ADC_Enable(). If the value ADC_GET_WAIT (80 Hex) is ORed to indx, then the function

waits for the completion of all ADC measurements before the value is returned.

= The ADC_GET_WAIT functionality should not be used in "free running" mode, or when the ADC is

switched off.

Parameter

indx index of measured A/D value
Return Parameter

measured A/D value

ADC_GetValues
ADC Functions

Syntax

voi d ADC_Cet Val ues(int values[], byte cnt);

Sub ADC_GCet Val ues(Byref values As I nteger,

Description

cnt As Byte)

The function read the measured values from the A/D-converter and copies them into a 16-bit array. If the
value ADC_GET_WAIT (80 Hex) is ORed to cnt, then the function waits for the completion of all ADC meas-

urements before the values are copied.

=» The ADC_GET_WAIT functionality should not be used in "free running" mode, or when the ADC is

switched off.

Parameter

© 2013 Conrad Electronic

Libraries

val ues pointer to the 16-Bit array (0-7)

cnt nunmber of values that are copied into the array

54.25 ADC_Setlnput
ADC Functions

236

Syntax
voi d ADC_Set | nput (byt e i ndx,
Sub ADC_Enabl e(i ndx As Byte,

Description

The ADC sequencer in the AVR32 can carry up to 8 AD conwersion at a time. The function
ADC_SetInput defines the ADC inputs between a differential measurement is carried out. If you want
to measure only one input, one define ADC_GND as the second input. In addition, a GAIN factor can

be defined.

= Even if a measurement between an input and ADC_GND delivers only positive values?one bit of
the ADC resolution still remains resened for the sign.

byte inpl,

i npl As Byte,

byte inp2,

i np2 As Byte,

Parameter

i ndx index for conversion (0-7)

inpl first AD input (0-15)

inp2 second AD input (0-15)

ain GAIN factor

GAIN Table

Definition Meaning

ADC_SHG 1 gain factor 1
ADC_SHG 2 gain factor 2
ADC_SHG 4 gain factor 4
ADC _SHG 8 gain factor 8
ADC SHG 16 gain factor 16
ADC_SHG_32 gain factor 32
ADC SHG 64 gain factor 64

54.2.6 ADC_Start
ADC Functions

byte gain);

gain As Byte)

Syntax

void ADC Start (void);

© 2013 Conrad Electronic

237

C-Control Pro IDE

5.4.2.7

5.5

Sub ADC_Start ()

Description
The built-in A/ D converter starts to convert analog data.
Parameter

None

ADC Example

/1l programto read the neasured data fromtwo ADC pins
voi d nmai n(voi d)

{
int result[2];
char str[40];
ADC Di sabl e();
ADC Set |l nput (0, 2, ADC GND, ADC SHG 1); [// activate ADC2 - Gain 1
ADC Setlnput(1, 5, ADC GND, ADC SHG 4); [// activate ADC5 - Gain 4
/112Bit ADC,free running, 1MHz sanpling rate,reference 1V, offset 0
ADC_Enabl e(ADC_MODE_12BI T | ADC_MODE_FREE_RUN, 1000000, ADC REF1V,
2, 0);
ADC Start();
whil e(1)
{
ADC Get Val ues(result, 2); // read val ues
Str_Printf(str, "adc2: %l\r", result[O0]);
Msg WiteText(str);
Str_Printf(str, "adch: %l\r", result[1]);
Msg WiteText(str);
AbsDel ay(300);
}
}
CAN Bus

The CAN bus (Controller Area Network Data Sheet) is an asynchronous serial bus system and be-
longs to the field buses. It is internationally standardized in ISO 11898 and defines the Layer 1
(physical layer) and 2 (data security layer).

The CAN-bus was deweloped in 1983 from Bosch. Originally, the CAN-Bus was deweloped for the
automotive sector, because with increasing vehicle electronics the wiring harnesses got larger, and a
solution for weight and cost reduction had to be found. This successful and very safe approach is not

© 2013 Conrad Electronic

Libraries 238

only used today in the automotive industry, but also in the areas of automation, aviation, aerospace
and medical technology.

= The C-Control Manual cannot provide an introduction to the CAN standard, due to the complex-
ity of the topic. Prior knowledge about the CAN standard and Full CAN message objects are as-
sumed at this point. It is therefore recommended that beginner to embedded controllers will not work
directly with the CAN bus. A good summary of CAN and Message Objects provides the "Atmel
AT90CAN" Reference Manual Chapter 19, "Controller Area Network - CAN".

MEGA128CAN

The CAN signals of the C-Control Pro MEGA128CAN are available on pins X4_13 (CANL) and X4_14
(CANH) .

AVR32Bit

In the C-Control Pro AVR32Bit there is a CAN controller that operates two channels. But only the
first channel is connected to a transceiver, which is led out on the application board. On the Main-
board CANL1 is led out through a socket connector (without transceiver). The lines CANH and CANL
are passed out on the module connector X1. To use the second channel, the user must connect a
transceiver himself. As an example, the data sheet of the AVR32 module can be used. The second
Controller is on Port 1 (CAN_TX, PAQO) and Port 2 (CAN_RX, PAOL).

Network

Multiple CAN-bus network participants can be connected over the two pins (CAN-H and CAN-L). The
first and last stations have to be completed with a 120 Ohm resistor. As a data cable, a twisted pair
cable should be used. For shorter distances of a few centimeters up to 2 meters, even a simple par-
allel cable (twin lead) can be used.

CsControl [CeControl | (CeControl [c«Control
MEGA128CAN MEGA128CAN MEGA128CAN MEGA128CAN
UNIT 1 UMNIT 2 UNIT 3 UMNIT n

CANH | AN CANH CaL AN CabL CAN-H CaNL

CAN-HIGH

R2
120R

CAN-LOW

The UNIT supports the low- and high-speed bus (MEGA128CAN 10 kbit/s to 1 Mbit/s, AVR32Bit 50
kbit/s to 1 Mbit/s). For theoretical line lengths, depending on the bus speed, see the chart below.

Speed Cable Length
1 Mbit/s 40m

Up to 500 kbit/s 100m

Up to 125 kbit/s 500m

© 2013 Conrad Electronic

239

C-Control Pro IDE

Less than 125 kbit/s Up to 1000m

The line lengths are highly dependent on the used cables and the number of participants. It is pos-
sible to use a "twist-pair cables with a characteristic impedance 108-132 Ohm. A maximum of 32
MEGA128CAN units can operate on a bus. It is best to start at the theoretical maximum speed for
the used cable length, and to lower the transfer rate when there is no packet transfer at all or there
occur too many packet errors.

The MEGA128CAN supports the "Base frame format" CAN 2.0A (11 bit identifier) and the extended
frame format "CAN 2.0B (29 bit identifier).

To use the CAN bus in your own projects together with the C-Control Pro Megal28 CAN, it is essen-
tial to understand the CAN data format and the technical details of the CAN bus. Background inform-
ation can be found in books and in Wikipedia: http://en.wikipedia.org/wiki/Controller Area Network

Message Objects

The active CAN bus controller works with 15 (MEGA128CAN) or 16 (AVR32Bit) independent mes-
sage objects (MOb) with which one can send and receive messages with certain identifiers. For this
purpose the message objects are parametrized with CAN_SetMOb() for the related task.

=¥ Message Objects with a low MOb number have always precedence before a MOb with a higher
number. When two MOb's are capable to receive a certain message, the message will be received
from the MOb with the lower number.

CAN Protocol

The CAN bus controller can simultaneously process normal packets (CAN 2.0A) and extended
packets (CAN 2.0B). CAN bus identifier are passed as 32-bit dword (ULong). Depending on the type
of packets an identifier is 11-bit (V2.0 part A) or 29-bit long (V2.0 part B). The unused bits are ig-
nored. The maskID determines which packages are received for a specific identifier (ID). Only the
bits in the maskID that are "1" are to be reviewed at a bit comparison between the set identifier and
the ID of the incoming packet.

automatic reply

If a Message Object is set to automatic reply, the MODb inherits the Data Length Code (DLC) of the
incoming remote trigger package. l.e. the sender of the trigger packet determines with the DLC the
number of data bytes that are sent in the reply packet.

Message FIFO

During the initialization of the CAN library the user provides RAM for the message FIFO, in which all
incoming CAN packets are stored. The received messages can then be read asynchronously from
the FIFO.

© 2013 Conrad Electronic

http://en.wikipedia.org/wiki/Controller_Area_Network

Libraries 240

5.5.1

CAN Examples

In this chapter some initialization examples are given to clarify the operation of the CAN Library.
Initialization

In any event, the CAN library must be initialized before use. This example is for the CAN bus at a
speed of 1 mega bps, and for a FIFO RAM with 10 entries.

byte fifo_buf[140];

CAN_I ni t (CAN_1MBPS, 10, fifo_buf);

Reception

1. On MOb 2 messages of type CAN 2.0A are received, that have exactly an identifier of 0x123.

CAN_Set Mb(2, 0x123, Ox7ff, CAN_RECV);

2. On MOb 3 messages of type CAN 2.0B are received, that have exactly an identifier of 0x12345.

CAN_Set MOb(3, 0x12345, Ox1fffffff, CAN_RECV| CAN_EXTID);

3. On MOb 3 messages of type CAN2.0A and CAN 2.0B are received, because the
CAN_IGN_EXTID flag is set. Because the maskID is null messages with all identifiers are received.
Since CAN_IGN_RTR is set, normal and trigger packets are accepted.

CAN_Set Mb(3, 0x12345, 0, CAN_RECV| CAN_| GN_EXTI D] CAN_| GN_RTR);
4. On MOb 2 messages of type CAN 2.0A are received, that havwe an identifier of 0x120, 0x121,
0x122 or 0x123.

CAN_Set Mb(2, 0x120, Ox7fc, CAN_RECV);

Send

1. On MOb 0 is sent a CAN 2.0A message with ID 0x432 and 6 data byte.
byte data[8], i;

for(i=0;i<8;i++) data[i]=i;

CAN_Set MOb(0, 0x432, 0, CAN_SEND);
CAN_MObSend(0, 6, data);

2. On MOb 1 a CAN 2.0B message will be sent with ID 0x12345678 and 8 data.

© 2013 Conrad Electronic

241 C-Control Pro IDE

byte data[8], i;
for(i=0;i<8;i++) datal[i]=i;

CAN_Set Mb(1, 0x12345678, 0, CAN_SEND| CAN_EXTI D);
CAN_MDbSend(1, 8, data);

Automatic Reply

MOb 4 is set to automatic reply. The data bytes provided with CAN_SetMOb () are sent when a CAN
2.0B trigger message is received with ID of 0x999. The number of transmitted data bytes depends on
the DLC incoming trigger message.

byte data[5], i;
for(i=0;i<5;i++) datali]=i;

CAN_Set MOb(4, 0x999, Ox1fffffff, CAN_REPL| CAN_EXTID);
CAN_MObSend(4, 5, data);

552 CAN_Exit

CAN Bus Functions

Syntax
voi d CAN _Exit (void);

Sub CAN_Exit ()

Description
The CAN chip functions are turned off.
Parameter

None

553 CAN_GetInfo

CAN Bus Functions

Syntax

byte CAN_Getlnfo(byte infotype);

Sub CAN GetlInfo(infotype As Byte) As Byte

Description

© 2013 Conrad Electronic

Libraries 242

Returns information about the number of received CAN messages and CAN transmission errors.
Parameter

infotype selected CAN Bus information

Return Parameter

CAN Libraryinformation

infotype parameter:
Value Definition Meaning
1 CAN_MSGS Number of already received CAN messages in the FIFO
2 CAN _ERR RECV Number of CAN receive errors (max. 255)
3 CAN_ERR TRAN Number of CAN send errors (max. 255)

554 CAN_Init

CAN Bus Functions

Syntax
void CAN_Init(byte speed, byte fifo_len, byte fifo_addr[]);

Sub CAN Init(speed As Byte, fifo len As Byte, ByRef fifo_addr As Byte);

Description

Initializes the CAN functions. During initialization the user provides a RAM buffer for the reception of CAN
messages. Inside this buffer a total of fifo_len messages can be stored. The RAM area must have the size
fifo_len * 14 bytes. If the FIFO is full, incoming CAN messages are not stored.

=¥ The user-provided RAM buffer must remain reserved during the use of the CAN interface. Since local
variables will be released after leaving the function, it usually makes sense to declare the buffer as a

global variable.
Parameter
speed CAN Bus transmission speed

fifo_len Number of entries in the receive FIFO
fifo addr RAMaddress of the reception buffer

speed parameter:

Value Definition CAN Baudrate

© 2013 Conrad Electronic

243

C-Control Pro IDE

5.55

5.5.6

0 CAN 10KBPS 10.000bps
1 CAN 20KBPS 20.000bps
2 CAN 40KBPS 40.000bps
3 CAN 100KBPS 100.000bps
4 CAN 125KBPS 125.000bps
5 CAN 200KBPS 200.000bps
6 CAN 250KBPS 250.000bps
7 CAN 500KBPS 500.000bps
8 CAN 800KBPS 800.000bps
9 CAN 1MBPS 1.000.000bps
CAN_Receive

CAN Bus Functions

Syntax

byt e CAN_Receive(byte data[]);

Sub CAN_Recei ve(ByRef data As Byte) As Byte

Description

If messages are in the receive FIFO, the 14-byte data is copied in the user array, which must have a length
of 14 bytes. Is bit 31 of the IDT is setin the received message, then RTR was setin the CAN packet.

Parameter

data Arrayin which the CAN message is copied

Return Parameter

Length of CAN packet (0-8 Byte) or ff (Hex) if no packet was in buffer

Structure of the data set

Byte 0: MOb Number (0-14)

Byte 1-4: 29-BitIDT (at V2.0 part AMsgs the upper bits are null)

Byte 5: Length of CAN Data (0-8)

Byte 6-13: Packetdata

CAN_MObSend

CAN Bus Functions

Syntax

voi d CAN_MlbSend(byte nob, byte |en,

Sub CAN _MObSend(mob As Byte, len As Byte,

byte data[]);

ByRef data As Byte);

© 2013 Conrad Electronic

Libraries 244

5.9.7

5.5.8

Description

A CAN message is sent over the bus. If, however, the CAN_REPL flag was setat CAN_SetMOb (), the data
for the automatic reply will be saved and not sentimmediately.

Parameter
mob MOb Number (0-14)

n Length of the data to send
ata Arrayin der

>

o

CAN_SetChan (AVR32Bit)

CAN Bus Functions

Syntax
voi d CAN_Set Chan(byte chan);

Sub CAN_Set Chan(chan As Byte)

Description

Selects a CAN channel (CANO or CAN1) for further access.

=¥ The C-Control Pro Megal28 CAN only has one CAN channel.
Parameter

chan CAN Bus channel (0 -1)

CAN_SetMOb

CAN Bus Functions

Syntax
voi d CAN_Set MOb(byte npb, dword ID, dword maskl D, byte flag);

Sub CAN_Set Mb(nob As Byte, |ID As ULong, nmasklD As ULong, flag As Byte);

Description

With this function, the parameters for a Message Object (MOB) are set. The identifier and the identifier
mask is passed as a dword (ULong). WHen used with a 11-bit identifier, the upper bits are ignored. The
maskID is used only during reception. Only when a bit is set in the masklID, the received messages are
checked at the same bit position in the identifier whether the received identifier matches.

© 2013 Conrad Electronic

245 C-Control Pro IDE
Parameter
mob MOb Number(0-14)
1D Identifier
maskID Identifier Mask
flag Operation parameter for the Message Object (MOb)
flag Parameter:
Value (Hex) Definition Description
01 CAN RECV Messages are received on this MOb
02 CAN RTR The Remote Trigger Bit is set
04 CAN EXTID The CAN Message has a 29-Bit ID (V2.0 part B)
08 CAN REPL Automatic Reply is initialized
10 CAN IGN RTR RTR is not set in ID Mask
20 CAN IGN EXTID IDEMSK is not set in ID Mask
40 CAN SEND Messages are sent on this MOb
5.6 Clock
Mega
The internal software clock is clocked bythe 10ms interrupt of Timer2. Time and date can be set and then
continue to run independently. Leap years are taken into account. Depending on the Quartz inaccuracy the
error is between 4-6 seconds per day. A correction factor in 10ms ticks can be applied, that is added every
hour to the internal counter.
Example: If you have a deviation of 9.5 sec for 2 days, then you have to correct a deviation of 9.5/ (2 * 24) =
0.197 sec. This corresponds to a correction factor of 20, if the software clock goes in advance, or -20 else.
=¥ \When Timer 2 off, or used for other purposes, the internal software clock is not functional.
AVR32Bit
Inside the AVR32Bit Unit the builtin AVR32 Real Time Clock module is used for the clock functions.
In addition, the external 32khz crystal offers here a far more accuracy than the clock oscillator of the
C-Control Pro Mega Units. Therefore, the correction factor remains unused in the C-Control Pro
AVR32Bit.
5.6.1 Clock_GetVal

Clock Functions

Syntax
byte Cl ock_GetVal (byte indx);

Sub Cl ock_GetVal (i ndx As Byte) As Byte

© 2013 Conrad Electronic

Libraries 246

Description
All Date and Time values of the internal software clock can be read.

=¥ The values of day and month are zero based, a one should be added when printing.

Parameter

indx index of date or time parameter
#define Index Meaning
CLOCK_SEC 0 Second
CLOCK_MIN 1 Minute
CLOCK_HOUR 2 Hour
CLOCK_DAY 3 Day
CLOCK_MON 4 Month
CLOCK_YEAR 5 Year

Return Parameter

requested time parameter

5.6.2 Clock_SetDate

Clock Functions

Syntax
void Cl ock_Set Dat e(byte day, byte nmon, byte year);

Sub Cl ock_Set Dat e(day As Byte, non As Byte, year As Byte)

Description
Sets the date of the internal software clock.

= The values of day and month are zero based.

Parameter
day Day
mon Month
year Year

© 2013 Conrad Electronic

247

C-Control Pro IDE

5.6.3

5.7

Clock_SetTime

Clock Functions

Syntax
void Cl ock_SetTi me(byte hour, byte nin, byte sec, char corr);

Sub Cl ock_Set Ti ne(hour As Byte, nin As Byte, sec As Byte, corr As Char)

Description
Sets the time of the internal software clock. For a description of the correction factor refer to chapter Clock.

=¥ The correction factor is unused in the AVR32Bit, you can specify any value there.

Parameter

hour Hour

min Minute

sec Second

corr Correction Factor

DCF 77

All DCF routines are realized in library "LCD_Lib.cc". For use of this function the library
"DCF_Lib.cc" has to be tied into the project.

RTC with DCF 77 Time Synchronization

The DCF 77 Time Signal

The logical informations (time informations) are transmitted in addition to the normal frequency (car-
rier frequency of the transmitter, i. e. 77.5 kHz). This is performed by negative modulation of the sig-
nal (decrease of carrier amplitude to 25%). The start of the decrease lies at the respective beginning
of the seconds 0 ... 58 within a minute. In second 59 there is no decrease, so the following second
mark can indicate the beginning of a minute and the receiver can be synchronized. The sign duration
yields the logical value of the signs: 100 ms are "0", 200 ms are "1". Because of this there are 59
bits for informations available within one minute. From these the second marks 1 through 14 are
used for operation informations which are not meant for DCF77 users. The second marks 15 through
19 indicate the transmitter antenna, the time zone and will give notice of coming time changes.

From second 20 through 58 the time information for the respective following minute will be transmit-
ted serially in from of BCD numbers, whereby in any case the least significant bit will be the start bit.

Bits Meaning
20 Start bit (in any case "1")
21 -27 Minute

© 2013 Conrad Electronic

Libraries 248

28 Parity Minute

29 -34 Hour

35 Parity Hour
36-41 Day of the Month
42 - 44 Weekday

45 - 49 Month

50 - 57 Year

58 Parity Date

This signifies that reception must be in progress for at least one full minute before time information
can be provided. The information decoded during this minute is only secured by three parity bits. So
two incorrectly received bits will already lead to a transmission error that can not be recognized in
this way. For higher demands additional checking mechanisms can be used, such as plausibility
check (is the received time within the admissible limits) or multiple reading of the DCF77 time in-
formation with data comparison. Another possibility would be to compare the DCF time with the cur-
rent RTC time and only allow a specific deviation. This method does not work right after program
start since the RTC has to be set first.

Description of the example program "DCF_RTC.cc"

The program DCF_RTC.cc represents a clock which is synchronized by use of DCF 77. Time and
date are displayed on an LCD. Synchronization takes place after program start and then daily at a
time determined in the program (Update_Hour, Update_Minute). There are two libraries used:
DCF_Lib.cc and LCD_Lib.cc.

For the radio reception of the time signal a DCF77 receiver is necessary. The output of the DCF re-
ceiver is connected to the input port (Mega32: PortD.7 - M128: PortF.0 AVR32Bit: P27(PA15)). At
first the beginning of a time information has to be found. It will be synchronized onto the pulse gap
(bit 59). Following the bit will be received in seconds time. There will be a parity check after the
minute and hour information and also at the end of the transmission. The result of the parity check
will be stored in DCF_ARRAY][6]. For transfer of the time information DCF_ARRAY|[0..6] will be
used. After reception of a valid time information the RTC will be set with this new time and will then
run independently. RTC as well as DCF77 decoding is controlled by a 10ms interrupt. This time base
is derived from the quartz frequency of the Controller. DCF_Mode will control the completion of the
DCF77 time reception.

Changing the input pin

The used input port is defined as DCF_IN in the library "DCF_Lib.cc".

Table DCF Modes

DCF_Mode Description
0 No DCF 77 operation
1 Find pulse
2 Synchronization on frame start
3 Decode and store data. Parity check

© 2013 Conrad Electronic

249 C-Control Pro IDE

RTC (Real Time Clock)

The RTC is controlled by a 10ms interrupt and runs in the background independent of the user pro-
gram. The display on the LCD is updated every second. The display format is in the first line: Hour :
Minute : Second, in the second line: Date of Day : Month : Year.

LED1 flashes once per second.

After program start the RTC begins with the set time. The date is set to zero and thus indicates that
no DCF time adjustment has yet taken place. After reception of the DCF time the RTC is updated
with the current data. The RTC is not backed up by a battery, i. e. the clock time will not be updated
if there is no power applied to the Controller.

571 DCF_FRAME

DCF Functions

Syntax
voi d DCF_FRAME(voi d);

Sub DCF_FRAME()

Description
Set DCF_Mode to 3 ("data decode and save, parity check").
Parameter

None

5.7.2 DCF_INIT

DCF Functions

Syntax
void DCF_I NI T(voi d);

Sub DCF_I NI T()

Description
DCF_INIT initializes DCF usage. The input of the DCF signal is adjusted. DCF_Mode is setto 0.
Parameter

None

© 2013 Conrad Electronic

Libraries 250

5.7.3 DCF_PULS

DCF Functions

Syntax
voi d DCF_PULS(voi d);

Sub DCF_PULS()

Description

Set DCF_Mode to 1 ("look for pulse™).
Parameter

None

5.74 DCF_START

DCF Functions

Syntax
voi d DCF_START(voi d);

Sub DCF_START()

Description

DCF_START initializes all variables and sets DCE_Mode to 1. From now on DCF time recording is
working automatically.

Parameter

None

5.75 DCF_SYNC

DCF Functions

Syntax

© 2013 Conrad Electronic

251 C-Control Pro IDE

voi d DCF_SYNC(voi d);

Sub DCF_SYNC()

Description
Set DCF_Mode to 2 ("synchronize for frame beginning").
Parameter

None

5.8 Debug

The Debug Message Functions allow to send formatted text to the output window of the IDE. These
functions are interrupt driven with a buffer of up to 128 Byte. I. e. 128 Byte can be transferred through
the debug interface without the Mega 32 or Mega 128 Module having to wait for completion of the
output. The transmission of the individual characters takes place in the background. If it is tried to
send more than 128 Byte then the Mega RISC CPU will have to wait until all characters not fitting
into the buffer anymore have been transferred.

5.8.1 Msg_WriteChar

Debug Message Functions

Syntax
void Msg_WiteChar(char c);

Sub Msg_WiteChar(c As Char);

Description

One character is written to the output window. A C/R (Carriage Return - Value:13) generates a jump to the
nextline (linefeed).

Parameter

¢ output character

5.8.2 Msg_WriteFloat

Debug Message Functions

Syntax

void Msg WiteFloat(float val);

© 2013 Conrad Electronic

Libraries 252

Sub Msg_WiteFloat(val As Single)

Description
The passed floating point number is displayed with a preceding decimal sign.
Parameter

val floatvalue

5.8.3 Msg_WriteHex

Debug Message Functions

Syntax
void Msg WiteHex(word val);

Sub Msg_WiteHex(val As Wrd)

Description

The 16bit value is displayed in the output window. The Output is formatted as a hexadecimal value with 4
digits. Leading zeros are displayed.

Parameter

val 16bitinteger value

584 Msg_Writelnt

Debug Message Functions

Syntax
void Msg Witelnt(int val);

Sub Msg Witelnt(val As Integer)

Description

The passed 16bit value is display in the output window. Negative values are displayed with a preceding
minus sign.

Parameter

© 2013 Conrad Electronic

253 C-Control Pro IDE

val 16bitinteger value

585 Msg_WriteText

Debug Message Functions

Syntax
void Msg_WiteText(char text[]);

Sub Msg_WiteText(ByRef text As Char)

Description
All characters of a character array up to the terminating null are sent to the output window.
Parameter

text pointer to char array

58.6 Msg_WriteWord

Debug Message Functions

Syntax
void Msg WiteWwrd(word val);

Sub Msg_WiteWrd(val As Wrd)

Description
The parameter val is written to the output windows as an unsigned decimal number.
Parameter

val 16bitunsigned integer value

5.9 Direct Access (Mega)

The Direct Access functions allow direct access to all registers of the Atmel processor. The Register
numbers of the Atmel MEGA32 and Megal28 processors can be found in the Reference manual in
the chapter "Register Summary".

= Caution! A careless reading or writing access to a register can strongly affect the functionality
of all library functions. Only someone who knows what he does, should use the Direct Access func-

© 2013 Conrad Electronic

Libraries 254

tions!

5.9.1 DirAcc_Read

Direct Access Functions

Syntax

byte DirAcc_Read(byte register);

Sub DirAcc_Read(register As Byte) As Byte

Description

AByte is read from a Register of the Atmel CPU.

Parameter

register Register number (refer to chapter "Register Summary" in the Atmel Reference Manual)
Return Parameter

Value of Register

5.9.2 DirAcc_Write

Direct Access Functions

Syntax

void DirAcc_Wite(byte register, byte val);

Sub DirAcc_Wite(register As Byte, val As Byte)

Description
AByte value is written into a Register of the Atmel CPU.
Parameter

register Register number (refer to chapter "Register Summary" in the Atmel Reference Manual)
val Byte value

5.10 EEPROM

The C-Control Pro Modules integrate AVR32Bit:64kB M32:1kB resp. M128:4kB EEPROM. These
library functions allow access to the EEPROM of the Interpreter.

© 2013 Conrad Electronic

255 C-Control Pro IDE

5.10.1 EEPROM_Read

EEPROM Functions

Syntax
byt e EEPROM Read(word pos);

Sub EEPROM Read(pos As Wrd) As Byte

Description
Reads one byte out of the EEPROM at position pos.

=¥ On the C-Control Pro Mega Units the first 32 byte are reserved for the system of the C-Control Pro.
Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.

Parameter
pos byte position in EEPROM
Return Parameter

EEPROM value

5.10.2 EEPROM_ReadWord

EEPROM Functions

Syntax
word EEPROM ReadWor d(word pos);

Sub EEPROM ReadWr d(pos As Wrd) As Word

Description

Reads one word out of the EEPROM at position pos. The value of pos describes a byte position in the
EEPROM. This should be taken care of when using word or floating point accesses.

= On the C-Control Pro Mega Units the first 32 byte are reserved for the system of the C-Control Pro.
Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.
Parameter

pos byte position in EEPROM

Return Parameter

EEPROM value

© 2013 Conrad Electronic

Libraries 256

5.10.3 EEPROM_ReadFloat

EEPROM Functions

Syntax
fl oat EEPROM ReadFl oat (word pos);

Sub EEPROM ReadFl oat (pos As Word) As Single

Description

Reads a floating point value out of the EEPROM at position pos. The value of pos describes a byte position
in the EEPROM. This should be taken care of when using word or floating point accesses.

= On the C-Control Pro Mega Units the first 32 byte are reserved for the system of the C-Control Pro.
Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.

Parameter
pos byte position in EEPROM
Return Parameter

EEPROM value

5.10.4 EEPROM_Write

EEPROM Functions

Syntax
voi d EEPROM Wite(word pos, byte val);

Sub EEPROM Wite(pos As Wrd, val As Byte)

Description
Writes one byte into the EEPROM at position pos.

=¥ On the C-Control Pro Mega Units the first 32 byte are reserved for the system of the C-Control Pro.
Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.

Parameter

pos byte positionin EEPROM
val new EEPROMvalue

© 2013 Conrad Electronic

257

C-Control Pro IDE

5.10.5

5.10.6

EEPROM_WriteWord

EEPROM Functions

Syntax
voi d EEPROM WiteWrd(word pos, word val);

Sub EEPROM W iteWrd(pos As Wrd, val As Wrd)

Description

Writes one word into the EEPROM at position pos. The value of pos describes a byte position in the
EEPROM. This should be taken care of when using word or floating point accesses.

