BYD Fe Battery for HEV/EV

Feb.8th, 2009

Contents

1. Technology of Fe battery

- Advantage of Fe Battery
- Key Technology of BYD Fe Battery Development

2. Battery Design

- Technology of HBL
- Technology of redox shuttle additive
- Cost Down

3. Battery Performance

- Electrochemical Test
- Reliability Test
- Safety Test

4. China National Standard Update

- Electrochemical Test
- Reliability Test
- Safety Test
- 5. Global patent analysis

Technology of Fe Battery

Advantages of Fe Battery

- According to the compare between the Fe and LCO battery, Fe battery has the advantages in safety, cycle life, high power output and high temperature performance. Also lower cost is it's advantage.
- > Lower energy density is Fe battery's disadvantage, it is about 75% of LCO battery.

High Safety – High Strong Bone Energy

In LiCoO₂: Co-O 1.91Å In LiFe_{1-x}Co_xPO₄: P-O 1.63Å

Coordination and location determine bond distance and strength.

Raman Spectroscopy stretching bands: P-O: 1100 cm⁻¹ Co-O: 540 cm⁻¹

The P-O bond is stronger than Co-O bond.

Tightly bound Oxygen = Safety !!

Long Life – Stable Structure between charging and discharging

LiFe_{1-x}Co_xPO₄

	LiFe _{1-x} Co _x PO ₄	Fe _{1-x} Co _x PO ₄
Space Group	Pbnm	Pbnm
a axis (nm)	0. 6008	0. 5792
b axis (nm)	1. 0334	0. 9821
c axis (nm)	0. 4693	0. 4788
Volume (nm ³⁾	0. 2914	0. 2724

For reverse volume change trend between $LiFe_{1-x}Co_xPO_4$ and graphite, total cell volume changes very small.

Low Cost - Main components in traditional Li battery

Low Cost - Inexpensive components in Fe battery

Battery Design

BYD Battery's Advantages

Long Life

Adoption with new cathode and anode materials. After 3500 100% DOD cycles, the capacity remained 80%.

High Power Density

Optimizing the output power of cell. Power density of cell is more than 1720 W/L.

> Faster Charging

Using high conductive anode material for fast charging. 80% capacity can be charged in 10min.

Low Resistance

Maxing the galvanizing area. The resistance of cell is about $0.5m\Omega$.

> High Reliability

Identifying and preventing all potential risks in cell design, such as short circuit, cockled.

> Low selfdischarge

With HBL technology, selfdischarge of cell is less than 1% capacity per month in storage.

> Perfect adaptability with different temperature

All materials are stable for high or low temperature. The cell's operation temperature is -30° C to 60° C.

> Producible in Automatic

All processes are designed for automatic. Output of every product line is more than 2000pcs/day.

Low Cost

Key materials are made by ourselves. The cost is in minimum.

Difference Types of EV/HEV Battery

DM (**PHEV**) series and **EV** series:

(1) DM series

There is HEV and EV two modes in DM series. In short distance (in 100km) the EV mode will be used and startup the HEV mode in long distance. All is supported by Energy Feedback.

DM battery can be charged by general charging (220V) and faster charging. General charging for 100% capacity is about 5-6 hours and 80% capacity can be charged in 10min by faster charging.

The data of table 1 is DM battery's parameters.

(2) EV series

It can be droved for more than 350km in EV mode with a full capacity. It is supported by Energy Feedback.

EV battery also can be charged by general charging (220V) and faster charging. General charging for 100% capacity is about 5-6 hours.

80% capacity can be charged in 16min by faster charging.

The data of table 2 is EV battery's parameters.

