

 User Manual

Version 07/07 E BA001 ProgRef

C-Control I

Programmer´s
Reference

UNIT-M 2.0 Best.- Nr.: 19 88 22

UNIT-M Advanced Best.- Nr.: 19 88 05

Station 2.0 Best.-Nr..: 19 88 63

Station Advanced Best.-Nr.: 19 72 39

 1
Please check at Hwww.c-control-support.netH for updates

Content
INTRODUCTION ..4

ABOUT C-CONTROL...4
ABOUT BASIC++ ...4
ABOUT THIS DOCUMENT..4

DECLARATIONS AND DEFINITIONS ...5
PROGRAM MEMORY..5
USER VARIABLES...5
CONSTANTS ...6
POINTER..6
DATA TYPES ...6
EXTERNAL FILES..7

SPECIAL PORTS ...7
START and RESET..7
FREQ1 and FREQ2 ...7
IRQ ...7
BEEP ..7
RXD/TXD..8

STANDARD DIGITAL I/O PORTS..8
DIGITAL INPUT PORT...8
DIGITAL OUTPUT PORT...8

DEDICATED DIGITAL PORTS ..8
I²C-BUS INTERFACE (PORT 9 and 10) ..8
RC5 IR INTERFACE (PORT 2 and 3)..8
RF INTERFACE (PORT 2 and 3)...9

EXTENDED PORTS...9
ANALOGPORTS ..10

A/D CONVERTER PORTS ..10
D/A CONVERTER PORTS ..10

SYSTEM PROPERTIES...10
BEEP ..10
RTC ..11
TIMER ..11
FREQ1 and FREQ2 ...11

INSTRUCTIONS AND KEYWORDS..12
INPUT/OUTPUT...12
INTERNAL/EXTERNAL DATA STORAGE ...13
STANDARD DIGITAL PORTS ...15
EXTENDED PORTS ..16
AD PORTS ...16
DA PORTS ...16
MATH FUNCTIONS ...16
MATH AND BOOLEAN OPERATORS ..18
PROGRAM FLOW CONTROL...19

OBJECTS ...22
CONFIG REGISTER ..22
I²C-BUS OBJECT...23
IR OBJECT...24
RF OBJECT..25
LCD OBJECT ...26

START OPTION REGISTER..27
OPTION AUTOSTART...27
EEPROM BOOT OPTION..27

FLAOTING POINT MODULE (FPM) ..28
INTRODUCTION..28
DETAILS OF THE DATA TYPE FLOAT ..29
INTERNAL HANDLING OF FP OPERATIONS..29

FLOATING POINT INPUT/OUTPUT..30
ASSIGNMENTS ...30
INPUT...30
OUTPUT...31

TYPE CONVERSION FLOAT<-> INTEGER WORD/BYTE...32

 2

FLOAT..32
INT..33

LOOPS WITH FLOAT VARIABLES ...35
FUNCTIONS WITH PARAMETERS...35
FUNCTIONS WITH PARAMETER RETURN...36
MATH OPERATIONS...36

MULTIPLY, DIVIDE, ADD, SUBTRACT...36
SIN, COS..37
SQRT..37
ABS ..38
COMPARES...38

FLOATING POINT ERRORS ...38
The FLOATING POINT MATH BASIC++ LIBRARY...39

LN(MyFloat)..39
LOG(MyFloat)...39
EXP(MyFloatX,MyByteY) ...40
TAN(x) (x=degrees)..40

The FLOATING POINT TOOLS LIBRARY...40

 3

INTRODUCTION

ABOUT C-CONTROL
Small microcontrollers can everywhere be found. They mostly are programmed in assembly language which
requires a deep knowledge in this language and processor architectures. The manual for the controller
counts most times some hundred pages and is hard to understand. To learn the assembly language you
additionally have to study books about. BASIC++ is the language to program these microcontrollers without
special knowledge. Around the core of standard BASIC instructions are few additional instructions to use the
controller standard environment hardware for applications (such as a LCD). For experienced programmers
BASIC++ offers features (such as import code from a library) which are a must for a modern programming
language.

Memory
The C-Control computer have a operating system on board and can be programmed in BASIC. BASIC ist not
only easy to learn, it is very efficient concerning the memory usage too. A BASIC program needs about 1/5
of memory that would be needed if the same application is programmed in assembly language.

Speed:
The statement, BASIC is slow is from a time when the BASIC program is put to memory as source code
which which must be read and interpreted at runtime. At the C-Control units the BASIC source code is
converted to Tokens and loaded into the memory, representing the program. This Tokens are executed very
fast resulting in a speed of app. 23000 instructions per second on a M 2.0 Unit.

ABOUT BASIC++
Code Development
If you know that a single BASIC instruction sometime consists of many hundred assembly instructions it is
easy to believe that BASIC programming saves a lot of time. I guess you need 1/10 of time programming in
BASIC instead in assembly language. C-Control and BASIC++ is a powerfull tool for rapid development even
for experienced engineers. While others are still debugging their assembly or C++ program, your application
is just running

Programming Skill
BASIC++ is even for unexperienced users simple to use (simple BASIC core functions). Beside of this
professional programmers will find all the features required for a modern programming language. A bunch on
programs, available in the library, makes it easy to solve even complex problems.

Please look here for addons and product specifications www.c-control-support.net

ABOUT THIS DOCUMENT
This document is applicable on the C-CONTROL I Unit-M 2.0 and Unit-M ADVANCED with OS 2.05 and
above.
This Document is also applicable for both products STATION 2.0 and STATION ADVANCED, as they
contain either a standard Unit-M 2.0 or a Unit-M 2.0 ADVANCED as BASIC-Computer.
It describes the BASIC++ Instruction Set and Controller properties. As far as it is useful, a general syntax is
given.

Syntax: Variable = value1 MOD value2

 Variable: Variable of Byte oder Word type
 value1 Variable, value oder constant of Byte oder Word type
 value2 Variable, value oder constant of Byte oder Word type

The values (here value1 and value2) may also be complex terms closed in braces.

 4

http://www.c-control-support.de/

Variable= (SQR(value*value)) MOD value2

This is legal when the result of the term matches the mentioned type

Additional to the Syntax description an example is shown. Please note that the required definitions are not
mentioned on samples trougout the document.

Definiton:

 DEFINE MyWord as word

DEFINE MyByte1 as byte

DEFINE MyByte2 as byte

Example:

MyWord=MyByte1 MOD MyByte2

DECLARATIONS AND DEFINITIONS

Variables and Port registers are memory locations in the controller. While User Variables are freely usable
the Port Registers can be considered as System Variables with defined functions and names.
The content of this memory locations can be changed or requested during program runtime. They are a very
important component in all programming languages. Depending on the variable type it may contain different
values. BYTE type variables contain values from 0 to 255, and they occupy one byte of memory inside the
controller. Once a memory location or port is defined its content can be changed by assignments of other
variables content, constants or terms.

MyBitport1 = ON

MyBitport1 = OFF

MyByte1 = MyByte2

MyWord1 = MyByte1*10

PROGRAM MEMORY
The C-Control Unit M 2.0 has almost 10kB of program memory. Memory that is not occupied by a program
can be used can be used as non volatile data memory. The Unit ADVANCED has an extended program
memory. 22kB are available for program memory or data saving. No declarations concerning the memory
have to be done

USER VARIABLES
The C-Control Unit M 2.0 supports 140 bytes of variables memory.The Unit ADVANCED memory for
variables has been extended, but with some small restrictions. Unrestricted usable are 140 bytes, up to 240
bytes are usable if the File Function PRINT# is not used, or is used that way, (e.g for temporary variables)
that it does not matter if variables content in the range from 140 to 240 will be changed when INPUT# is
used.
At BASIC++ you have to consider special cases. Local and global variables define the valid area of this
variables within the entire program or within single functions. The valid area has to be declared with DEFINE.

Any declaration of a variable within a function causes the variable to be a local type. Any other declaration

 5

will result in global variables. More can be found in the chapter „Functions“.

Prior to use a variable has do be declared otherwise an error message will occur at compilation.

BYTE Variables
Byte (value 0 ... 255) is the smallest numeric data type, ocupies 1 Byte = 8 Bit

define MyByte as byte

WORD Variables
Word (value -32768 ... 32767) this data type occupies 2 Byte = 16 Bit

define MyWord as word

FLOAT Variables
While the C-Control M 2.0 has just BYTE and WORD Types, even for non professionals easy to handle, the
M ADVANCED has a new Data Type Float. It consists on one byte exponent and 3 byte mantissa with sign.
Therefore a floating point value occupies 4 bytes (32 bit).
Please see the chapter FLOATING POINT MODULE for details.

CONSTANTS
In programming, a constant is a value that never changes. The other type of values that programs use is
variables, symbols that can represent different values throughout the course of a program. A constant can be
- a number, like 25 or 3.6
- a character, like a or $
- a character string, like "this is a string"
Constants never change at runtime, they are constant.
Numeric constants are generally decimal system based but BASIC++ supports the binary,octal, hexadecimal
system also. See the next chapter for details.

const MyConstant = 122

POINTER
There is one Interrupt Vector INTERRUPT available that serves for the immediate reaction either on an
external request (negative edge at IRQ) or an internal request (e.g Timer Interrupt). See Chapter CONFIG
REGISTER for further information. Any user interrupt is inhibited if no interrupt vector is defined.

 INTERRUPT MyInterruptService

DATA TYPES
Except the Floating Point Module (contained only in the C-Control Unit ADVANCED) there are only 3 Data
Types used Bit, Byte and word.
A bit status is alwas defined by boolean ON (true=logic high) and OFF(false=logic low). A byte or word
content is always defined as a value which can be expressed in different number systems.The applied
system has to be identified if other than decimal system based constants are used:

Examples for different number systems

01011101b binary system
123o oktal system
1AFh hexadecimal system
1000 decimal system

 6

ON boolean true (numerical 255 at byte values and -1 at word values)
OFF boolean false(numerical 0 for byte and word values)

EXTERNAL FILES

IMPORT
The Import keyword causes the compiler to insert external files (Basic Code, Tables, ...) during compilation.
This is great for complex programs and makes your source code better readable. Any File with any
extension is insertet, but must of course be a BASIC Source code or table, readable by the compiler.