= On the C-Control Pro Mega Units the first 32 byte are reserved for the system of the C-Control Pro.
Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.

Parameter

pos byte position in EEPROM
val new EEPROMvalue

EEPROM_WriteFloat

EEPROM Functions

Syntax
voi d EEPROM Wit eFl oat (word pos, float val);

Sub EEPROM Wit eFl oat (pos As Word, val As Single)

Description

Writes a floating point value into the EEPROM at position pos. The value of pos describes a byte position in
the EEPROM. This should be taken care of when using word or floating point accesses.

=¥ On the C-Control Pro Mega Units the first 32 byte are reserved for the system of the C-Control Pro.
Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.

Parameter

pos byte position in EEPROM
val new EEPROM value

© 2013 Conrad Electronic

Libraries 258

5.11 Ethernet (AVR32Bit)

The C-Control Pro Unit AVR32Bit supports Ethernet hardware and protocols that follow the IEEE
802.3 standard. The associated PHY works with auto-negotiation and connects to a speed of
100Mbit or a 10Mbit, whatever speed the opposite side (eg a switch) offers. Power-over-Ethernet is
not supported. The following protocols are currently implemented:

ARP

ICMP Echo (ping)

DHCP

TCP/IP

UDP

C-Control Pro (UDP Port 50234)
HTTP (TCP/IP)

Foreknowledge

Prerequisite to understand this chapter and the successful use of the library is a basic knowledge of
the following areas of IPv4:

IP-numbers

Port addresses and significance
UDP packets

TCP/IP data stream

= |t is recommended to have knowledge about TCP/IP in a programming environment like the BSD
socket interface.

5.11.1 Ethernet Activation

= To awoid connection problems, the MAC address should be set to a new value ("Edit MAC Ad-
dress") before switching on the Ethernet support (see C-Control configuration). To this end, for each
sold C-Control Pro AVR32Bit Unit a unique MAC address is generated and supplied on a label. See
Software Installation.

¢ In the C-Control configuration, the Ethernet Support has to be enabled. When plugging in the Eth-
ernet connector, the yellow LED should stay on and the green LED will flash sporadically .

¢ |f DHCP is not enabled, the network parameters from the C-Control configuration will be used. The
entries of IP address, subnet mask, and gateway must be entered manually.

e |f DHCP is in use, the network parameters are retrieved from the DHCP server (eg DSL router or
similar). The DHCP protocol is not supported in the bootloader, but only by the interpreter. There-
fore, after the DHCP is enabled in the configuration, press the reset button once to start the inter-
preter.

¢ A change of the DHCP network data is stored directly in the configuration if the option save DHCP
settings is turned on.

¢ To test whether the network is configured correctly, send a ping from the PC to the AVR32Bit
Unit. The parameter Allow Ping must be enabled for it.

=» \When stopping the program with the Start/Stop button, the IwlP TCP/IP stack can get in a
state, where not all dynamic memory for the current connection is released. This memory may be
missing when you restart the program. If in doubt when encountering problems, press the reset but-

© 2013 Conrad Electronic

259

C-Control Pro IDE

5.11.2

ton to initiate a complete system reboot.

TCP/IP Programming

Open a TCP/IP connection:

Create a receive buffer with ETH_SetConnBuf.

The call of ETH ConnectTCP establishes a connection and sets the internal state to
ES_CONNECTING.

With periodical calling of ETH_GetStateTCP the connection state is monitored. After
ES_CONNECTING the state can change to ES_CONNECTED or ES_DISCONNECTED. At
ES_CONNECTED, the connection is open, else there might be a timout or the opposite side has
declined.

After the connection is open, it is possible to send data with ETH_SendTCP.

Simultaneously check periodically with ETH_CheckReceiveBuf if data has been received, and
monitor with ETH_GetStateTCP if the connection goes to the state ES_DISCONNECTED some-
time.

A call to ETH_DisconnectTCP terminates the connection.

Wait on a TCP/IP port for an incoming connection;

Create a receive buffer with ETH_SetConnBuf.

ETH_ListenTCP monitors a specified port.

Check periodically ETH_CheckReceiveBuf to see if data has been received and therefore a new
connection has been opened from the outside. The state of ETH_GetStateTCP now has the value
ES_LCONNECTED.

After the connection is open, it is possible to send data with ETH_SendTCP.

Monitor periodically ETH_GetStateTCP to check if the connection gets terminated (state
ES_DISCONNECTED).

A call to ETH_DisconnectTCP terminates the connection.

= |t is recommended to look at the demo programs for UDP and TCP/IP.

=¥ The TCP/IP configuration allows up to 10 simultaneously TCP/IP connections to be opened, and
be listened to up to 3 ports for incoming connections.

=¥ For default 4kb are reserved for the TCP/IP stack. Depending on the use the stack needs more
RAM or less. The memory needed is difficult to calculate, and should be determined by tests.

Examples

The program will connect to the HTTP port, sends a "GET' command and receives the response:

© 2013 Conrad Electronic

Libraries 260

byte tcp_buf [ETH_BUF(4000, 6)], rbuf[1461];

voi d mai n(voi d)

{
word info[4], plen;
char cndt xt[50];
dword i p;
byte id, state;

ETH_Set ConnBuf (t cp_buf, 4000, 6);
i d= ETH_Connect TCP(| P_ADDR(192, 168, 0,1), 80);

stat e= ES_CONNECTI NG,
whil e(state == ES_CONNECTI NG)

{
}

if(state == ES_CONNECTED)
{

state= ETH Get StateTCP(id);

cndt xt= "GET / HTTP/ 1.1\ n\n";
ETH SendTCP(i d, cndtxt, Str_Len(cndtxt));

whil e(1)
{
i p= ETH_CheckRecei veBuf (i nfo0);
if(ip)
{
pl en= info[3];
if(plen > 1460) plen= 1460; // lim to 1460 bytes
ETH Recei veDat a(rbuf, plen);

The following Example waits for incoming connections on port 23 (Telnet). The data is collected in
rbuf, but not further prepared:

byte tcp_buf[ETH BUF(4000,6)], rbuf[200]; // 4000 byte receive buffer

voi d mai n(voi d)

{
word info[4], plen;
dword i p;

© 2013 Conrad Electronic

261 C-Control Pro IDE

char text[10];

ETH_Set ConnBuf (t cp_buf, 4000, 6); // 4000 byte buffer and allow 6 connections
ETH Li stenTCP(23); // Listen Telnet port

whi | e(1)

{
i p= ETH_CheckRecei veBuf (i nfo);
i f(ip)
{

plen= info[3]; [/

if(plen > 200) plen= 200; // limt to 200 bytes
ETH Recei veDat a(rbuf, plen);

txt= "Cmd:\ n";

ETH SendTCP(info[O0], txt, 5); // send Cnd String

5.11.3 UDP Programming

e UDP packets can directly be sent with ETH_SendUDP. The maximum size is 1460 bytes. This
corresponds to an MTU of 1500 and a 40-byte UDP/IP header.

¢ In order to receive UDP packets, a receive buffer (ring buffer) is reserved with ETH_SetConnBuf
and ETH_ListenUDP will start listening to aport. Now all incoming packets arrive in the receive buf-
fer. When the buffer is full, further received data is lost. Therefore buffer should be checked regu-
larly with the Function ETH_CheckReceiveBuf. A call to ETH_ReceiveData copies the data into a
byte array buffer. If there are less bytes specified than there are bytes in the packet, the remaining
bytes of the packet are discarded from the ring buffer.

= |t is recommended to look at the demo programs for UDP and TCP/IP.

= [For default 4kb are resenved for the TCP/IP stack. Depending on the use the stack needs more
RAM or less. The memory needed is difficult to calculate, and should be determined by tests.

Examples

1. Program sends every second a string to Syslog Port 514:

© 2013 Conrad Electronic

Libraries 262

voi d SendSysl ogMsg(dword ip, byte level, char text[])

{ byte buf[100];
Str_Printf(buf, "<%>%", 16*8+l evel, text);
ETH _SendUDP(i p, 514, buf, Str_Len(buf));
}
voi d mai n(voi d)
{
whil e(1)
{
SendSysl ogMsg(| P_ADDR(192, 168,0, 1), 3, "test nessage");
AbsDel ay(1000);
}
}

2. Program receives data on UDP Port 50000 and echoes data back to sender:
byte buf [ETH BUF(500,0)], rbuf[200]; // 500 byte receive buffer

voi d mai n(voi d)

{
word info[4], plen;
dword i p;
ETH_Set ConnBuf (buf, 500, 0);
ETH Li st enUDP(50000); // listen to Port 50000
whil e(1)
{
i p= ETH_CheckRecei veBuf (i nfo);
i f(ip)
{
plen= info[3]; // length
if(plen > 200) plen= 200; // limt to 200 bytes
ETH Recei veDat a(rbuf, plen);
ETH _SendUDP(i p, 50000, rbuf, plen);
}
}
}

5.11.4 ETH_ConnectTCP

Ethernet Functions

Syntax
byte ETH Connect TCP(dword ip, word port);

Sub ETH Connect TCP(ip As ULong, port As Wrd) As Byte

© 2013 Conrad Electronic

263

C-Control Pro IDE

5.11.5

Description

Opens a TCP / IP connection to a port. The 32-bit value of the IP address can be calculated with the
macro IP_ADDR () from the accustomed notation: For example, IP_ADDR (192,168,1,1).

=% When returning from ETH_ConnectTCP the connection is not established directly. You hawe to

monitor the status of the connection with ETH_GetStateTCP.

Parameter

ip IP-Address
port UDP Port

Return Parameter

sock_id (Socket Index), ff (Hex) in case of error

ETH_CheckReceiveBuf

Ethernet Functions

Syntax

dword ETH CheckRecei veBuf (word info[]);

Sub ETH_CheckRecei veBuf (ByRef info As Wrd) As ULong

Description

Checks whether packets are available in the receive buffer. If the return parameter is zero, no Ether-
net packets have been received. Is a package there, additional parameters are stored into the info ar-
ray. The info array (16-bit) should have a size of 4 words. If a UDP packet is received, the socket in-

dex (info [0]) is equal to ff (Hex).

= One should be careful not to confuse the socket index (sock_idx) with the socket handle. The
lists commands (ListenTCP, CloseListenTCP etc.) work with the socket handle, the other with the

socket index.
Parameter

info

Return Parameter

IP address of the sender

0, when there are no packets in the buffer

Info Array

© 2013 Conrad Electronic

Libraries

5.11.6

5.11.7

5.11.8

info[0] socket index
info[1] IP_port of sender
info[2] socket handle
info[3] packet length

ETH_CloseListenTCP

Ethernet Functions

264

Syntax
void ETH_Cl oseLi stenTCP(word handl e);

Sub ETH_Cl oseLi stenTCP(handl e As Word)

Description

Closes a TCP listening socket that was created with ETH_ListenTCP.
Parameter

handle ETH_ListenTCP handle

ETH_CloseListenUDP

Ethernet Functions

Syntax
voi d ETH_Cl oseLi st enUDP(word handl e);

Sub ETH_Cl oseli st enUDP(handl e As Word)

Description
Closes a UDP listening socket that was created with ETH_ListenUDP.
Parameter

handle ETH_ListenUDP handle

ETH_DisconnectTCP

Ethernet Functions

Syntax

voi d ETH_Di sconnect TCP(byte sock id);

© 2013 Conrad Electronic

265

C-Control Pro IDE

5.11.9

Sub ETH_Di sconnect TCP(sock_id As Byte)

Description

Terminates an open connection.

Parameter

sock id Socket | ndex

ETH_GetlPInfo

Ethernet Functions

Syntax

voi d ETH Cet | PI nf o(by

Sub ETH CGetl PInfo(info As Byte, ByRef data As Byte)

Description

te info, byte dataf[]);

Returns Ethernet information in a byte array. The length of the array must be sized to fit the values?If
DHCP is enabled and the IP address is currently 0.0.0.0, no valid IP address has been assigned by

DHCP yet.

Parameter

info info type
data return array

Info Type Meaning Length
El IP_ADDR IP-address 4
El NETMASK netmask 4
El GATEWAY gateway address 4
El MACADDR MAC address 6

5.11.10 ETH_GetStateTCP

Ethernet Functions

Syntax

byte ETH Get Stat eTCP(byte sock id);

Sub ETH Cet StateTCP(sock id As Byte) As Byte

© 2013 Conrad Electronic

Libraries 266

Description

Informs about the status of the connection. Since the other party can cancel a TCP / IP connection at any
time, the status of the program should be monitored periodicallyin the main loop.

= The sock_id parameter is returned either by ETH_ConnectTCP, or you get it as info [0] value of
ETH_CheckReceiveBuf.

Parameter
sock_id Socket |ndex
Return Parameter

Connection state

State Table

#define Value Meaning

no TCP/IP_connection
connection request initiated (ETH ConnectTCP)
connection is open (ETH ConnectTCP)
connection is open (ETH ListenTCP)

ES DISCONNECTED
ES CONNECTING
ES CONNECTED
ES LCONNECTED

WIN [~ |O

5.11.11 ETH_ListenTCP

Ethernet Functions

Syntax
word ETH_Li stenTCP(word port);

Sub ETH_ ListenTCP(port As Wrd) As Wrd

Description

Opens a listening socket on a TCP port. Received packets are stored in the buffer that was initialized with
ETH_SetConnBuf.

Parameter
port TCP Port
Return Parameter

handle to TCP listening Socket, 0 in case of error

© 2013 Conrad Electronic

267

C-Control Pro IDE

5.11.12 ETH_ListenUDP

Ethernet Functions

Syntax
word ETH_Li stenUDP(word port);

Sub ETH_Li stenUDP(port As Wrd) As Wrd

Description

Opens a listening socket on a TCP port. Received packets are stored in the buffer that was initialized with
ETH_SetConnBuf.

Parameter
port UDP Port
Return Parameter

handle to UDP listening Socket, 0 in case of error

5.11.13 ETH_ReceiveData

Ethernet Functions

Syntax
voi d ETH Recei veData(byte buf[], word |en);

Sub ETH_Recei veDat a(ByRef buf As Byte, |len As Wrd)

Description

Sawves a packet from the Ethernet receive buffer to address buf. The len parameter can be smaller
than the length of the packet data, the remaining bytes of the packet are discarded. If you want to
discard the whole packet data, set len to zero.

Parameter

buf Arrayvariable in that the buffer data is stored
I en number of bytes that are copied

5.11.14 ETH_SendTCP

Ethernet Functions

Syntax

byte ETH SendTCP(byte sock id, byte buf[], word len);

© 2013 Conrad Electronic

Libraries 268

Sub ETH _SendTCP(sock id As Byte, ByRef buf As Byte, len As Wrd) As Byte

Description
Sends TCP data to an open TCP/IP connection.

=¥ The sock_id parameter is returned either by ETH_ConnectTCP, or you get it as info [0] value of
ETH_CheckReceiveBuf.

Parameter

sock _id socket index

buf address of TCP data buffer
len length of TCP data

Return Parameter

0 ifno error

5.11.15 ETH_SendUDP

Ethernet Functions

Syntax
voi d ETH_SendUDP(dword ip, word port, byte buf[], word len);

Sub ETH SendUDP(ip As ULong, port As Word, ByRef buf As Byte, len As
Wor d)

Description

Sends a UDP packetto an IP address and port.

Parameter

ip IP-address

port UDP port

buf address of packet buffer
len length of UDP packet

5.11.16 ETH_SetConnBuf

Ethernet Functions

Syntax

voi d ETH_Set ConnBuf (byte buf[], word size, byte TCP_conn);

© 2013 Conrad Electronic

269 C-Control Pro IDE

Sub ETH_Set ConnBuf (ByRef buf As Byte, size As Word, TCP_conn As Byte)

Description

Creates an Ethernet receive buffer where received TCP/IP and UDP packets are stored.

Parameter

buf address of receive buffer
si ze size of buffer

5.12 12C

The Controller provides an 12C Logic which allows effective communication. The Controller
operates as an I2C Master (single master system). A slave operating mode is possible

but not yet implemented in the current version.

5.12.1 Mega

5.12.1.1 12C_lInit
12C Functions Example

Syntax
void 12C Init(byte | 2C BR);

Sub 12C I nit(12C BR As Byte)

Description
This function initializes the 12C interface.

Parameter

I2C BR describes the baud rate. The following values are predefined:

1 2C 100kHz
1 2C_400kHz
Definition 14,7456 Mhz 16 Mhz
12C 100kHz 66 72
12C 400kHz 10 12

© 2013 Conrad Electronic

Libraries 270

=¥ The Bitrate can be calculated as follows: Bitrate = ((CPU_CLOCK / TARGET_I2C_SPEED) - 16) /2

5.12.1.2 [2C_Read_ ACK
I2C Functions

Syntax
byte |2C_Read_ACK(void);

Sub 12C Read ACK() As Byte

Description

This function receives a byte and acknowledges with ACK. Afterwards the status of the interface can be re-
turned with [12C_ Status().

Return Parameter

value read from the 12C bus

5.12.1.3 12C_Read NACK
12C Functions Example

Syntax
byte | 2C_Read_NACK(voi d);

Sub 12C Read NACK() As Byte

Description

This function receives a byte and acknowledges with NACK. Afterwards the status of the interface can be
returned with 12C_ Status().

Return Parameter

value read from the 12C bus

5.12.1.4 12C_Start
I2C Functions Example

Syntax
void |12C Start(void);

Sub 12C _Start()

© 2013 Conrad Electronic

271 C-Control Pro IDE

Description

This function introduces communication with a starting sequence. Afterwards the status of the interface
can be returned with 12C_Status().

Parameter

None

5.12.1.5 12C_Status
I2C Functions

Syntax
byte |12C _Status(void);

Sub 12C_Status()

Description

With 12C_Status the status of the 12C interface can be accessed. For the meaning of the return value
please look inside the |12C status code table.

Return Parameter

current 12C Status

5.12.1.6 12C_Stop
I2C Functions Example

Syntax
void |12C _Stop(void);

Sub 12C_Stop()

Description

This function ceases the 12C communication with a stop sequence. Afterwards the status of the interface
can be returned with |12C_ Status().

Parameter

None

© 2013 Conrad Electronic

Libraries 272

5.12.1.7 12C_Write
I2C Functions Example

Syntax
void 12C Wite(byte data);

Sub 12C Wite(data As Byte)

Description

12C_Write() sends a byte to the 12C bus. Afterwards the status of the interface can be returned with
12C Status().

Parameter

data data byte

5.12.1.8 12C Status Table

Table: Status Codes Master Transmitter Mode

Status Code (Hex) Description
08 a START sequence has been sent
10 a "repeated” START sequence has been sent
18 SLA+W has been sent, ACK has been received
20 SLA+W has been sent, NACK has been received
28 Data byte has been sent, ACK has been received
30 Data byte has been sent, NACK has been received
38 conflict with SLA+W or data bytes

Table: Status Codes Master Receiver Mode

Status Code (Hex) Description
08 a START sequence has been sent
10 a "repeated” START sequence has been sent
38 conflict with SLA+R or data bytes

© 2013 Conrad Electronic

273 C-Control Pro IDE

40 SLA+R has been sent, ACK has been received

48 SLA+R has been sent, NACK has been received
50 Data byte has been sent, ACK has been received
58 Data byte has been sent, NACK has been received

5.12.1.9 12C Example

Example: read EEPROM 24C64 and write without I12C_Status check

/] 12C Initialization, Bit Rate 100kHz

mai n(voi d)

{

wor d address;

byt e dat a, EEPROM dat a;

addr ess=0x20;
dat a=0x42;

12C Init(12C_100kHz);
/1 wite data to 24C64 (8k x 8) EEPROM

1 2C Start();
1 2C_ Wite(0xA0);

/| DEVI CE ADDRESS : A0

| 2C Wite(address>>8); /1 H GH WORD ADDRESS
1 2C_ Wite(address); /1 LOW WORD ADDRESS

12C Wite(data);
12C _Stop();
AbsDel ay(5);

/] wite Data

/'l delay for EEPROM Wite Cycle

/'l read data from 24C64 (8k x 8) EEPROM

1 2C Start();
1 2C_ Wite(0xA0);

/1 DEVI CE ADDRESS : A0

| 2C_Wite(address>>8); /1 H GH WORD ADDRESS
| 2C_Wite(address); /1 LOW WORD ADDRESS

1 2C Start();
12C Wite(0xAl);

/| RESTART
/| DEVI CE ADDRESS : Al

EEPROM dat a=1 2C_Read_NACK() ;

1 2C _Stop();

Msg Wit eHex(EEPROM dat a) ;

5.12.2 AVR32Bit

© 2013 Conrad Electronic

Libraries 274

5.12.2.1 12C_Probe
I2C Functions

Syntax
byte | 2C _Probe(byte addr);

Sub 12C _Probe(addr As Byte) As Byte

Description
12C_Probe tries to address an 12C device and gives as result whether the attempt was successful.
Parameter

addr address of 12C device

Return Parameter

1 =device has answered
Oelse

5.12.2.2 12C_Read
I2C Functions

Syntax

byte | 2C Read(byte addr, dword hdr, byte hdr _len, byte nem.addr|[],
word | ength);

Sub 12C_Read(addr As Byte, hdr As ULong, hdr_len As Byte,
ByRef nem addr As Byte, |length As Wrd) As Byte

Description

First, up to 4 bytes of header data are written to the 12C device with address addr (12C 7-bit address).
The data is passed in hdr (dword), the number of bytes in hdr_len. The hdr_len may be zero, means
that is there is no header data transferred. There are always the first high-order bytes of the header
transmitted (big endian). After transferring the header, length bytes are written from the 12C device
into the array mem_addr.

=¥ The term header stands not for a specific 12C term, but for up to 4 bytes, that are transmitted to
the 12C device. Many 12C devices use such a header, e.g. as to index a register.

Parameter

addr address of I2C device
hdr up to 4 byte header data
hdr_len length of header

mem_addr arrayin thatthe 12C device data is copied into

© 2013 Conrad Electronic

275 C-Control Pro IDE

length number of bytes that are transferred (exclusive header)
Return Parameter

-1 =transmission error
0 =successful

5.12.2.3 12C_SetSpeed
12C Functions Example

Syntax
void |1 2C_Set Speed(dword | 2C BR);

Sub | 2C_Set Speed(l12C BR As ULong)

Description
This function sets the speed of the 12C interface.
Parameter

I2C BR Indicates the bitrate as a 32-bit value. The following values @re already predefined:

| 2C_100kHz
| 2C_400kHz
Definition Value
1 2C_100kHz 100000
| 2C_400kHz 400000

Return Parameter

-8 =transmission error
0 =successful

5.12.2.4 12C_Write
12C Functions

Syntax

byte 12C Wite(byte addr, dword hdr, byte hdr len, byte nmemaddr[],
word | ength);

© 2013 Conrad Electronic

Libraries 276

Sub 12C Wite(addr As Byte, hdr As ULong, hdr_len As Byte,
ByRef nmem addr As Byte, length As Word) As Byte

Description

First, up to 4 bytes of header data are written to the 12C device with address addr (12C 7-bit address).
The header data is passed in hdr (dword), the number of bytes in hdr_len. The hdr_len may be zero,
means that is there is no header data transferred. There are always the first high-order bytes of the
header transmitted (big endian). After transferring the header, length bytes are written from the array
mem_addr to the 12C device.

=¥ The term header stands not for a specific 12C term, but for up to 4 bytes, that are transmitted to
the 12C device. Many 12C devices use such a header, e.g. as to index a register.

Parameter

addr address of I2C device

hdr up to 4 byte header data

hdr len length of header

mem_addr arraythatis written to 12C device

length number of bytes that are transferred (exclusive header)

Return Parameter

-1 =transmission error
0 =successful

5.12.2.5 12C Example

Example: EEPROM 24C64 read and write

/1 12C device address = 0x50, Bit Rate 100kHz
/1 EEPROM has 16bit nmenory address

byte data[10];

voi d mai n(voi d)

{
/1 read 10 bytes from nmenory address 0x20 into array datal]
| 2C_Read(0x50, 0x20, 2, data, 10);
/1 wite 10 bytes fromarray data[] to EEPROM nenory address 0x20
I 2C_ Wite(0x50, 0x20, 2, data, 10);
}

© 2013 Conrad Electronic

277

C-Control Pro IDE

5.13

Interrupt

The Controller provides a multitude of interrupts. Some of them are used for system functions and
are thus not available to the user. The following interrupts can be utilized by the user.

Table: Interrupts

Interrupt Name

Mega32

Megal28 (CAN)

INT_O external InterruptO external InterruptO
INT_1 external Interruptl external Interruptl
INT_2 external Interrupt2 external Interrupt2
INT_3 external Interrupt3
INT_4 external Interrupt4
INT 5 external Interrupt5
INT_6 external Interrupt6
INT_7 external Interrupt?7
INT_TIM1CAPT Timerl Capture Timerl Capture
INT_TIM1CMPA Timerl CompareA Timerl CompareA
INT_TIM1CMPB Timerl CompareB Timerl CompareB
INT_TIM1OVF Timerl Owerflow Timerl Owerflow
INT_TIMOCOMP Timer0 Compare Timer0 Compare
INT_TIMOOVF Timer0 Owverflow Timer0 Owverflow
INT_ANA_COMP Analog Comparator | Analog Comparator
INT_ADC ADC ADC
INT_TIM2COMP Timer2 Compare Timer2 Compare
INT_TIM20OVF Timer2 Owerflow Timer2 Owerflow
INT_TIM3CAPT Timer3 Capture
INT_TIM3CMPA Timer3 CompareA
INT_TIM3CMPB Timer3 CompareB
INT_TIM3CMPC Timer3 CompareC
INT_TIM3OVF Timer3 Owerflow

=% A signal on INT_O (Mega32) or INT_4 (Megal28 (CAN)) can interfere with the Autostart Beha-
viour when the C-Control Pro Module is switched on. According to the pin assignment of M32 and
M128 these pins share the same pin with SW1. If SW1 is pressed during power up of the Module
then the Bootloader Mode will be activated and the program will not be automatically started.

Interrupt Name

AVR32Bit

INT_ANA_COMP

Analog Comparator

INT 1 external Interrupt 1
INT 2 external Interrupt 2
INT 3 external Interrupt 3

© 2013 Conrad Electronic

Libraries 278

INT 4 external Interrupt 4
INT 5 external Interrupt 5
INT_6 external Interrupt 6
INT 7 external Interrupt 7
INT_ADC ADC

INT_100Hz 100 Hz Interrupt
INT_TIMERO Timer 0

INT_ TIMER1 Timer 1
INT_TIMER2 Timer 2
INT_TIMERS3 Timer 3
INT_TIMER4 Timer 4
INT_TIMERS Timer 5

INT_CAN CAN

The corresponding interrupt has to receive the corresponding instructions in an Interrupt Senice
Routine (ISR) and also the interrupt has to be enabled. See Example. During execution of the interrupt
routine the Multi Threading is suspended.

5.13.1 Ext_IntEnable

Interrupt Functions

Syntax
voi d Ext_IntEnabl e(byte | RQ byte Mde);

Sub Ext_IntEnabl e(I RQ As Byte, Mde As Byte)

Description
This function enables the external Interrupt IRQ. The Mode parameter defines when to trigger the interrupt.

=¥ The parameter IRQ has a numeric value. Not to be confused with the #defines of parameter irgno in
function Irg_SetVect().

Parameter

IRQ number of the interrupt to be enabled Mega32 (0-2) , Megal28 (0-7) , AVR32 (1-7)
Mode parameter:

a low level triggers the interrupt

every changing edge triggers the interrupt
a falling edge triggers the interrupt
arising edge triggers the interrupt

=¥ Asignal on Mega32:IRQ 0 or Mega128:IRQ 4 at power up time can lead to Autostart problems.

Mode parameter only for Mega32 and IRQ2:

© 2013 Conrad Electronic

279 C-Control Pro IDE

0: afalling edge triggers the interrupt
1. arising edge triggers the interrupt

Mode parameter for AVR32

a low level triggers the interrupt

a high level edge triggers the interrupt
a falling edge triggers the interrupt
arising edge triggers the interrupt

wh ko

When 40 (Hex) is ORed to the parameter Mode (only AVR32) an internal pull-down is set, if 80 (Hex) is
ORed an internal pull-up gets enabled.

5.13.2 Ext_IntDisable

Interrupt Functions

Syntax
voi d Ext_IntDi sabl e(byte | RQ;

Sub Ext_I nt Di sabl e(I RQ As Byte)

Description

The external Interrupt IRQ gets disabled.

Parameter

IRQ number of the interrupt to disable Mega32 (0-2) , Megal28 (0-7) , AVR32 (1-7)

5.13.3 Irqg_GetCount

Interrupt Functions Example

Syntax
byte Irq_Get Count (byte irqnr);

Sub Irq_GetCount(irqnr As Byte) As Byte

Description

Acknowledges the interrupt. If the function is not called at the end of a interrupt service routine, the in-
terrupt service routine gets called continuously.

Parameter

i rqnr specifies the interrupt type (see table)

Return Parameter

© 2013 Conrad Electronic

Libraries 280

5.134

5.13.5

The return value expresses how often a interrupt got triggered until the function Irq_GetCount() has been
called. Avalue greater 1 shows that the interrupts
are triggered more rapidly than the interrupt service routine is processed.