Table1: F3DM Battery System Major Parameters

Characteristic	Value	
Normal Voltage	325V/315V (at 0.2C discharge/at 1.0C discharge current)	
Capacity	45Ah	
	(From 380V to 200V in 0.2C discharge current)	
Dimension	1780*806*120mm	
Weight	200Kg	
Cycle life	10 year	
Short-Time Discharge Power(10s)	135kw	
Long-Time Discharge Power	67.5kw	
Usable Energy	13.5kwh	
Working Temperature (°C)	Min	Max
	-40	60
Storage Temperature (°C)	Min	Max
	-46	66
Temperature Adjust System	Air (cooling and heating) Inside cycle Channel	
Voltage Sensor	Each Cell	
Temperature Sensor	Each Cell	

Taber2: e6 Battery System Major Parameters

Characteristic	Value	
Normal Voltage	325V/315V (at 0.2C discharge/at 1.0C discharge current)	
Capacity	180Ah	
	(From 380V to 200V in 0.2C discharge current)	
Dimension	1730*915*330mm	
Weight	650Kg	
Cycle life	10 year	
Short-Time Discharge Power(10s)	270kw(5C)	
Long-Time Discharge Power	162kw	
Usable Energy	57kwh	
Working Temperature (°C)	Min	Max
	-40	60
Storage Temperature (°C)	Min	Max
	-46	66
Temperature Adjust System	Air (cooling and heating) Inside cycle Channel	
Voltage Sensor	Each Cell	
Temperature Sensor	Each Cell	

Technology of HBL

HBL (High-temperature Binder Layer) is a new technology developed by our company. The exfoliation of active materials, burr of electrode can be reduced by coating a heat-resistant micro porous binder layer, and the self-discharge, consistency, cycle-life and safety can be improved substantially.

Technology of HBL

The Advantage of HBL

Long Cycle Life Low Self-discharge

1C Cycle at Room Temp.

Build Your Dreams

ŝ

of the Ret

20

Why Does HBL Low Self-discharge?

- 1. No Exfoliation;
- 2. No Burr;
- 3. Little Side Reaction.

Self-discharge of HBL

Normal Negative Electrode: Active Material Exfoliation

HBL Negative Electrode: No Active Material Exfoliation

The Advantage of HBL

High Safety

- Why Does HBL High Safety?
- 1. Three Protective Layers;
- 2. High Temp. Additive in the Layer, No Short-circuit;
- 3. No gap between Electrode and Separator, No Lithium Dendrite.

150 ℃ heating test of HBL

1C/12V over-charge test of HBL

S-28HL-84

S-28HL-49

S-28HL-41

The working voltage of Shuttle

The operation voltage of Shuttle is about 4.0-4.2V when the oxidation reaction happens on cathode. It's suitable for Fe Battery.

BYD

full state of charge state of discharge state of discharge Without redox shuttle 0.6 the 1st cycle 2.6 2.4 2.2 2.0 0.4 1.8 the 100th cycle Voltage (V) 1.6 € 1.4 ₹ 1.2 ₹ 1.0 300 0.2 200 Cycle Number the 200th cycle 1.0 0.8 100 0.6 Black: $\Delta U_{1,2} = | U_1 - U_2 |$ Red: $\Delta U_{1,3} = | U_1 - U_3 |$ Blue: $\Delta U_{2,3} = | U_2 - U_3 |$ 0.0 0.4 0 the 300th cycle 0.2 10000 5000 0.0 0 -0.2 Time (s) 8000 10000 12000 14000 16000 Time (s) full state of charge state of discharge state of discharge With redox shuttle 3 the 1st cycle 1.2 the 100th cycle 1.0 2 Voltage (V) the 200th cycle 0.8 1000 (2) 0.6 NV 0.4 1 the 300th cycle 500 Cycle Number the 400th cycle 0 Black: $\triangle U_{1,2} = | U_1 \cdot U_2 |$ Red: $\triangle U_{1,3} = | U_1 \cdot U_3 |$ Blue: $\triangle U_{2,3} = | U_2 \cdot U_3 |$ 0.2 the 500th cycle 0 0 0.0 2500 5000 7500 16000 10000 12000 14000 8000 4000 6000 2000 Time (s) Time (s)

The voltage difference comparison during cycle in LIB

During the course of charge-discharge cycling, the variation of voltage difference in each cell connected in series as a function of cycles.