IMPORT "\MYFILE.BASSyntax: Import [Datei]

SPECIAL PORTS
Special digital ports
All special digital ports of the unit are connected to pull up resistors as far as they are inputs. Special Ports
are fixed concerning their usage and their Function.

START and RESET
This ports may be connected to push buttons if a manual start or stop of user programs is required. Push the
START button to run a BASIC program, downloaded previously to the unit's memory. Press RESET to stop a
running program and entering the download mode.
To ensure proper function, the AUTOSTART jumper at the unit must be removed. (JP2)

The START port status can be requested using the CONFIG REGISTER.

FREQ1 and FREQ2
This ports are always and exclusively inputs. The primary operation is frequency counting in the range from
0 to 32kHz. FREQ 1 supports the feature to synchronize the system clock if a DCF77 receiver module is
connected to this port. The synchronization is done automatically in the background, i.e. no user action is
required. The receiver module has to provide a open collector output to switch this port lo. Use shielded
cables to connect the receiver module to the unit. This ports may be used alternatively in Event counting
mode. The trigger is negative edge level sensitive for all modes.

FREQ1 and FREQ2 are predefined. No user definition has to be done

IRQ
The IRQ port is alwas input and serves for the immediate reaction on an external request i.e the current
operation is interrupted an the external event is serviced by a appropriate Interrupt Routine. The IRQ input is
negative edge triggered.
The interrupt source can be canged e.g to an automatically generated timer interrupt. Moreover the IRQ line
can be used as input port when the IRQ is not used as interrupt source.

IRQ is predefined as INTERRUPT. The user has to define the Interrupt vector INTERRUPT

BEEP
The BEEP port is always an output an usually connected to a piezo buzzer. It serves for program or alert
status indications during normal program operation. During debugging your program this buzzer may be
useful also. The audio frequency ranges from 10kHz to 100Hz.

The BEEP Port is predefined. No user definition has to be done

 7

RXD/TXD
The serial interface (RXD=input TXD=output) is designed for 5V digital logic level, You never must connect a
RS232 interface directly to this ports. This would immediately result in permanent damage to the C-Control
Computer

RXD and TXD are predefined. No user definition has to be done

STANDARD DIGITAL I/O PORTS
The C-Control Computer provides two standard byteports (16 bitports, P1 to P16). Each bitport can be used
as input or output port. Both byteports are provided with software switchable pull up resistors (30k). Each of
the eight analog ports (A/D-converter) can be alternatively used as a standart digital I/O port if this function is
enabled in the configuration register (see Chapter CONFIG REGISTER) Each of this ports can then be
considered as standard bitport (P17 to 24) but has no switchable pull up resistor. After reset all ports are
usually Inputs. Please note that some options my change this (See Chapter CONFIG REGISTER). A DEACT
instruction will make the port an INPUT, a write instruction will make the port an output . See Chapter
INSTRUCTIONS AN KEYWORDS for informations on read and write a port.

 define MyBitPort1 as PORT[1]

define MyBytePort2 as BYTEPORT[2]

DIGITAL INPUT PORT
Digital input ports are used to request an external switch status. A digital input is on undefined logical level if
nothing is connected (eg. an external switch is open) Therefore it is recommended to tie the port to a defined
level eg. conncting a pull up resistor to the port. In this case a closed switch causes the port reading as
"false" (logical lo level) and an open switch will be read as "true" (logical hi level) After applying the
operation voltage or after entering the reset state all ports are switched to inputs.
Internal pullup resistors can be activated by the CONFIG 1 REGISTER and may save you some componets
in your project. As well as for other often needed procedures, the library already contains the program
modules for switching the pullups.

DIGITAL OUTPUT PORT
If a digital port is switched to output you can connect circuits, transistors or LEDs with current limiting
resistors. The maximum load (output) current of each port must not exeed 10mA. In all cases a current limit
(e.g by connecting a resistor) has to be ensured. Otherwise a immediate and permanent damage of ports
can result. The port function (if a port is input or output) is controlled during program execution. After
applying the operation voltage or after entering the reset state all ports are switched to inputs.

DEDICATED DIGITAL PORTS
The operating system offers some special functions which occupy dedicated ports. Other than the special
ports, the dedicated ports can be used as Standard digital I/O Ports. They become dedicated if special
functions (eg. read/write to the Extended Ports or r/w to the Infra Red Interface)

I²C-BUS INTERFACE (PORT 9 and 10)
Any usage of the I²C Functions (see chapter I²C OBJECT) will occupy this ports to work as I²C Bus Interface
and the ports can not be used freely any more. System Functions (e.g CHIPRAM or CHIP CARD BOOT) will
also need the appropriate hardware connected to this ports.

RC5 IR INTERFACE (PORT 2 and 3)
Any usage of the RC5 IR Functions (see chapter IR OBJECT) will occupy this ports to work as RC5 coded R

 8

Interface and the ports can not be used freely any more.

RF INTERFACE (PORT 2 and 3)
Any usage of the RF Functions (see chapter RF OBJECT) will occupy this ports to work as special coded RF
Interface and the ports can not be used freely any more.

EXTENDED PORTS

The Extended Ports are not really property of the Unit M 2.0 but they are treated this way by the Operating
System. Therefore a connected IIC-Bus PCF8574 Digital Ports circuit can be accessed in the same simple
way as the standard ports. See Chapter INSTRUCTION AND KEYWORDS for informations on read and
write a port.

define MyBitPort17 as PORT[17]

define MyBytePort4 as BYTEPORT[4]

You can use the Extended Ports if a PCF8574 is connected to the IIC-BUS. For this case you may not use
the IIC-BUS Object, because the PCF8574 is fully supported by the Operating System This integrated circuit
provides you 8 I/O Ports. The port index (or port number) depends on the address given to the PCF8574
The address consists of a 4 bit fixed and 3 bit user selectable address space. The LSB defines as for I²C-
Bus devices usual the read/write action. Removing a jumper will cause the corrsponding address bit to be HI.

0 1 0 0 x x x 0
I--------------I------------I----I
FIX ADR ADR R/W

 0 1 0 0 x x x 1
I--------------I------------I----I
FIX ADR ADR R/W

READ- Operation, LSB HI WRITE- Operation, LSB LO
The table shows the relation between address and port assignment

PCF 8574 ADR 0 Ports 17 - 24 BYTEPORT 3
PCF 8574 ADR 1 Ports 25 - 32 BYTEPORT 4
PCF 8574 ADR 2 Ports 33 - 40 BYTEPORT 5
PCF 8574 ADR 3 Ports 41 - 48 BYTEPORT 6
PCF 8574 ADR 4 Ports 49 - 56 BYTEPORT 7
PCF 8574 ADR 5 Ports 57 - 64 BYTEPORT 8
PCF 8574 ADR 6 Ports 65 - 72 BYTEPORT 9
PCF 8574 ADR 7 Ports 73 - 80 BYTEPORT 10

PCF 8574A ADR 0 Ports 81 - 88 BYTEPORT 11
PCF 8574A ADR 1 Ports 89 - 96 BYTEPORT 12
PCF 8574A ADR 2 Ports 97 - 104 BYTEPORT 13
PCF 8574A ADR 3 Ports 105 - 112 BYTEPORT 14
PCF 8574A ADR 4 Ports 113 - 120 BYTEPORT 15
PCF 8574A ADR 5 Ports 121 - 128 BYTEPORT 16
PCF 8574A ADR 6 Ports 129 - 136 BYTEPORT 17
PCF 8574A ADR 7 Ports 137 - 144 BYTEPORT 18

 Using the IIC-BUS the LCD always has to be initialised even it is not used:
 LCD.INIT
 LCD.OFF

 9

ANALOGPORTS
The C-Control Computer offers eight A/D ports and two D/A-ports (witch servo drive capabilities as alternate
function). The maximum input conversion range of the A/D-converters is fixed by the applied reference
voltage. The maximum output voltage of the D/A-converters is independent of the reference voltage and
always as high (and accurate) as the operating voltage.
Reference voltage
Before using the A/D-converters, the reference voltage has to be connected with the reverence voltage input
of the C-Control Computer. This voltage defines the maximum input voltage applied to the A/D converters
and will cause a A/D conversion result of 255. For the most applications the 5V operating voltage is sufficient
accurate and can directly be used as reference voltage. (Jumper REF onboard the Unit) If more precission is
required, an external reference voltage can be applied to the Uref input. All measurements of the A/D
converters are related to GND

A/D CONVERTER PORTS
All kind of sensors may be connected to the A/D-ports, if they match the maximum A/D input voltage. The
A/D converters have 8 bit resolution i.e one digit corresponds to 19.6mV. Protect the A/D-ports with a 10k
serial resistor if the input voltage applied to the ports can exeed voltages above 5V. This resistor will not
affect the conversion accuracy and provides a over voltage protection up to 12V.See chapter CONFIG
REGISTER for informations on use the AD ports in digital mode and chapter INSTRUCTIONS AND
KEYWORDS for informations on reading an analog port

define MyAnalogIn as AD[1]

D/A CONVERTER PORTS
The two 8 bit D/A converter are PWM (Pulse Width Modulated) converters. The output pulse consissts of
256 seperate sections swiched to logic lo or hi related to value of the D/A conversion output. If a conversion
output of 128 is required, 128 sections are set to hi and the remaining 127 sections are hold lo. This
waveform is repeated at a rate of 1930Hz, each single section is of 2us width. To convert this PWM signal
into a true analog value a simple RC low pass filter is working fine. Attention has to be paid to the remaining
ripple (deviations from ac onstant output voltage, varying with tim) which depend on the load, connected to
the RC filter. For more precision an active circuit is recommended. Driving lamps or LEDs with this PWM do
not require a filter because the repetition rate is to fast to be realised as flickering of light. Please note that a
filtered PWM output is not exactly at zero volts if the D/A converter output is set to zero. The reason is that
the port output lo voltage is approx. 50mV and a 2us pulse is remaining at the D/A output even the converter
is programmed to a zero output. In this case the filter output will be around 70mV for a D/A converter output
programmed to zero. The D/A-ports can be programmed for an alternate servo drive

function. See chapter CONFIG REGISTER for informations on use in Servo Mode and chapter
INSTRUCTIONS AND KEYWORDS for informations on writing to an analog port

define MyAnalogOut as DA[1]

SYSTEM PROPERTIES
System Properties are predefined Symbols and can be usually be read or write

BEEP
The "Beep" Instruction generates a square wave output at the Beep port. The BEEP port is always an output
and usually connected to a piezo buzzer. He serves for program or alert status indications during normal
program operation. During debugging your program this buzzer may be useful also. The audio frequency
ranges from 10kHz to 100Hz. The Tone parameter may range from 1 to app 100. For larger values the
change in frequency is almost not audible.