Irq_SetVect

Interrupt Functions Example

Syntax
void Irqg_SetVect(byte irqgnr, dword vect);

Sub Irq_SetVect(irgnr As Byte, vect As ULong)

Description

Defines an interrupt service routine for a specified interrupt. At the end of the interrupt service routine the
function Irg_GetCount() has to be called, otherwise the interrupt service routine gets called continuously. A
vect of value Null sets the interrupt inactive again.

Parameter

i rgnr specifies the interrupt type (see table)
vect is the name of the interrupt function to be called

IRQ Example

Example: Usage of Interrupt Routines

/1 INT_100HZ (AVR32Bit) or Tinmer 2 (MEGA) are nornmally called all 10ns.
/1 In this exanple the variable cnt gets increased every 10nms by one.

© 2013 Conrad Electronic

281 C-Control Pro IDE

int cnt;

voi d | SR(voi d)

{

cnt =cnt +1;
#i f AVR32

I rq_Get Count (I NT_100HZ) ;
#el se

I rg_Get Count (I NT_TI M2COWP) ;
#endi f
}
voi d mai n(voi d)
{

cnt =0;
#i f AVR32

I rg_Set Vect (I NT_100HzZ, | SR)
#el se

I rg_Set Vect (I NT_TI MCOWP, | SR)
#endi f

while(true); // endless |oop
}

5.14 Keyboard (Mega)

One part of these keyboard routines is implemented in the Interpreter, another can be called up after
appending library "LCD_Lib.cc". Since the functions in

"LCD_Lib.cc" are realized through Bytecode they are slower when executed. Library functions how-
ever have the advantage that they can be taken from the project by omitting the library in case they
are not needed. Direct Interpreter functions are always present, will however take up flash memory.

= There is no keyboard included with the AVR32 Application Board, so there are no keyboard
routines in the library.

5.14.1 Key_lInit

Keyboard Functions (Library "Key Lib.cc")

Syntax
void Key_lnit(void);

Sub Key_Init()

Description

The global keymap array gets initialized with the ASCII values of the keyboard.

© 2013 Conrad Electronic

Libraries 282

Parameter

None

5.14.2 Key_Scan

Keyboard Functions

Syntax
word Key_Scan(void);

Sub Key_Scan() As Word

Description

Key_Scan scans sequentially the input pins of the connected keyboard and returns the result as a bit field
with 16 bits. Bits that are setrepresent keys that have been pressed during the scan.

Return Parameter

16 bits that represent the input lines of the keyboard

5.14.3 Key_TranslateKey

Keyboard Functions (Library "Key_Lib.cc")

Syntax
char Key_Transl at eKey(word keys);

Sub Key_Transl at eKey(keys As Word) As Char

Description

This help function looks for the first"1" in the bit field, and returns the
ASClIl value of the corresponding key.

Parameter
keys bitfield value that has been retuned from Key Scan()
Return Parameter

ASCIl value of recognized keys
-lifno keyis pressed

© 2013 Conrad Electronic

283 C-Control Pro IDE

5.15 LCD

A part of these routines is implemented in the Interpreter, another part can be called up by append-
ing library "LCD_Lib.cc". Since the functions in "LCD_Lib.cc" are realized through Bytecode they are
slower when executed. Library functions however have the advantage that they can be taken from the
project by omitting the library in case they are not needed. Direct Interpreter functions are always
present, will however take up flash memory.

5.15.1 Internal Functions
The Functions listed here are used internally and should normally not used by the user.

5.15.1.1 LCD_Sublnit
LCD Functions

Syntax
voi d LCD_Subl nit(void);

Sub LCD_Subl nit()

Description

Initializes the display ports on assembler level. Must be called before all other LCD output functions. This
function will be used as firstcommand from LCD_Init().

Parameter

None

5.15.1.2 LCD_TestBusy
LCD Functions

Syntax
voi d LCD Test Busy(void);

Sub LCD Test Busy()

Description

This function waits for a non-busy of the display controller. If the controller is accessed in his busy period
the output data will be corrupted.

Parameter

© 2013 Conrad Electronic

Libraries

None

5.15.1.3 LCD_WriteDataRegister

LCD Functions (Library"LCD_Lib.cc")

284

Syntax
void LCD_WiteDat aRegi ster(char x);

Sub LCD_Wi teDat aRegi ster(x As Char)

Description
Sends a data byte to the display controller.
Parameter

x data byte

5.15.1.4 LCD_WriteCTRRegister

5.15.2

LCD Functions (Library"LCD_Lib.cc")

Syntax
void LCD WiteCTRRegi ster(byte cnd);

Sub LCD WiteCTRRegister(cnd As Byte)

Description
Sends a command to the display controller.
Parameter

cmd byte command

LCD_ClearLCD

LCD Functions (Library"LCD_Lib.cc")

Syntax
void LCD _Cl earLCD(void);

Sub LCD_Cl ear LCIX)

© 2013 Conrad Electronic

285

C-Control Pro IDE

5.15.3

5.154

Description

Clears the display and enables the Cursor.

Parameter

None

LCD_CursorOff

LCD Functions (Library"LCD_Lib.cc")

Syntax
void LCD CursorOff(void);

Sub LCD_Cursor O f ()

Description
Turns the cursor off on the display.
Parameter

None

LCD_CursorOn

LCD Functions (Library"LCD_Lib.cc")

Syntax
voi d LCD_CursorOn(voi d);

Sub LCD_Cursor On()

Description
Turns the cursor in the displayon.
Parameter

None

© 2013 Conrad Electronic

Libraries 286

5.155 LCD_CursorPos

LCD Functions (Library"LCD_Lib.cc")

Syntax
voi d LCD_Cursor Pos(byte pos);

Sub LCD_Cursor Pos(pos As Byte)

Description
Moves the cursor to position pos.
Parameter

pos cursorposition

Value of pos (Hex) Position on Display
00-07 0-7 on 1stline
40-47 0-7 on 2nd line

The following table is valid for displays with more than 2 lines and up to 32 chars per line:

Value of pos (Hex) Position on Display
00-1f 0-31onlinel
40-5f 0-31online 2
20-3f 0-31online 3
60-6f 0-31online 4

5.15.6 LCD_Init

LCD Functions (Library"LCD_Lib.cc")

Syntax
void LCD Init(void);

Sub LCD Init()

Description
High level intialization of the LCD display. Calls LCD InitDisplay() as first.

Parameter

© 2013 Conrad Electronic

287

C-Control Pro IDE

5.15.7

5.15.8

None

LCD_Locate

LCD Functions

Syntax

void LCD_Locate(int row, int colum);

Sub LCD_Locate(row As Integer, colum As Integer)

Description
Sets the cursor of the LCD displayto given row and column.
Parameter

row
column

LCD_SetDispAddr (AVR32Bit)

LCD Functions (Library"LCD_Lib.cc")

Syntax
voi d LCD_Set Di spAddr (byte addr);

Sub LCD_Set Di spAddr (addr As Byte)

Description

Sets a new destination address for the LCD output. In this way, several LCD1602 boards can be ad-
dressed simultaneously. See addressing in the chapter "C-Control PRO AVR32 LCD1602 board". The de-

fault value for the display address is 27 (Hex).
Parameter

addr new address

© 2013 Conrad Electronic

Libraries 288

5.15.9 LCD_WriteChar

LCD Functions (Library"LCD_Lib.cc")

Syntax
void LCD_WiteChar(char c);

Sub LCD_WiteChar(c As Char)

Description
Displays one character at the cursor position on the LCD display.
Parameter

¢ ASCIl value of output character

5.15.10 LCD_WriteFloat

LCD Functions

Syntax
void LCD WiteFloat(float value, byte |ength);

Sub LCD_WiteFloat(value As Single, length As Byte)

Description
Writes a floating point value with given length to LCD display.
Parameter

value floating pointvalue
length outputlength

5.15.11 LCD_WriteRegister

LCD Functions

Syntax
void LCD WiteRegister(byte y, byte x);

Sub LCD WiteRegister(y As Byte,x As Byte)

© 2013 Conrad Electronic

289

C-Control Pro IDE

Description

LCD_WiteRegister divides the data byte y in 2 nibbles (4bit values) and

sends the nibbles to the display controller.

y data byte
x command nibble

5.15.12 LCD_WriteText

LCD Runctions (Library"LCD_Lib.cc")

Syntax
void LCD_WiteText(char text[]);

Sub LCD WiteText(ByRef Text As Char)

Description

All characters of the char array up to the terminating zero are displayed.

Parameter

text char array

5.15.13 LCD_WriteWord

LCD Functions

Syntax
void LCD_ Witewrd(word val ue, byte | ength);

Sub LCD_WiteWrd(value As Wrd, length As Byte)

Description

Writes an unsigned integer (word) with given length to the LCD display. If the resulting LCD outputis smal-

ler than the given length, the output filled with zeros "0" at the beginning.

Parameter

value word value
length output length

© 2013 Conrad Electronic

Libraries

5.16

5.16.1

Math

Mathematical Functions.

Floating Point

In the following the mathematical functions are listed which the C-Control Pro is able to master with
single floating point accuracy (32 bit). These functions are not contained in the C-Control Pro 32

since it would then not offer enough memory for user programs.

5.16.1.1 FPU (AVR32Bit)

The AVR32Bit UNIT has an integrated floating point unit (FPU), that greatly accelerates floating point
operations. An exception is the floating-point division performed in software. By dividing by a con-

stant, one should therefore consider to multiply by the reciprocal.

5.16.1.2 acos

Hoating Point Functions

290

Syntax
float acos(float val);

Sub acos(val As Single) As Single

Description

The mathematical arc cosine (inverse cosine) is calculated.
Parameter

val inputvalue between -1 and 1

Return Parameter

arc cosine of the input value in the range [0..Pi], expressed in radians

5.16.1.3 asin

Hoating Point Functions

Syntax
float asin(float val);

Sub asin(val As Single) As Single

© 2013 Conrad Electronic

201

C-Control Pro IDE

Description

The mathematical arc sine (inverse sine) is calculated.
Parameter

val inputvalue between -1 and 1

Return Parameter

arc sine of the input value in the range [-Pi/2..Pi/2], expressed in radians

5.16.1.4 atan

Hoating Point Functions

Syntax
float atan(float val);

Sub atan(val As Single) As Single

Description

The mathematical arc tangent (inverse tangent) is calculated.
Parameter

val inputvalue

Return Parameter

arc tangent of the input value in the range [-Pi/2..Pi/2], expressed in radians

5.16.1.5 ceil

Hoating Point Functions

Syntax
float ceil (float val);

Sub ceil (val As Single) As Single

Description
The largestinteger value of the floating point number xis calculated.
Parameter

val inputvalue

© 2013 Conrad Electronic

Libraries 292

Return Parameter

result

5.16.1.6 cos

Hoating Point Functions

Syntax
float cos(float val);

Sub cos(val As Single) As Single

Description

The mathematical cosine is calculated.
Parameter

val inputangle expressed in radians
Return Parameter

cosine of the input value between -1 and 1

5.16.1.7 exp

Hoating Point Functions

Syntax
float exp(float val);

Sub exp(val As Single) As Single

Description

The exponential function e *val is calculated.
Parameter

val exponent

Return Parameter

result

© 2013 Conrad Electronic

293

C-Control Pro IDE

5.16.1.8 fabs

Hoating Point Functions

Syntax
float fabs(float val);

Sub fabs(val As Single) As Single

Description

The absolute value of the floating point number val is calculated.
Parameter

val inputvalue

Return Parameter

result

5.16.1.9 floor

Hoating Point Functions

Syntax
float floor(float val);

Sub floor(val As Single) As Single

Description

The smallest integer value of the floating point number xis calculated.
Parameter

val inputvalue

Return Parameter

result

5.16.1.10 Idexp

Hoating Point Functions

Syntax

float |dexp(float val,int expn);

© 2013 Conrad Electronic

Libraries 294

Sub | dexp(val As Single,expn As Integer) As Single

Description

The function val * 2 ~ expn is calculated (also used as internal help function for other mathematical func-
tions).

Parameter

val multiplier
expn exponent

Return Parameter

result

5.16.1.11 In

Hoating Point Functions

Syntax
float In(float val);

Sub I n(val As Single) As Single

Description

The natural logarithm is calculated.
Parameter

val inputvalue

Return Parameter

result

5.16.1.12 log

Hoating Point Functions

Syntax
float log(float val);

Sub log(val As Single) As Single

Description

© 2013 Conrad Electronic

295 C-Control Pro IDE

The logarithm base 10 is calculated.
Parameter

val inputvalue

Return Parameter

result

5.16.1.13 pow

Hoating Point Functions

Syntax
float pow(float x, float y);

Sub pow(x As Single, y As Single) As Single

Description
The power function x*yis calculated.
Parameter

X base
y exponent

Return Parameter

result

5.16.1.14 round

Hoating Point Functions

Syntax
float round(float val);

Sub round(val As Single) As Single

Description

Rounding function. The floating point value is rounded up or down to a number without decimal places.
Parameter

val inputvalue

Return Parameter

© 2013 Conrad Electronic

Libraries 296

result of the function

5.16.1.15 sin

Hoating Point Functions

Syntax
float sin(float val);

Sub sin(val As Single) As Single

Description

The mathematical sine is calculated.
Parameter

val inputangle expressed in radians
Return Parameter

sine of the input value between -1 and 1

5.16.1.16 sqrt

Hoating Point Functions

Syntax
float sqgrt(float val);

Sub sqrt(val As Single) As Single

Description

The square root of a positive floating point number is calculated.
Parameter

val inputvalue

Return Parameter

result

© 2013 Conrad Electronic

297 C-Control Pro IDE

5.16.1.17 tan

Hoating Point Functions

Syntax
float tan(float val);

Sub tan(val As Single) As Single

Description

The mathematical tangentis calculated.
Parameter

val inputangle expressed in radians
Return Parameter

tangent of the input value
5.16.2 Integer
Mathematical Integer Functions.

5.16.2.1 rand

Integer Functions

Syntax
int rand(void);

Sub rand() As Integer

Description

This function returns a pseudo random number between 0 and 32768. Use srand() with different seeds for
varying sequences of numbers.

Return Parameter

Pseudo Random Number

© 2013 Conrad Electronic

Libraries 298

5.16.2.2 srand

Integer Functions

Syntax
voi d srand(int seed);

Sub srand(seed As | nteger)

Description

Sets the seed for the pseudo random number generator. With the same seed the pseudo random num-
ber sequences can be reproduced.

Parameter

seed pseudorandom number generator starting value.

517 OneWire

1-Wire or One-Wire is a serial interface that needs only one wire for signaling and power. The data is
transferred asynchronously (without clock signal) in groups of 64 bit. Data can either be sent or re-
ceived, but not at the same time (half-duplex).

The special about 1-Wire devices is the parasitically power supply, that is made over the signal wire:
When there is no communication, the signal wire has a +5V level and charges a capacitor. During
low-pulse communication the slave device is powered from his capacitor. Dependent on the charge
of the capacitor, low-time gaps up to 960 us can be bridged.

5.17.1 Onewire_Read

1-Wire Functions

Syntax
byt e Onew re_Read(void);

Sub Onewire_Read() As Byte

Description
AByte is read from the One-Wire Bus.
Return Parameter

value read from One-Wire Bus

© 2013 Conrad Electronic

299 C-Control Pro IDE

5.17.2 Onewire_Reset

1-Wire Functions

Syntax
voi d Onewire_Reset (byte porthit);

Sub Onewi re_Reset (portbit As Byt e)

Description

Aresetis made on the One-Wire Bus. The port bit number for the One-Wire Bus communication is spe-
cified.

Parameter

portbit portbitnumber (see Port Table)

5.17.3 Onewire_Write

1-Wire Functions

Syntax
void Onewire_Wite(byte data);

Sub Onewire_Wite(data As Byte)

Description
Abyte is written to the One-Wire Bus.
Parameter

data data byte

5.17.4 Onewire Example

CompactC

/1 Sanmple Code to read DS18S20 tenp. sensor from Dallas Maxim
voi d mai n(voi d)
{

char text[40];

int ret, i, tenp;

byte rom code[8];

byte scratch_pad[9];

© 2013 Conrad Electronic

Libraries

ret= OneWre_Reset(7); // PortA 7
if(ret == 0)
{

text= "no device found";

Msg WiteText(text);

goto end;

}

OneWre Wite(0Oxcc); // skip ROM cnd
OneWre Wite(0x44); // start tenperature nmeasure cnd

AbsDel ay(3000);

OneWre_Reset(7); /[l PortA 7
OneWre Wite(0Oxcc); // skip ROM cnd
OneWre Wite(Oxbe); // read scratch_pad cnd
for(i=0;i<9;i++) /'l read whol e scratchpad
{

scratch_pad[i]= OneWre_Read();

Msg WiteHex(scratch_pad[i]);

}
Msg WiteChar('\r');

text= "Tenperature: ";
Msg_WiteText(text);

tenp= scratch_pad[1] *256 + scratch_pad[0];
Msg_WiteFl oat (tenp* 0.5);

Msg WiteChar('C);

Msg WiteChar('\r');

end:

BASIC

Sanpl e Code to read DS18S20 tenp. sensor from Dallas Maxim
Di m Text (40) As Char
Dimret,i As Integer
Dimtenp As |nteger
Dimromcode(8) As Byte
Di m scratch_pad(9) As Byte

Sub mai n()
ret = OneWre_Reset(7) ' PortA 7
If ret = 0 Then
Text= "no device found"

Msg WiteText(Text)
Got o Ende

300

© 2013 Conrad Electronic

301

C-Control Pro IDE

5.18

End |f
OneWre_Wite(0xcc) " skip ROM cnd
OneWre_Wite(0x44) ' start tenperature neasure cnd

AbsDel ay(3000)

OneW re_Reset (7) " PortA. 7
OneWre_Wite(0xcc) " skip ROM cnd
OneWre_Wite(0xbe) " read scratch_pad cnd
For i = 0 To 9 " read whol e scratchpad

scratch_pad(i)= OneWre_Read()

Msg WiteHex(scratch_pad(i))
Next
Msg_WiteChar(13)
Text = "Tenperature: "
Msg WiteText (Text)

tenp = scratch_pad(1l) * 256 + scratch_pad(0)
Msg WiteFloat(tenp * 0.5)

Msg_W it eChar (99)

Msg_WiteChar(13)

Lab Ende
End Sub

Port

Atmel Mega

The Atmel Mega 32 provides 4 input/output ports at 8 bits each. The Atmel Mega 128 provides 6 in-
put/output ports at 8 bits each and one input/output port at 5 bits. Each bit of the individual ports can
be configured as input or output. Since however the number of pins in the Mega 32 Risc CPU is lim-
ited, additional functions are assigned to individual ports. A pin assignment table for M32 and M128
can be found in the documentation.

=2 |t is important to study the pin assignment prior to programming since important functions of the
program design (e. g. the USB Interface of the Application Board) are assigned to specific ports. If
these ports are programmed differently or the corresponding jumpers on the Application Board are no
longer set it may happen that the design interface is no longer able to transfer programs to the C-
Control Pro.

=» The direction of data flow (input/output) can be determined with function Port_DataDir or
Port_DataDirBit. If a pin is configured as input then this pin can either be operated high resistive
("floating™) or with an internal pull-up resistor. If with Port_Write or Port_WriteBit a "1" is written to an

© 2013 Conrad Electronic

Libraries 302

5.18.1

input then the pull-up resistor (Reference Level VCC) is activated and the input is defined.

Atmel AVR32Bit

The Atmel AVR32Bit provides the ports A to D, which are each 32 bits in width. Each bit of every
port can be configured as input or output. In addition, it is possible to enable a pullup, pulldown, and
adjust the drive strength. The functions Port_DataDir, Port_Toggle and Port_Write known by the At-
mel Mega were omitted at the AVR32Bit, since in practice working with the complete 32-bit port is
very unwieldy.

=¥ |t is important to study the pin assignment before programming, as important peripheral func-
tions lie on certain ports. When these ports are reprogrammed, it may happen that the development
environment can no longer transmit programs to the C-Control Pro.

= Use the Port_Attribute function at the AVR32Bit instead of Port_DataDirBit to switch between
input and output.

= If a function such as a PWM is used only temporarily on a port pin, it is usually recommended
to set the pin later to a defined level with Port_Attribute, after the function is no longer used.

Port_Attribute

Port Functions

Syntax

void Port_Attribute(byte portbhit, word attribute);

Sub Port_Attribute(portbit As Byte, attribute As Wrd)

Description

The function Port_Attribute configures the properties of a port. Multiple attribute values can be or'ed. See
Example.

Parameter

portbit portbitnumber (see Port Table)
attribute Portbit Attribute

Attribut Table

Function Definition Value (Hex)
Port set to Input PORT ATTR INPUT 00
Port set to Output PORT ATTR OUTPUT 01
set output low PORT ATTR INIT LOW 00
set output high PORT ATTR INIT HIGH 02
set PullUp PORT ATTR PULL UP 04

© 2013 Conrad Electronic

303 C-Control Pro IDE
set PullDown PORT ATTR PULL DOWN 08
minimum Drive Strength PORT ATTR DRIVE MIN 00
normal Drive Strength PORT ATTR DRIVE LOW 10
high Drive Strength PORT ATTR DRIVE HIGH 20
maximum Drive Strength PORT ATTR DRIVE MAX 30
= To obtain more accurate values &f the drive strength of a port please refer to the chapter "Elec-
trical Characteristics" in the Atmel AT32UC3C datasheet.
5.18.2 Port_DataDir (Mega)
Port Functions Example
Syntax
void Port_DataDir(byte port, byte val);
Sub Port_DataDir(port As Byte, val As Byte)
Description
The function Port_DataDir configures the port for input or output direction. Is a bit set, then the Pin corres-
ponding to the bit position is switched to output. Example: Is port = PortB and val = 02, then PortB.1 is
configured for output, all other ports on PortB are set to input (see Pin Assignment of M32 and
M128).
Parameter
port portnumber (see Port Table)
val outputbyte
5.18.3 Port_DataDirBit (Mega)

Port Functions

Syntax
void Port_DataDirBit(byte portbhit, byte val);

Sub Port_DataDirBit(portbit As Byte, val As Byte)

Description

The function Port_DataDirBit configures one bit (Pin) of a port for input or output direction. Is a bit set, then
the Pin corresponding to the bit position is switched to output. Example: Is portbit = 10 and val = 0, then
PortB.2 is configured for input. All other ports on PortB stay the same (see Pin Assignment of M32
and M128.).

= Please use the function Port_Attribute instead of Port_DataDirBit for the AVR32Bit. The AVR32
MCU provides advanced options such as pull-down or adjust the drive strength.

© 2013 Conrad Electronic

Libraries 304

=¥ Port Bit access is always significant slower than the normal Port access that transfers 8 Bit. If the de-
sired values of all Port Bits are known, 8-Bit Port access is always preferable.

Parameter

portbit port bit number (see Port Table)
val O=Input, 1= Output

5.18.4 Port_Read (Mega)

Port Functions

Syntax
byte Port_Read(byte port);

Sub Port_Read(port As Byte) As Byte

Description

Reads a byte from the specified port. Only the Pins of port that are configured for input return a valid value
on their bit position (see Pin Assignment of M32 and M128).

Parameter

port portnumber (see Port Table)

Return Parameter

port byte value

5.18.,5 Port ReadBit

Port Functions

Syntax
byte Port_ReadBit(byte port);

Sub Port_ReadBit(port As Byte) As Byte

Description

The function Port_ReadBit reads the value of a Pin that is configured for input. (See Pin Assignment of
AVR32, M32 and M128.).

=¥ Port Bit access is always significant slower than the normal Port access that transfers 8 Bit. If the de-
sired values of all Port Bits are known, 8-Bit Port access is always preferable.

© 2013 Conrad Electronic

305 C-Control Pro IDE

Parameter
portbit bit number of port (see Port Table)
Return Parameter

bit value (0 or 1)

5.18.6 Port_ToggleBit

Port Functions

Syntax

void Port_Toggl eBit(byte portbhit);

Sub Port_Toggl eBit(porthit As Byte)

Description

The function Port_WriteBit inverts the value of a Pin that is configured for output. See Pin Assignment of
AVR32, M32 and M128.

=» Mega: Is a Pin configured as input, this will set an internal pull-up resistor on (bit = 1) or off (bit
= 0).

= Mega: Port Bitaccess is always significant slower than the normal Port access that transfers 8 Bit. If
the desired values of all Port Bits are known, 8-Bit Port access is always preferable.

Parameter

portbit bit number of port (see Port Table)

5.18.7 Port_Toggle (Mega)

Port Functions

Syntax
voi d Port_Toggl e(byte port);

Sub Port_Toggl e(port As Byte)

Description

Inverts all Bits on the specified port. Only the Pins of port that are configured for output will show their value
as port output on their bit position (see Pin Assignment of M32 and M128). Is a Pin configured as input,
this will set an internal pull-up resistor on (bit = 1) or off (bit = 0). See Pin Assignment of M32 and
M128.

Parameter

© 2013 Conrad Electronic

Libraries 306

port portnumber (see Port Table)

5.18.8 Port_Write (Mega)

Port Functions Example

Syntax
void Port_Wite(byte port, byte val);

Sub Port_Wite(port As Byte, val As Byte)

Description

Writes a byte to the specified port. Only the Pins of port that are configured for output will show their value
as port output on their bit position (see Pin Assignment of M32 and M128). Is a Pin configured as input,
this will set an internal pull-up resistor on (bit = 1) or off (bit = 0). See Pin Assignment of M32 and
M128.

= |n older IDE versions PORT_ON and PORT_OFF were incorrectly defined, which is now correc-
ted.

Parameter

port portnumber (see Port Table)
val output byte

5.18.9 Port_WriteBit

Port Functions

Syntax
void Port_WiteBit(byte portbit, byte val);

Sub Port_WiteBit(porthit As Byte, val As Byte)

Description

The function Port_WriteBit sets the value of a Pin that is configured for output. Is a Pin configured as in-
put, a Port_WriteBit() will set an internal pull-up resistor on (bit = 1) or off (bit = 0). See Pin Assign-
ment of AVR32, M32 and M128.

=¥ Port Bit access is always significant slower than the normal Port access that transfers 8 Bit. If the de-
sired values of all Port Bits are known, 8-Bit Port access is always preferable.

= At the C-Control Pro AVR32Bit the internal pullup is switched with the command Port_Attribute.

=% In older IDE versions PORT_ON and PORT_OFF were incorrectly defined, which is now correc-

© 2013 Conrad Electronic

307

C-Control Pro IDE

ted.

Parameter

portbit bit number of port (see Port Table)

val bit value (0 or 1)

5.18.10 Port Table

Port Number Table Mega32 and Megal128 (CAN)

Definition

Value

PortA

PortB

PortC

PortD

PortE (Megal28)

PortF (Megal28)

PortG (Megal28)

o~ [WIN|F|O

Portbits Table Mega32 and Megal128 (CAN)

Definition Portbit Portbit Name
PortA.0 0 PAO
PortA.7 7 PA7
PortB.0 8 PBO
PortB.7 15 PB7
PortC.0 16 PCO
PortC.7 23 PC7
PortD.0 24 PDO
PortD.7 31 PD7

from here only Megal28
PortE.O 32 PEO
PortE.7 39 PE7
PortF.0 40 PFO
PortF.7 47 PF7
PortG.0 48 PGO
PortG.4 52 PG4

© 2013 Conrad Electronic

Libraries

Portbits Table AVR32

Definition Portbit Portbit Name
PortA.0 0 PAQO
PortA.31 31 PA31
PortB.0 32 PB0OO
PortB.31 63 PB31
PortC.0 64 PCO00
PortC.31 95 PC31
PortD.0 96 PDO0O0
PortD.31 127 PD31

AVR32 Application Board Port Table
Board Port Portbit Portbit Name
Portl 0 PAQO
Port2 1 PAO1
Port3 2 PAO2
Port4 3 PAO3
Port5 36 PB0O4
Port6 37 PB05
Port7 38 PB06
Port8 16 PA16
Port9 4 PAO4
Port10 5 PAO5
Port11 6 PAO6
Port12 7 PAO7
Port13 8 PAQ8
Portl4 9 PAQ9
Portl5 10 PA10
Port16 11 PA1l
Portl7 19 PA19
Port18 20 PA20
Port19 21 PA21
Port20 22 PA22
Port21 23 PA23
Port22 24 PA24
Port23 25 PA25
Port24 13 PA13
Port25 12 PA12
Port26 14 PAl14
Port27 15 PA15

308

© 2013 Conrad Electronic

309

C-Control Pro IDE

Port28 52 PB20
Port29 53 PB21
Port30 54 PB22
Port31 55 PB23
Port32 65 PCO1
Port33 70 PC06
Port34 68 PC04
Port35 69 PCO05
Port36 81 PC17
Port37 82 PC18
Port38 79 PCi15
Port39 80 PCi16
Port40 83 PC19
Port41 84 PC20
Port42 76 PC12
Port43 75 PCi11
Port44 77 PC13
Port45 78 PC14
Port46 85 PC21
Port47 86 PC22
Port48 87 PC23
Port49 88 PC24
Port50 95 PC31
Port51 103 PDO0O7
Port52 104 PD08
Port53 117 PD21
Port54 118 PD22
Port55 119 PD23
Port56 51 PB19
Port57 34 PB02

5.18.11 Port Example (Mega)

/1 Programtoggles the LED s on the applicationboard

/1 alternately every second
voi d nmai n(voi d)

{

Port _Dat abDi r Bi t (PORT_LED1, PORT_QOUT) ;
Port _Dat abDi r Bi t (PORT_LED2, PORT_QOUT) ;

while(true) // endless |oop

{
Port WiteBit(PORT_LED1, PORT_ON);
Port WiteBit(PORT_LED2, PORT OFF);
AbsDel ay(1000);
Port WiteBit(PORT_LED1, PORT _OFF);
Port WiteBit(PORT_LED2, PORT_ON);
AbsDel ay(1000);

© 2013 Conrad Electronic

Libraries 310

5.18.12 Port Example (AVR32Bit)

All three program examples will light LED1 as long as button T1 is pressed. The examples differ in
addressing the port name. If the button is not pressed, a "1" will be read from the port because each
switch on the Applicationboard is connected to a pull-up resistor.