Build Your Dreams

BYD

Battery Performance

Test procedure Charge current : 3C End-of-charge voltage : 10V

Dimension : 28*100*330mm Result : Pass, cell inflation and vent open

Short Circuit

Test procedure Charge current : 0.2C End-of-charge voltage : 3.8V Method : external short circuit, <5mOhm

Dimension : 28*100*330mm Result : Pass, cell inflation and vent open

Short Circuit at 60°C

Test procedure Temperature : 60 ℃ Charge current : 0.2C End-of-charge voltage : 3.8V Method : external short circuit, <5mOhm

Dimension : 28*100*330mm Result : Pass, cell inflation, no leakage

BYD

Over-discharge

Test procedure Discharge current : C/3 End-of-discharge voltage : 0 V

Dimension : 28*100*330mm Result : Pass with cell inflation

Test procedure Temperature : 150 \pm 2 °C Rest time : 120mins

Dimension : 28*100*330mm Result : Pass, cell inflation and vent open

Nail Penetration

Test procedure Temperature : $20 \pm 5 \ ^{\circ}C$ Diameter of steel pin : $3 \sim 8 \text{mm}$ Speed of penetration : $10 \sim 40 \text{mm/s}$ Penetration orientation : perpendicular to the wide side

Dimension : 28*100*330mm Result : Pass, cell inflation

Crush

Test procedure Temperature : 20±5 ℃ Crush path : perpendicular to the wide side Crush Platen area: ≥ 20cm² End of test: Cell case rupture or inner short

Dimension : 28*100*330mm Result : Pass with cell deformation

BYD

Test procedureDimension : pack (cell 28*100*330mm)Charge current : 0.2CDimension : pack (cell 28*100*330mm)Speed : 50Km/hResult : Pass with smokeImpact orientation1 : Front sideImpact orientation2 : left side, with30° wedgeImpact orientation3 : right side, with30° wedgeImpact orientation3 : right side, with30° wedge

BYD

Battery Module Overcharge

Test procedure Charge current : 1C End-of-charge voltage : 25V

Dimension : Module (cell28*100*300mm*5) Result : Pass, cell vent open

Battery Module Short Circuit

Test procedure Charge current : 0.2C End-of-charge voltage : 3.8V Method : external short circuit, <5mOhm

Dimension : Module (cell28*100*300mm*5) Result : Pass, cell inflation , vent open

Battery Module Fire Test

Pls see the video

• No explosion during fire test

• Battery module start fire after 27 minutes

Thermal Shock

Cell No.	Capacity Retention (%)	ity Retention (%) Capacity recovery rate (%)	
1#	89.8%	92.3%	
2#	90.6%	93.0%	
3#	90.1%	92.1%	

Test procedure Charge current : 0.2C End-of-charge voltage : 3.8V Temp. range: $-40 \sim 85$ °C hold time at each temp. : 6h

Dimension : 28*100*330mm

Vibration

Test procedure Discharge current : C/3 Vibration direction : up and down Frequency : 10~55Hz Max. acceleration rate : 30m/s² Screening cycle : 10 Test time : 2h Build Your Dreams

Dimension : 28*100*300mm Result : Pass, cell current and voltage remain normal

Test procedure Height : 1.5m Thickness of board : 20mm Orientation : once at each side

Dimension : 28*100*330mm Result : Pass with cell deformation and no leakage

Build Your Dreams

BYD

Build Your Dreams

BYD

Cycle Test at Room Temperature

Test procedure Temperature : $20 \pm 5 \degree$ Charge current : 1C End-of-charge current : 0.001C End-of-charge voltage : 3.8V

Dimension : 28*100*330mm Cycle times : 3500 Retention : 80%

Build Your Dreams

3

Cycle Test at 45°C

Test procedure Temperature : 45 ℃ Charge current : 1C End-of-charge current : 0.001C End-of-charge voltage : 3.8V

Dimension : 28*100*330mm Cycle times : 3500 Retention : 70%

Cycle Test at 60°C

Test procedure Temperature : 60 ℃ Charge current : 1C End-of-charge current : 0.001C End-of-charge voltage : 3.8V