 10

Syntax: Beep Tone, duration, pause BEEP 10,100,20

Tone
The Tone audio frequency has to be defined. The value may be inthe range from 1 to app. 60. Values higher
than 100 are possible but don't cause much difference in frequency.

Duration
Duration in 20ms steps duration in ms * 20

Pause
Pause after the tone in 20ms steps

RTC
Real Time Clock (RTC) provides the user with the system time. The RTC can be manually set or, if a DCF77
receiver is connected to FREQ1 Port it will be set to current time automatically. All Values are byte values.
The "YEAR" property requests/sets the year from the realtime clock
The "MONTH" property requests/sets the month from the realtime clock
The "DAY" property requests/sets the day of the month from the realtime clock
The "DOW" property requests/sets the day of the week from the realtime clock (value 1 to 7, 1 is monday)
The "HOUR" property requests/sets the hour from the realtime clock
The "MINUTE" property requests/sets the minute from the realtime clock
The "SECOND" property requests/sets the second from the realtime clock

IF SECOND = 10 THEN GOTO X Example for request second

SECOND = 0

Example for set timer

TIMER
The Timer can be considered as system variable, containing the 20 ms Timer value. The timer runs up to
32767 and stops if this value is reached. The timer can be written i.e. it can be preset to a certain value or
cleared. The timer also can be used to generate 20ms interrupts. The Timer content is a word value.

IF TIMER = 10000 THEN GOTO X

MyWord=TIMER/100
Example for request timer

 TIMER = 0 Example for set timer

FREQ1 and FREQ2
The primary operation is frequency counting in the range from 0 to 32kHz. FREQ 1 supports the feature to
synchronize the system clock if a DCF77 receiver module is connected to this port. This ports may be used
alternatively in Event counting mode. FREQ values are word values.
The trigger is negative edge level sensitive for all modes.

FREQUENCY COUNTING
In mode Frequency counting FREQ is a read only word value, containing the measured Frequency in 1Hz
units. Counting is done at 1s gate time. For lower frequencies it may be suitable to measure events within a
certain time instead

 11

IF FREQ1 = 10000 THEN GOTO X

MyWord=FREQ/100

Example for request counter

EVENT COUNTING
In mode event counting FREQ is a read/write value. For Instruction to switch the mode please see the
chapter CONFIG REGISTER

IF FREQ1 = 10000 THEN GOTO X

MyWord=FREQ/100

Example for request FREQ1

 FREQ1 = 0 Example for set FREQ1

INSTRUCTIONS AND KEYWORDS

INPUT/OUTPUT
Some of the available Input/output instructions can be redirected form the (default) serial interface
to the Objects LCD,CONFIG,IIC,RF or IR. See Chaper OBJECTS for reference.
For Floatingpoint Input/Output (Unit ADVANCED only) see Chapter FOATING POINT MODULE

BAUD
The Baud instruction defines the serial interface speed at program runtime. A value or constant is expected
as parameter. Variables are not supported. The parameter does not corresponds directly to the baudrate, it
is rather a symbolic constant for the true speed. The default speed is 9600 Baud, 8N1

BAUD R1200
Syntax: Baud Rate

Rate is a constant or a numeric value. Some baudrates can be selected with predefined constants:
R1200 (1200 Baud), R2400 (2400 Baud), R4800 (4800 Baud) oder R9600 (9600 Baud)

INPUT
The Input instruction expects one or more bytes provided by the serial interface A variable is expected as
parameter. The received bytes are expected to be ASCII characters. The reception is terminated if Carriage
Return (&H0D) is received. The value is stored into the variable and then program execution is continued.
Program execution is on hold until the input is terminated.

INPUT Myword
Syntax: Input Variable

GET
The Get instruction waits for a single byte provided by the serial interface or provided (through redirection)
from one of this objects: CONFIG,IIC,IR or RF The received byte is stored into a variable. If an IR or RF
Object is affected, two bytes of data (address and data byte) must be read. See Chapter OBJECTS for
reference
 GET MyByte Syntax: Get Variable

PRINT
The PRINT instruction transmits strings,variables or constants of to the serial interface. A semicolon at the
end of a "Print" instruction causes a Line Feed suppression. (ASCII 13, 10). For transmission of more

 12

arguments with a single"Print" instruction you may use the concatenation operator &
The Print instruction is also applicable to the LCD Objekt and the IIC Object. See the Chapter OBJECTS for
reference.

Printing the character # is illegal because this character is internal used to precede a Control Sequence

Syntax: Print Argument [& Argument [& ...]] [;] PRINT "WERT :" & Myword & " V"

PUT
The PUT instruction transmits a single byte to the serial interface or (through redirection) to one of this
objects: CONFIG,IIC,IR or RF. See Chapter OBJECTS for reference

 PUT MyByte Syntax: Put Variable

variable byte variable or constant

INTERNAL/EXTERNAL DATA STORAGE
In any case you want to save important system data (e.g. system configuration or aquired data) in non
volatile manner you may use the C-Control EEPROM emulation. The data is stored straight sequential, and
a certain location can not be read directly but all previous locations must be read before. The data stored is
always in word format. Even you only store bytes a full word of Memory is used always. For Floatingpoint
memory operations (Unit ADVANCED only) see Chapter FOATING POINT MODULE

OPEN# FOR READ
OPEN# FOR WRITE
Resets the data pointer to the the memory start location, and is always required prior to the first read/write
operation of a sequence. This is also needed to initialise the FILEFREE value.

CLOSE#
This will save the current data pointer to be able to restore it, if data have to be append to the aready existing
data. The data pointer remains saved even after reset or power off/on,

OPEN# FOR APPEND
The data pointer is set to the last writen location, ready to append data.

INPUT#
This will read the location addressed by the data pointer. The content of the data pointer is incremented after
read.
 INPUT# MyWord Syntax: INPUT# Variable

variable: word/byte variable

PRINT#
This will write to the location addressed by the data pointer. The content of the data pointer is incremented
after write
 PRINT# MyWord
Syntax: PRINT# Variable

variable: word/byte or constant

FILEFREE
FILEFREE contains the remaining memory space in number of words. FILEFREE is not initialised before the
first write operation to memory

 13

 IF FILEFREE = 0 THEN GOTO X Example for request FILEFREE

EOF
EOF contains the boolean value if the last position of a previously created data file is reached when reading.
EOF is true (-1) if end of file is reached or false (0) if not
In principle it is a compare of the current datapointer and the the saved pointer (done with CLOSE#)

 IF EOF THEN GOTO X Example for request EOF

EEPROM.WRITE
EEPROM.APPEND
EEPROM.READ
Moving just few bytes to the EEPROM there is an shorter option available, which manages file close and
open automatically in background.

EEPROM.WRITE value1,value2
EEPROM.APPEND value3
EEPROM.READ value1, value2, value3

Syntax: EEPROM.Instruction [parameter,]

Parameter: word/byte variable or constant

LOOKTAB
TABLE
A Data File sometimes may be requested as read only (e.q converting sensor values by a table). The
required set of bytes can be allocated to a table. The Table is embedded in the compiler generated token
code and therefore read only. The internal data storage format for table values is always word format
 The LOOKTAB instruction reads a word from a table. Looktab may either be used as function or as
instruction.

LOOKTAB MyTab,MyIndex,MyWord

TABLE myTab
0 1 2 3 4 5 6 7
END TABLE

Syntax: Looktab(Table, Index, Variable)
 Variable = Looktab(Table, Index)

Index: word/byte variable or constant
Variable: word/byte variable

CHIPRAM
Chipram offers easy direct addressed access to Microchip I²C-Bus EEPROMs connected external to the
Ports 9 and 10. Please see Chapter DEDICATED DIGITAL PORTS. Applicable are EEPROMS up to 64
kByte capacity.

Syntax: CHIPRAM(address)

Address: word/byte variable or constant

Myword=CHIPRAM(MyAddress) Example for reading a value

CHIPRAM(MyAddress)=MyWord
Example for writing a value

 14

STANDARD DIGITAL PORTS
After reset all ports are usually Inputs. please note that some options my change this (See Chapter CONFIG
REGISTER). A DEACT instruction will make the port an INPUT, a write instruction will make the port an
OUTPUT (ecept the ports which are read or write only)

PORT READ/WRITE
Prior to any operation of ports, a port has to be defined (see Chapter DECLARATIONS and DEFINITIONS)
Reading a Bitport returns a boolean value which is ON (true) for a port that is logic high level and OFF for a
port that is logic low level. Bitports may also accessed by read/write with the numerical value 0(false) and -
1(true) instead of ON and OFF
MyBitPort = -1would also work to set the port to ON but is not recommended. See Chapter DATA TYPES
also.