/'l Exanple with Function Nane defines
voi d nmai n(voi d)

{
Port _Attri bute(PORT_LED1, PORT_ATTR_OUTPUT | PORT_ATTR INIT_LOW;
Port _Attri bute(PORT_T1, PORT_ATTR_I NPUT);
while(true) // endless |oop
{
i f(Port_ReadBit(PORT_T1))
{
Port _WiteBit(PORT_LED1, PORT_OFF);
}
el se
{
Port _WiteBit(PORT_LED1, PORT_ON);
}
}
}

/1 LEDL will be lit as long as button Tl is pressed

/1l Exanple with Unit Name defines

voi d mai n(voi d)

{
Port _Attribute(P48, PORT_ATTR OUTPUT | PORT_ATTR INIT_LOW;
Port _Attribute(P41, PORT_ATTR_I NPUT);

while(true) // Endlosschleife

{
i f(Port_ReadBit(P41))

{
}
el se

{
}

Port _WiteBit (P48, PORT_OFF);

Port _WiteBit(P48, PORT_ON);

}

/1 LEDL will be Iit as long as button Tl is pressed
/1 Exanple with AVR32 Port Nane defines

© 2013 Conrad Electronic

311

C-Control Pro IDE

5.19

voi d mai n(voi d)

{
Port _Attri bute(PC23, PORT_ATTR COUTPUT | PORT_ATTR_IN T_LOW;
Port _Attri bute(PC20, PORT_ATTR I NPUT);
while(true) // Endlosschleife
{
i f(Port_ReadBit (PC20))
{
Port _WiteBit(PC23, PORT_OFF);
}
el se
{
Port _WiteBit(PC23, PORT_ON);
}
}
}
RC5

A common used standard protocol for infrared data communication is the RC5 code, originally de-
veloped by Phillips. This code has an instruction set of 2048 different instructions and is divided into
32 address of each 64 instructions. Every kind of equipment use his own address, so this makes it
possible to change the wolume of the TV without change the wlume of the hifi. The transmitted code
is a dataword which consists of 14 bits.

Original protocol:

2 start bits for the automatic gain control in the infrared receiver

1 toggle bit (changes ewery time a new button is pressed on the IR transmitter)
5 address bits for the system address

6 instruction bits for the pressed key

The start bits help the IR receiver to synchronize and to adjust the automatic gain control of the sig-
nal. The toggle bit changes its value with every keypress. Therefore it is possible to distinguish the
long press of a key with repeated presses of the same key. After a while there was a need to extend
the number of possible instructions from 64 to 128. To maintain compatibility the second start bit
was used for this purpose. If the second start bit is "1", the first 64 instructions can be addressed, if
the 2nd start bit is "0" the next 64 instructions can be selected.

How are the individual bits transferred?

The C-Control Pro generates a carrier frequency of approx. 36Khz on the configured pin, that is con-
nected to the IR-Diode. All transmission pulses are 6,9444 long. There is a delay of 20,8332 us
between two pulses. For a "1" value, the frequency generation of the transmission is turned of for
889us, and then turned on for 889us (this equals to 32 IR impulses). A value of "0" is created with a
pause of 889us, followed from a frequency generation of 889us. The time to transfer a whole bit is
1,778ms (2 * 889us) and to transfer a complete 14 bit dataword is 24,889ms. If a key on remote con-
trol is pressed for a longer duration, the corresponding dataword is repeated every 113m778ms.

© 2013 Conrad Electronic

Libraries

Connection to C-Control Pro (Sender diode)

R1

<1/ Port |

330R

RLED N7

z.B. TSUS 5202

Connection to C-Control Pro (Receiver)

Source: VISHAY Datasheet

Vg Y OUT TSOP1736 IR-Receiver

Pin assignment of TSOP1736 IR-Receiver

312

© 2013 Conrad Electronic

313 C-Control Pro IDE

Input Control

Circuit

/ ;

Y Vg

yOUT

Band .
AGC - Demodu I

lator
I

Internal struture of receiver

© 2013 Conrad Electronic

Libraries

TSOP1736

5.19.1 RC5_lInit

RC5 Functions

314

+5VDC >

/O Port >

C1

4,7uF

+5VDC >

5120K optional Pullup Resistor
Qut o
R1
100R

External circuit of receiver for connection to C-Control Pro

Syntax

void RC5_Init(byte pin);

Sub RC5_Init(pin As Byte)

Description

The port pin is defined, thatis connected to RC5 sender or receiver.

© 2013 Conrad Electronic

315 C-Control Pro IDE

Parameter

pin bit number of port (see Port Table)

5.19.2 RC5 Read

RC5 Functions

Syntax
word RC5_Read(void);

Sub RC5_Read() As Word

Description
Recognized RC5 datawords are received from the defined port pin. If there is no signal, the receive routine
waits up to 130ms. This is because there is a 113ms gap between two repeated RC5 datawords. A return

value of 0 means that no RC5 signal could be detected.

= This function will not recognize if a different format than RC-5 is used. In case of doubt it will return
wrong values.

Return Parameter

14 Bit of the received RC-5 commands

5.19.3 RC5_Write

RC5 Functions

Syntax
void RC5_Wite(word data);

Sub RC5_Wite(data As Wrd)

Description
The 14 bit of a RC5 dataword are send to the defined port pin.

=¥ To drive the infrared LED the output portis setto maximum drive strength. But not all port pin have this
outputrating. See AVR32Bit Module.

Parameter

data recognized RC5 dataword

© 2013 Conrad Electronic

Libraries 316

5.20 RS232

=¥ There is a chance to miss received characters when using the polled serial routines, especially
at high baud rates. If this is an issue, please use the interrupt driven serial routines with Serial_In-
it_IRQ() instead of Serial_Init().

Mega

The serial interface can be operated at speeds of up to 230.4 kilo baud. With the functions for the
serial interface the first parameter will indicate the port number (0 or 1). The Mega32 does only
provide one serial interface (0), while the Megal28 does provide two interfaces (0, 1).

AVR32Bit

The C-Control Pro AVR32Bit supports up to 3 serial interfaces with maximum rates to 460.8 kilo

baud. The serial interfaces are enumerated from 0 to 2. The number differs from the naming on the
Atmel AVR32 Microcontroller:

C-Control AVR32Bit Atmel AVR32
0 USARTO
1 USART3
2 USART4

5.20.1 Divider (Mega)

The functions Serial_Init() and Serial_Init IRQ get a divider value as baudrate parameter. The
baudrate is derived from the processor clock (14,7456 MHz for Mega32, Megal28 and 16 MHz for
Megal28 CAN).

According to the Atmel processor handbook the following formula is used to calculate the divider for
a specified baudrate:

© 2013 Conrad Electronic

317

C-Control Pro IDE

divider = (processor clock / baudrate / 16) -1

Example: 15 = (14745600 / 57600 / 16) -1

=» |t is difficult to obtain the standard baudrates from the 16 MHz processor clock of the Megal28
CAN. Therefore are differences at higher baudrates between both divider tables.

DoubleClock Mode

If the High-Bit of the divider is set, the DoubleClock Mode is enabled. In this mode the divider value
must be doubled. E.g. for 57600 baud a divider value of Of Hex (decimal 15) or 801e Hex (= 0x8000 +
2 * 15) can be used. For the MIDI baudrate (31250 baud) a divider of (14745600 / 31250 / 16) -1 =
28.49 has to be used. Since you can only pass integer values?you get a better value in double clock

mode: 8039 Hex (= 8000 Hex + 2 * 28.5).

Table divider definition 14,7456 MHz (Mega32, Megal28):

divider definition baudrate
3071 SR BD300 300bps
1535 SR BD600 600bps
767 SR BD1200 1200bps
383 SR_BD2400 2400bps
191 SR_BD4800 4800bps
95 SR _BD9600 9600bps
63 SR _BD14400 14400bps
47 SR _BD19200 19200bps
31 SR BD28800 28800bps
8039 (Hex) SR BDMIDI 31250bps
23 SR BD38400 38400bps
15 SR _BD57600 57600bps
11 SR _BD76800 76800bps
7 SR _BD115200 115200bps
3 SR _BD230400 230400bps
Table divider definition 16 MHz (Megal128 CAN):
divider definition baudrate
3332 SR BD300 300bps
1666 SR _BD600 600bps
832 SR BD1200 1200bps
416 SR BD2400 2400bps
207 SR BD4800 4800bps
103 SR BD9600 9600bps
68 SR BD14400 14400bps
51 SR BD19200 19200bps
34 SR BD28800 28800bps

© 2013 Conrad Electronic

Libraries 318

31 SR BDMIDI 31250bps
25 SR BD38400 38400bps
8022 (Hex) SR BD57600 57600bps
12 SR BD76800 76800bps
6 SR BD125000 125000bps
3 SR BD250000 250000bps

5.20.2 Serial_Disable

Serial Functions

Syntax
voi d Serial _Di sabl e(byte serport);

Sub Seri al _Di sabl e(serport As Byte)

Description
The serial interface gets switched off and the corresponding ports can be used otherwise.
Parameter

serport interface number (0 = 1stserial port, 1 = 2nd serial port, ...)

5.20.3 Serial_Init (Mega)

Serial Functions Example

Syntax

void Serial _Init(byte serport, byte par, word divider);

Sub Serial _Init(serport As Byte, par As Byte, divider As Wrd)

Description

The serial interface gets initialized. The parameter par is defined through successive or-ing of predefined
bit values. The values of character length, stop bits and parity are or'd together. E.g. "SR_7BIT | SR_2STOP
| SR_EVEN_PAR" means 7 bit character length, 2 stop bits and even parity (see Example). An example in
BASIC Syntax: "SR_7BIT Or SR_2STOP Or SR_EVEN_PAR". The baud rate is defined as a divider value
(see divider table).

= There is a chance to miss received characters when using the polled serial routines, especially at
high baud rates. If this is an issue, please use the interrupt driven serial routines with Serial_Init_IRQ() in-
stead of Serial_Init().

=¥ |tis possible to activate the DoubleClock Mode of the Atmel AVR. This happens if the Hi-bit of the di-
vider is set. In DoubleClock mode the normal value from the divider table must be doubled to get the same

© 2013 Conrad Electronic

319 C-Control Pro IDE
baudrate. This has the advantage that baudrates, that have no exact divider value can be represented. E.g.
MIDI: The new value SB_MIDI (=803a Hex) lies much nearer at the correct value of 31250baud. An example
for 19200 baud: The normal divider value for 19200 baud is 002f (Hex). If DoubleClock Mode is used, the
divider must be doubled (=005e Hex). Then set the Hi-bit, and the alternative divider value for 19200 baud
is 805e (Hex).
Parameter
serport interface number (0 = 1stserial port, 1 = 2nd serial port, ...)
par interface parameter (see par table)
divider baud rate initialization (see table)
table par definitions:
Definition Function
SR 5BIT 5 Bit char length
SR 6BIT 6 Bit char length
SR 7BIT 7 Bit char length
SR 8BIT 8 Bit char length
SR 1STOP 1 stop bit
SR 2STOP 2 stop bit
SR NO PAR no parity
SR EVEN PAR even parity
SR ODD PAR odd parity
5.20.4 Serial_Init (AVR32)

Serial Functions Example

Syntax

void Serial _Init(byte serport,

byte par, dword baud);

Sub Serial _Init(serport As Byte, par As Byte, baud As ULong)

Description

The serial interface gets initialized. The parameter par is defined through successive or-ing of predefined
bit values. The values of character length, stop bits and parity are or'd together. E.g. "SR_7BIT | SR_2STOP
| SR_EVEN_PAR" means 7 bit character length, 2 stop bits and even parity (see Example). An example in
BASIC Syntax: "SR_7BIT Or SR_2STOP Or SR_EVEN_PAR".

=¥ There is a chance to miss received characters when using the polled serial routines, especially at
high baud rates. If this is an issue, please use the interrupt driven serial routines with Serial_Init_IRQ() in-

stead of Serial_Init().

Parameter

© 2013 Conrad Electronic

Libraries 320

serport interface number (0 = 1st serial port, 1 = 2nd serial port, ...)
par interface parameter (see par table)
baud baudrate

table par definitions:

Definition Function
SR 5BIT 5 Bit char length
SR 6BIT 6 Bit char length
SR 7BIT 7 Bit char length
SR 8BIT 8 Bit char length

SR 1STOP 1 stop bit

SR 2STOP 2 stop bit

SR NO PAR no parity
SR EVEN PAR even parity
SR ODD PAR odd parity

5.20.5 Serial_Init_IRQ (Mega)

Serial Functions Example

Syntax

void Serial _Init_IRQ)byte serport, byte ramaddr[], byte recvlen,
byte sendl en, byte par, word divider);

Sub Serial _Init_I| RQ(serport As Byte, ByRef ramaddr As Byte,recvlen As Byte,
sendl en As Byte, par As Byte, divider As Wrd)

Description

The serial interface gets initialized for usage in interrupt mode. The user has to provide a global variable
as a serial buffer. This buffer services as a storage for the data that is sent to the serial interface and is re-
ceived from it. The size of the buffer must be length of the send buffer plus the length of the receive buf-
fer plus SR_BUF (see Example).

The maximum value for the size of the send and the receive buffer is 255 bytes each. The parameter par is
defined through successive or-ing of predefined bit values. The values of character length, stop bits and
parity are or'd together. E.g. "SR_7BIT | SR_2STOP | SR_EVEN_PAR" means 7 bit character length, 2 stop
bits and even parity (see Example). An example in BASIC Syntax: "SR_7BIT Or SR_2STOP Or
SR_EVEN_PAR". The baud rate is defined as a divider value (see divider table).

=¥ The user supplied buffer must be available the whole time the serial interface is working. Since after
leaving a function the local variables are no longer available, it is most times a good idea to provide the

user supplied buffer as a global variable.

=¥ |tis possible to activate the DoubleClock Mode of the Atmel AVR. See Divider.

© 2013 Conrad Electronic

321 C-Control Pro IDE
= Please use Serial ReadExi() if you work in serial IRQ mode. Serial_Read() only supports polled
mode.
Parameter
serport interface number (0 = 1st serial port, 1 = 2nd serial port, ...)
ramaddr address of the buffer
recvlen size of receive buffer
sendlen size of send buffer
par interface parameter (see par table)
divider baud rate initialization (see table)
table par definitions:
Definition Function
SR 5BIT 5 Bit char length
SR 6BIT 6 Bit char length
SR 7BIT 7 Bit char length
SR 8BIT 8 Bit char length
SR 1STOP 1 stop bit
SR 2STOP 2 stop bit
SR NO PAR no parity
SR EVEN PAR even parity
SR ODD PAR odd parity
5.20.6 Serial_Init_IRQ (AVR32)

Serial Functions Example

Syntax

void Serial _Init_IRQ byte serport, byte ramaddr[], word recvlen,
word sendl en, byte par, dword baud);

Sub Serial _Init_|RQ(serport As Byte, ByRef ramaddr As Byte,recvlen As Wrd,
sendl en As Word, par As Byte, baud As ULong)

Description

The serial interface gets initialized for usage in interrupt mode. The user has to provide a global variable
as a serial buffer. This buffer services as a storage for the data thatis sentto the serial interface and is re-
ceived from it. The size of the buffer must be length of the send buffer plus the length of the receive buf-
fer plus SR_BUF (see Example).

The maximum value for the size of the send and the receive buffer is 65535 bytes each, but this is of
course limited to the RAM size. The parameter par is defined through successive or-ing of predefined bit
values. The values of character length, stop bits and parity are or'd together. E.g. "SR_7BIT | SR_2STOP |

© 2013 Conrad Electronic

322

SR_EVEN_PAR" means 7 bit character length, 2 stop bits and even parity (see Example). An example in
BASIC Syntax: "SR_7BIT Or SR_2STOP Or SR_EVEN_PAR".

= The user supplied buffer must be available the whole time the serial interface is working. Since after
leaving a function the local variables are no longer available, it is most times a good idea to provide the

user supplied buffer as a global variable.

=¥ Please use Serial_ReadExi() if you work in serial IRQ mode. Serial_Read() only supports polled

mode.

Parameter

serport interface number (0 = 1st serial port, 1 = 2nd serial port, ...)

ramaddr address of the buffer

recvlen size of receive buffer

sendlen size of send buffer

interface parameter (see par table)
baud rate

o
i
1
o

table par definitions:

Definition Function
SR 5BIT 5 Bit char length
SR 6BIT 6 Bit char length
SR 7BIT 7 Bit char length
SR 8BIT 8 Bit char length
SR 1STOP 1 stop bit
SR 2STOP 2 stop bit
SR NO PAR no parity
SR EVEN PAR even parity
SR ODD PAR odd parity
5.20.7 Serial_IRQ_Info
Serial Functions
Syntax
byte Serial _I RQ Info(byte serport, byte info);

Sub Serial _I| RQ Info(serport As Byte,

Description

info As Byte) As Byte

In dependency of the info parameter the function returns how many bytes have been received or a written to

the send buffer.

© 2013 Conrad Electronic

323

C-Control Pro IDE

5.20.8

5.20.9

Parameter
serport interface number (0 = 1stserial port, 1 = 2nd serial port)
info values:

RS232_HFO_RECV (0) number of bytes received
RS232_HFO_SEND(1) number of bytes written to he send buffer

Return Parameter

resultin bytes

Serial_Read (Mega)

Serial Functions

Syntax

byte Serial _Read(byte serport);

Sub Serial _Read(serport As Byte) As Byte

Description

Reads one byte from the serial interface. If is there is no byte available in the serial interface, the function
waits until a byte has been received.

=¥ Please use Serial ReadExi() if you work in serial IRQ mode. Serial_Read() only supports polled
mode.

=% The function is not supported in the AVR32Bit, since the function is waiting forever, when no
data is received. E.g. no incoming Ethernet packets would be processed.

Parameter
serport interface number (0 = 1stserial port, 1 = 2nd serial port)
Return Parameter

received byte from the serial interface

Serial_ReadExt

Serial Functions

Syntax
word Serial _ReadExt (byte serport);

Sub Seri al _ReadExt (serport As Byte) As Wrd

© 2013 Conrad Electronic

Libraries 324

Description

Reads one byte from the serial interface. In opposite to Serial Read() Serial_ReadExt() returns immedi-
ately even if there is no byte available in the serial port. In this case 256 (100 Hex) is returned.

= Please use Serial_ReadExi() if you work in serial IRQ mode. Serial_Read() only supports polled
mode.

Parameter
serport interface number (0 = 1st serial port, 1 = 2nd serial port)
Return Parameter

received byte from the serial interface
256 (100 Hex) if there was no byte available

5.20.10 Serial_Write

Serial Functions Example

Syntax
void Serial _Wite(byte serport, byte val);

Sub Serial _Wite(serport As Byte, val As Byte)

Description
One byte is send to the serial interface.
Parameter

serport interface number (0 = 1st serial port, 1 = 2nd serial port)
val output byte value

5.20.11 Serial_WriteText

Serial Functions

Syntax
void Serial _WiteText(byte serport, char text[]);

Sub Serial _WiteText(serport As Byte, ByRef Text As Char)

Description

All characters of the char array up to the terminating zero are send to the serial interface.

© 2013 Conrad Electronic

325

C-Control Pro IDE

Parameter

serport interface number (0 = 1stserial port, 1 = 2nd serial port)
text char array

5.20.12 Serial Example

/1 string output on the serial interface
voi d mai n(voi d)

{

int i;

char str[10];

str="test";

i =0;

/[l initialize serial port with 19200baud, 8 bit, 1 stop bit, no parity

Serial _Init(0,SR 8BIT| SR _1STOP| SR_NO_PAR, SR_BD19200) ;

while(str[i]) Serial _Wite(0,str[i++]); // output string to serial port
}

5.20.13 Serial Example (IRQ)

5.21

/1 35 byte send + receive buffer + SR BUF byte internal FIFO organi zation
byte buffer[35+SR_BUF]; /1 array declaration

/1 string output to serial interface
voi d mai n(voi d)

{
int i;
char str[10];
str="test";
i =0;
/1l initialize serial port with 19200baud, 8 bit, 1 stop bit, no parity
/1 20 byte receive buffer - 15 byte send buffer
Serial _Init_I RYO,buffer, 20, 15, SR 8Bl T| SR_1STOP| SR_NO_PAR, SR BD19200) ;
while(str[i]) Serial Wite(0,str[i++]); [/ display string
while(l); // endless |oop
}
SDCard

SD-Card Support for C-Control Pro AVR32Bit

The card holder for the Micro SD cards is directly under the C-Control Pro AVR32Bit Unit. See de-
scription of the AVR32Bit Unit. Please consult the Pin Assignment for the description of the used
signals. Unlike the mega-SD card interface, there is no Enable line over which a reset can be

© 2013 Conrad Electronic

Libraries 326

triggered. In the demo programs this part is commented out for the AVR32Bit Unit.

SD-Card Support for C-Control Pro Mega 128 and Mega 128 CAN

The C-Control Pro SD Card interface (Conrad Order No. 197220) is used for connecting a microcon-
troller, such as C-Control Unit 128 Mega (Conrad Order No. 198219) to a 3.3 SD card. The SD-card
expansion features a level conwerter, which bidirectional conwerts the signals, allowing a direct con-
nection of the SD card to a 5V microcontroller. All memory cards, on the market this time, such as
SD, SDHC, MMC and other cards can be used with a corresponding SD card adapter.

=% The SD card is not supported on the C-Control Pro Mega32 because there is no room in the
flash memory (32kb) to contain the FAT file system routines.

= When the SD card is used in conjunction with USB and the application board, there is a collision
on the SPI bus. Unfortunately, the USB interface on the application board allows no sharing of the
SPI interface. The Projectboards are not affected, because they communicate via the serial inter-
face. If you want to use the SD Card interface, you have to remove the jumper on the application
board (Megal28 PB.0 to PB.4 and PE.5).

=¥ The signals PB.5 to PB.7 are not absolutely necessary, in the demo programs they will be used
for the enable signals and LED control. You can save these pins, if you decide to hardwire these sig-

nals.
o C-Control PRO o
[|
I . oWP
m OcD
TREREE OMS0
O MOS|
O 5CK
o 0ss
o B2
b {En O EN?
~ [) O+
=i a O GND
|| 3
o PWR LED o
Card holder PIN Megal28
WP PE.5
CD PB.4
MISO PB.3
MOSI PB.2
SCK PB.1
SS PB.0O
EN1 PB.5

© 2013 Conrad Electronic

327

C-Control Pro IDE

LED PB.7
EN2 PB.6

WP (Write Protect):
high = write protected SD card
low = access allowed

CD (Card Detect):
high = SD-Card not recognized
low = SD-Card detected

SPI- Interface:
MISO

MOSI

SCK

SS

Other:
LED -> User Led (5V lewel)

Reset Circuit:

Enl = Reset the SD-Card (low = running mode / high = reset)
En2 = Supply SD-Card holder (low = off / high = on)

The bottom diagram shows the performance of the hardware reset.

—» <4—min. 50ms
En1 1

--low

En2 I low

Insert SD-Card:
The SD card must always be inserted that the contacts show towards the circuit board of the SD-
Card interface. An incorrect insertion of the SD-Card may damage the card holder.

Technical data:

Supply wltage: +5V/DC

Current consumption: max. 150mA

SPI inputs and outputs: 5V lewel (TTL)

Permissible ambient temperature: 0° C to +70 °C

Permissible ambient relative humidity: 20 - 80% RH, noncondensing
Dimensions: approx 53.5 x 42 x 4.5 mm

Weight: 10g

© 2013 Conrad Electronic

Libraries

5.21.1 FAT Support

FAT Specification

FAT support: FAT12, FAT16 and FAT32.

Open files: Unlimited, depending on available memory.

File size: Dependent from FAT Type (up to 4G bytes).

Volume size: Dependent from FAT Type (up to 2T bytes at 512 bytes/sector)
Cluster size: Dependent from FAT Type (up to 64K bytes at 512 bytes/sector)
Sector size: Dependent from FAT Type (up to 4K bytes)

328

= The SD card functions support no long file names (LFN) under FAT. Firstly, the long file names
have expanded RAM and flash memory requirements, since they are based on Unicode, secondly,
the company Microsoft (TM) holds a patent on the use of LFN. The file or directory nhame must there-

fore have the 8.3 format.

SDCard Functions

5.21.2 SDC Return Values
All SDC Functions return a status Byte that describes the success of the SDC operation.
Error Value Description
FR OK 0 operation successful
FR DISK ERR 1 physical access failed
FR INT ERR 2 wrong FAT structure or internal error
FR NOT READY 3 no disk available
FR NO FILE 4 file not found
FR NO PATH 5 path not correct
FR INVALID NAME 6 invalid file name
FR DENIED 7 file access denied
FR EXIST 8 file already exists
FR INVALID OBJECT 9 file not opened with SDC FOpen
FR WRITE PROTECTED 10 disk write protected
FR INVALID DRIVE 11 drive number invalid
FR NOT ENABLED 12 logical drive not mounted
FR NO FILESYSTEM 13 no FAT table found on disk
FR MKFS ABORTED 14 not possible, since mkfs not available
FR TIMEOUT 15 device is not answering
5.21.3 SDC_FClose

Syntax

byte SDC FCl ose(byte fil ramaddr[]);

Sub SDC _FCl ose(ByRef fil ramaddr As Byte) As Byte

© 2013 Conrad Electronic

329 C-Control Pro IDE

Description

Closes a previously opened file.
Parameter

fil_ramaddr address of the FILE buffer
Return Parameter

Success of the called SDC function. See SDC Return Values.

5.21.4 SDC_FOpen

SDCard Functions

Syntax
byte SDC_FOpen(byte fil _ramaddr[], char path[], byte node);

Sub SDC_FOpen(ByRef fil _ramaddr As Byte, ByRef path As Char,
nmode As Byte) As Byte;

Description

Opens a file. For each open file a FILE buffer has to be created. For this we define a byte array of size 32.
=¥ The user-provided RAM buffer must be reserved during the access to the SD card. Since local vari-
ables will be released after leaving the function, it usually makes sense to declare the buffer as a global
variable.

Parameter

fil ramaddr address of the FILE buffer

path file path
mode file mode

Return Parameter

Success of the called SDC function. See SDC Return Values.

mode parameter:
The individual parameters are ORed like e.g.:

FA_CREATE_NEW| FA WRITE // ConpactC
FA_CREATE NEWOr FA WRITE ' BASIC

© 2013 Conrad Electronic

Libraries 330

Mode Value (Hex) Description
FA OPEN EXISTING 00 Opens file. If file does not exist, then error
FA READ 01 File reading allowed
FA WRITE 02 File writing allowed
FA CREATE NEW 04 Creates file, if file already exists, then error
FA CREATE ALWAYS 08 Creates file, if file already exists, then file is truncated
FA OPEN ALWAYS 10 Opens file. If file does not exist, then file is created

5.21.5 SDC_FRead

SDCard Functions

Syntax
byte SDC FRead(byte fil ramaddr[], byte buf[], word btr, word br[]);

Sub SDC_FRead(ByRef fil ramaddr As Byte, ByRef buf As Byte, btr As Wrd,
ByRef br As Word) As Byte

Description

Reads data from an open file. The data is written at the reading position from the file into the buffer buf.
The number of bytes to read is btr, the number of bytes that were actuallyread is copied in the first element
of br. The reading position can be determined with SDC_FSeek.

Parameter

fil ramaddr address of the FILE buffer

buf RAM address to where the bytes a read from the SD card
btr number of bytes to read
br actual number of bytes read

Return Parameter

Success of the called SDC function. See SDC Return Values.

5.21.6 SDC_FSeek

SDCard Functions

Syntax
byte SDC FSeek(byte fil_ramaddr[], dword pos);

Sub SDC_FSeek(ByRef fil_ramaddr As Byte, pos As ULong) As Byte

Description

Sets the read / write position of the opened file. The position pos is always counted from the beginning of
the file.

© 2013 Conrad Electronic

331 C-Control Pro IDE

Parameter

fil_ramaddr address of the FILE buffer
pos read / write position

Return Parameter

Success of the called SDC function. See SDC Return Values.

5.21.7 SDC_FSetDateTime

SDCard Functions

Syntax

byt e SDC_FSet Dat eTi me(char path[], byte day, byte mon, word year, byte mn,
byte hours, byte sec);

Sub SDC_FSet Dat eTi me(ByRef path As Char,day As Byte,nobn As Byte,year As Wrd,
nmn As Byte, hours As Byte, sec As Byte) As Byte
Description

Set the date and time attributes of a file.

Parameter

path file path

day Day(1-31)
mon Month (1-12)

year Year (1980-2107)

min Minute (0-59)

hours Gour (0-23)

sec Second (0-59) (is always setto an even value)

Return Parameter

Success of the called SDC function. See SDC Return Values.