Dimension : 28*100*330mm Cycle times : 1400 Retention : 80%

Charge at Different Temperature

Test procedure Discharge current : 0.2C End-of-discharge voltage : 2.0V Rest time after discharge : 6h Charge current : 1C End-of-charge current : 0.02C End-of-charge voltage : 3.8V

Dimension : 28*100*330mm Charge temp. : -30~60 ℃

Build Your Dreams

3

Discharge at Different Temperature

Test procedure Charge current : 0.2C End-of-charge voltage : 3.8V Rest time after charge : 6h Discharge current : 1C End-of-discharge voltage : 2.0V

Dimension : 28*100*330mm Discharge temp. : -40~60 ℃

Build Your Dreams

3

Charge at Different Current

Test procedure Temperature : $20 \pm 5 \,^{\circ}$ C Discharge current : 0.2C End-of-discharge voltage : 2.0V Rest time after discharge : 6h End-of-charge voltage : 3.8V End-of-charge current : 0.02C

Build Your Dreams

Dimension : 28*100*330mm

80% capacity can be charged in 10mins .

Discharging at Different Current

Test procedure Temperature : $20 \pm 5 \ ^{\circ}C$ Charge current : 0.2C End-of-charge voltage : 3.8V Rest time after charge : 6h End-of-discharge voltage : 2.0V

Dimension : 28*100*330mm

The battery can be discharged at 15C .

Build Your Dreams

3

3

Excellent Power performance

The max discharge power and regen power are all above 2000w in room temperature.

Test method: Referenced as US DOE INL/EXT-07-12536

China National Standard Update

Difference between QCT-743/2006 and New National Standard Draft

	QCT/743-2006 Lithium-ion Batteries for Electric Vehicles(2006)	Secondary Batteries for Electric Vehicles (Draft,2009)		
Cell Performance				
Storage	<mark>20℃,90</mark> days, Residual Capacity> <mark>95</mark> %	<mark>55</mark> ℃, <mark>56</mark> days, Residual Capability> <mark>60</mark> %		
Cycle Life	Residual Capacity> <mark>80</mark> % after 500 cycles	Residual Capacity> <mark>90</mark> % after 500 cycles		
Cell Safety				
Hot Oven	<mark>85</mark> ℃, <mark>120</mark> min	150℃,20 min		
Batteries Safety				
Vibration	10 [~] 55Hz sweep vibration for 120min in Z direction while discharging	1)33Hz,70m/s2,240min for Z direction and 120min for X and Y fixed vibration 2)10 ² 200Hz,50m/s2,240min sweep vibration		
Hot Oven	<mark>85℃,120</mark> min	150℃,20min		
ild Your Dreams				

Global patent analysis

US patent of Phostech is re-examed. Co is deleted

AMENDMENT TO THE CLAIMS

1. (Twice Amended) A cathode [material for] <u>in</u> a rechargeable electrochemical cell, said cell also comprising an anode and an electrolyte, the cathode [material] comprising a compound of the ordered or modified olivine structure having the formula:

 $Li_{x}M_{1-(d+t+q+r)}D_{d}T_{t}Q_{q}R_{r}(XO_{4})$

wherein:

[N] <u>M</u> is a cation of a metal selected from the group consisting of Fe, Mn [Co,] Ti, Ni or mixtures thereof;

D is a metal raving a +2 oxidation state selected from the group consisting of Mg²⁺, Ni²⁺, [Co²⁺,] Zn²⁺, Cu²⁺, and Ti²⁺;

European patent of Phostech is revoked

AUSTIN, Texas, Dec 09, 2008 (BUSINESS WIRE) --

the Opposition Board of the European Patent Office (EPO) revoke the European Patent granted to the University of Texas (UT) relating to lithium metal phosphates. The decision revoking the Goodenough et. al. UT European Patent eliminates any risk that UT could assert the European Patent against other company's proprietary lithium iron phosphate cathode material, which is a critical material for the next generation of electric vehicle batteries.