IF MyBitPort1=OFF THEN GOTO X

IF MyBitPort1=ON THEN GOTO X

Example for request Bitport input status

Example for request Byteport input status IF MyBytePort1=123 THEN GOTO X

MyBitPort1=OFF

MyBitPort1=ON

Example for setting a Bitport output

MyBytePort1=123 Example for setting a Byteport output

TOG
TOG (toggle) is an instruction which changes the current port status to its opposite. I.e a port becomes ON if
it was previously OFF and reverse. Prior to use TOG, the affected port has to be switched to OUTPUT (e.g
MyPort=OFF) otherwise TOG will not work. TOG is not working with Byteports and Extended Ports

Syntax: TOG(bitport)

TOG MyBitPort Example for toggle a bitport

PULSE
PULSE is an instruction which changes the current port status for 5us and then returns to its previous status
I.e a port becomes ON for a very short time if it was previously OFF and reverse. Prior to use PULSE, the
affected port has to be switched to OUTPUT (e.g MyPort=OFF) otherwise PULSE will not work. PULSE is
not working with Byteports and Extended Ports

TOG MyBitPort Syntax: PULSE(bitport)
Example for pulse a bitport

DEACT
DEACT will cause an output port to return to operate as input

Syntax: DEACT(bitport) DEACT MyBitPort1

DEACT MyBytePort1
 DEACT(byteport)

Example for setting a port to input mode:

 15

EXTENDED PORTS
Extended Ports are handled in the same manner as the standard digital ports, except the fact that PULSE
and TOG are not applicable. See chapter DECLARATION and DEFINITIONS for information on external port
assignment

AD PORTS
Prior to any operation of ports, a port has to be defined (see Chapter DECLARATIONS and DEFINITIONS)

Each of the eight analog ports (A/D-converter) can be alternatively used as a standart digital I/O port if this
function is enabled in the configuration register (see Chapter CONFIG REGISTER) Each of this ports can
then be considered as standard bitport (P17 to 24) but has no switchable pull up resistor. If the AD Ports are
used in digital mode they are handled in the same manner as the standard digital ports, except the fact that
PULSE and TOG are not applicable.
Reading the AD Ports in analog mode (default) will return a Byte value representing the applied voltage to
the AD input.

IF MyAnalogIn = 100 THEN GOTO X

MyByte=MyAnalogIn / 10

Example for read an AD Port

DA PORTS
Prior to any operation of ports, a port has to be defined (see Chapter DECLARATIONS and DEFINITIONS)
The D/A-ports can be programmed for an alternate servo drive function. See chapter CONFIG REGISTER
for informations on use in Servo Mode Writing to the the DA Ports in analog mode (default) will require a
Byte value representing the average output voltage to the DA port.

MyAnalogOut =10 Example for set a DA Port

MATH FUNCTIONS
For Floatingpoint Math Functions (Unit ADVANCED only) see chapter FOATING POINT MODULE

MAX
The MAX function returns the larger one of two byte or word size values.

MyWord=MAX(MyByte1,MyByte2) Syntax: Variable = Max(value1, value2)

 Variable: Variable of Byte oder Word type
 value1 Variable, value oder constant of Byte oder Word type
 value2 Variable, value oder constant of Byte oder Word type

MIN
The MIN function returns the smaller one of two byte or word size values.

MyWord=MIN(MyByte1,MyByte2) Syntax: Variable = MIN(value1, value2)

 Variable: Variable of Byte oder Word type
 value1: Variable, value oder constant of Byte oder Word type
 value2: Variable, value oder constant of Byte oder Word type

 16

ABS
The ABS function returns absolute value of a word or byte size value. It works for bytes but usually it makes
no sense because byte values are unsigned

MyWord=ABS(MyWord)
Syntax: Variable = ABS(value1)

 Variable: Variable of Byte oder Word type
 value1: Variable, value oder constant of Byte oder Word type

SGN
The SGN function returns 1 if the value is >0 and -1 if the value is <0. It works for bytes also but usually it
makes no sense because byte values are unsigned

MyWord=SGN(MyWord) Syntax: Variable = SGN(value1)

 Variable: Variable of Byte oder Word type
 value1: Variable, value oder constant of Byte oder Word type

RAND
RANDOMIZE
The RAND function returns a random word value. The values will be random, but the sequence of random
values will always be the same unless you use RANDOMIZE X for different initialisations.
RANDOMIZE TIMER will load the running system timer as initialisation

RANDOMIZE 2000

MyWord=RAND
Syntax: RANDOMIZE init
 Variable = RAND

 Variable: Variable of Byte oder Word type
 init: Variable or constant of Byte or Word type

SQR
The SQRT function returns an aproximated value of the squareroot.

MyWord=SQRT(MyWord) Syntax: Variable = Sqrt(value)

 Variable: Variable of Byte oder Word type
 Value: Variable, value or constant of Byte or Word type.

MOD
The MOD (Modulo) function returns the remainder of an integer division.

MyWord=MyByte1 MOD MyByte2) Syntax: Variable = value1 MOD value2

 Variable: Variable of Byte oder Word type
 value1 Variable, value oder constant of Byte oder Word type
 value2 Variable, value oder constant of Byte oder Word type

 17

MATH AND BOOLEAN OPERATORS
For Floatingpoint Operators (Unit ADVANCED only) see Chapter FOATING POINT MODULE
When computing terms with operators and functions the rank in hierarchy is most important. The rank is as
follows

RANK OPERATOR
9 ()

8 MATH FUNCTIONS

7 NEGATIVE SIGN

6 MULTIPLY DIVISION MOD SHL SHR

5 PLUS MINUS

4 COMPARES

3 NOT

2 AND

1 OR

+ - / * Basic Arithmetic operations

COMPARES
> (larger) <(smaller) >=(larger or equal) <=(smaller or equal) =(equal) <>(not equal)

Compares are legal for byte, word and constant values, as well as terms and functions

 IF MyByte1 <= MyByte2 THEN GOTO X

IF MyByte1*10>SQRT(MyByte2) THEN GOTO X

SHL
Bitwise logical shift left
SHL (logical shift left)is legal for byte, word and constant values. The result is equal to a multiply by 2 for
every single shift.

MyByte1 = MyByte2 SHL 8 Syntax: Variable = value1 SHL value2

 Variable: Variable of Byte oder Word type
 value1 Variable, value oder constant of Byte oder Word type
 value2 Variable, value oder constant of Byte oder Word type

SHR
Bitwise logical shift right
SHL (logical shift right) is legal for byte, word and constant values. The result is equal to a division by 2 for
every single shift.

MyByte1 = MyByte2 SHR 8 Syntax: Variable = value1 SHR value2

 Variable: Variable of Byte oder Word type
 value1 Variable, value oder constant of Byte oder Word type
 value2 Variable, value oder constant of Byte oder Word type
AND, OR XOR NOT
Are boolean operators used for bitwise manipulation of variables or constants.

 18

MyWord=MyByte1 MOD MyByte2 Syntax: Variable = value1 AND value2

 Variable: Variable of Byte oder Word type
 value1 Variable, value oder constant of Byte oder Word type
 value2 Variable, value oder constant of Byte oder Word type

Using ths operators with IF then, they behave like a function call that accepts two parametres and
returns either True or False.

IF (MyByte=1) OR (MyByte=2) THEN GOTO X

PROGRAM FLOW CONTROL

PAUSE
Holds a program for a specified time
PAUSE is the simplest instruction for flow control. It stets the program for a cerain time on hold. While a
pause is active, system interrupts (e.g. System Timer) are still executed, but the user interrupt INTERRUPT
is executed after pause has ended. The Pause value is 20ms units, i.e PAUSE 50 will cause a 1 second
pause.

Syntax: PAUSE = value1

PAUSE 25 Value1: Variable, value oder constant of
 Byte oder Word type.

FOR, TO, NEXT, STEP, EXIT FOR
FOR TO NEXT repeats a group of statements a specified number of times.

Once the loop starts and all statements in the loop have executed, step is added to counter. At this point,
either the statements in the loop execute again (based on the same test that caused the loop to execute
initially), or the loop is exited and execution continues with the statement following the NEXT statement.
The step argument can be either positive or negative. Other as usual the loop is exited at a exact match of
Counter and End only. EXIT FOR will cause an early exit.
You can nest FOR NEXT loops by placing one FOR NEXT loop within another. Give each loop a unique
variable name as its counter.

 FOR MyWord=MyStart TO MyEND STEP MyStep

PRINT MyWord

IF MyPort=OFF THEN EXIT FOR

NEXT MyWord

Syntax: For [Counter] = [Start] To [End] [Step [Incr]]
 [Exit For]
 Next

Counter: Variable used as counter.
Start: Variable, value or constant which is moved to the counter variable as start condition.
End: Variable, value or constant, the counter variable is compared with.
Incr: Required if STEP is used. Term, variable, value or constant defining the increment.
DO, LOOP UNTIL, EXIT DO
Repeats a block of statements while a condition is True or until a condition becomes True.

 19

To create a simple program loop, you should use DO LOOP UNTIL. The loop is executed at least one time
and may be quit early with Exit Do. The Until instruction at the end of the loop checks the expression to be
True or False. True will cause to exit the loop.

The Exit Do can only be used within a Do...Loop control structure to provide an alternate way to exit a
Do...Loop. Any number of Exit Do statements may be placed anywhere in the Do...Loop. Often used with the
evaluation of some condition (for example, If...Then), Exit Do transfers control to the statement immediately
following the Loop.
When used within nested Do...Loop statements, Exit Do transfers control to the loop that is one nested level
above the loop where it occurs.

Syntax: Do
[instruction]
 [Exit Do]
Loop (Until [expression])

DO

Mybyte=Mybyte+1

IF MyPort=OFF THEN EXIT DO

LOOP UNTIL MyByte=5

IF, THEN, ELSE END IF
Conditionally executes a group of statements, depending on the value of an expression.

You can use the single-line form (first syntax) for short, simple tests. However, the block form (second
syntax) provides morestructure and flexibility than the single-line form and is usually easier to read, maintain,
and debug. A block IF statement must be the first statement on a line. The block IF must end with an END IF
statement.

Syntax1: If [expression] Then [instruction] [Else] [instruction]

IF MyByte=10 THEN GOTO X ELSE GOTO Y

 Syntax2: If [expression] Then
 [instructions]
[Else]
[elseinstructions]
End If

IF MyWord=10 THEN

 PRINT "This is "

 PRINT MyWord

ELSE

 PRINT "No Match"

 PRINT "found"

END IF

SELECT CASE, CASE, CASE ELSE
 Executes one of several groups of statements, depending on the value of an expression.

If matchexpression matches any Case expression, the statements following that CASE clause are executed
up to the next CASE clause, or for the last clause, up to END SELECT. Control then passes to the statement
following END SELECT If matchexpression matches an expression in more than one CASE clause, only the
statements following the first match are executed.

The CASE ELSE clause is used to indicate the elseinstructions to be executed if no match is found between
the matchexpression and an Case expression in any of the other Case selections. Although not required, it is
a good idea to have a CASE ELSE statement in your SELECT CASE block to handle unforeseen
matchexpression values. If no Case expression matches matchexpression and there is no CASE ELSE
statement, execution continues at the statement following END SELECT

 20

SELECT CASE statements can be nested. Each nested SELECT CASE statement must have a matching
END SELECT statement.