5.21.8 SDC_FStat

SDCard Functions

Syntax
byte SDC FStat (char path[], dword filinfo[]);

Sub SDC_FSt at (ByRef path As Char, ByRef filinfo As ULong) As Byte

Description

© 2013 Conrad Electronic

Libraries 332

Read attributes of a file to a dword (ULong) array with 4 elements.
Parameter

path file path
filinfo return array

Return Parameter

Success of the called SDC function. See SDC Return Values.

Rickgabe Array:
fileinfo[0] file length
fileinfo[1] date
fileinfo[2] time
fileinfo[3] file attribute
Coding date:

Bits 0:4 - day: 1...31
Bits 5:8 - month: 1...12
Bits 9:15 - year begin with 1980: 0...127

Coding time:
Bits 0:4 - seconds/2: 0...29

Bits 5:10 - minute: 0...59
Bits 11:15 - hour: 0...23

Coding file attribute:
Bit1: Read Only
Bit 2: Hidden

Bit 3: Volume label
Bit 4: Directory
Bit5: Archive

5.21.9 SDC_FSync

SDCard Functions

Syntax
byte SDC FSync(byte fil ramaddr[]);

Sub SDC_FSync(ByRef fil ramaddr As Byte) As Byte

Description
Waits for all data to be written from the buffer into the file on the SD card.
Parameter

fil ramaddr address of the FILE buffer

© 2013 Conrad Electronic

333

C-Control Pro IDE

Return Parameter

Success of the called SDC function. See SDC Return Values.

5.21.10 SDC_FTruncate

SDCard Functions

Syntax
byte SDC FTruncate(byte fil ramaddr[]);

Sub SDC FTruncate(ByRef fil ramaddr As Byte) As Byte

Description

Delete the rest of the file from the current cursor position.
Parameter

fil ramaddr address of the FILE buffer

Return Parameter

Success of the called SDC function. See SDC Return Values.

5.21.11 SDC_FWrite

SDCard Functions

Syntax
byte SDC FWite(byte fil ramaddr[], byte buf[], word btr, word br[]);

Sub SDC FWite(ByRef fil ranmaddr As Byte, ByRef buf As Byte, btr As Wrd,
ByRef br As Word) As Byte

Description

Writes data to an open file. The data from the buffer buf is written to the file at current file position. The
parameter btr determines number of bytes to write. The number of bytes actual written is copied into the
first element of br. The write position can be determined with SDC_FSeek.

Parameter

fil_ ramaddr address of the FILE buffer

buf RAM address from where the bytes a written to the SD card
btr number of bytes to write
br actual number of bytes written

© 2013 Conrad Electronic

Libraries 334

Return Parameter

Success of the called SDC function. See SDC Return Values.

5.21.12 SDC_GetFree

SDCard Functions

Syntax
byte SDC_Get Free(char path[], dword kbfree[]);

Sub SDC_GCet Free(ByRef path As Char, ByRef kbfree As ULong) As Byte

Description

Returns the number of free clusters on the SD Card. The number of free clusters is copied to the first
element of the array kbfree.

Parameter

path path to the root of the disk.
kbfree return array

Return Parameter

Success of the called SDC function. See SDC Return Values.

5.21.13 SDC_lInit

SDCard Functions

Syntax
void SDC Init(byte fat ramaddr[]);

Sub SDC I nit(ByRef fat ranmaddr As Byte)

Description

Initializes the SD card library. For this operation a FAT buffer must be created. Therefore an array of size
562 is declared.

=¥ The user-provided RAM buffer must be reserved during the access to the SD Card. Since local vari-
ables will be released after leaving the function, it usually makes sense to declare the buffer as a global
variable.

Parameter

fat ramaddr address of the FAT buffer

© 2013 Conrad Electronic

335

C-Control Pro IDE

Return Parameter

Success of the called SDC function. See SDC Return Values.

5.21.14 SDC_MkDir

SDCard Functions

Syntax
byte SDC_MKDir(char path[]);

Sub SDC_MKDir (ByRef path As Char) As Byte

Description

Creates a directory on the SD card.
Parameter

path path to the directory
Return Parameter

Success of the called SDC function. See SDC Return Values.

5.21.15 SDC_Rename

SDCard Functions

Syntax

byte SDC_Rename(char ol dpath[], char newpath[]);

Sub SDC_Renane(ByRef ol dpath As Char, ByRef newpath As Char) As Byte

Description

Renames a file from oldpath to newpath.

Parameter

oldpath file path
newpath path to file with new name

=¥ |f newpath points to a directory other than oldpath, the file is not renamed only, but also moved into the

new directory. In newpath may not be logical disk number, only in oldpath.

© 2013 Conrad Electronic

Libraries 336

Return Parameter

Success of the called SDC function. See SDC Return Values.

5.21.16 SDC_Unlink

SDCard Functions

Syntax
byte SDC_Unlink(char path[]);

Sub SDC_Unl i nk(ByRef path As Char) As Byte

Description
Deletes afile.
Parameter

path file path
Return Parameter

Success of the called SDC function. See SDC Return Values.

5.21.17 SD card Example

/'l d obal variables
byte fat[562];
byte fil[32];

voi d mai n(voi d)
{
/'l Local variables
byte res;
char buf[100];
word bytes witten[1];

[/l SD-Card reset

Port _DatabDirBit(13,1); /1 PB.5 = output (EN1)

Port _DatabDirBit(14,1); /1 PB.6 = Ausgang (EN2)

Port WiteBit(13,1); /'l set EN1 for 50ms at +5V (PB.5)
Port _WiteBit(14,0); /'l set EN2 for 50ms to GND (PB. 6)
AbsDel ay(50); /1 50nms break

Port WiteBit(13,0); /1 EN1 GND

Port_WiteBit(14,1); /1 EN2 +5V

© 2013 Conrad Electronic

337 C-Control Pro IDE

/1l Power on -> SD- Card
Port WiteBit(14,1); /1 EN2 (PB.6) +5V

AbsDel ay(50); /1 50nms Pause

// SD-Card Fat init
SDC I nit (fat);

|/l Create a new file fol ders
SDC_MDi r (" 0:/CC-PRO") ;

/1l Does the file already exists?

[l 1f the file is not created

res=SDC_FQOpen(fil, "0:/CC-PROtest.txt", FA READ| FA_WRI TE| FA_OPEN_EXI STI NG) ;
i f(res!=0)SDC FOpen(fil, "0:/CC-PROtest.txt", FA WRI TE| FA_CREATE_ALVAYS) ;

/Il Wites to a text file

buf= "Hallo... 123!'\r\n";

SDC FWite(fil, buf, Str_Len(buf), bytes witten);
SDC FSync(fil);

/Il File is closed
SDC FCl ose(fil);

5.22 Servo

RC senvos are composed of a DC motor mechanically linked to a potentiometer. Pulse-width modu-
lation (PWM) signals sent to the servo are translated into position commands by electronics inside
the servo. When the senvo is commanded to rotate, the DC motor is powered until the potentiometer
reaches the value corresponding to the commanded position. The senvo is controlled by three wires:
ground (usually black/orange), power (red) and control (brown/other colour). The serno will move
based on the pulses sent over the control wire, which set the angle of the actuator arm. The seno
expects a pulse every 20 ms in order to gain correct information about the angle. The width of the
seno pulse dictates the range of the seno's angular motion. A senvo pulse of 1.5 ms width will set
the senvo to its "neutral” position, or 90°. For example a seno pulse of 1.25 ms could set the seno
to 0° and a pulse of 1.75 ms could set the servo to 180°. The physical limits and timings of the seno
hardware varies between brands and models, but a general servo's angular motion will travel some-
where in the range of 180° - 210° and the neutral position is almost always at 1.5 ms.

Connection to C-Control Pro

© 2013 Conrad Electronic

Libraries 338

5.22.1

Modelcraft +3V

- GND

Pulse

| —

+5Volt ist the supply wltage of the seno, it must provide enough current to drive the seno. The
ground of the sernvwo and the ground of the C-Control Pro unit must be the same. The pulse for the
seno is generated by the PWM signal of the C-Control unit.

Servo_Init

Servo Functions Example

Syntax

void Servo_Init(byte servo cnt, byte servo interval, byte ramaddr[],

byte tiner);

Sub Servo_Init(servo cnt As Byte, servo interval As Byte,
ByRef ranmaddr As Byte, tiner As Byte)

Description

Intializes the internal servo routines. The servo_cnt parameter controls how many sernwos can be
driven at the same time. The seno_intenal parameter describes the period length (10 or 20ms), with
timer the used 16-Bit timer can be chosen. Timer 3 is only available on the Megal28. The user must
supply ram space to operate the senos. The required size is sernvo_cnt * 3. E.g., if the user wants to
operate 10 servos, at byte array of 30 bytes is needed.

= The user supplied ram space must be available the whole time the servos are working. Since after
leaving a function the local variables are no longer available, it is most times a good idea to provide the
user supplied ram as a global variable.

© 2013 Conrad Electronic

339

C-Control Pro IDE

5.22.2

5.22.3

=¥ A 16-bit Timer is needed for the servo steering routines. Is the timer turned off, or is used for other pur-
poses the servo routines will not work.

Parameter

servo_cnt number of possible servos (maximum 20)
servo_interval periodic length (0=10ms, 1=20ms)
ramaddr address of memory block
timer 16-Bit Timer used for servo steering
Mega32: 0 =Timer 1
Megal28 & Megal28 CAN: O=Timer 1, 1=Timer 3
AVR32: all Timer (0 - 5)

Servo_Set

Servo Functions Example

Syntax
voi d Servo_Set (byte porthit, word pos);

Sub Serial _Init(portbhit As Byte, pos As Wrd)

Description

Sets the pulse length to steer the actuator arm. The output port is set with the portbit parameter
(See Pin Assignment of M32 and M128).

=¥ The sum of all user set pulse lengths should not exceed the period length (see servo_interval para-
meter), otherwise an erratic behaviour could happen. E.g. with 20ms period length, a total of 8 servos can
each be setto a pulse length of 2500us. To have some safety margin, the sum of the pulse lengths should
be less than the period length for a small amount.

Parameter

portbit bit number of port (see Port Table)
pos pulse length for servo in psec (500 - 2500)

Servo Example

byte servo_var[30]; // Servo internal variables

/1l Activation of 3 Servos and stop after 10 seconds
voi d mai n(voi d)
{
/1l Max. 10 Servos, 20ns interval, Tinmer 3
Servo_Init(10, 1, servo_var, 1);

Servo_Set (7, 2000); // Servo Portbit 7 2000ps
Servo_Set (6, 1800); // Servo Portbit 6 1800ps
Servo_Set (5, 1600); // Servo Portbit 5 1600ps

© 2013 Conrad Electronic

Libraries 340

AbsDel ay(5000) ;

Servo_Set (7, 1000); // Servo Portbit 7 1000ps
AbsDel ay(5000) ;

Servo_Set (7, 0); /1 all Servos off

Servo_Set (6, 0);
Servo_Set (5, 0);

5.23 SPI

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard named by
Motorola that operates in full duplex mode. Devices communicate in master/slave mode where the
master device initiates the data frame. Multiple slave devices are allowed with individual slave select
(chip select) lines.

5.23.1 Mega

5.23.1.1 SPI _Disable
SPI Functions

Syntax
voi d SPI _Di sabl e(voi d);

Sub SPI _Di sabl e()

Description

The SPI will be disabled and the corresponding ports can be used otherwise.

=¥ Disabling the SPI interface will prevent usage of the USB interface on the application board. On the
other hand, if you don't use the USB interface, SPI_Disable() will allow to use these ports for other pur-
poses.

Parameter

None

© 2013 Conrad Electronic

341 C-Control Pro IDE

5.23.1.2 SPIl _Enable

SPI Functions

Syntax

voi d SPI _Enabl e(byte ctrl);

Sub SPI _Enabl e(ctrl As Byte)

Description

The SPlinterface is initialized with the value of ctrl (see SPCR register in Atmel Mega Reference Manual).

Parameter
ctrl initialization parameter (Mega SPCR Register)

Bit 7 - SPI Interrupt Enable (do not enable, cannot be used from C-Control Pro now)

Bit 6 - SPI Enable (must be set)

Bit5 - Data Order (1 = LSB first, 0 = MSB first)

Bit 4 - Master/Slave Select (1 = Master, 0 = Slave)

Bit 3 - Clock polarity (1 = leading edge falling, 0 = leading edge rising)

Bit 2 - Clock Phase (1 = sample on trailing edge, 0 = sample on leading edge)

Bit 1 Bit 0 SCK Freguency
0 0 fose 1 4
0 1 fosc / 16
1 0 fosc / 64
1 1 fosc 1 128

=» Please consider, that fose = 14,7456 Mhz for C-Control Pro Mega 32 and Megal28, while the C-

Control Pro Megal28 CAN works at 16 Mhz.

5.23.1.3 SPI _Read

SPI Functions

Syntax

byte SPI _Read();

Sub SPI _Read() As Byte

Description

Abyte is read from the SPI interface.

© 2013 Conrad Electronic

Libraries

Return Parameter

received byte from the SPI interface

5.23.1.4 SPIl_ReadBuf
SPI Functions

342

Syntax
voi d SPI _ReadBuf (byte buf[],

Sub SPI _ReadBuf (ByRef buf As

Description

word | ength);

Byte, length As Wrd)

Anumber of bytes are read from the SPI interface into an array.

Parameter

buf pointer to byte array
length number of bytes to read

5.23.1.5 SPIl_Write
SPI Functions

Syntax
void SPI_Wite(byte data);

Sub SPI _Wite(data As Byte)

Description

One byte is send to the serial interface.

Parameter

data output byte value

5.23.1.6 SPI_WriteBuf
SPI Functions

Syntax

void SPI_WiteBuf(byte buf[],

word | ength);

© 2013 Conrad Electronic

343

C-Control Pro IDE

5.23.2

Sub SPI _WiteBuf (ByRef buf As Byte, length As Word)

Description

Anumber of bytes are sent to the SPl interface.

Parameter

buf pointer to byte array
length number of bytes to be transferred

AVR32Bit

5.23.2.1 SPI_Disable

SPI Functions

Syntax
voi d SPI _Di sabl e(byte chan);

Sub SPI _Di sabl e(chan As Byte)

Description
The SPlinterface is switched off and the associated ports can be used differently.
Parameter

chan SPichannel (0-1)

5.23.2.2 SPI_Enable

SPI Functions

Syntax
voi d SPI _Enabl e(byte chan, dword speed, byte bits, byte node);

Sub SPI _Enabl e(chan As Byte, speed As ULong, bits As Byte, npde As Byte)

Description

The SPI interface is initialized at a clock rate, number of data bits and SPI mode. A divider is then calcu-
lated internally from the speed parameter, to set the chip to the desired baud rate. Since the divider can
onlytake a value between 1 and 255, the specified speed parameter is roughly maintained. The divider is

© 2013 Conrad Electronic

Libraries 344

selected that meets the desired clock rate closest: divider = 66Mhz / speed. The actual speed is then
66Mhz/ divider. As a result, baud rates less than 259000 may not be used.

Parameter

chan SPlchannel (0-1)
speed SPIbaud rate (259000 - 66000000)
bits number of data bits

ode SPI mode

SPI Mode CPOL NCPHA
0 0 1
1 0 0
2 1 1
3 1 0

5.23.2.3 SPI _Read
SPI Functions

Syntax
word SPI _Read();

Sub SPI _Read() As Word

Description
Data is read from the SPl interface.
Return Parameter

received data (4-16 Bit) from the SPI interface

5.23.2.4 SPIl_ReadBuf
SPI Functions

Syntax
voi d SPI _ReadBuf (byte buf[], word |ength);

Sub SPI _ReadBuf (ByRef buf As Byte, [ength As Word)

Description

Anumber of bytes is read from the SPI interface into an array. The functions works with up to 8 bits, regard-

© 2013 Conrad Electronic

345 C-Control Pro IDE

less of whether the SPI interface is initialized with more bits.
Parameter

buf pointer to byte array
length number of bytes to read

5.23.25 SPI_SetChan
SPI Functions

Syntax
voi d SPI _Set Chan(byte chan);

Sub SPI _Set Chan(chan As Byte)

Description
Selects an SPlinterface (SPIO or SPI1) for further access.
Parameter

chan SPlchannel (0-1)

5.23.2.6 SPI_Write
SPI Functions

Syntax
void SPI_Wite(word data);

Sub SPI_Wite(data As Wrd)

Description

Data is written to the SPI interface.
Parameter

data outputdata (4-16 Bit)

5.23.2.7 SPI_WriteBuf
SPI Functions

Syntax

void SPI_WiteBuf(byte buf[], word |ength);

© 2013 Conrad Electronic

Libraries 346

Sub SPI _WiteBuf (ByRef buf As Byte, length As Word)

Description

Anumber of bytes are sentto the SPI interface. The function works with 8 bits, regardless of whether the
SPlinterface is initialized with more bits.

Parameter

buf pointer to byte array
length number of bytes to be transferred

5.24 Strings

One part of these string routines is implemented in the Interpreter, another can be called up after ap-
pending library "String_Lib.cc". Since the functions in "String_Lib.cc" are realized through Bytecode
they are slower when executed. Library functions however have the advantage that they can be taken
from the project by omitting the library in case they are not needed. Direct Interpreter functions are
always present, will however take up flash memory.

There is no explicit "String" data type. A string is based on a character array. The size of the array
must be chosen in such a way that all characters of the string fit into the character array. Addition-
ally some space is needed for a terminating character (decimal Zero) in order to indicate the end of
the character string.

5.241 Str_Comp

String Functions

Syntax
char Str_Comp(char stri1[], char str2[]);

Sub Str_Conp(ByRef strl As Char, ByRef str2 As Char) As Char

Description
Two strings are compared.
Parameter

strl pointer to char array 1
str2 pointer to char array 2

Return Parameter
0 both strings are equal

<0 if the first string is smaller than the second
>0 if the first string is greater than the second

© 2013 Conrad Electronic

347 C-Control Pro IDE

Remark

The attribute smaller or greater is specified for the character difference at the first point of difference
between both strings.

5.24.2 Str_Copy

String Functions

Syntax

voi d Str_Copy(char destination[], char source[], word offset);

Sub Str_Copy(ByRef destination As Char, ByRef source As Char, offset As
Wor d)

Description

The source string (source) is copied to the destination string (destination). During copying also the string
termination character of the source character string is copied.

Parameter

destinati on pointerto destination string

source pointer to source string
offset Number of characters by which the source string is offset when copied to the destination
string..

If offset has the value STR_APPEND (ffff Hex) then the length of the destination string is assumed as
offset. In this case the source string is copied behind the destination string.

5.24.3 Str_Fill

String Functions (Library "String_Lib.cc")

Syntax
void Str_Fill(char dest[], char ¢, word len);

Sub Str_Fill (ByRef dest As Char, c As Char, len As Wrd)

Description

The string dest is filled with character c.
Parameter

dest pointer to destination string

[character that is written into the string
len count, how often c is written into the string

© 2013 Conrad Electronic

Libraries 348

5.24.4 Str_Isalnum

String Functions (Library"String_Lib.cc")

Syntax
byte Str_lsal num(char c);

Sub Str_lsalnum(c As Char) As Byte

Description

Acharacter is tested if itis alphabetically or a digit.
Parameter

c tested character

Return Parameter

1 if the characteris alphabetically or a digit (upper- or lowercase)
0 else

5.24.5 Str_Isalpha

String Functions (Library"String_Lib.cc")

Syntax
byte Str_lIsal pha(char c);

Sub Str_lsal pha(c As Char) As Byte

Description

Acharacter is tested if itis alphabetically.
Parameter

C tested character

Return Parameter

1 if the characteris alphabetically (upper- or lowercase)
0 else

© 2013 Conrad Electronic

349 C-Control Pro IDE

5246 Str_Len

String Functions

Syntax
word Str_Len(char str[]);

Sub Str_Len(ByRef str As Char) As Wrd

Description

The length of the string (character array) is returned.
Parameter

str pointer to string

Return Parameter

length of the string (without terminating zero)

5.24.7 Str_Printf

String Functions Example

Syntax

void Str_Printf(char str[], char format[], ...);

Sub Str_Printf(ByRef str As Char, ByRef format As Char, ...)
Description

This function creates a formatted string into str. The format string is similar to the formatting of printf() in C.
The format always begins with "%"', then follow optional flags (0,l), and it ends with a type (d,x,s,f). In the
following table all type parameters are explained. Between % and type an optional width and precision
can be used.

%flags][width][.prec]Typ (the brackets describes the optional part)

The width is the minimal space for the output of the number. If the number is smaller than width, the num-
ber is padded to the left with spaces. If the width begins with "0" the left is padded width "0" instead of
spaces. A period "." describes an optional precision parameter, that defines the number of decimal
places, when floating point numbers (%f) are used, or the base of the number when using unsigned in-
teger (%u). See Str_Printf Example.

=¥ |f there is no "I" flag when a 32-Bit number is printed, only the lower 16 bits are displayed.

| Flags Description |

© 2013 Conrad Electronic

Libraries 350

0 padd with "0"
| 32-Bit Integer
Format Description
%gwidth]d integer
%dwidth][.prec]u unsigned integer
%gwidth]x hexadecimal
%gwidth][.prec]f floating point
%gwidth]s string
Ygwidth]c char

Parameter

str pointer to string

format pointer to format string

5.24.8 Str_ReadFloat

String Functions

Syntax
float Str_ReadFl oat(char str[]);

Sub Str_ReadFl oat (ByRef str As Char) As Single

Description

The value of a string representing a floating point number is returned. The number is recognized,
ewven if there or other characters after the number.

Parameter
str pointer to string
Return Parameter

floating point value of string

5.24.9 Str_ReadInt

String Functions

Syntax
int Str_Readlnt(char str[]);

Sub Str_Readl nt (ByRef str As Char) As Integer

© 2013 Conrad Electronic

351

C-Control Pro IDE

Description

The value of a string representing an integer number is returned. The number is recognized, ewven if
there or other characters after the number.

Parameter
str pointer to string
Return Parameter

integer value of string

5.24.10 Str_ReadNum

String Functions

Syntax
word Str_ReadNum{char str[], byte base);

Sub Str_ReadNum(ByRef str As Char, base As Byte) As Wrd

Description

The value of a string representing an unsigned number is returned. The number is recognized, even if
there or other characters after the number. The base parameter is the base of the numeric value.
E.g. to read a hexadecimal number, a base of 16 is to apply.

Parameter

str pointer to string

base base of converted number
Return Parameter

numeric value of string

5.24.11 Str_Substr

String Functions (Library "String_Lib.cc")

Syntax
int Str_SubStr(char source[], char search[]);

Sub Str_SubStr(ByRef source As Char, ByRef search As Char) As |nteger

Description

Asubstring search is searched inside string source. If the substring is found, the position of the substring

© 2013 Conrad Electronic

Libraries 352

is returned.
Parameter

source string thatis searched
search substring thatis looked for

Return Parameter

position of the found substring
-1 else

5.24.12 Str_WriteFloat

String Functions

Syntax
void Str_WiteFloat(float n, byte decinmal, char text[], word offset);

Sub Str_WiteFloat(n As Single, decimal As Byte, ByRef text As Char,
of fset As Word)

Description

The floating point number n is converted to an ASCII string with decimal number of decimal digits after the
period. The resultis stored in the string text with an offset of offset. The offset parameter is used to change
a string after a specified number (offset) of characters and leave the beginning of the string intact.

Parameter

n float number

decimal number of decimal digit after the period

text pointer to destination string

offset offsetthatis applied to the position where the string is copied

If offset has the value STR_APPEND (ffff Hex) then the length of the destination string is assumed as
offset. In this case the source string is copied behind the destination string.

5.24.13 Str_Writelnt

String Functions

Syntax
void Str_Witelnt(int n, char text[], word offset);

Sub Str_Witelnt(n As Integer, ByRef text As Char, offset As Word)

Description

The integer number n is converted to a signed ASCII string. The resultis stored in the string text with an off-

© 2013 Conrad Electronic

353

C-Control Pro IDE

set of offset. The offset parameter is used to change a string after a specified number (offset) of characters
and leave the beginning of the string intact.

Parameter

n integer number
text pointer to destination string
offset offsetthatis applied to the position where the string is copied

—+

If offset has the value STR_APPEND (ffff Hex) then the length of the destination string is assumed as
offset. In this case the source string is copied behind the destination string.

5.24.14 Str_WriteWord

String Functions

Syntax

void Str_Witewrd(word n, byte base, char text[], word offset, byte

m nwi dt h);

Sub Str_WiteWrd(n As Wrd, base As Byte, ByRef text As Char ,offset As
Word, mnwi dth As Byte)

Description

The word n is converted to an ASCII string. The resultis stored in the string text with an offset of offset. The
offset parameter is used to change a string after a specified number (offset) of characters and leave the
beginning of the string intact. If the resulting string is smaller than minwidth the beginning of the string
gets filled with zeros "0".

The base of the numbering system can be given in the base parameter. If you set base to 2, you will get a
string with binary digits. Abase of 8 produces an octal string, and a base of 16 a hexadecimal string. If the
base is setto a number greater than 16, more characters of the alphabet are used. E.g. a base of 18 pro-
duces a string with the digits '0-'9' and 'A-'H'.

Parameter

n 16 bitword

base base of the number system
text pointer to destination string

o
=

set offset that is applied to the position where the string is copied
minwidth minimal width of the string

If offset has the value STR_APPEND (ffff Hex) then the length of the destination string is assumed as
offset. In this case the source string is copied behind the destination string.

© 2013 Conrad Electronic

Libraries 354

5.24.15 Str_Printf Example

5.25

/1 Compact C
voi d mai n(voi d)
{
char str[80];

/'l Integer
Str_Printf(str, "argl: %\r", 1234);
Msg_WiteText(str);

/1l Quput of integer, floating point, string und hex nunber

Str_Printf(str, "argl: 98d arg2: %d0. 3f arg3: %20s arg4: W\r",
1234, 2.34567, "hello world", 256);

Msg WiteText(str);

Str_Printf(str, "argl: % arg2: % 2u\r", 65000, Oxff);

Msg WiteText(str);}

}
' Basic
Sub mai n()
Dim str(80) As Char
Str_Printf(str, "argl: 998d arg2: %d0. 3f arg3: %20s arg4: wW\r",
1234, 2.34567, "hello world", 256)
Msg WiteText(str)
Str_Printf(str, "argl: % arg2: % 2u\r", 65000, &Hff)
Msg WiteText(str)
End Sub
Threads

Multi Threading

Multi Threading is a so to speak parallel execution of several tasks in a program. One of these tasks
is called “Thread”. When Multi Threading it will rather rapidly be toggled between the various threads
so the impression of simultaneousness is created.

The C-Control Pro firmware supports besides the main program (Thread "0") up to 13 additional
threads. With Version 2.12 of the IDE the multithreading changed. Before 2.12 the user could set in
the project options the number of Bytecodes that were executed before there was a thread change.
This behavior was unfair, because some Bytecodes (especially floating point) needed much more
CPU time than other Bytecodes. Now the multithreading scheduler works with time cycles. A user
can assign the number of 10ms cycles a thread has before the next threads get executed.

In multithreading, after a certain number of time cycles the current thread will be set "inactive" and
the next executable thread is searched for. After that the execution of the new thread will be started.
The new thread may again be the same as before depending on how many threads had been activ-
ated or are ready for processing. The main program counts as first thread. Therefore thread "0" is

© 2013 Conrad Electronic

355

C-Control Pro IDE

active at all times ewven if no threads have explicitly been started.
=» |f the main program (thread "0") terminates, all other threads stop, too.

The priority of threads can be influenced by changing the number of time cycles which one thread is
allowed to execute until the next thread change takes place. The smaller the number of cycles until
the change takes place, the lower the priority of the thread.

Thread Configuration

Before IDE version 2.12 the threads were configured in the project options. That has changed. The
configuration is now placed inside the source code with the new "#thread" keyword. The syntax is:

#t hread t hread_nunber, ram used, nunber_of tinme_cyl ces

A thread will receive as much space for its local variables as has been assigned to it. The exception
is thread "0" (the main program). This thread will receive the entire memory space that has been left
over by the other threads. The RAM assignment by the "#thread 0" statement for the main thread is
ignored. Therefore it should be planned in advance how much memory space may be needed by
each additional thread.

=¥ The "#thread" statements need not be near the thread functions, but may be anywhere in the
program. If no threads are used, a "#thread 0" command is unnecessary. If you forget to define a
thread, the thread_start is ignored.

Example CompactC:

#thread 0, 0, 20 // main thread with task change every 20 * 10nms =200ns
#thread 1, 128, 10 //thread 1 with 128 Byte & task change 10*10nms =100ns
#thread 2, 256, 10 //thread 2 with 256 Byte & task change 10*10ns =100ns

Example BASIC (syntax identical to CompactC):

#thread 0, 0, 20 " main thread with task change every 20 * 10nms =200ns
#thread 1, 128, 10 ' thread 1 with 128 Byte & task change 10*10ns =100ns
#thread 2, 256, 10 ' thread 2 with 256 Byte & task change 10*10nms =100ns

= Since e. g. Serial Read will wait until a character arrives from the serial interface, a thread can in
some cases be active longer than the assigned number of time cycles.

= \When working with threads Thread Delay rather than AbsDelay should always be used. If never-
theless e. g. an AbsDelay(1000) is used, the thread will wait for 1000ms ewen if a smaller number of
time cycles is assigned.

Thread Synchronization
Sometimes it is necessary for a thread to wait for another thread. This may e. g. be a common hard-

ware resource which can only execute one thread. Sometimes also critical program areas may be
defined which may only be entered by one thread. This functions are being realized through instruc-

© 2013 Conrad Electronic

Libraries 356

tions Thread Wait and Thread_Signal.

A thread bound to wait will execute instruction Thread_Wait with a signal number. The condition of
the thread is set on waiting. This means that the thread may be ignored at a possible thread change.
If the other thread has completed its critical work it will send the command Thread_Signal with the
same signal number the first thread had used for its Thread_Wait. The thread condition of the waiting
thread will change from waiting to inactive and will then be considered again at a possible thread
change.

Deadlocks
When all active threads set out for a waiting condition with Thread Wait then there will be no more

threads which can release the other threads from their waiting conditon. Therefore these constella-
tions should be awided when programming.

Table Thread Conditions

Condition Meaning

active The thread is presently executed

inactive Can be activated again after a thread change

sleeping Will after a number of ticks be set to "inactivwe"
again

waiting The thread awaits a signal

5.25.1 Thread_Cycles

Thread Functions

Syntax
void Thread_Cycl es(byte thread, word cycles);

Sub Thread_Cycl es(thread As Byte, cycles As Wrd)

Description
Sets the number of executed bytecode instructions before thread change to the parameter cycles.

= If a thread is freshly started, it will get the cycle count that was defined in the project options. It only
makes sense to call Thread_Cylces() after a thread has been started.

Parameter

thread (0-13) number of the thread
cycles cycle count until thread change

© 2013 Conrad Electronic

357 C-Control Pro IDE

5.25.2 Thread_Delay

Thread Functions Example

Syntax
voi d Thread_Del ay(word del ay);

Sub Thread_Del ay(del ay As Word)

Description

With this function a thread will setto "sleep” for a specified time. After this time the thread is again ready for
execution. The waiting period is given in ticks that are created by Timer 2. If Timer 2 is set off or used for
other purposes, the mode of operation of Thread_Delay() is not defined.

=% Even if Thread_Delay() looks like any other wait function, you have to keep in mind that the
thread is not automatically executed after the waiting period. The thread is then ready for execution,
but it will not started until the next thread change.

Parameter

delay number of 10ms ticks that should be waited

5.25.3 Thread_Info

Thread Functions

Syntax
word Thread_I nfo(byte info);

Sub Thread_I nfo(info As Byte) As Wrd

Description

The function returns information about the calling thread. The info parameter defines what kind of informa-
tion is returned.

Parameter
info values:

TI_THREADNUM number of the calling thread
TI_STACKSIZE defined stack size
TI_CYCLES number of cycles before thread change

Return Parameter

info result

© 2013 Conrad Electronic

Libraries 358

5.25.4 Thread Kill

Thread Functions

Syntax
void Thread Kill (byte thread);

Sub Thread Kill (thread As Byte)

Description
Terminates a thread. If 0 is given as thread number, the whole program will be terminated.
Parameter

thread (0-13) thread number

5.25.5 Thread_Lock

Thread Functions

Syntax
voi d Thread_Lock(byte | ock);

Sub Thread_Lock(l ock As Byte)

Description

With this function you can inhibit thread changes. This is reasonable if you have a series of port operations
or other hardware actions that should nottimely be separated in a thread change.

=¥ |f you forget to remove the thread lock, the multithreading is not working.
Parameter

lock ifsetto 1 thread changes are inhibited, 0 means thread changes are allowed

5.25.6 Thread MemFree

Thread Functions

Syntax
word Thread_MenFree(void);

Sub Thread_MenFree() As Wrd

© 2013 Conrad Electronic

359 C-Control Pro IDE

Description

Returns the free memorythatis available for the calling thread.
Parameter

None

Return Parameter

free memoryin bytes

5.25.7 Thread_Resume

Thread Functions

Syntax
voi d Thread_Resune(byte thread);

Sub Thread_Resune(thread As Byte)

Description

If a thread has the state "waiting" it can be set to "inactive" with this function call. "Inactive" means that a
thread is ready for activation at a thread change.

Parameter

thread (0-13) thread number

5.25.8 Thread_Signal

Thread Functions

Syntax
voi d Thread_Si gnal (byte signal);

Sub Thread_Si gnal (signal As Byte)

Description

Has a thread been set to state "waiting” with a call to Thread Wait() it can be set to "inactive” with a call to
Thread_Signal(). The signal parameter must have the same value as the value that has been used in the
call to Thread Wait().

© 2013 Conrad Electronic

Libraries 360

5.25.9

Parameter

signal signal value

Thread_Start

Thread Functions Example

Syntax
void Thread_Start(byte thread, dword func);

Sub Thread_Start(Byte thread As Byte, func As ULong)

Description
Anew thread gets started. Every function in the program can be used as starting function for the thread.

=9 |fthe thread is started inside a function that has parameters defined in the function header, the value
of these parameters is undefined!

Parameter

thread (0-13) thread number
func function name of the function where the thread will be started

5.25.10 Thread_Wait

Thread Functions

Syntax
void Thread_Wit(byte thread, byte signal);

Sub Thread_Wait(thread As Byte, signal As Byte)

Description

The thread gets the state "waiting”. The state can be changed back to "inactive" with calls to Thread Re-
sume() or Thread_Signal().

Parameter

thread (0-13) thread number
signal signal value

© 2013 Conrad Electronic

361 C-Control Pro IDE

5.25.11 Thread Example

/1 denmp program of nultithreading
/1l this program makes no debouncing, therefore a short trigger of the switch
/1l can lead to nore than one string outputs

#thread 0, 0, 10 /[/main thread with task change every 10 * 10ns =100ns
#thread 1, 128, 10 //thread 1 with 128 Byte & task change 10*10nms =100ns

voi d threadl(void)

{
while(true) // endless |oop
{
i f(!Port_ReadBit(PORT_SW2)) Msg WiteText("Switch 2"); // SW2 is pressed
}
}

voi d nmai n(voi d)
{
#i fdef AVR32
/1l set noth Pin to input & pull-up
Port _Attribute(PORT_T1, PORT_ATTR_INPUT | PORT_ATTR_PULL_UP);
Port _Attribute(PORT_T2, PORT_ATTR_INPUT | PORT_ATTR_PULL_UP);
#el se

Port _DataDirBit(PORT_SW, PORT_IN); // set Pin to input
Port _DatabDirBit(PORT_SW2, PORT_IN); // set Pin to input
Port_WiteBit(PORT_SW, 1); // set pull-up
Port_WiteBit(PORT_SW, 1); [// set pull-up

#endi f

Thread_Start(1,threadl); // start new Thread

whi l e(true) /1 endl ess | oop
{

}

if(!Port_ReadBit(PORT_SW.)) Msg WiteText("Switch 1");// SW is pressed

5.25.12 Thread Example 2

/1 multithread2: nultithreading with Thread_Del ay()
/'l necessary library: IntFunc_Lib.cc

#thread 0, 0, 10 //main thread with task change every 10 * 10ns =100ns
#thread 1, 128, 10 //thread 1 with 128 Byte & task change 10*10nms =100ns

voi d threadl(void)

{
whi l e(true)

{
Msg WiteText (" Thread2"); Thread_Del ay(200);

} [/l "Thread2" is displayed

© 2013 Conrad Electronic

Libraries 362

5.26

5.26.1

} /1 after that the thread
/'l sleeps for 200ns

i
/1l main program
/1
voi d nmai n(voi d)
{

Thread_Start(1,threadl); /1l start new thread

whil e(true) /'l endl ess | oop

{

Thread_Del ay(100); Msg WiteText (" Threadl");

} /1 the thread sl eeps for 100ns
} [/l after that "Threadl" is displayed
Timer
Mega

In C-Control Pro Mega 32 there are two, in Megal28 are three independent timers available. These
are Timer_0 with 8 bit and Timer_1 with 16 bit (Timer_3 with 16 bit for Megal28 only). Timer_2 is
used by the firmware as an internal time base and is set firm to a 10ms interrupt. These internal
timers can be utilized for a multitude of tasks:

Event Counter

Frequency Generation

Pulse Width Modulation
Timer Functions

Pulse & Period Measurement

Frequency Measurement

5.26.1.1 Event Counter

Here are two examples for how a Timer can be used for an Event Counter:

TimerO (8 Bit)

/1 Exanpl e: Pulse Counting w th CNTO

Ti ner TOCNT();

pul se(n); /1 generate n Pul ses
count =Ti mer TOGet CNT() ;

=¥ With Mega128 for reasons of the hardware the use of Timer_0as counter is not possible!

Timerl (16 Bit)

© 2013 Conrad Electronic

363 C-Control Pro IDE

/1 Exanple: Pulse Counting with CNT1
Tiner TICNT();

pul se(n); /1 generate n Pul ses
count =Ti mer T1Get ONT();

5.26.1.2 Frequency Generation

To generate frequencies Timer_0, Timer_1and Timer_3can be utilized as follows:

Timer0 (8 Bit)

1. Example:

/'l Square Wave Signal with 10*1,085 pus = 10,85 pus Period Duration
Ti mer _TOFRQ(10, PSO_8)

2. Example: Pulsed Frequency Blocks (Project FRQO)

voi d mai n(voi d)
{
int delval; /'l Variable for the On/Of Tine
del val =200; /1 Value Assignnment for Variable delval

/'l Frequency: Period=138,9 us*100=13, 9 ns, Frequency=72Hz
Ti mer _TOFRQ(100, PSO_1024); // Timer is set to Frequency

while (1)

{
AbsDel ay(del val) ; /1 Time Delay by 200ns
Ti mer _TOSt op(); /[l Timer is stopped
AbsDel ay(del val) ; /1 Time Delay by 200ns

Timer _TOStart (PS0_1024); // Tinmer will be switched on with
[l Timer Prescaler PSO_1024.

}

=¥ The program will on Megal128 not work in USB mode since output PB4 is in conjunction with the USB
interface used on the Application Board.

Timerl (16 Bit)

Example: Frequency Generation with 125 * 4,34 ys = 1085us Period

Ti mer _T1FRQ 125, PS_64) ;

Timer3 (16 Bit) (only Megal28)

Example: Frequency Generation with 10*1,085 pus =10,85 ps Period and 2*1,085us =2,17 us Phase Shift

© 2013 Conrad Electronic

Libraries 364

Ti mer _T3FRQX(10, 2, PS_8) ;

5.26.1.3 Frequency Measurement

Timer_1 (16Bit) and Timer_3 (16Bit) (only Megal28) can be used for direct measurement of a fre-
quency. The pulses per second are being counted, the result is then delivered in Hertz units. The
maximum frequency is 64kHz and is yielded by the 16 bit counter. An example for this kind of fre-
quency measurement can be found under "Demo Programs/FreqMeasurement”. By shortening the
measuring time also higher frequencies can be measured. The result has then to be re-calculated
accordingly.

5.26.1.4 Pulse Width Modulation

There are two independent timers available for pulse width modulation. These are Timer_0 with 8 bit and
Timer_1 with 16 bit. By use of a pulse width modulation Digital-Analog-Converters can be realized very
easily. On the Megal28 Timer_3 can be used additionally.

Timer0 (8 Bit)

Example: Pulse Width Modulation with 138,9 us Period and 5,42 us Pulse Width, changed to 10,84 us
Pulse Width

/[l Pulse: 10*542,5 ns = 5,42 us, Period: 256*542,5 ns = 138,9 us
Ti mer _TOPWM 10, PSO_8) ;

Ti mer _TOPW 20); /1 Pulse: 20*542,5 ns = 10,84 us

Timerl (16 Bit)

Example: Pulse Width Modulation with 6,4 ms Period and 1,28 ms Pulse Width Channel A and 640 us
Pulse Width Channel B

Ti mer _T1PWWX(100, 20, 10, PS_1024); // Period: 100*69,44 ps = 6,94 ns
/1l PulseA: 20*69,44 pus = 1,389 s
/1l PulseB: 10*69, 44 us 694, 4 us

=» When using the PWM timer functions a value of zero for the duty parameter is not allowed,
and will not turn the PIN off. To produce a low signal, the timer must be turned off (Timer_Disable)
and the PIN should be switched to output. If a PWM function is used, that generates multiple PWM
signals, then a PWM function should be called (e.g. Timer_T1PWM), that will not include the PIN,
that should be switched to low.

An example:

whi | e(1)
{

© 2013 Conrad Electronic

365 C-Control Pro IDE

Ti mer _T1PWWX(255, 128, 128, PS_8) ;
Ti mer _T1PWA(128);
Ti mer _T1PWB(128);

AbsDel ay(1000);

/'l set OC1B off

Ti mer _Di sabl e(1);

Ti mer _T1PWM 255, 128, PS_8);
Port _DataDirBit(14,1);
Port_WiteBit(14,0);

5.26.1.5 Pulse & Period Measurement

By use of Timer_1 or Timer_3 (only Megal28) pulse widths and signal periods can be measured.
Here by use of the Input Capture Function (specific register of the Controller) the time between two
signal slopes is measured. This function utilizes the Capture-Interrupt (INT_TIM1CAPT). A pulse is
measured between a rising and the next falling signal edge. A period is measured between two rising
signal edges. Because of the Input Capture Function program delay times will not as an inaccuracy
be entered into the measuring result. With a programmable prescaler the resolution of Timer_1 can
be set. Prescaler see Table.

Example: Activate Pulse Width Measurement (Project PMeasurement) 434 us (100 x 4,34 ps, see
Table)

word PM Val ue;

void Tinmerl | SR(void)

{

int irqgcnt;

PM Val ue=Ti ner _T1Get PM);

i rgcent =l rqg_Get Count (I NT_TI MLCAPT) ;
}

voi d mai n(voi d)

{
byte n;

/1 Define Interrupt Service Routine
I rg_Set Vect (I NT_TI MLCAPT, Tiner1_I| SR);

Ti mer _TOPWM 100, PSO_64) ; [/l Start Pul se Generator Tiner O

/1l Measurenent starts here
/1 Qutput TinmerO OCO(PortB.3) connect to |ICP(input capture pin, PortD.6)

PM Val ue=0;
/'l Set node to Pul se Wdth Measurenent and deterni ne prescal er
Timer _T1PM O, PS_64);

© 2013 Conrad Electronic

Libraries 366

whi | e(PM_Val ue==0); /1 Measure Pulse Wdth or Period

Msg WiteHex(PM Value); // Qutput Measuring Val ue
}

=¥ For reason of better survey only a simplified version is shown here. Because of a collision on
Pin B.4 Timer_0 is used for pulse generation with Megal28. The entire program can be found in dir-
ectory PW_Measurement.

5.26.1.6 Timer Functions

In C-Control Pro Mega 32 there are two, in Megal28 three independent Timer available. These are
Timer_0 with 8 bit and Timer_1 with 16 bit (Timer_3 with 16 bit for Megal28 only). The timer have a
programmable prescaler (see Table). After the defined period the timer will trigger an interrupt. An in-
terrupt routine can then be used to execute specific actions.

Timer_TOTime (8 Bit)

Example: Timer0O: Switch output on with a delay of 6,94 ms (100x 69,44 us, see Table)

void Tinmer0O_I SR(voi d)

{
int irqcnt;
Port _WiteBit(0,1);
Ti mer _TOSt op() ; /1l stop Tiner0O
irgent =l rqg_Get Count (I NT_TI MOCOVP) ;

}

voi d mai n(voi d)

{
Port _DataDirBit(0,0); /1 PortA 0 Qutput
Port_WiteBit(0,0); /1 PortA. 0 Qutput=0
I rg_Set Vect (I NT_TI MOCOWP, TinerO0_I SR);// define Interrupt Service Routine
Ti mer _TOTi ne(100, PSO_1024) ; /1 set time and start TinmerO
/'l other program code....

}

5.26.1.7 Timer_Disable

Timer Functions

Syntax
voi d Tinmer_Di sabl e(byte tiner);

Sub Ti mer _Di sabl e(timer As Byte)

© 2013 Conrad Electronic

367 C-Control Pro IDE

Description

This function disables the specified timer. Timer functions occupy I/O ports. If a timer is not needed and
the corresponding I/O ports are used otherwise, the timer must be disabled.

Parameter
0=Timer_0

1=Timer_1
3 =Timer_3 (onlyMegal28)

5.26.1.8 Timer_TOCNT

Timer Functions

Syntax
voi d Ti nmer _TOCNT(void);

Sub Ti mer _TOCNT()

Description

These function initializes Counter0. Counter0 gets incremented at every positive signal edge at Input
Mega32:TO (PIN1).

=¥ Due to hardware reasons itis not possible to use Timer_0as a counter in the Mega128!
Parameter

None

5.26.1.9 Timer_TOFRQ

Timer Functions

Syntax
voi d Ti mer _TOFRQ(byte period, byte PS);

Sub Ti mer _TOFRQ(period As Byte, PS As Byte)

Description

This function initializes Timer0 for frequency generation. Parameters are period duration and prescaler,
see table. The output signal is generated at Mega32: PortB.3 (PIN4), Megal28: PortB.4 (X1_4). The fre-
quency generation is started automatically. There is a extended prescaler definition for the Megal28, see
table.

Parameter

© 2013 Conrad Electronic

Libraries

period

BS

period duration
prescaler

Table prescaler:

368

Prescaler Tickduration Mega32

PSO 1 (1) 135,6 ns

PS0_8 (2) 1,085 ys

PS0_64 (3) 8,681 us

PS0_256 (4) 34,72 us

PS0_1024 (5) 138,9 us

Prescaler Tickduration Megal28 Tickduration Megal28 CAN
PS0 1 (1) 135,6 ns 125 ns
PS0 8(2) 1,085 us 1pus
PS0O 32 (3) 4,340 ps 4 us
PS0O 64 (4) 8,681 us 8us
PS0O 128 (5) 17,36 us 16 us
PS0 256 (6) 34,72 us 32 us
PS0 1024 (7) 138,9 us 128 us

5.26.1.10 Timer_TOGetCNT

Timer Functions

Syntax

byte Ti nmer_TOGet CNT(voi d);

Sub Tinmer_TOGet CNT() As Byte

Description

The value of CounterOQ is read. If there was an overflow a value of ff (Hex) is returned.

=¥ Due to hardware reasons itis not possible to use Timer_0 as a counter in the Mega128!

Return Parameter

counter value

5.26.1.11 Timer_TOPW

Timer Functions

Syntax

© 2013 Conrad Electronic

369 C-Control Pro IDE

voi d Ti mer _TOPWbyte PW;

Sub Timer _TOPW PW As Byt e)

Description

This function sets a new pulse width for Timer0 without changing the prescaler.

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation
Parameter

PW pulse width

5.26.1.12 Timer_TOPWM

Timer Functions

Syntax
void Timer _TOPWM byte PW byte PS);

Sub Ti mer _TOPWM PW As Byte, PS As Byte)

Description

This function initializes Timer0 with given prescaler and pulse width, see table. The output signal is gener-
ated at Mega32: PortB.3 (PIN4), Megal28: PortB.4 (X1_4). There is an extended prescaler definition for
the Megal28, see table.

Parameter

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

PW pulse width
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32
PS0_1(1) 67,8 ns
PS0_8 (2) 5425 ns
PS0_64 (3) 4,34 us
PS0_256 (4) 17,36 us
PS0_1024 (5) 69,44 us
|_Prescaler | Tickduration Megal28 | Tickduration Mega128 CAN |

© 2013 Conrad Electronic

Libraries 370

PS0 1 (1) 67,8 ns 62,5 ns
PS0 8(2) 5425 ns 500 ns
PSO 32 (3) 2,17 us 2 us
PS0 64 (4) 4.34 us 4 us
PS0 128 (5) 8,68 us 8 us
PS0 256 (6) 17,36 us 16 us
PS0 1024 (7) 69,44 us 64 us

5.26.1.13 Timer_TOStart

Timer Functions

Syntax
void Timer_TOStart(byte prescaler);

Sub Timer_TOStart (prescal er As Byte)

Description
The timer continues with the already set parameters. The prescaler must be given again.
Parameter

prescaler prescaler (see table)

5.26.1.14 Timer_TOStop

Timer Functions

Syntax
void Timer_TOSt op(void);

Sub Ti mer _TOSt op()

Description

The frequency generation gets stopped. The output signal can be 0 or 1, dependent on the last state. Only
the clock generation is stopped, all other settings stay the same.

Parameter

None

© 2013 Conrad Electronic

371 C-Control Pro IDE

5.26.1.15 Timer_TOTime

Timer Functions

Syntax
voi d Timer_TOTi me(byte Tine, byte PS);

Sub Timer _TOTi me(Tine As Byte, PS As Byte)

Description

This function initializes Timer_0 with a prescaler and a timer interval value, see table. After the timing inter-
val is expired The Timer_0 Interrupt (INT_TIMOCOMP) is triggered. There is an extended prescaler defini-
tion for the Megal28, see table.

Parameter

Time time period after that the interruptis triggered
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32

PS0_1(1) 67,8 ns

PS0_8 (2) 542,5ns

PS0_64 (3) 4,34 us

PS0_256 (4) 17,36 ys

PS0_1024 (5) 69,44 us

Prescaler Tickduration Megal28 Tickduration Megal28 CAN
PS0 1 (1) 67,8 ns 62,5 ns
PS0 8(2) 542,5ns 500 ns
PS0 32 (3) 2,17 us 2 us
PS0 64 (4) 4.34 us 4 us
PS0O 128 (5) 8,68 s 8 us
PS0O 256 (6) 17,36 us 16 ps
PS0 1024 (7) 69,44 us 64 us

5.26.1.16 Timer_T1CNT

Timer Functions

Syntax
void Tinmer_T1CNT(void);

Sub Ti mer _T1CNT()

© 2013 Conrad Electronic

Libraries 372

Description

These function initializes Counterl. Counterl gets incremented at every positive signal edge at input
Mega32: PortB.1 (PIN2) Megal28: PortD.6 (X2_15).

Parameter

None

5.26.1.17 Timer_T1CNT_Int

Timer Functions

Syntax
void Timer _TICNT _Int(word limt);

Sub Tinmer _TICNT_Int(limt As Word)

Description

These function initializes Counterl. Counterl gets incremented at every positive signal edge at input
Mega32: PortB.1 (PIN2) Megal28: PortD.6 (X2_15). After the limit is reached an interrupt ("Timerl Com-
pareA" - define: INT_TIM1ICMPA) is triggered. An appropriate Interrupt Service Routine must be specified.

Parameter

limit

5.26.1.18 Timer_T1FRQ

Timer Functions

Syntax

void Timer _T1FRQ(word period, byte PS);

Sub Ti mer _T1FRQ(period As Wrd, PS As Byte)

Description

This function initializes Timerl for frequency generation. Parameters are period duration and prescaler,
see table. The output signal is generated at Mega32: PortD.5 (PIN19). Megal28: PortB.5 (X1_3). The fre-

guency generation is started automatically. There is an extended prescaler definition for the Megal28, see
table.

Parameter

© 2013 Conrad Electronic

373 C-Control Pro IDE

period period duration
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32 + Megal28 | Tickduration Megal128 CAN
PS 1(1) 135,6 ns 125 ns
PS 8 (2) 1,085 us 1 us
PS 64 (3) 8,681 us 8 us
PS 256 (4) 34,72 us 32 us
PS 1024 (5) 138,9 us 128 us
5.26.1.19 Timer_T1FRQX
Timer Functions
Syntax
voi d Timer _T1FRQX(word period, word skew, byte PS);

Sub Timer _T1FRQX(period As Wrd,

Description

skew As Word, PS As Byte)

This function initializes Timerl for frequency generation. Parameters are period duration, prescaler and
phase shift,see table. The output signal is generated at Mega32: PortD.5 (PIN19). Megal28: PortB.5
(X1_3). The frequency generation is started automatically. There is an extended prescaler definition for the
Megal28, see table. The phase shift must be smaller than half the period.

Parameter

period period duration
skew phase shift
P prescaler (table prescaler)

5.26.1.20 Timer_T1GetCNT

Timer Functions

Syntax
word Tinmer_T1Get CNT(void);

Sub Tinmer_T1Get CNT() As Word

Description

The value of Counterl is read. If there was an overflow a value of ffff (Hex) is returned.

© 2013 Conrad Electronic

Libraries 374

Return Parameter

counter value

5.26.1.21 Timer_T1GetPM

Timer Functions

Syntax
word Tinmer_T1Get PM voi d);

Sub Timer _T1GetPM) As Wrd

Description

Returns the result of the measurement.
Parameter

None

Return Parameter

result of measurement

=% To calculate the correct value, the 16bit result is multiplied with the entry of the prescaler Table
that was passed in the call to Ti ner T1PM

5.26.1.22 Timer_T1PWA

Timer Functions

Syntax
void Tinmer_T1PWA(word PWD);

Sub Ti mer _T1PWA(PW As Word)

Description
This function sets a new pulse width (Channel A) for Timerl without changing the prescaler.

= For the pulse-width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PWO0 pulse width

© 2013 Conrad Electronic

375 C-Control Pro IDE

5.26.1.23 Timer_T1PM

Timer Functions

Syntax
void Timer_T1PM byte Mde, byte PS);

void Tinmer_T1PM Mode As Byte, PS As Byte)

Description

This function defines if pulse width measurement or period measurement should be done. Then it ini-
tializes Timer_1 and sets the prescaler.

Parameter

Mode O = pulse width measurement, 1 = period measurement
PSs prescaler

Table prescaler:

Prescaler Tickduration Mega32 + Megal28 Tickduration Megal28 CAN
PS 1(1) 67,8 ns 62,5ns

PS 8 (2) 5425 ns 500 ns

PS 64 (3) 4,34 us 4 us

PS 256 (4) 17,36 us 16 us

PS 1024 (5) 69,44 us 64 us

5.26.1.24 Timer_T1PWB

Timer Functions

Syntax
void Tinmer_T1PWB(word PW);

Sub Timer _T1PWB(PWL. As Word)

Description
This function sets a new pulse width (Channel B) for Timerl without changing the prescaler.

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PW1 pulse width

© 2013 Conrad Electronic

Libraries 376

5.26.1.25 Timer T1PWM

Timer Functions

Syntax
void Tinmer_TiPWM word period, word PW), byte PS);

Sub Timer _T1PWM period As Wrd, PW As Wrd, PS As Byte)

Description

This function initializes Timer_1 with given period duration, pulse width and prescaler, see table. The out-
putsignal is generated at Mega32: PortD.5 (PIN19), Megal28: PortB.5 (X1_3). There is an extended pres-
caler definition for the Megal28, see table.

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter
period period duration

PWO pulse width
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32 + Megal28 Tickduration Megal28 CAN
PS 1(1) 67,8 ns 62,5 ns

PS 8 (2) 5425 ns 500 ns

PS 64 (3) 4,34 us 4 us

PS 256 (4) 17,36 us 16 us

PS 1024 (5) 69,44 us 64 us

5.26.1.26 Timer_T1PWMX

Timer Functions

Syntax
voi d Tinmer _T1PWMX(word period, word PW), word PW, byte PS);

Sub Ti mer _T1PWWX(period As Wrd, PW As Wrd, PWM As Wrd, PS As Byte)

Description

This function initializes Timer_1 with given period duration, prescaler, pulse width for channel Aand B. The
output signal is generated at
Mega32: PortD.4 (PIN18) and PortD.5 (PIN19). Megal28: PortB.5 (X1_3) and PortB.6 (X1_2).

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

© 2013 Conrad Electronic

377 C-Control Pro IDE

Parameter

period period duration

PWO pulse width channel A

PW1 pulse width channel B

PS prescaler (see table prescaler)

5.26.1.27 Timer_T1PWMY

Timer Functions

Syntax

void Timer_T1PWWY(word period, word PW), word PWM, word PW2, byte PS);
Sub Timer _T1PWMY(period As Word, PW As Wrd, PWM As Word, PW2 As Wrd,
PS As Byte)

Description

This function initializes Timer_1 with given period duration, prescaler, pulse width for channel A, B and C.
The output signal is generated at
PortB.5 (X1_3), PortB.6 (X1_2) and PortB.7 (X1_1).

=¥ For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

period period duration

PWO pulse width channel A

PW1 pulse width channel B

PW2 pulse width channel C

PS prescaler (see table prescaler)

5.26.1.28 Timer_T1Start

Timer Functions

Syntax

void Tinmer_T1Start(byte prescaler);

Sub Timer_TiStart (prescaler As Byte)

Description

The timer continues with the already set parameters. The prescaler must be given again.

© 2013 Conrad Electronic

Libraries 378

Parameter

prescaler prescaler (see table)

5.26.1.29 Timer_T1Stop

Timer Functions

Syntax
void Tinmer_T1Stop(void);

Sub Timer _T1St op()

Description

The frequency generation gets stopped. The output signal can be 0 or 1, dependent on the last state. Only
the clock generation is stopped, all other settings staythe same.

Parameter

None

5.26.1.30 Timer_T1Time

Timer Functions

Syntax
void Timer_T1Time(word Time, byte PS);

Sub Timer _TiTime(Tinme As Wrd, PS As Byte)

Description

This function initializes Timer_1 with a prescaler and a timer interval value (16bit), see table. After the tim-
ing interval is expired Timer_1 Interrupt (INT_TIM1CMPA) is triggered. There is an extended prescaler
definition for the Megal28, see table.