Select Case matchexpression
[Case expression]
[instructions]
 [Case Else expression]
[elseinstructions]

SELECT CASE i

 CASE 1

 PRINT "1"

 CASE 2

 PRINT "2"

 CASE ELSE

 PRINT "No Match"

END SELECT

 End Select

WAIT
The Wait instructionis used as level-sensitive control.
The processor waits when the expressions is False. When the expression is True, the statement is executed.
The expression (or it's result) is treated as boolean value, therefore wait responds to True and False only

WAIT (Mybitport = ON) Syntax: WAIT [expression]

Because a bitport is always boolean WAIT (MyBitPort) it may be written:

GOTO
The GOTO Instruction causes a jump to a label in source code. No return address is saved

 MyLabel: IF (MyBitPort=OFF THEN GOTO MyLabel Syntax: GOTO Label

The example is equal in functionas: WAIT MyBitPort.

FUNCTION
The Function keyword initialises a new function. A function may request parameter when it is called. To save
memory you may use the REF keyword to create a reference for variables i.e. the parameters passed to the
functions occupies the same bytes of memory as the reference. Using this reference variables you may save
a lot of memory because always only the set of reference variables is used for passing the parameters to a
function. You may also return a value when the function is exited.

Syntax: Function [Name] ([[Parameter] As [Data type] | [Parameter] Ref [Variable], ...])
 [instructions]
 Return [expression]

FUNCTION MyFunction(X as byte Y as byte)

 X=2*Y

 RETURN 2*X

END FUNCTION

PRINT MyFunction(1,2)

 End Function

Name: Valid identifier
Parameter: Optional. Valid variable identifier
Data type: Required if parameter variable is not a REF Type variable .
Variable: Required if parameter variable is a REF Type variable Identifier of a declared variable.

 21

Expression Optional. Term, variable, value or constant as return value

OBJECTS
The Config Object is introduced together with the newer generation of the C-Control computers and is part of
the Extended Functions. For any access to Objects belonging to the Extended Functions it is required to
activate the Object prior to any read/write action. Because only one Object may be active at the same time it
is required to cose the object before activating another Object.

CONFIG REGISTER
Two internal registers may be written to set up a special system configuration e.g alternate port functions or
can be read to aquire a certain system status flag e.g. radio controlled clock synchronisation.

CONFIG REGISTER 1

Bit 0 - Switch both PWM-DACs to SERVO-Mode

Bit 1 - Switch frequency counter 1 to event counter mode

Bit 2 - Switch frequency counter 2 to event counter mode

Bit 3 - switch on PULLUP- resistors for PORT 1 to 8

Bit 4 - switch on PULLUP- resistors for PORT 9 to 15

Bit 5 - radio controlled synchronising of RTC. Clock is Sync

Bit 6 - IIC-BUS Communication Error

Bit 7 - Mirrors logic level at Start button input port

The mentioned action is performed on setting the corresponding bit to HI

CONFIG REGISTER 2

Bit 0 - IRQ disabled and replaced by 20 ms timer interrrupt

Bit 1 - IRQ line logic level

Bit 2 - IRQ disabled, replaced by RF-Module interrupt.

Bit 3 - IRQ disabled, replaced by IR-Module interrupt.

Bit 4 - AD-Ports now acting as digital BYTEPORT 3, external

 IICBUS byteport 3 is disabled

The mentioned action is performed on setting the corresponding bit to HI

CONFIG.INIT
Activate the Object to get access to its registers for read/write operation. Close other Objects prior to open.

Syntax: OBJECT.instruction

CONFIG.PUT
CONFIG.GET
Access the Config register for read/write a binary value

CONFIG.OFF
Close the Object prior to open any other Object.

 22

Syntax: OBJECT.instruction

CONFIG.INIT

CONFIG.GET MyByte

MyByte = MyByte OR 00000001b

CONFIG.PUT MyByte

CONFIG.OFF

The Example shows how to read/write
a special bit to set up a configuration
(here: PWM DACs to SERVO MODE)

I²C-BUS OBJECT
The IIC Object supports all basic functions to design I²C-Bus driver programs in an very easy manner. The
I²C-Bus is connected to PORT 9 (SDA) und PORT 10 (SCL). An I²C-BUS error flag can be accessed at the
CONFIG 1 register. Even Word sized values are accepted, the bus will transfer a single byte (Lo-Byte in
case of a word) only

Beside of the general INIT und OFF procedure the I²C-Bus Object supports some more I²C-Bus Object
special Instructions required for Bus control.

IIC.INIT
Activate the Object to get access to its registers for read/write operation. Close other Objects prior to open.

Syntax: OBJECT.instruction

IIC.START
IIC.STOP
Send a START CONDITION prior to any bus access. Send a STOP CONDITION to terminate bus access

Syntax: OBJECT.instruction

IIC.GET

IIC.INIT

IIC.START

IIC.SEND MyAddress

IIC.SEND MyByte

IIC.STOP

IIC.OFF

IIC.SEND
Access the I²C bus to read/write a binary value.

Syntax: OBJECT.instruction Variable

variable: Variable, value or constant which is moved to the
 Bus at write acces.
 Variable the value is moved to at bus read access.
 Valid for word and byte size.

The Example shows writing the value Mybyte to a I²C Bus device at address MyAddress

IIC.OFF
Close the Object prior to open any other Object.

Syntax: OBJECT.instruction

 23

IR OBJECT
The IR Object supports all basic functions for infrared communication (based on the RC5 format) in an very
easy manner. The IR Receiver/Transmitter connected to PORT 2 (RX) und PORT 3 (TX).
The RC5 data format consists of a device address and a data byte reveived from (or transmitted to) a IR
remote device. Even Word sized values are accepted, IR.SEND/GET will transfer 6 bytes for command and
6 bytes for address and Toggle.

 RC5 FORMAT:
 13-12-11-10-09-08-07-06-05-04-03-02-01-00 DATA BIT
 S S T a4 a3 a2 a1 a0 c5 c4 c3 c2 c1 c0 RC5 Format

S = Start Bit (auto set/remove by the IR OBject)
T = Toggle
a = Address
c = Command

The IR MODULE expects a receiver connected at port 2 and the
transmitter connected to port 3

IR.INIT
Activate the Object to get access to its registers for read/write operation. Close other Objects prior to open.

Syntax: OBJECT.instruction

IR.INIT

IR.SEND MyAddress , MyByte

IR.OFF

IR.GET
IR.SEND
Access the I²C bus to read/write a binary value.

Syntax: OBJECT.instruction Address,Data

Address: Variable or constant which is send as address
 at write access (SEND)
 Variable, the received address is moved to at read
 access. Valid for word and byte size. IR.INIT

IR.GET MyAddress , MyByte

IR.OFF

Data: Variable or constant which is send as data
 at write access (SEND)
 Variable, the received data is moved to at read
 access. Valid for word and byte size.

Both values (address and data) will be read as 255 if no valid data frame was received i.e if the receive
buffer is empty The receive buffer is set to 255 (address and data) if it has been read.

IR.OFF
Close the Object prior to open any other Object.

Syntax: OBJECT.instruction

 24

RF OBJECT
The RF Object supports all basic functions for RF communication (based on the HT12 format) in an very
easy manner. The RF Receiver/Transmitter connected to PORT 2 (RX) und PORT 3 (TX).
The HT12 data format consists of a device address and a data byte reveived from (or transmitted to) a FT12
remote device. Even Word sized values are accepted, RF.SEND/GET will transfer 4 bytes for command
and 8 bytes for address.

 FORMAT:
 11-10-09-08-07-06-05-04-03-02-01-00 DATA BIT
 c3 c2 c1 c0 a7 a6 a5 a4 a3 a2 a1 a0 HT12 Format

a = Address
c = Command

The RF MODULE expects a receiver connected at port 2 and the
transmitter connected to port 3

RF.INIT
Activate the Object to get access to its registers for read/write operation. Close other Objects prior to open.

Syntax: OBJECT.instruction

RF.INIT

RF.SEND MyAddress , MyByte

RF.OFF

RF.GET
RF.SEND
Access the I²C bus to read/write a binary value.

Syntax: OBJECT.instruction Address,Data

Address: Variable or constant which is send as address
 at write access (SEND)
 Variable, the received address is moved to at read
 access. Valid for word and byte size. RF.INIT

RF.GET MyAddress , MyByte

RF.OFF

Data: Variable or constant which is send as data
 at write access (SEND)
 Variable, the received data is moved to at read
 access. Valid for word and byte size.

Both values (address and data) will be read as 255 if no valid data frame was received i.e if the receive
buffer is empty. The receive buffer is set to 255 (address and data) if it has been read.

The Data Buffer may contain random Values if the receiver put out noise data (i.e. is working with open
Squelch / noise suppression)

RF.OFF
Close the Object prior to open any other Object.

Syntax: OBJECT.instruction

 25

LCD OBJECT
One of the mostly used features is the direct print to LCD function.

The LCD must be initialised with LCD.INIT once prior tu use. As this is a true initialisation of the LCD
onboard controller it takes app. 20ms. Once the LCD is ititialised, LCD INIT switchonly is recommended I
Due to technical reasons you must not use the "#" Character when writing to the LCD.

LCD.INIT
The LCD must be initialised with LCD.INIT once prior tu use. As this is a true initialisation of the LCD
onboard controller it takes app. 20ms. The LCD is cleared and Cursor i set to Line1 Position 1

LCD.INIT switchonly
Once the LCD is ititialised, LCD INIT switchonly is recommended, because it only reopens the Object LCD.

Syntax: OBJECT.instruction

LCD.CLEAR
Clears LCD and sets cursor to line 1 position 1. Takes up to 2ms execution time

Syntax: OBJECT.instruction
LCD.POS
Set cursor to line and position

Syntax: OBJECT.instruction Line,Column

Line: fixed values 1 and 2 are valid, only
Column: fixed values 1 to 16 are valid, only

LCD.SR
LCD.SL
Rotate display content Right/Left one column.