Parameter

Time time period after that the interruptis triggered
PS prescaler

Table prescaler:

| Prescaler | Tickduration Mega32 + Mega128 | _Tickduration Mega128 CAN |

© 2013 Conrad Electronic

379

C-Control Pro IDE

PS 1(1) 67,8 ns 62,5 ns
PS 8 (2) 5425 ns 500 ns
PS 64 (3) 4,34 us 4 us
PS 256 (4) 17,36 us 16 us
PS 1024 (5) 69,44 us 64 us

5.26.1.31 Timer_T3CNT

Timer Functions

Syntax
voi d Timer_T3CNT(void);

Sub Ti mer _T3CNT()

Description

These function initializes Counter3. Counter3 gets incremented at every positive signal edge at input

PortE.6 (X1_10)
Parameter

None

5.26.1.32 Timer_T3CNT_Int

Timer Functions

Syntax

void Timer _T3CNT_Int(word linmt);

Sub Tinmer _T3CNT_Int(limt As Word)

Description

These function initializes Counter_3. Counter_3 gets incremented at every positive signal edge at input
PortE.6 (X1_10). After the limit is reached an interrupt ("Timer3 CompareA" - define: INT_TIM3CMPA) is

triggered. An appropriate Interrupt Service Routine must be specified.

Parameter

limit

© 2013 Conrad Electronic

Libraries 380

5.26.1.33 Timer_T3FRQ

Timer Functions

Syntax

voi d Timer _T3FRQ(word period, byte PS);

Sub Timer _T3FRQ(period As Word, PS As Byte)

Description

This function initializes Timer3 for frequency generation. Parameters are period duration and prescaler,
see table. The output signal is generated at PortE.3 (X1_13). The frequency generation is started automat-
ically..

Parameter

period period duration

PS prescaler

Table prescaler:

Prescaler Tickduration Megal28 Tickduration Megal28 CAN
PS 1(1) 135,6 ns 125 ns

PS 8(2) 1,085 us 1us

PS 64 (3) 8,681 us 8 us

PS 256 (4) 34,72 us 32us

PS 1024 (5) 138,9 us 128 us

5.26.1.34 Timer_T3FRQX

Timer Functions

Syntax
voi d Timer _T3FRQX(word period, word skew, byte PS);

Sub Ti mer _T3FROQX(period As Wrd, skew As Word, PS As Byte)

Description

This function initializes Timer3 for frequency generation. Parameters are period duration, prescaler and
phase shift,see table. The output signal is generated at PortE.3 (X1_13) und PortE.4 (X1_12). The fre-
quency generation is started automatically. There is an extended prescaler definition for the Megal28, see
table. The phase shift must be smaller than half the period.

Parameter

© 2013 Conrad Electronic

381 C-Control Pro IDE

period period duration
skew phase shift

PS prescaler (table prescaler)

5.26.1.35 Timer_T3GetCNT

Timer Functions

Syntax
word Tinmer_T3Get CNT(voi d);

Sub Tinmer_T3Get CNT() As Word

Description
The value of Counterl is read. If there was an overflow a value of ffff (Hex) is returned.
Return Parameter

counter value

5.26.1.36 Timer_T3GetPM

Timer Functions

Syntax
word Tinmer_T3CGet PM voi d);

Sub Tinmer_T3GetPM) As Word

Description

Returns the result of the measurement.
Parameter

None

Return Parameter

result of measurement

=¥ To calculate the correct value, the 16bit result is multiplied with the entry of the prescaler Table
that was passed in the call to Ti ner T3PM

© 2013 Conrad Electronic

Libraries 382

5.26.1.37 Timer_T3PWA

Timer Functions

Syntax
void Timer _T3PWA(word PW));

Sub Ti mer _T3PWA(PW) As Word)

Description
This function sets a new pulse width (Channel A) for Timer3 without changing the prescaler.

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PWO0 pulse width

5.26.1.38 Timer_T3PM

Timer Functions

Syntax
void Timer_T3PM byte Mdde, byte PS);

void Tinmer _T3PM Mode As Byte, PS As Byte)

Description

This function defines if pulse width measurement or period measurement should be done. Then it ini-
tializes Timer_3 and sets the prescaler.
Parameter

Mode O = pulse width measurement, 1 = period measurement
PSs prescaler

Table prescaler:

Prescaler Tickduration Megal28 Tickduration Megal28 CAN
PS 1(1) 67,8 ns 62,5ns

PS 8 (2) 5425 ns 500 ns

PS 64 (3) 4,34 us 4 us

PS 256 (4) 17,36 us 16 us

© 2013 Conrad Electronic

383 C-Control Pro IDE

[Ps 1024 (5) | 69,44 us 64 us

5.26.1.39 Timer_T3PWB

Timer Functions

Syntax
void Timer_T3PWB(word PW);

Sub Ti mer _T3PVWB(PWL. As Word)

Description
This function sets a new pulse width (Channel B) for Timer3 without changing the prescaler.

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PW1 pulse width

5.26.1.40 Timer_T3PWM

Timer Functions

Syntax
voi d Tinmer_T3PWM word period, word PWD, byte PS);

Sub Timer _T3PWM period As Wrd, PW As Wrd, PS As Byte)

Description

This function initializes Timer_3 with given period duration, pulse width and prescaler, see table. The out-
putsignal is generated at PortE.3 (X1_13).

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation
Parameter
period period duration

PWO pulse width
PS prescaler

Table prescaler:

| Prescaler | Tickduration Mega128 | Tickduration Mega128 CAN |

© 2013 Conrad Electronic

Libraries 384

PS 1(1) 67,8 ns 62,5 ns
PS 8 (2) 5425 ns 500 ns
PS 64 (3) 4,34 us 4 us
PS 256 (4) 17,36 us 16 us
PS 1024 (5) 69,44 us 64 us

5.26.1.41 Timer_T3PWMX

Timer Functions

Syntax
void Timer _T3PWMX(word period, word PW), word PWL, byte PS);

Sub Ti mer _T3PWMX(period As Wrd, PW As Wrd, PW As Word, PS As Byte)

Description
This function initializes Timer_3 with given period duration, prescaler, pulse width for channel Aand B. The
output signal is generated at

PortE.3 (X1_13) and PortE.4 (X1_12).

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

period period duration

PWO pulse width channel A

PW1 pulse width channel B

PS prescaler (see table prescaler)

5.26.1.42 Timer_T3PWMY

Timer Functions

Syntax
void Timer _T3PWWY(word period, word PW), word PW, word PW2, byte PS);

Sub Ti mer _T3PWMY(period As Word, PW As Wrd, PWM As Wrd, PW As Wrd,
PS As Byte)

Description

This function initializes Timer_3 with given period duration, prescaler, pulse width for channel A B and C.
The output signal is generated at

PortE.3 (X1_13), PortE.4 (X1_12) and PortE.5 (X1_11).

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

© 2013 Conrad Electronic

385 C-Control Pro IDE

Parameter

period period duration

PWO pulse width channel A

PW1 pulse width channel B

PW2 pulse width channel C

PSs prescaler (see table prescaler)

5.26.1.43 Timer_T3Start

Timer Functions

Syntax
void Tinmer_T3Start(byte prescal er);

Sub Timer_T3Start (prescaler As Byte)

Description

The timer continues with the already set parameters. The prescaler must be given again.

Parameter

prescaler prescaler (see table)

5.26.1.44 Timer_T3Stop

Timer Functions

Syntax
void Timer_T3Stop(void);

Sub Ti mer T3St op()

Description

The frequency generation gets stopped. The output signal can be 0 or 1, dependent on the last state. Only
the clock generation is stopped, all other settings stay the same.

Parameter

None

© 2013 Conrad Electronic

Libraries 386

5.26.1.45 Timer_T3Time

Timer Functions

Syntax
void Timer_T3Ti me(word Tine, byte PS);

Sub Timer_T3Time(Tine As Word, PS As Byte)

Description

This function initializes Timer_3 with a prescaler and a timer interval value (16bit), see table. After the tim-
ing interval is expired Timer_3 Interrupt (INT_TIM3CMPA) is triggered.

Parameter

Time time period after thatthe interruptis triggered
PS prescaler

Table prescaler:

Prescaler Tickduration Megal28 Tickduration Megal28 CAN
PS 1(1) 67,8 ns 62,5 ns

PS 8 (2) 5425 ns 500 ns

PS 64 (3) 4,34 us 4 us

PS 256 (4) 17,36 us 16 us

PS 1024 (5) 69,44 us 64 us

5.26.1.46 Timer_TickCount

Timer Functions

Syntax
word Ti mer _Ti ckCount (voi d);

Sub Ti mer _Ti ckCount () As Word

Description

Measures the number of 10ms ticks between two calls of Timer_TickCount(). Ignore the return value of
the first call to Timer_TickCount(). If the delay between the two calls is greater than 655.36 seconds,
the result is undefined.

Parameter

None

© 2013 Conrad Electronic

387 C-Control Pro IDE

Return Parameter

time interval expressed in 10ms ticks

Example

voi d nmai n(voi d)

{

word tine;

Ti mer _Ti ckCount () ;

AbsDel ay(500); // wait 500 ns

ti me=Timer_TickCount(); // the value should be 50
}

5.26.2 AVR32Bit

There are 2 timer with 3 channels available in the C-Control Pro AVR32Bit. These will show up in the
library as 6 timer. You can use the internal timer for various tasks:

e Fvent Counter
e Frequency Generation

In addition, there are three dedicated functional units for Pulse Width Modulation.
5.26.2.1 Event Counter

On each of the 6 timer channels events (up to 16-bit) can be counted. In this Example, the rising
edges on input COUNTA_1 are counted in timer 2 (see Pin Assignment). After every 300 events an
interrupt will be triggered, while the counter is reset. The sample program outputs after 10 seconds
the current state of the counter.

Example

© 2013 Conrad Electronic

Libraries 388

word cnt;

voi d count _irq(void)

{
cnt ++;
I rg_Get Count (I NT_TI MERO) ;
}
voi d mai n(voi d)
{
cnt= 0;
I rg_Set Vect (I NT_TI MER2, count _irq);
Ti mer _Confi gCounter (2, COUNTA 1, CNT_RISING 300);
AbsDel ay(10000);
Msg WiteWsrd(Timer_GetCounterVal (2));
Msg WiteChar('\r');
while(1);
}

5.26.2.2 Frequency Generation

On each of the 6 timer channels a rectangular signal can be generated. In the following Example, a
50Hz signal is generated which (see Pin Assignment) is output on pin TIMERO-A and TIMERO-B. In
addition, an interrupt is triggered. The prescaler TIM_128 determines a tick duration of 1,939us (=
128 / 66.000.000 Mhz). By multiplying 5157 * 1.939us = 10ms results in 100 edge changes per
second = 50Hz.

Example
word cnt;

void irg(void)

{
chnt ++;
I rg_Get Count (I NT_TI MERO) ;

}

voi d nmai n(voi d)

{
cnt= 0;
Irg_SetVect (I NT_TIMERO, irq);
Ti mer_Set (0, TIM128, 5157, TIM-LG | RQ TI MFLG_PI NA| TI MFLG_PI NB) ;
while(l);

}

© 2013 Conrad Electronic

389 C-Control Pro IDE

5.26.2.3 Pulse Width Modulation

The C-Control AVR32Bit can output a pulse width modulated signal on up to 4 channels. The follow-
ing Example 1 will produce a signal of 1.65 MHz period, and 50% duty on PWM channel 1.
After 10 seconds, the PWM channel is switched off. The signal is output to pin PWMH_1 and

PWML_1 (see Pin Assignment).
Example

voi d mai n(voi d)

{
PWM Init(1, PW 1, PWM ENAB HI GH PWM ENAB LOW ;
PWM Updat e(1, 40L, 20L, 0, 0);
AbsDel ay(10000) ;
PWM Di sabl e(1);
}

5.26.24 PWM_Disable

Timer Functions

Syntax
voi d PWM Di sabl e(byte chan);

Sub PWM Di sabl e(chan As Byte)

Description
The function switches off the selected PWM channel.
Parameter

chan number of the PWM channel (0 - 3)

5.26.25 PWM_Init

Timer Functions

Syntax
void PWM Init(byte chan, byte PS, byte node);

Sub PYWM I nit(chan As Byte, PS As Byte, npde As Byte)

Description

Initializes a PWM channel. With the mode parameter can be selected individually, whether the sig-
nal is output on PWMH_x and / or PWML_x. A deadtime can be enabled or the polarity negated.

© 2013 Conrad Electronic

Libraries 390

To create the mode parameter, the bit values from the table are ORed (see PWM_Example).

=» For a more detailed description of PWMH_x, PWML_x and deadtime, please consult the
AT32UC3C data sheet.

Parameter
chan number of PWMchannel (0 - 3)

PS prescaler
mode work mode of PWM channel

Table PS:

Prescaler Tickduration
PWM_1(0) 15,15 ns
PWM_2(1) 30,30 ns
PWM_4(2) 60,60 ns
PWM_8(3) 121,21 ns
PWM_16(4) 242,42 ns
PWM 32(5) 484,84 ns
PWM_64(6) 969,69 ns
PWM 128(7) 1,939 ps
PWM_256(8) 3,878 us
PWM 512(9) 7,757 us
PWM_1024(10) 15,51 us

Table mode:

mode Description
PWM ENAB HIGH (1) signal on Pin PWMH x
PWM ENAB LOW (2) signal on Pin PWML x
PWM ENAB DEAD (4) activate deadtime
PWM CPOL (8) negate polarity

5.26.2.6 PWM_Update

Timer Functions

Syntax

voi d PWM Updat e(byte chan, dword period, dword duty, word dtl, word dth);

Sub PWM Updat e(chan As Byte, period As ULong, duty As ULong, dtl As Word,
dth As Word)

Description

© 2013 Conrad Electronic

391

C-Control Pro IDE

During operation the period (frequency), duty (latitude) and deadtime of the PWM signal can be
specified.

=» [or the frequency, the following formula applies: Frq = 66,000,000 / prescaler / period. Permitted
values for duty are 0 to period. A duty of 0 means that the signal is permanently off, wherein a duty
of value period means the signal is permanently on. Therefore a duty of 50% is period / 2. Thus the
width (duty) of the PWM signal can be set as finely as possible, a prescaler must be selected so
that the period parameter for the desired frequency is as large as possible (maximum 20 bits).

Parameter

chan number of PWM channel (0 - 3)
period frequency of the PWM signal (20 Bit)
duty duty of the PWM signal (20 Bit)
deadtime of PWML_X signal
deadtime of PWMH_X signal

5.26.2.7 Timer_ConfigCounter

Timer Functions

Syntax

voi d Timer_ConfigCounter(byte tinmer, byte portbit, byte edge, word irqg_-
t hreshol d);

Sub Ti nmer_ConfigCounter(tiner As Byte, portbit As Byte, edge As Byte,
irg threshold As Word)

Description

The function initializes a timer as a counter. The inputs COUNTA-0, COUNTA-1, COUNTA-2 and
COUNTB-2 are available (see Pin Assignment). For the x-COUNTA inputs only the timer 0,2,4 can
be used, for COUNTB-2 the timer 1,3,5 are available. If the parameter irg_threshold is non-zero, then
an interrupt is generated when the counter is equal to the value of irg_threshold. After an interrupt,
the counter is reset to zero.

= After initialization, the counter retains its old value. The first edge then sets the counter to zero.
When reading the counter, it therefore looks as if one edge less has been counted. This behavior is
due to the structure of the internal counter of the AVR32 controller.

Parameter

timer number of timer (O - 5)

portbit (GPIO in Pin Assignment)

edge edge type: CNT_FALLING (falling) or CNT_RISING (rising)

irg_threshold counter when an IRQ will be triggered

© 2013 Conrad Electronic

Libraries 392

5.26.2.8 Timer_CPUCycles

Timer Functions

Syntax
dword Ti mer_CPUCycl es(void);

Sub Ti mer _CPUCycl es() As ULong

Description

Measures the CPU cycles between two calls of Timer_CPUCycles() and returns the value at the
second call of Timer_CPUCycles(). The return value of the first call can be ignored.

= Since the processor is clocked at 66Mhz, only periods of up to 65 seconds can be measured.
Parameter

None

Return Parameter

CPU cycles between two calls

5.26.2.9 Timer_Disable

Timer Functions

Syntax
voi d Tinmer_Di sabl e(byte tiner);

Sub Ti mer _Di sabl e(tinmer As Byte)

Description
The function turns off the selected Timer or Counter.
Parameter

timer numberoftimer (0-5)

5.26.2.10 Timer_GetCounterVal

Timer Functions

Syntax

word Ti mer _Cet Count erVal (byte tiner);

© 2013 Conrad Electronic

393

C-Control Pro IDE

Sub Ti mer_Get CounterVal (timer As Byte) As Word

Description

Returns the 16-bit counter of a timer.

Parameter
timer numberoftimer (0-5)
Return Parameter

counter value

5.26.2.11 Timer_Set

Timer Functions

Syntax

void Tinmer_Set(byte tiner,

Sub Timer_Set(tinmer As Byte,

Description

byte PS, word period,

PS As Byte,

word fl ags);

period As Wrd, flags As Word)

This function initializes the timer with the specified prescaler and period, see Table. Through the use
of flags (you can hawe multiple values ®@Ring), an interrupt is triggered and/or a signal on pins

TIMERX-A resp. TIMERX-B is generated (see Pin Assignment).

=% Due to the configuration of the connected peripheral not all pin TIMERx-A and TIMERx-B are

available.

Parameter

=+,

PS prescaler
period signal period
flags timer options

Table prescaler:

imer number oftimer (0 - 5)

Vorteiler (prescaler)

Tickduration

TIM 32KHZ (0) 31,25 s
TIM 2 (1) 30,30 ns
TIM 8 (2) 12121 ns
TIM 32 (3) 484,84 ns

© 2013 Conrad Electronic

Libraries 394

[TIM 128 (4) 1,939 ys
Table flags:
Definition Meaning
TIMFLG _IRQ Interrupts are generated
TIMFLG_PINA signal is output on pin TIMERX-A
TIMFLG_PINB signal is output on pin TIMERXx-B

5.26.2.12 Timer_TickCount

Timer Functions

Syntax
dword Timer _Ti ckCount (voi d);

Sub Ti mer _Ti ckCount () As ULong

Description

Measures the time in 10ms ticks between two calls of Timer_TickCount() and returns the value at
the second call of Timer_TickCount(). The return value of the first call can be ignored.

Parameter
None
Return Parameter

time interval expressed in 10ms ticks

Example

voi d mai n(voi d)

{

word tine;

Ti mer _Ti ckCount () ;

AbsDel ay(500); // wait 500 ms

time=Ti mer _TickCount(); // the value should be 50
}

© 2013 Conrad Electronic

395

C-Control Pro IDE

5.27

Webserver (AVR32Bit)

The web sener of the C-Control Pro AVR32Bit is started with WEB_StartServer. Any TCP/IP port
may be selected for this. When the web sener starts the number of dynamic variables is defined
with whom you want to work. The dynamic variables take the values of the URL variables in the URL,
and you can use dynamic variables to output values within web pages.

All web pages that are returned by the server must be located in the root directory on the SD card
that is inserted into the C-Control Pro Unit. Since the SDCard library does not support long file
names, file names of all websites must be available in DOS format (8.3). Therefore the main page
has the file name "index.htm". Note the shortened ending.

HTTP Header

For files with a known extension (see Table), an HTTP header is automatically generated, which is
placed in front of the file's contents. The header

HTTP/ 1.1 200 OK\r\n
Connection: close\r\n
Content - Type: Type\r\n
\r\n

is always prepended. There "\\n" means carriage return line feed, and Type the corresponding con-
tent type from the table. E.g. for the extension ".htm" a "Content-Type: text/html" is generated in the
header.

File Extension Type

.htm text/html
js application/x-javascript
xt text/plain

.CSs text/css

.gif image/qgif

.ico image/x-icon

Jpg image/jpeg

.bmp image/bmp

.png image/png

=» [f the file extension is not present in the table, the header must be set manually at the beginning
of the file on the SD card.

Dynamic Variables

With the function WEB_SetDynVar() the web sener is given the address and type of a normal pro-
gram variable. If for example an integer variable "int &;" is defined, a call to "WEB_SetDynVar (0, a,
DYN_INT, 0);" would define the variable a as a dynamic variable with index 0. If some text inside a
web page is $var0$, then $var0$ is replaced by the numeric value of a. The number after $var is the
index of the dynamic variable.

© 2013 Conrad Electronic

Libraries 396

5.27.1

URL (CGI) Variables

When there are no URL variables specified for a web request, the whole process runs in the back-
ground, and there must be no program interaction. If a URL variable is present (e.g. "?var0=5") web
server checks if there is variable name that corresponds to the scheme "var" + number. The number
must not exceed the maximum index of defined dynamic variables. If the scheme is met, the value
"5" is assigned to the dynamic variable. Then the integer variable a gets the value 5.

There is a special URL ("setvars.js") which takes only the URL variables, but does not return any
website content. With that mechanism variable content can be transferred to Javascript without gen-
erating much TCP/IP traffic.

=» A variable can be modified only via URL, when WEB_SetDynVar () is called with the
DYN_CGIVAR flag set. This allows normal variables to be protected from a change from the outside.

JSON

If you want to work with JavaScript, dynamic variables can be output as a JSON list. For this pur-
pose, in the definition of WEB_SetDynVar () the flag DYN_JSONVAR has to be set. Access to
"getvars.js" then provides the JSON data. E.g: "{" 1 ":" 123 "," 3 ":" 0 "}". This is a list of two dy-
namic variables with the indices 1 and 3. The first variable has the content "123", the second variable
contains "0".

Interaction

In normal operation, the main loop of the program is queried continuously with WEB_GetRequest(), if
there is a request with an URL variable present. There is a request, when the return parameter is un-
equal to zero. You can then check the hash of the file name with WEB_GetFileHash() and evaluate
the passed URL variables. Thereafter, the output variables (dynamic variables of the site) should be
set to new values according the program logic. At the end of request the web sener is signaled with
WEB_ReleaseRequest() that the Website should be shipped to the browser.

Webserver Hints

Web Server Checklist

¢ The invoked Web pages must have been copied to the micro SD card, and the card must be inser-
ted in the SD card slot of the AVR32Bit Unit.

¢ For the SD card, only the FAT file system is supported (see FAT support).

e The web server is started after ETH_StartWebsenrver() is called from the user program. The TCP/IP
port in the web browser (default: 80) must match the port in the call to ETH_StartWebsener.

e The number of dynamic variables used in WEB_SetDynVar must correspond with the definition in
the WEB_BUF macro and dynvar_cnt in WEB_StartSener.

=% \When stopping the program with the Start/Stop button, the IwIP TCP/IP stack can get in a
state, where not all dynamic memory for the current connection is released. This memory may be
missing when you restart the program. If in doubt when encountering problems, press the reset but-
ton to initiate a complete system reboot.

© 2013 Conrad Electronic

397

C-Control Pro IDE

5.27.2

Web Server Optimization

The IwlP TCP / IP stack is optimized to work best with embedded devices that store websites in
flash memory. The SD card allows to store much more websites than the flash memory of an em-
bedded controller, but has the disadvantage that the web pages must be between loaded to RAM be-
fore they are sent ower the Ethernet. To limit the "RAM hunger" of the IwIP stack, seweral things
should be noted:

¢ In normal web sener operation the "TCP/IP Memory" in the C-Control configuration should be set
to ca.16kb.

e All GET requests of the web sener, that do not pass CGI variables in the URL, are serialized in a
gueue. This is done so only few RAM is needed to send a web page at a time.

e Because the SD card in the C-Control Pro is connected via SPI, and not in 4-bit parallel mode like
a PC, only slower transmission rates are realized. In tests with wget.exe an average transfer rate
between 140-150 kbytes/sec is reached. Therefore, e.g. Images and other resources should not
exceed 100kb significantly, otherwise the website is built slowly.

e The web sener supports the "lf-Modified-Since" caching protocol of the current web browser.
Therefore, the caching should be enabled in the web browser, and date and time of the files on the
SD card should not lie in the future.

e [f you want just to pass CGl variables in the URL of a Javascript GET request, without the require-
ment of a response from the sener, the URL "setvars.js" should be used. This request takes only
the variable values and generates no response.

¢ If a request from Javascript only accesses variable values in JSON format, the URL "getvars.js"
generates only the JSON output, without accessing the SD card, what is a lot faster.

e |t is recommended to look at the demo programs for web server usage.

¢ Only specify the flags and WEB_CACHE_HTML and WEB_CACHE_TEXT in WEB_StartSenver, if
you are sure that HTML or text web pages really should be cached!

WEB_GetRequest

Ethernet Functions

Syntax
byte WEB Get Request (voi d);

Sub WEB_Cet Request () As Byte

Description

Queries the web server if an HTTP request is made for the delivery of a website. A value of zero in-
dicates that there is no request. After a valid request, you should evaluate the dynamic variables and
set any new values?

Return Parameter

request parameter (0 = nothing received)

© 2013 Conrad Electronic

Libraries 398

5.27.3 WEB_GetFileHash

Ethernet Functions

Syntax
word WEB_Cet Fi | eHash(byte request);

Sub WEB_GCet Fi | eHash(request As Byte) As Word

Description

Returns the 16-bit CRC hash of the file name. The request parameter must be identical to the value
that has been obtained from WEB_GetRequest().

Parameter
request request parameter
Return Parameter

16 Bit CRC hash of the file name (8.3)

5.27.4 WEB_ReleaseRequest

Ethernet Functions

Syntax
voi d WEB_Rel easeRequest (byte request);

Sub WEB_Rel easeRequest (request As Byte)

Description

Signals the web server that the passed URL variables were evaluated, and now the web server deliv
ers the requested web page via TCP/IP. The request parameter must be identical to the value that
has been obtained from WEB_GetRequest().

Parameter

request request parameter

5.27.5 WEB_SetDynVar

Ethernet Functions

Syntax

© 2013 Conrad Electronic

399

C-Control Pro IDE

void WEB_SetDynVar (word indx, ptr var_addr[], byte type, byte flags,
byte | en);

Sub WEB_Set DynVar (i ndx As Wbrd, var_addr As Pointer, type As Byte, flags
As Byte, len As Byte)

Description

Defines a dynamic variable on its index, address and variable type. The len parameter is important
for string variables, other types ignore this parameter. You can specify multiple flags simultaneously
by ORing values.

=¥ The number of dynamic variables used must correspond with the definition in the WEB_BUF
macro and dynvar_cnt in WEB_ StartServer.

Parameter

indx index of variable

var_addr address of variable

type variable type

flags property of variable

len length (0 to 255) only for strings

Type Definitions

Definition Meaning
DYN BYTE 8-Bit without sign
DYN_CHAR 8-Bit with sign
DYN_INT 16-Bit with sign
DYN_INTEGER 16-Bit with sign
DYN WORD 16-Bit without sign
DYN _UINTEGER 16-Bit without sign
DYN_LONG 32-Bit with sign
DYN_DWORD 32-Bit without sign
DYN_ULONG 32-Bit without sign
DYN_STR character array
DYN _FLOAT floating point
DYN_SINGLE floating point

Flag Definitions

Definition Meaning
DYN CGIVAR can be changed in URL
DYN JSONVAR variable in JSON list

© 2013 Conrad Electronic

Libraries 400

5.27.6

5.27.7

WEB_StartServer

Ethernet Functions

Syntax

void VEB_StartServer(word port, byte ramaddr[], word dynvar_cnt, word
flags);

Sub VEB_StartServer(port As Wrd, ByRef ramaddr As Byte, dynvar_cnt As
Word, flags As Word)

Description

Starts the web server on TCP/IP port port. The parameter dynvar_cnt defines how many dynamic
variables can be used. The user should provide a global variable as a buffer. In this buffer, the work-
ing state of the web sener is stored and there is memory for copy operations. For the size of the buf-
fer, there exists a #define WEB_BUF. If you want to define a byte array with space for dynamic vari-
ables X, one writes "byte buf [WEB_BUF (X)];". You can specify multiple flags simultaneously by
ORing the values.

=% The user-supplied RAM buffer must be reserved during the entire use of the web sernver. Since
local variables are released after leaving the function, it is strongly recommended to declare the buf-
fer as a global variable.

Parameter

port TCP/IP Portthe web server listens
ramaddr buffer address

dynvar _cnt number of dynamic variables
flags webserver options

Flagsdefinitionen

Definition Meaning
WEB CACHE NORM HTML and Text pages are not cached
WEB CACHE HTML HTML pages are cached
WEB CACHE TEXT Text pages are cached

WEB_StopServer

Ethernet Functions

Syntax
voi d WEB_St opServer (voi d);

Sub WVEB_St opServer ()

© 2013 Conrad Electronic

401

C-Control Pro IDE

Description
Stops the webserver.
Parameter

None

© 2013 Conrad Electronic

403

C-Control Pro IDE

6.1

FAQ

General

1. The spelling check does not function.

e |s the spelling check switched on in Options->Editor?
e The spelling check does only display spelling errors in the commentaries. The check of any other
area would not make sense.

2. Where can be determined whether the new project is a BASIC or C project?

e There is no difference in project type. The source text files in a project determine which program-
ming language is being used. Files with the extension *.cc will run in a CompactC context, Files
with the extension *.cbas will be translated into BASIC. Also C and BASIC can be combined in a
project.

3. I am using an LCD other than the one shipped with the product, but am using the same Controller.
The cursor positions do not work correctly.

e The Controller can display 4 lines at 32 characters each. The beginnings of the lines are stored
transposed in memory following the scheme below:

Value of pos (Hex) Position in the display

00-1f 0-31in the line 1
40-5f 0-31in the line 2
20-3f 0-31in the line 3
60-6f 0-31in the line 4

4. Where are the demo programs located?

e The demo programs are installed to "C:\Documents and Settings\All Users\Documents\C-Control
Pro Demos" (XP and eatrlier) or to "C:\Users\Public\Public Documents\C-Control Pro Demos" dir-
ectory (Vista and later). See Chapter Demo Programs.

5. Can | program the C-Control Pro Module in Linux?

e There is no native IDE for Linux, but customer had successfully started the IDE under Wine und

programmed the module in serial mode.

6. Is it possible to dewelop for C-Control Pro with other Compilers?

© 2013 Conrad Electronic

FAQ| 404

6.2

There are many deweloping systems for the Atmel Mega CPU. Some of these Compilers are com-
mercial, others a free. A good example of a free development system is the GNU C-Compiler. You
can transfer programs, that you wrote with the GNU C-Compiler, to the Atmel Mega CPU with a
AVR ISP programmer. But once you overwrote the installed bootloader, there is no way back, you
cannot longer use the C-Control Pro software.

Mega

RN

. How can | switch on the Pull-Up resistor of a port?

First switch the port to input with PortDataDir() (or PortDataDirBit()), then use PortWrite() (or
PortWriteBit()) to write a "1" into the port.

. No USB connection existing to the Application Board.

Has the FTDI USB driver been loaded onto the PC? Or does “Unknown Device” appear in the Hard-
ware Manager, when the USB connector is plugged in?

Has the correct communication port been set in Options->IDE->Interfaces?

Are the ports M32:B.4-B.7,A.6-A.7 resp. M128:B.0-B.4,E.5 erroneously being used in the software
(see pin assignment of M32 and M128)? Are the jumpers on the Application Board set to these
ports?

A signal on M32:PortD.2 resp. M128:PortE.4 (SW1) during startup will activate the serial Boot-
loader.

(Megal28 only) Is Port.G4 (LED2) on Low during Reset? See SPI Switch Off in chapter "Firm-
ware".

When the SD card is used in conjunction with USB and the application board, there is a collision
on the SPI bus. If you want to use the SD Card interface, you have to remove the jumper on the
application board (Megal28 PB.0 to PB.4 and PE.5) and to use the serial mode.

. The serial interface does not issue any characters or does not receive any characters.
Are the Ports D.0-D.1 erroneously used in the software (see pin assignment of M32 and M128)?
Are the jumpers on the Application Board set to these ports?

The Application Board does not react to any commands when serially connected.

In order to get the Bootloader into the serial mode the button SW1 must be pressed during startup
of the Application Board (observe jumper for SW1). For the serial mode M32:PortD.2 resp.
M128:PortE.4 (SW1) can also be fixed to GND lewel.
. The Hardware Application does not start by itself (Autostart Behaviour).

A signal on the SPI interface during startup may activate USB communication.

A signal on M32:PortD.2 resp. M128:PortE.4 (SW1) during startup may activate the serial Boot-
loader.

© 2013 Conrad Electronic

C-Control Pro IDE

. How much RAM do | have for my programs?

There are 930 bytes left for own programs on the Mega32, on the Megal28 remain 2494 bytes. In-
terpreter and Debugger are using buffer for interrupt driven /O, and 256 bytes for the data stack.
Beside this resources, there are some internal tables, that are needed for interrupt handling and
multitasking. Additionally some RAM Variables are used from library functions.

. Where is the second serial interface on the Megal28 Application Board?

See J4 chapter Jumper Application Board M128.

. I need no USB connection to the application board, how can I reclaim the reserved ports for USB?

The USB interface is wired to the C-Control module owver the SPI interface. The SPI interface can
be disabled with SPI_Disable(). Do not forget to remowve the jumper that connects the SPI with the
Mega8 (USB interface) on the application board.

. Where do | have the supply wltage on the breadboard of the Application Board?

If you turn the application board to a position where the interface connectors (USB and serial)
show to the upper side, the leftmost column on the breadboard is GND and the rightmost column
is VCC. You can see it clearly, when you take a look of the backside of the board.

10. I need more ports for my hardware application. Many ports are used by other functions.

405
6
o
7
o
8
o
9
o
[]

6.3

Take alook at the Pin Assignment of M32 and M128. Y ou can use al ports that have no spe-
cial functionalities (SPI, RS232, LCD, Keyboard etc.) that are needed for your application.
Do not forget to remove the jumper that connects the port pins to the application board.
Otherwise the behaviour can be undetermined.

AVR32Bit

1.

There is no USB connection to the Application Board.

Is the USB (usbser.sys) driver loaded on the PC? Or maybe an "unknown device" appears in the
hardware manager when inserting the USB plug?

Is the correct communication port set?

Please read the USB Troubleshooting guide!

On delivery, the Autostart jumper is set. Please remowve, otherwise no program transfer is pos-
sible.

. How do I turn on the pull-up resistor of an input port?

See Port_Attribute ().

© 2013 Conrad Electronic

FAQ| 406

3. I need more ports for my hardware application. Many ports are used by other functions.

¢ Take a look at the Pin Assignment of the AVR32Bit. You can use all ports that have no special
AVR32Bit Module functionality (not connected to 12C, SPI, MACB etc). Do not forget to remove
the jumper that connects the port pins to the application board (e.g. for LED's or Button's). Other-
wise the behavior can be undetermined.

4. | cannot reset the module or a transfer of the interpreter after a software update no longer works.

¢ A power cycle brings the module securely back to the boot loader to allow a Reset Module. See
Firmware.

© 2013 Conrad Electronic

407 C-Control Pro IDE

Index

- 180, 201
_H -

#define 167
#endif 167
#ifdef 167
#include 167
#pragma 169

-+ -

++ 180, 201
_A -

AbsDelay 223

AC Disable 227
AC_Enable 227
AC_InpHigher 228
AComp 225

acos 290

Actualize Variable 150
ADC Example 237
ADC _Disable 230, 233
ADC_Enable 233
ADC_GetValue 235
ADC_GetValues 235
ADC_Read 230
ADC_Readint 230
ADC Set 231
ADC_Setinput 236
ADC_Setint 232
ADC_Start 236
ADC_Startint 232
Addition 179, 200
Analog-Comparator 225
And 179, 201
Arithmetic Operators 179, 200

Array 174, 195

Array Window 152

ASCIl 217

asin 290

Assembler 212
Assembler Compendium 216
Assembler Data Access 214
Assembler Examples 212
atan 291

Atmel Register 254

Auto Actualize 150
Autostart 16, 65, 145
AVR32Bit Applicationboard 82
AVR32Bit Mainboard 95
AVR32Bit Modul 67

_B -

baud rate 161

Bit inversion 179, 201

Bit Operators 179, 201
Bitshift Operators 179, 201
Bootloader 16, 65

break 181, 182, 184, 186
Breakpoints 150

Byte 173,194

_C -

CAN Bus 237
CAN Examples 240
CAN_Exit 241
CAN_GetInfo 241
CAN_Init 242
CAN_MObSend 243
CAN_Receive 243
CAN_SetChan 244
CAN_SetMOb 244
Cascade 163
Case 184, 206
C-Control konfigurieren 145
ceil 291

Change Variable 150
Char 173, 194
Clock_Getval 245
Clock_SetDate 246

© 2013 Conrad Electronic

Index

Clock_SetTime 247
COM Interface 144
COM Port 161
Comments 171, 193
CompactC 170
Comparison Operators
compile 130
compile projects 130
Compiler Presetting 161

Component Parts Plan Megal28 Appl. Board 58
Component Parts Plan Mega32 Appl. Board 49
Conditional Valuation 181

Connection Diagram AVR32 Appl. Board 93
Connection Diagram AVR32 Main Board 100
Connection Diagram AVR32 Module 80
Connection Diagram LCD1602 107

Connection Diagram Megal28 30

Connection Diagram Megal28 Appl. Board 56
Connection Diagram Megal28 CAN 38
Connection Diagram Mega32 23

Connection Diagram Mega32 Appl. Board 46
Connection Diagram REL4 115

Connection Diagram RELBUS 120

Connection Diagram UNIT-BUS 102
Connection Diagram USB-Board 126

Conrad 4

Context Help 164

180, 202

continue 181, 182, 186
Corrections 5
cos 292

CPU AT90CAN128 34
CPU choosage 133
CPU Megal28 27
CPU Mega32 20

D -

data bits 161

Data Types 173, 194
DCF_FRAME 249
DCF_INIT 249
DCF_Lib.cc 247
DCF_PULS 250
DCF_RTC.cc 247
DCF_START 250
DCF_SYNC 250

DCF77 247
Debugger 150
default 184

Demo Programs 4
DirAcc_Read 254
DirAcc_Write 254
Direct_Access 253
Divider 316
Division 179, 200
Do 202, 203
do while 181
dword 173

_E -

Editor 136

Editor Settings 156
EEPROM 255, 256, 257
EEPROM_Read 255
EEPROM_ReadFloat 256
EEPROM_ReadWord 255
EEPROM_Write 256
EEPROM_WriteFLoat 257
EEPROM_WriteWord 257
Else 184, 205

email 4

equal 180, 202
Ereigniszahler 387
ETH_CheckReceiveBuf 263
ETH Close 264
ETH_CloselListenTCP 264
ETH_ConnectTCP 262
ETH_DisconnectTCP 264
ETH_GetlPInfo 265
ETH_GetStateTCP 265
ETH_ListenTCP 266
ETH_ListenUDP 267
ETH_ReceiveData 267
ETH_SendTCP 267
ETH_SendUDP 268
ETH_SetConnBuf 268
Ethernet Aktivierung 258
Ethernet durchsuchen 146
Event Counter 362
exclusive Or 179, 201
Exit 202, 203, 204

408

© 2013 Conrad Electronic

409 C-Control Pro IDE

exp 292

Expressions 171, 193
Ext 277
Ext_IntDisable 279
Ext_IntEnable 278
external RAM 51, 53

“E -

fabs 293

FAQ 403

FAQ AVR32Bit 405
FAQ Mega 404

Fax 4

Firewall 160
Firmware 16, 65
float 173

floor 293

For 182, 204

ForceBootloader 224
formatted print 349

FPU 290

Frequency Generation 363
Frequency Measurement 364
Frequenzerzeugung 388
Functions 187, 208

_G -

Goto 183, 205

GPP 4

greater 180, 202

greater or equal 180, 202

-H-

Handling 2

Hardware 12, 144
Hardware Version 148
Help 164

History 5

12C 273
I2C Status Codes 272

12C_Init 269
I2C_Probe 274
I2C_Read 274
I2C_Read ACK 270
I2C_Read NACK 270
I2C_SetSpeed 275
I2C_Start 270
I2C_Status 271
I2C_Stop 271
I2C_Write 272, 275
IDE 129

IDE Editor Options 159
IDE Settings 158
Identifier 171, 193

If 184, 205

Insert Variable 150
Installation 12
Installation Hardware 12
Installation Software 12, 63
Installation USB 64
Installation USB and serial 13
Instruction Block 171, 193
Instructions 171, 193
int 173

Integer 194

Intended use 3
Internal Functions 223
Internet Explorer 160
Internet Update 160
IntFunc_Lib.cc 223
Introduction 2

IRQ 277

IRQ Example 280
Irg_GetCount 279
Irg_SetVect 280

_] -

Jumper Megal28 Appl. Board 54
Jumperr Mega32 Appl. Board 43

- K -

Key_Init 281
Key_Scan 282
Key_TranslateKey 282

© 2013 Conrad Electronic

Index

Keyboard Layout 156
Keyboard Shortcuts 141

L -

LCD Matrix 127
LCD_ClearLCD 284
LCD_CursorOff 285
LCD_CursorOn 285
LCD_CursorPos 286
LCD_Init 286
LCD_Locate 287
LCD_Sublnit 283
LCD_TestBusy 283
LCD_WriteChar 288
LCD_WriteCTRRegister 284
LCD_WriteDataRegister 284
LCD_WriteFloat 288
LCD_WriteRegister 288
LCD_WriteText 289
LCD_WriteWord 289
LCD1602 Board 103

Idexp 293
left shift 179, 201
Liability 3

Library Management 134
In 294

log 294

logical And 180
logical Not 180

logical Operators 180
logical Or 180

long 173

Loop While 202

M -

MAC Address 63

Map File 169

Megal28 Application Board 50
Megal28 CAN Module 30
Megal28 Module 23

Megal28 Projectboard 61
Mega32 Application Board 40
Mega32 Module 17

Mega32 Projectboard 59

messages 130
Modulo 179, 200
Msg_WriteChar 251
Msg_WriteFloat 251
Msg_WriteHex 252
Msg_Writelnt 252
Msg_WriteText 253
Msg_WriteWord 253
Multiplication 179, 200

_N -

New features 5
Next 204

next error 130

not equal 180, 202

_ 0O -

Onewire Example 299
Onewire_Read 298
Onewire_Reset 299
Onewire_Write 299
Open Source 4
Operator Precedence 189
Operator Table 190, 211
Operators 178, 200

Or 179, 201

Outputs 147

_P-

Pattern 143

Period Measurement 365
PIN 148

Pin Assignment AVR32 75
Pin Assignment Megal28 28
Pin Assignment Megal28 CAN 35
Pin Assignment Mega32 21
Pointer 187, 208
Port_Attribute 302
Port_DataDir 303
Port_DataDirBit 303

Port Read 304
Port_ReadBit 304
Port_Toggle 305

410

© 2013 Conrad Electronic

411 C-Control Pro IDE

Port_ToggleBit 305
Port Write 306
Port_WriteBit 306
Port-Ext-Board 108
pow 295

Precedence 211
predefined arrays 174, 195
Predefined Symbols 168
Preprocessor 167
previous error 130

Print Preview 140
Program 170, 192
Program version 164
Project 130

Project Name 130
project options 133
projectfiles 131
Projects 130

Proxy 160

Pulse Measurement 365
Pulse Width Modulation 364
Pulsweitenmodulation 389
PWM_Disable 389
PWM_Init 389
PWM_Update 390

"R -

rand 297
RC5 311
RC5 Init 314

RC5 Read 315

RC5 Write 315
reference wltage 231, 232
Refresh Editor View 136
Regular Expressions 143
REL4-Board 111
RELBUS-Board 116
rename projects 131
Replace 139

reserved 191, 212
resened Words 191, 212
right shift 179, 201
round 295

_S-

SD card Example 336
SDC Return Values 328
SDC _FClose 328
SDC_FOpen 329
SDC FRead 330
SDC_FSeek 330
SDC_FSetDateTime 331
SDC_FStat 331
SDC_FSync 332
SDC_FTruncate 333
SDC_FWrite 333
SDC_GetFree 334
SDC Init 334
SDC_MkDir 335
SDC_Rename 335
SDC_Unlink 336
Search 139

Select 206

serial Bootloader 16
Serial Example 325
Serial Example (IRQ) 325
Serial_Disable 318
Serial_Init 318, 319
Serial_Init_IRQ 320, 321
Serial_IRQ_Info 322
Serial Read 323
Serial_ReadExt 323
Serial_Write 324
Serial_WriteText 324
Senice 4

Serwo 337

Servo Example 339
Seno_Init 338
Sernvo_Set 339

Sign 179, 200

sin 296

Single 194

SizeOf 174, 195
Sleep 224

smaller 180, 202
smaller or equal 180, 202
Smart Tabulator 156
Spellchecking 159

© 2013 Conrad Electronic

Index

SPI switch off 16
SPI_Disable 340, 343
SPI_Enable 341, 343
SPl Read 341, 344
SPI|_ReadBuf 342, 344
SPI_SetChan 345
SPI_Write 342, 345
SPI_WriteBuf 342, 345

sgrt 296
SRAM 51,53
srand 298

Start Program 145
Static 174, 195
stop bits 161
Str Comp 346
Str_Copy 347
Str_Fill 347
Str_Isalnum 348
Str_lIsalpha 348
Str Len 349
Str_Printf 349
Str_Printf Example 354
Str_ReadFloat 350
Str_Readint 350
Str_ ReadNum 351
Str_Substr 351
Str_WriteFloat 352
Str_Writelnt 352
Str_WriteWord 353

Strings 173, 174, 194, 195, 346

Subtraction 179, 200
switch 184
Syntax Highlight 154

_T-

Tables 174, 195
tan 297

TCP/IP Programmierung
Terminal 153
Terminal Settings 161
Thread Example 361
Thread Example 2 361
thread options 135
Thread_Cycles 356
Thread _Delay 357

259

Thread_Info 357
Thread_Kill 358
Thread_Lock 358

Thread_MemFree

Thread_Resume
Thread_Signal

358
359
359

Thread_Start 360
Thread_Wait 360

Threads 354
Tile Horizontal

163

Tile Vertical 163

Timer 362
Timer Functions

366

Timer_ConfigCounter 391
Timer_CPUCycles 392

Timer_Disable

366, 392

Timer_GetCounterVal 392

Timer_Set 393

Timer_TOCNT 367

Timer_TOFRQ

Timer_TOGetCNT

367
368

Timer_TOPW 368

Timer_TOPWM
Timer_TOStart
Timer_TOStop
Timer_TOTime

369
370
370
371

Timer_T1ICNT 371

Timer_T1CNT _Int
Timer_T1FRQ
Timer_T1FRQX

Timer_T1GetCNT

Timer_T1GetPM

372
372
373
373
374

Timer_T1IPM 375

Timer_T1PWA
Timer_T1PWB
Timer_T1PWM
Timer_T1PWMX
Timer_T1IPWMY
Timer_T1Start
Timer_T1Stop
Timer_T1Time

374
375
376
376
377
377
378
378

Timer_T3CNT 379

Timer_T3CNT _Int
Timer_T3FRQ
Timer_T3FRQX

Timer_T3GetCNT

379
380
380
381

412

© 2013 Conrad Electronic

413 C-Control Pro IDE

Timer_T3GetPM 381
Timer_T3PM 382
Timer_T3PWA 382
Timer_T3PWB 383
Timer_T3PWM 383
Timer_T3PWMX 384
Timer_T3PWMY 384
Timer_T3Start 385
Timer_T3Stop 385
Timer_T3Time 386
Timer_TickCount 386, 394
Tool Settings 162

Tools 153

Transfer 145

Type Conwversion 173, 194

U -

UDP Programmierung 261
UNIT-BUS Exp. Board 101
UNIT-BUS Ext-Board 121
unsigned char 173
unsigned int 173

USB Troubleshooting 66
USB-Board 124

_V -

Variables 174, 195
Variables Window 150
Version Check 148

Visibility of Variables 174, 195

wid 187
W -

Warranty 3
WEB_GetFileHash 398
WEB_GetRequest 397
WEB_ReleaseRequest 398
WEB_SetDynVar 398
WEB_StartServer 400
WEB_StopSener 400
Websener 395

Webserver Optimierung 396

Websener Tips 396

While
Window
Word

186, 203
163
173, 194

© 2013 Conrad Electronic

	Important Notes
	Introduction
	Reading this operating manual
	Handling
	Intended use
	Warranty and Liability
	Service
	Open Source
	Demo Programs
	History

	Hardware
	Mega Series
	Installation
	Software
	Hardware
	USB and serial

	Firmware
	Mega32 Module
	CPU
	Pin Assignment
	Connection Diagram

	Mega128 Module
	CPU
	Pin Assignment
	Connection Diagram

	Mega128 CAN Module
	CPU
	Pin Assignment
	Connection Diagram

	Mega32 Application Board
	Jumper Application Board
	Connection Diagram
	Component Parts Plan

	Mega128 Application Board
	External RAM
	Jumper Application Board
	Connection Diagram
	Component Parts Plan

	Mega32 Projectboard
	Mega128 Projectboard

	AVR32Bit
	Installation
	Software
	USB

	Firmware
	Autostart
	USB Troubleshooting

	Module
	Pin Assignment
	Connection Diagram

	Applicationboard
	Connection Diagram

	Mainboard
	Connection Diagram

	UNIT-BUS Exp. Board
	Connection Diagram

	LCD1602 Board
	Connection Diagram

	Port-Ext-Board
	REL4-Board
	Connection Diagram

	RELBUS-Board
	Connection Diagram

	UNIT-BUS Ext-Board
	USB-Board
	Connection Diagram

	LCD Matrix

	IDE
	Projects
	Create Projects
	Compile Projects
	Project Management
	Project Options
	Library Management
	Thread Options
	Todo Liste

	Editor
	Editor Functions
	Print Preview
	Keyboard Shortcuts
	Regular Expressions

	C-Control Hardware
	Interface Selection
	Start Program
	C-Control Configuration
	Search Ethernet
	Outputs
	PIN Functions
	Version Check

	Debugger
	Breakpoints
	Variable Watch Window
	Array Window

	Tools
	Syntax Highlighting
	Editor Settings
	IDE Settings
	Editor
	Internet Update
	Compiler Presetting
	Terminal
	Tools

	Windows
	Help

	Compiler
	General Features
	Preprocessor
	Predefined Symbols

	Pragma Instructions
	Map File

	CompactC
	Program
	Instructions
	Data Types
	Variables
	Operators
	Arithmetic Operators
	Bit Operators
	Bit-Shift Operators
	In- /Decrement Operators
	Comparison Operators
	Logical Operators

	Control Structures
	Conditional Valuation
	do .. while
	for
	goto
	if .. else
	switch
	while

	Functions
	Tabellen
	Operator Precedence
	Operators
	Reserved Words

	BASIC
	Program
	Instructions
	Data Types
	Variables
	Operators
	Arithmetic Operators
	Bitoperators
	Bit-Shift Operators
	In- /Decrement Operators
	Comparison Operators

	Control Structures
	Do Loop While
	Do While
	For Next
	Goto
	If .. Else
	Select Case

	Functions
	Tables
	Operator Precedence
	Operators
	Reserved Words

	Assembler
	An Example
	Data Access
	Guideline

	ASCII Table

	Libraries
	Internal Functions
	General
	AbsDelay
	ForceBootloader (AVR32Bit)
	Sleep (Mega)

	Analog-Comparator
	Mega
	AComp
	AComp Example

	AVR32Bit
	AC_Disable
	AC_Enable
	AC_InpHigher
	AC Example

	Analog-Digital-Converter
	Mega
	ADC_Disable
	ADC_Read
	ADC_ReadInt
	ADC_Set
	ADC_SetInt
	ADC_StartInt

	AVR32Bit
	ADC_Disable
	ADC_Enable
	ADC_GetValue
	ADC_GetValues
	ADC_SetInput
	ADC_Start
	ADC Example

	CAN Bus
	CAN Examples
	CAN_Exit
	CAN_GetInfo
	CAN_Init
	CAN_Receive
	CAN_MObSend
	CAN_SetChan (AVR32Bit)
	CAN_SetMOb

	Clock
	Clock_GetVal
	Clock_SetDate
	Clock_SetTime

	DCF 77
	DCF_FRAME
	DCF_INIT
	DCF_PULS
	DCF_START
	DCF_SYNC

	Debug
	Msg_WriteChar
	Msg_WriteFloat
	Msg_WriteHex
	Msg_WriteInt
	Msg_WriteText
	Msg_WriteWord

	Direct Access (Mega)
	DirAcc_Read
	DirAcc_Write

	EEPROM
	EEPROM_Read
	EEPROM_ReadWord
	EEPROM_ReadFloat
	EEPROM_Write
	EEPROM_WriteWord
	EEPROM_WriteFloat

	Ethernet (AVR32Bit)
	Ethernet Activation
	TCP/IP Programming
	UDP Programming
	ETH_ConnectTCP
	ETH_CheckReceiveBuf
	ETH_CloseListenTCP
	ETH_CloseListenUDP
	ETH_DisconnectTCP
	ETH_GetIPInfo
	ETH_GetStateTCP
	ETH_ListenTCP
	ETH_ListenUDP
	ETH_ReceiveData
	ETH_SendTCP
	ETH_SendUDP
	ETH_SetConnBuf

	I2C
	Mega
	I2C_Init
	I2C_Read_ACK
	I2C_Read_NACK
	I2C_Start
	I2C_Status
	I2C_Stop
	I2C_Write
	I2C Status Table
	I2C Example

	AVR32Bit
	I2C_Probe
	I2C_Read
	I2C_SetSpeed
	I2C_Write
	I2C Example

	Interrupt
	Ext_IntEnable
	Ext_IntDisable
	Irq_GetCount
	Irq_SetVect
	IRQ Example

	Keyboard (Mega)
	Key_Init
	Key_Scan
	Key_TranslateKey

	LCD
	Internal Functions
	LCD_SubInit
	LCD_TestBusy
	LCD_WriteDataRegister
	LCD_WriteCTRRegister

	LCD_ClearLCD
	LCD_CursorOff
	LCD_CursorOn
	LCD_CursorPos
	LCD_Init
	LCD_Locate
	LCD_SetDispAddr (AVR32Bit)
	LCD_WriteChar
	LCD_WriteFloat
	LCD_WriteRegister
	LCD_WriteText
	LCD_WriteWord

	Math
	Floating Point
	FPU (AVR32Bit)
	acos
	asin
	atan
	ceil
	cos
	exp
	fabs
	floor
	ldexp
	ln
	log
	pow
	round
	sin
	sqrt
	tan

	Integer
	rand
	srand

	OneWire
	Onewire_Read
	Onewire_Reset
	Onewire_Write
	Onewire Example

	Port
	Port_Attribute
	Port_DataDir (Mega)
	Port_DataDirBit (Mega)
	Port_Read (Mega)
	Port_ReadBit
	Port_ToggleBit
	Port_Toggle (Mega)
	Port_Write (Mega)
	Port_WriteBit
	Port Table
	Port Example (Mega)
	Port Example (AVR32Bit)

	RC5
	RC5_Init
	RC5_Read
	RC5_Write

	RS232
	Divider (Mega)
	Serial_Disable
	Serial_Init (Mega)
	Serial_Init (AVR32)
	Serial_Init_IRQ (Mega)
	Serial_Init_IRQ (AVR32)
	Serial_IRQ_Info
	Serial_Read (Mega)
	Serial_ReadExt
	Serial_Write
	Serial_WriteText
	Serial Example
	Serial Example (IRQ)

	SDCard
	FAT Support
	SDC Return Values
	SDC_FClose
	SDC_FOpen
	SDC_FRead
	SDC_FSeek
	SDC_FSetDateTime
	SDC_FStat
	SDC_FSync
	SDC_FTruncate
	SDC_FWrite
	SDC_GetFree
	SDC_Init
	SDC_MkDir
	SDC_Rename
	SDC_Unlink
	SD card Example

	Servo
	Servo_Init
	Servo_Set
	Servo Example

	SPI
	Mega
	SPI_Disable
	SPI_Enable
	SPI_Read
	SPI_ReadBuf
	SPI_Write
	SPI_WriteBuf

	AVR32Bit
	SPI_Disable
	SPI_Enable
	SPI_Read
	SPI_ReadBuf
	SPI_SetChan
	SPI_Write
	SPI_WriteBuf

	Strings
	Str_Comp
	Str_Copy
	Str_Fill
	Str_Isalnum
	Str_Isalpha
	Str_Len
	Str_Printf
	Str_ReadFloat
	Str_ReadInt
	Str_ReadNum
	Str_Substr
	Str_WriteFloat
	Str_WriteInt
	Str_WriteWord
	Str_Printf Example

	Threads
	Thread_Cycles
	Thread_Delay
	Thread_Info
	Thread_Kill
	Thread_Lock
	Thread_MemFree
	Thread_Resume
	Thread_Signal
	Thread_Start
	Thread_Wait
	Thread Example
	Thread Example 2

	Timer
	Mega
	Event Counter
	Frequency Generation
	Frequency Measurement
	Pulse Width Modulation
	Pulse & Period Measurement
	Timer Functions
	Timer_Disable
	Timer_T0CNT
	Timer_T0FRQ
	Timer_T0GetCNT
	Timer_T0PW
	Timer_T0PWM
	Timer_T0Start
	Timer_T0Stop
	Timer_T0Time
	Timer_T1CNT
	Timer_T1CNT_Int
	Timer_T1FRQ
	Timer_T1FRQX
	Timer_T1GetCNT
	Timer_T1GetPM
	Timer_T1PWA
	Timer_T1PM
	Timer_T1PWB
	Timer_T1PWM
	Timer_T1PWMX
	Timer_T1PWMY
	Timer_T1Start
	Timer_T1Stop
	Timer_T1Time
	Timer_T3CNT
	Timer_T3CNT_Int
	Timer_T3FRQ
	Timer_T3FRQX
	Timer_T3GetCNT
	Timer_T3GetPM
	Timer_T3PWA
	Timer_T3PM
	Timer_T3PWB
	Timer_T3PWM
	Timer_T3PWMX
	Timer_T3PWMY
	Timer_T3Start
	Timer_T3Stop
	Timer_T3Time
	Timer_TickCount

	AVR32Bit
	Event Counter
	Frequency Generation
	Pulse Width Modulation
	PWM_Disable
	PWM_Init
	PWM_Update
	Timer_ConfigCounter
	Timer_CPUCycles
	Timer_Disable
	Timer_GetCounterVal
	Timer_Set
	Timer_TickCount

	Webserver (AVR32Bit)
	Webserver Hints
	WEB_GetRequest
	WEB_GetFileHash
	WEB_ReleaseRequest
	WEB_SetDynVar
	WEB_StartServer
	WEB_StopServer

	FAQ
	General
	Mega
	AVR32Bit