PRINT
The PRINT instruction transmits strings,variables or constants of to the LCD. For transmission of more
arguments with a single "Print" instruction you may use the concatenation operator &
Printing the character # is illegal because this character is internal used to precede a Control Sequence

LCD.PRINT "WERT :" & Myword & " V" Syntax: Print Argument [& Argument [& ...]] [;]

LCD.OFF
Close the Object prior to open any other Object.

Syntax: OBJECT.instruction

 26

START OPTION REGISTER
Both Units M 2.0 and ADVANCED feature a Start Option. Here a Hardware Option can be set at a non
volatile register. This may not be confused with the CONFIG REGISTER what sets an option at runtime and
keeps this options only until next reset. One the Start Option is activated it is maintained (even after reset)
until the corresponding bit in the register has been cleared.

The Start Option Register has following functions, switched to ON if the corresponding bit is set.

If you want to activate both
options, both bits ave to be set accordingly. The bitset is done with a special BASIC++ Instruction that is not
mentioned in this manual because it is not used in general.

 Bit 0 EEPROM BOOT OPTION
 Bit 1 AUTOSTART AFTER PROGRAMM DOWNLOAD
 Bit 2
 Bit 3
 Bit 4
 Bit 5
 Bit 6
 Bit 7

ADDTOKEN 39 This Instruction will cause to write the next value to the Start Option Reg.
ADDTOKEN 3 This value 0000 0011 will be written to the Start Option and setting
 bit 0 and 1

A Program to set the options will only contain just these two lines, and has to run only one time.
For your conveniance the programs to set and reset options are supplied at the samples in the folder START
OPTION

OPTION AUTOSTART
If the corresponding bit is set, it will cause an immediate Program Start after program download.
The Unit M 2.0 features no Auto Start Option.

EEPROM BOOT OPTION
The Operating System Versions above 2.05 offer the option to load a user program from a EEPROM e.g. in
form of a „Chip-Card“. This is very comfortable if the user program has to be updated in the field without a
PC available or if qualified personnel for a manual program download is not present. The EEPROM Boot
Option is set off als default but can be switched on. The procedure is similar to a usual downlaod. A RESET
causes the Unit to enter the Download Mode and the Operarting System tries to identify a EEPROM
containing a valid program file. If no EEPROM is connected or the loaded file is not valid, the usual
procedure (download from serial interface) is applicable. If a EEPROM containing a valid program file is
connected then the program is copied into the FLASH Memory.
A program file on EEPROM is defined to have the first byte in memory loaded with the value $55. The
memory beyond the program bytes can be used as data memory. The boot option is set on/off with a
dedicated small BASIC program. The boot file located on EEPROM is created with a special program
running on a C-Control Unit.

MAKE BOOTFILE
INSERT CARD

To make a Boot File on a chipcard, load the Program
MAKE_BOOTFILE.BAS (also in the folder START OPTION) into the unit
and run the program.

Insert the memory card as requested by the message on the LCD.
When the card is found by the program u are requested to start the
download as usual. The running program on your C-Control simulates a
regular download to flash but actually writes the program to the chipcard.

START DOWNLOAD

 27

While downloading the program size and progress of written bytes is
shown at the LCD.

BAS: XXXX BYTES
WRITING: XXX

The download is finished when the corresponding message is shown at
the LCD.

BAS: XXXX BYTES
WRITING: XXX

The Chipcard is ready to be used as boot device.

To aktive/deactivate the Boot Option run the programs run the dedicated programs, located in the folder
START OPTION

Please note that the Unit M 2.0 and M ADVANCED need different files to deactivate the boot option.

FLAOTING POINT MODULE (FPM)
The Floating Point Module is only available for the Unit-M Advanced

INTRODUCTION
The C-Control I Unit-M Advanced is based on the Operating System of a standard Unit-M 2.0, but has an
additional 32 bit Floating Point SoftwareModule and an extended program memory (22k). The memory for
variables has also been extended, but with some small restrictions. Unrestricted usable are 140 bytes, up to
240 bytes are usable if the File Function PRINT# is not used, or is used that way, (e.g for temporary
variables) that it does not matter if variables content in the range from 140 to 240 will be changed when
INPUT# is used.

Introducing the C-Control I Unit-M Advanced requires new data structures for floating point variables, what
can't be managed by the old CCBASIC compiler. Even though the standard functions (compatible to a M 2.0)
can still be used with the CCBASIC IDE, using the Floating Point Module requires the BASIC++ IDE, or the
more comfortable Development Environment WORKBENCH. The WORKBENCH can be found on the
installation CD as well as sample programms mentioned in this document. For Updates and news please
visit WWW.c-control-support.net frequently.

Floating Point Extension Library
The basic floating point operations are done on system level i.e. they are implemented as machine code
executables. Beside this, other functions e.g LN (natural logarithm) are executed on BASIC level, because
here it is useful to trade between accuracy and computing speed. Similar can be said for tools. e.g a
program module that allows to enter floating point values, using the c-control Keyboards. Here also the user
has the chance to change this modules to his specific requirements.

Limitations:
Implementing a Floating Point Module in a small machine like the C-Control does not affect the accuracy of
course, but has some other disadvantages. This means that the stack of the c-control is sufficient to do all
calculations, but requires some careful considerations of the user, programming his applications.
Same can be said for type convertations. Often this convertations are done in background, and the user may
directly move a integer value to a floating point variable. In such a small machine there is not enough
memory for the operating system do do things like this. Here the user has to take care himself to make
proper convertations when mixing variable Types.

Mismatching variable types will often cause wrong results in calculations and may crash the program
because of stack errors.

 28

DETAILS OF THE DATA TYPE FLOAT
Internal organisation
While the C-Control usually has just BYTE and WORD Types, even for non professionals easy to handle,
now there is the new Data Type Float. It consists on one byte exponent and 3 byte mantissa with sign.
Therefore a floating point value occupies 4 bytes (32 bit).

Value size
The flaoting point Module is able to compute values in the range of +-1 × 10±38.

Accuracy
You will find that even simple values can not be expressed 100% accurate with a 32bit Floating Point
System. The value 1234 will be shown as 1233.999, but this is not a computing error. It is based on the
limited accuracy of every 32 bit Floating Point System.

INTERNAL HANDLING OF FP OPERATIONS
For simple calculations it is not required to know this details. But very complex computations may lead to
stack overflows if some basics are not considered.
The C-Control Stack
The stack is a memory used for temporary storage of values. This can be values needed for calculations or
addresses, needed for a return from a subroutine.

For a brief information of stack usage see this example:

MyFloat=FloatVar1*Floatvar2

This expression is compiled to a token code that causes the operating system to do the following:

Put content of FloatVar1 to Stack
Put content of Floatvar2 to Stack
Pull last 2 stack entries from stack and push them into FP Accumulators (FPACC)
Multiply the FPACCs content
Push the result to stack
Pull the last stack entry from stack and move it to MyFloat

If the term is more complex, many values will be pushed to stack before any calculation is done and they are
removed from stack.

Example:
MyFloat=Floatvar3-FloatVar1*(Floatvar2+Floatvar4)

 Content of FloatVar3 to Stack

Content of Floatvar1 to Stack
Content of FloatVar2 to Stack
Content of Floatvar4 to Stack
Pull last 2 stack entries from stack, load them in to FPACCs
Add FPACCs
Push result to Stack
Pull last 2 stack entries from stack, load them in to FPACCs
Multiply FPACCs
Push result to Stack
Pull last 2 stack entries from stack, load them in to FPACCs
Subtract FPACCs
Push result to Stack
Pull last stack entry and move to MyFloat

You can see that even this simple term pushes 4 float values to stack, before calculation is done and values
are removed from stack. Here 16 Bytes Stack are used for this simple term. And remember that a subroutine
call also adds two bytes return address to stack.

 29

To avoid annoing wrong results or even crashes split your computation into small termes, what makes the
code better readable too.

Stack overflow will cause wrong results and even a crash or other unpredictable behaviour of the C-
Control

FLOATING POINT INPUT/OUTPUT
It is important to instruct the compiler that float values will have to be compiled. This is done with the
compiler instruction "OPTION FLOAT" , located the beginning of your program file. Remember that a float
takes 4 bytes, and be carefull on use of too much variables of this type. The internal assigning of variables to
the memory is done by the compiler automatically. The compiler also reserves further 16 bytes for internal
use for the FP System.

option float
define FV1 as float
define FV2 as float

ASSIGNMENTS
Now u can start to write a small program. This usually is done with assignment of variables used in the
program. The example shows the the different ways to do this.
The FPM is capable to handle 7 digits, more digits are ignored. The exponent can range +-38

 FV1=3

FV1=2.3
FV1=0.023
FV1=2.12345678
FV1=exp(1.602,-19) corresponds to 1.602E-19

INPUT
The FPM has an INPUT function as it is usual for WORDs and BYTEs

INPUT MyFloat ;
Terminal input of a FP Value and move to MyFloat
Because a FP value can be expressed in many different ways there are some regulations to consider:

1) The leading ZERO in front of the decimal point must be written 0.001 (not: .001)
2) The exponent must have two digits: 0.234E03 (not: E3)
3) After the decimal point one digit has to follow as a minimum 1234.0 (not:1234.)

Beside this the input format is widely flexible as the examples show:

An Input is terminated if the terminal sends

CR or any other non numeric character. If your input device sends CR LF on termination u have to remove
the LF (use getMyByte). Beside this all other considerations concerning the use of the serial interface are

0.000000000000000000000000001
1.123456789123456789
123456789123456789123456789
123456789123456789.123456789123456789
123456789123456.7891234E09
-12345678912345.123456789123456789E-12
12.3E12
0.0000000012345E13

 30

valid. All inputs may appear different when they will be shown on LCD or printed. This is caused by internal
formatting, but of course does not change the value itself.

OUTPUT
Output ot terminal or LCD is controlled by the Object that is active. All examples for the Unit ADVANCED
write to LCD

Outputformat:
Values larger than 1:
For output in decimal there are 7 digits available which are distributed to be located before and after the
decimal point.
But always at least one digit remains after the decimal point.
If this is not possible (e.g a value with more than 7 digits before decimal point) the scientific notation is used.
Is a value positive, a blank is written first and a minus otherwise.

Values 0 bis 1:
Very small values are shown decimal as long as there is only a single zero after the decimal point.
Otherwise here the scientific notation is used also.

 12345.123456 shown as 12345.12

123456.1234567 shown as 123456.1
1234567.1234567 shown as 1.23456E06
-1234.1234567 shown as -1234.123
1.234566E03 shown as 1234.123
0.0123456 shown as 0.012345
0.001234567 shown as 1.234567E-03

FPPRINT
Provides a formatted output to LCD or terminal
Because a FP value may have many digits it is useful to limit the number of digits after decimal point. The
decimal point counts as one digits .
FPRINT always means an output to LCD or terminal (depending on the active object) and is not written as
LCD.FPRINT if output is done to LCD

 FPPRINT (Term, Digits)

Examples for terms in FPPRINT:

FPPRINT(MyFloat*FLOAT(MyWord),5)
FPPRINT(MyFloat*MyFloat,5)

Note:
FPPRINT ignors the operator &
FPPRINT (MyVar,3) & "VOLT" is therefore no possible but easyly can be achieved by adding:
LCD.PRINT "VOLT"

PRINT
Provides a standard unformated output to LCD or terminal

A PRINT instruction will cause an output value with n digits after the decimal point (corresponding to the
internal formatting) and is not different to an output of a WORD or BYTE variable. For an output to LCD here
therefore it must be written:

 31

 LCD.PRINT MyVar & "VOLT"

Note:
It is not possible to print a term of float variables like PRINT (MyVar1*MyVar2).
It alway has to be a float variable like this print example: PRINT(MyVar)

 Examples:

 option float

define FV1 as float
define FV2 as float

LCD.INIT

'--- -------------------------

FV1=exp(1.23456789,4) '1.23456789E04

'-- ------------------------

FV2=12345.6789

'------------------------- EXAMPLE FOR OUTPUT ---

LCD.POS 1,1
LCD.PRINT FV1 & " VOLT "
LCD.POS 2,1
LCD.PRINT FV2 & " VOLT "

Evaluate the sample program FP_INPUT_OUTPUT. Change the format parameters to get familiar with.

TYPE CONVERSION FLOAT<-> INTEGER WORD/BYTE
Depending on the application it may be usefull to convert data types. In all cases the user has to ensure that
the values of the variables match the type they should be converted to. A value 70000 e.g can not be
conveerted to a WORD or BYTE type variable.

FLOAT
Conversion of a term or variable from BYTE/WORD Type to FLOAT

MyFloat = FLOAT(MyWord)
MyFloat = MyFloat*FLOAT(MyWord)
MyFloat = MyFloat*FLOAT(MyWord*MyWord)
MyFloat = MyFloat*FLOAT(MyWord*MyByte)

 32

Mixed Data Types as below shown are not supported:

MyFloat = MyFloat*FLOAT(MyWord)*MyWord
Will lead to wrong results

MyFloat = MyWord
Will lead to stackerrrors and related trouble

INT
Conversion of a FlOAT varaiable to INTEGER/BYTE Type

Here it is not possible to convert a Term. There always only a variable can be converted.

MyWord = INT(MyFloat)
MyWord = 3*INT(MyFloat)/MyWord
MyByte = 3*INT(MyFloat)/MyWord

 This is a samle of a invalid conversion:
 MyWord=INT(MyFloat/MyFloat)

Traps:
It is emient always toconsider the different data type ranges when converting. See the samples for
details.

MyFloat1=50000
MyFloat2=30000
MyWord=1000

Case1:
 INT_RESULT=INT(MyFloat)
The value may be larger than it is possible for word type variables

Case2:
 INT_RESULT=INT(MyFloat)/MyWord
Even though the result (5000) is not too large for a WORD, the value may overflow the WORD before
division

Case 3:
 INT_RESULT=10*INT(MyFloat2)/MyWord
Here an overflow may occur at the multiplication 10*INT(30000)

INT_RESULT=INT(MyFloat2)/MyWord*10
This will show the right result

 33

option float
define LIGHT as port[16]
define WV1 as word
define WV2 as word
define FV1 as float
define FRESULT as float
define IRESULT as word
LIGHT=off
LCD.INIT

FV1=exp(1.23456789,4) '1.23456789E03
WV1=1000
'***
'*** FLOAT CONVERSION WITHIN A TERM ***
'**
'------- TERM WITH FP-VARIABLE AND CONSTANT --------------------------
FRESULT=FV1*1000
LCD.POS 1,1
LCD.PRINT FRESULT & " VOLT "
'------- TERM WITH FP-VARIABLE AND WORD-Variable ----------------------
WV1=1000
FRESULT=FV1*FLOAT(WV1*10) 'Conversion WORD-> FLOAT !!
LCD.POS 2,1
LCD.PRINT FRESULT & " VOLT "
PAUSE 100
'**
'*** INTEGER CONVERSION OF A TERMS ***
'**
' Is not allowed and nust be done my conversion of variables

'------- TERM WITH FP-VARIABLE AND CONSTANTE --------------------------
FV1=5678.234
IRESULT=INT(FV1)/1000
LCD.POS 1,1
LCD.PRINT IRESULT & " VOLT "
'------- TERM WITH FP-VARIABLE AND WORD-Variable ----------------------
WV1=1000
IRESULT=3*INT(FV1)/WV1 'Conversion FLOAT-> WORD
LCD.POS 2,1
LCD.PRINT IRESULT & " VOLT "
PAUSE 100

 34

Review the sample program 2_FP_CONVERSION

LOOPS WITH FLOAT VARIABLES

FOR TO NEXT loops will not work together with FP variables. This does not matter because it is possible to
use DO LOOP UNTIL and here it is possible to create loops working with all valid floating point values.

 DO

.

.

LOOP UNTIL (COUNTER>ENDVALUE)

The end condition may not consist of terms or constants
LOOP UNTIL (COUNTER>123456) is not allowed

Example:

'***
'*** LOOP WITH MIT FLOAT VARIABLES ***
'***
COUNTER=123.4567
ENDVALUE=999.567

'---- FOR COUNTER=123.4567 TO 999.567 STEP 0.123 ----

DO
COUNTER=COUNTER+0.123
LCD.POS 1,1
LCD.PRINT COUNTER & " "
LOOP UNTIL COUNTER>ENDVALUE

FUNCTIONS WITH PARAMETERS
The function calls are equally done with word or bytes. Parameters may also be mixed types.

FUNCTION MyFunction(FVAL1 as FLOAT,FVAL2 as FLOAT)
.
.

END FUNCTION

Because the memory usage is very intesive, when using float variables it is recommended to use referenced
float values as local variables. This means different variables as here in the example INPUT and WERT
share a memory location (FVALUE in this example).

 35

define FVALUE as FLOAT

FUNCTION ABC(INPUT ref FVALUE)
RESULT=RESULT*INPUT
END FUNCTION

FUNCTION XYZ(WERT ref FVALUE)
RESULT=RESULT*WERT
END FUNCTION

FUNCTIONS WITH PARAMETER RETURN
A function also can return a float value if the return value is assigned to a help variable (in this example
MyFunction) that is named equal to the function itself (here MyFunction) The help variable must dot be
declared seperately.

Review the example

4_FUNCTION_1 and 2 for details.

FUNCTION MyFunction(FVAL1 as FLOAT,FVAL2 as FLOAT)
.
MyFunction=FVAL1*FVAL2
.
END FUNCTION

'------------ FUNCTION AUFRUF MIT RÜCKGABE ------------------------
FLOATVAR=MyFunction(10.9, 33.0)

MATH OPERATIONS
The overview shows the operations that are integrated to the operating system, and therefore executed with
maximum speed. Other operations are available as extension, but are executed as BASIC Code. The
functions are provided at the FLOTMATH.BLIB and described her in this document it the capter FLOATING
POINTMATH BASIC++ LIBRARY

Overview:

MULTIPLY
DIVIDE
ADD
SUBTRACT
SQRT
SIN
COS
ABS
<, >, =, <=, >=

Please review the example program 5_STANDARD_FLOAT_MATH.BAS

MULTIPLY, DIVIDE, ADD, SUBTRACT

For a multiply demo a conversion of a analog value (given by an ADC) to the true physical value is well
suited. The result is shown at the LCD, limited to 4 digits after decimal point. The secons sample is a
compare that show how much more lines a program has, doing the equivalent conversion with integer
calculations.

 36

DO
MILLIVOLT=98*ADC8/5
VOLT=MILLIVOLT/1000
NACHKOMMA=MILLIVOLT MOD 1000
LCD.POS 1,1
LCD.PRINT "ADC8: "& VOLT & "."
if NACHKOMMA<100 then LCD.PRINT "0"
LCD.PRINT NACHKOMMA & " V "
LOOP

DO
VOLTS=FLOAT(ADC8)*0.0196
LCD.POS 1,1
LCD.PRINT VOLTS & "V "
LOOP

Samples of some complexTerms

MyFloat=MyFloat/FLOAT(ADC8*MyByte)*0.0196+MyFloat*MyFloat

MyFloat= FLOAT(MyWord-MyByte*MyWord)/(MyFloat+MyFloat/5)

SIN, COS
Accuracy
The Sinus is calculated with a Taylor Function and is considered to be a very good approximation. The the
calculated values for angles 0 to 90 degrees have more than 5 digit accuracy. But beyond this accuracy
drops to 3 digits at 130° and 2 digits at 179°. The accuracy can be improofed if the term x^11/11! and
beyond terms are added.

Domain
The calculation is limited to angels from -180° to +180°. Angles beyond this range have to be mapped to this
range. This is also valid vor COS because it is calculated by the equation COS(x)=1-SIN(x).

SIN can not calculate a term. a constant angle or a variable containig an angle is required therefore
BPPDEGREES is the input in degrees, BPPRADIANS is input as radians (-3.14.......+3.14).

MyFloat=SIN(ANGLE,bppdegrees)
MyFloat=SIN(30.33,bppdegrees)

MyFloat=COS(ANGLE,bppdegrees)
MyFloat=COS(30.33,bppdegrees)

SQRT
accuracy
The Sqare Root calculation is done also by an approxipation with an accuracy of better than 5 digits. SQRT
can not calculate a term. A single constant or variable is required for calculation.

 37

MyFloat=SQRT(VALUE)
MyFloat=SQRT(12.345)

ABS
ABS calculates the absolute value of a terms or a variable

MyFloat=ABS(FLOAT(ADC8*MyByte)*0.0196+MyFloat*MyFloat)

MyFloat= ABS(FLOAT(MyWord-MyByte*MyWord))/ABS(MyFloat+MyFloat/5)

COMPARES
A compare is always related to two variables. Compares of constants or terms are not allowed.
Valid compare operators are: <, >, =, <=, >=

IF MyFloat1>MyFloat2 THEN.....
IF FLOAT(MyWord) > MyFloat1 THEN......
LOOP UNTIL MyFloat1>MyFloat2
LOOP UNTIL FLOAT(MyWord) > MyFloat1
IF NOT(MyFloat1=MyFloat2) THEN.....

The operator <> is missing. An equivalent compare is done with:
IF NOT(MyFloat1=MyFloat2) THEN.....

FLOATING POINT ERRORS

Though calculations have to be done in a way that no illegal operations are processed (such as division by
zero) it may nevertheless happen that e.g a sensor malfunction leads to that. Because this can lead to
plausible rasults by all means, even the results are totally wrong, u can check your results for this cases of
errors.

ON ERROR GOTO MyErrorHandler

Adds an error request to the compiled program code and jumps to the error handler. The variable
ERR.NUMBER contains the error code. ERR.NUMBER is cleared before any floating point operation.

This example at the rightdemonstrates the usage. Continued
multiplication leads to an overflow, the errorhandler is called
and the error code is shown.

0 No error
1 Overflow error
2 Underflow error
3 Division by Zero error
4 Square root of negative
number
5 Number too large/small to
convert to integer

 38

FUNCTION FPE()
ON ERROR GOTO ER
#x
RESULT=1
DO
RESULT=RESULT*100
LCD.POS 1,1
LCD.PRINT RESULT & " "
pause 20
LOOP
'-------- DISPLAY AN ERROR ---------------
#ER
LCD.POS 2,1
LCD.PRINT "ERROR:" & ERR.NUMBER
BEEP 5,5,50
LCD.POS 2,1
LCD.PRINT " "
goto x
END FUNCTION

 The FLOATING POINT MATH BASIC++ LIBRARY

Not all floating point operations are done on operating system level. Some special operations are available
as extension, and are executed as BASIC Code. The functions are provided at the FLOTMATH.BLIB and
described here. The FLOATMATH.BLIB contains the declaration of all used variables:

define BVALUE1 as byte
define BVALUE2 as word
define FVALUE1 as float
define FVALUE2 as float
define FVALUE3 as float
define FVALUE4 as float
define RESULT ref FVALUE2

the variables must not be declared a second time, but can be referenced.
The Library contains the following functions:

LN(x)
LOG(x)
EXP(x,y)
TAN(x) (x in degrees)

All Functions are called with one or more parameter. The result is contained in the variable RESULT,
always. assignments like this: MyFloat=LN(MyFloat) are not possible

Please review 6_EXTENDED_FLOAT_MATH.BAS for examples

LN(MyFloat)

Is calculated with a precision of better than 4 digits. To gain precision the corresponding function can be
modified by changing the loopcounter from 9 to 13 or any other odd number.

FOR BVALUE1=3 TO 9 STEP 2

 LN(MyFloat)

LN(12.345)
LN((FLOAT(MyWord))
The variable RESULT contains calculation result

LOG(MyFloat)

LOG calculations are based on the LN function and is equal in pecision. Modify LN as described to gain
precision for LOG.

 39

LOG(MyFloat)
LOG(12.345)
LOG((FLOAT(MyWord))
The variable RESULT contains calculation result

EXP(MyFloatX,MyByteY)
Calculates x power y based on continued multiplication and is full 32 bit accurate.

 EXP(MyFloat, Mybyte)

EXP(12.345,3)
EXP(MyFloat,3)
The variable RESULT contains calculation result

TAN(x) (x=degrees)
TAN is calculated with a SIN function and has an absolute error of 0.5 at 89°. At lower angles the accuracy
increases rapidly. At 80° the calculation is accurate up to 3 digits.

TAN(MyFloat)
TAN(12.345)
The variable RESULT contains calculation result

The FLOATING POINT TOOLS LIBRARY

This library contains tools that are often needed and will make your programming more enjoyable

GET_FPVALUE() Enter a FP value with keyboard
The call of this function lets u type a floating point by keyboard value e.g. to set up some parameters or
similar.
The input value then is available at the variable RESULT1 for further processing.
The function is dedicated to the keyboard provided with the Application Board or any other based on this
circuit. The keys 0 to 9 have to be pressed to enter this numeric values. F2 will create the minus sign, F1 the
decimal point. If an decimal point is already entered, F1 will create the character E preceding the exponent
value. If a value is entered in scientific notation, the mantissa must have a decimal point therefore.

See the example here:

 -123E-02

INPUT: <F2> <1> <2> <3> <F1> <0> <F1> <F2> <0> <1> <E> enters the value -123.0E-02

The input format is widely flexible, but some rules have to be considered.
1) The leading ZERO in front of the decimal point must be written 0.001 (not: .001)

 40

2) The exponent must have two digits: 0.234E03 (not: E3)
3) After the decimal point one digit has to follow as a minimum 1234.0 (not:1234.)
4)The total entered number of characters (inclusive E , minus and decimal point) must be 15 characters
maximum.

Examples of valid inputs

0.0000000000001
1.1234567891234
123456789123456
123.12345678912
3456.7891234E09
-12345678.1E-12
12.3E12
-1234.56789E-01

The input is terminated when pressing the Button "E" (do not confuse with
pressind F1 for character E). Pressing the key "C" will clear all digits. A
single digit clear is not possible.

Review the example 8_GET_FPVALUE.BAS

Caution:
This function uses the RS232 serial interface buffer. To use this Function it must be ensured that no
characters are received while this function is running.
--
PUTFLOAT(MyFloat) Moving Float Values to the Flash Memory (equals to PRINT#)
Use this function to save float values to non volatile FALSH memory. A flaoting point value will occupy 4
bytes of memory space.
--
GETFLOAT() Read Float values from Flash memory(equals to INPUT#)
The variable RESULT1will contain the value red from Flash after call.

Review the sample 7_FP_DATASAVE.BAS

 41

 C-Control I in Internet
 http://www.c-control-support.net

Impressum
Diese Bedienungsanleitung wurde erstellt für Conrad Electronic SE, Klaus- Conrad- Straße 1, 92240
Hirschau/ Germany.
Alle Rechte einschließlich Übersetzung vorbehalten. Reproduktionen jeder Art, z. B. Fotokopie,
Mikroverfilmung, oder die Erfassung in elektronischen Datenverarbeitungsanlagen, bedürfen der schriftlichen
Genehmigung der Autoren. Nachdruck, auch auszugsweise, verboten. Diese Bedienungsanleitung
entspricht dem technischen Stand bei Drucklegung. Änderung in Technik und Ausstattung vorbehalten.
© Copyright 2007 by Spiketronics GmbH. Printed in Germany.

Imprint
These operating instructions are created for Conrad Electronic SE, Klaus-Conrad-Straße 1, 92240 Hirschau/
Germany.
No reproduction (including translation) is permitted in whole or part e. g. photocopy, microfilming or storage
in electronic data processing equipment, without the express written consent of the authors. The operating
instructions reflect the current technical specifications at time of print. We reserve the right to change the
technical or physical specifications.
© Copyright 2007 by Spiketronics GmbH. Printed in Germany.

 42

	INTRODUCTION
	ABOUT C-CONTROL
	ABOUT BASIC++
	ABOUT THIS DOCUMENT

	DECLARATIONS AND DEFINITIONS
	PROGRAM MEMORY
	USER VARIABLES
	CONSTANTS
	POINTER
	DATA TYPES
	EXTERNAL FILES

	SPECIAL PORTS
	START and RESET
	FREQ1 and FREQ2
	IRQ
	BEEP
	RXD/TXD

	STANDARD DIGITAL I/O PORTS
	DIGITAL INPUT PORT
	DIGITAL OUTPUT PORT

	DEDICATED DIGITAL PORTS
	I²C-BUS INTERFACE (PORT 9 and 10)
	RC5 IR INTERFACE (PORT 2 and 3)
	RF INTERFACE (PORT 2 and 3)

	EXTENDED PORTS
	ANALOGPORTS
	A/D CONVERTER PORTS
	D/A CONVERTER PORTS

	SYSTEM PROPERTIES
	BEEP
	RTC
	TIMER
	FREQ1 and FREQ2

	INSTRUCTIONS AND KEYWORDS
	INPUT/OUTPUT
	INTERNAL/EXTERNAL DATA STORAGE
	STANDARD DIGITAL PORTS
	EXTENDED PORTS
	AD PORTS
	DA PORTS
	MATH FUNCTIONS
	MATH AND BOOLEAN OPERATORS
	PROGRAM FLOW CONTROL

	OBJECTS
	CONFIG REGISTER
	I²C-BUS OBJECT
	IR OBJECT
	RF OBJECT
	LCD OBJECT

	START OPTION REGISTER
	OPTION AUTOSTART
	EEPROM BOOT OPTION

	FLAOTING POINT MODULE (FPM)
	INTRODUCTION
	DETAILS OF THE DATA TYPE FLOAT
	INTERNAL HANDLING OF FP OPERATIONS

	FLOATING POINT INPUT/OUTPUT
	ASSIGNMENTS
	INPUT
	OUTPUT

	TYPE CONVERSION FLOAT<-> INTEGER WORD/BYTE
	FLOAT
	INT

	LOOPS WITH FLOAT VARIABLES
	FUNCTIONS WITH PARAMETERS
	FUNCTIONS WITH PARAMETER RETURN
	MATH OPERATIONS
	MULTIPLY, DIVIDE, ADD, SUBTRACT
	SIN, COS
	SQRT
	ABS
	COMPARES

	FLOATING POINT ERRORS
	 The FLOATING POINT MATH BASIC++ LIBRARY
	LN(MyFloat)
	LOG(MyFloat)
	EXP(MyFloatX,MyByteY)
	TAN(x) (x=degrees)

	The FLOATING POINT TOOLS LIBRARY

