

VM167.DLL
Technical Guide

Introduction

General

The VM167 interface board has 8 digital input/output channels, five analog input channels and two PWM outputs. The
number of inputs/outputs can be expanded by connecting two VM167 cards to the PC. Both of the cards has its own
identification number (card address) by means of the jumper setting.

All communication routines are contained in a Dynamic Link Library VM167.DLL.

In this manual we will describe each of these functions provided by the DLL in detail. Calling the functions exported by
the DLL, you can write custom Windows applications in Delphi, Visual Basic or any other 32-bit Windows application
development tool that supports calls to a DLL.

A complete overview of the procedures and functions that are exported by the VM167.DLL follows.
Note that all the examples in the function description section are written in C++.
VM167 examples folder includes examples written in Visual Basic 2008 Express, Visual C# 2008 Express, Visual C++
2008 Express, VB6.0, MS Excel VBA, Delphi 5, Borland C++Builder 6 and Dev-C++.

Readers should have an understanding of the basic data types as well as basic knowledge of the Microsoft Windows
operating system.

Microsoft Visual Studio users please note: The VM167.DLL is a standard Windows DLL, you cannot reference it.

Calling convention

A calling convention is a scheme for how functions receive parameters from their caller and how they return a result.
Different programming languages use different calling conventions, so it is important to know which calling convention
is used by your programming language and which calling convention is used by the VM167 DLL.

The most common calling convention is the stdcall calling convention, and this is also the one we have used for our
DLL.

If you are using .NET (VB.NET or C#) you do not need to worry about this since the calling convention in .NET is also
stdcall. However if you are using C to import the functions provided by the DLL, you will need to pay special attention
to this.

Card Address Setting

J5 Card Address

ON 0

OFF 1

TABLE 1: Jumper J5 Settings

The card address settings must be done before the USB cable is connected to the VM167 card or before turning the
PC on.
If the USB cable is disconnected and reconnected then all the digital terminals are set as inputs and the PWM outputs
are reset to zero.

Overview of the Functions

General functions

int OpenDevices() Opens the communication link to the VM167 devices
void CloseDevices() Closes the link to the VM167 devices
int Connected() Checks that the USB connection to the cards is valid
int VersionFirmware(int CardAddress) Reads the firmware version number
int VersionDLL() Reads the DLL version number
void InOutMode(int CardAddress, int HighNibble, int LowNibble)
 Set the digital terminals either inputs or outputs

Analog to Digital converter functions

int ReadAnalogChannel(int CardAddress, int Channel)
 Reads the status of one analog input-channel
void ReadAllAnalog(int CardAddress, int *Buffer)
 Reads the status of all analog input-channels

PWM Output functions

void SetPWM(int CardAddress, int Channel, int Data, int Freq)
 Sets the status of one PWM output

void OutputAllPWM(int CardAddress, int Data1, int Data2)
 Sets both of the PWM outputs

Digital Output functions

void OutputAllDigital(int CardAddress, int Data)
 Sets the digital outputs according to the data
void ClearDigitalChannel(int CardAddress, int Channel)
 Clears the output channel
void ClearAllDigital(int CardAddress)
 Clears all output channels
void SetDigitalChannel(int CardAddress, int Channel)
 Sets the output channel
void SetAllDigital(int CardAddress)
 Sets all output channels

Digital Input functions

bool ReadDigitalChannel(int CardAddress, int Channel)
 Reads the status of the input channel
int ReadAllDigital(int CardAddress)
 Reads the status of all the input channels

Counter functions

void ResetCounter(int CardAddress) Resets the 32 bit pulse counter
unsigned int ReadCounter(int CardAddress)
 Reads the content of the 32 bit pulse counter

Readback procedures and functions
void ReadBackPWMOut(int CardAddress, int *Buffer)
 Reads back the status of the PWM outputs
int ReadBackInOutMode(int CardAddress)
 Reads back the current in/out mode of the digital terminals

Function List

OpenDevices

Syntax
int OpenDevices();

Result
int: If succeeded the return value will indicate the number of VM167 cards found.
1: Card in the Card Address 0 found.
2: Card in the Card Address 1 found.
3: Card in the Card Address 0 and 1 found.

Return value -1 indicates that no VM167 cards found.
Return value 0 indicates that there was problems to open the driver. Disconnect and reconnect the USB cable.

Description
Opens the communication link to the VM167 card. Loads the drivers needed to communicate via the USB port. This
procedure must be performed before any attempts to communicate with the VM167 cards.

Example
 int Cards;
 ...
 Cards = OpenDevices();
 switch (Cards)
 {
 case 0:
 Label1->Text = "Card open error.";
 break;
 case 1:
 Label1->Text = "Card 0 connected.";
 RadioButton1->Enabled = true;
 RadioButton1->Checked = true;
 CardAddress = 0;
 Timer1->Enabled = true;
 break;
 case 2:
 Label1->Text = "Card 1 connected.";
 RadioButton2->Enabled = true;
 RadioButton2->Checked = true;
 CardAddress = 1;
 Timer1->Enabled = true;
 break;
 case 3:
 Label1->Text = "Cards 0 and 1 connected.";
 RadioButton1->Enabled = true;
 RadioButton1->Checked = true;
 RadioButton2->Enabled = true;
 RadioButton2->Checked = false;
 CardAddress = 0;
 Timer1->Enabled = true;
 break;
 case -1:
 Label1->Text = "Card not found.";
 break;
 }

CloseDevices

Syntax
void CloseDevices();

Description

Unloads the communication routines for VM167 cards and unloads the driver needed to communicate via the USB
port. This is the last action of the application program before termination.

Example
private: System::Void Form1_FormClosed(System::Object^ sender,
System::Windows::Forms::FormClosedEventArgs^ e)
 {
 CloseDevices();
 }

ReadAnalogChannel

Syntax
int ReadAnalogChannel(int CardAddress, int Channel);

Parameters
CardAddress: The address of previously opened card.
Channel: Value between 1 and 5 which corresponds to the AD channel whose status is to be read.

Result
int: The corresponding Analog to Digital Converter data is read.

Description
The input voltage of the selected 10-bit Analog to Digital converter channel is converted to a value which lies between
0 and 1023.

Example
 int a5;
 a5 = ReadAnalogChannel(CardAddress, 5);
 label19->Text = a5.ToString();

ReadIAllAnalog

Syntax
void ReadAllAnalog(int CardAddress, int *Buffer);

Parameter
CardAddress: The address of previously opened card.
Buffer: Pointer to an array of five 32 bit integers where the data will be read.

Description
The status of all five Analog to Digital Converters are read to an array of long integers.

Example
 int Buffer[8];
 ReadAllAnalog(CardAddress, Buffer);

InOutMode

Syntax
void InOutMode(int CardAddress, int HighNibble, int LowNibble);

Parameters
CardAddress: The address of previously opened card.
LowNibble: 0: the digital I/O terminals 1 to 4 are outputs
LowNibble: 1: the digital I/O terminals 1 to 4 are inputs.
HighNibble: 0: the digital I/O terminals 5 to 8 are outputs
HighNibble: 1: the digital I/O terminals 5 to 8 are inputs.

Description
Set the digital terminals either inputs or outputs.

Example
 InOutMode(CardAddress, 0, 0);
 // All the digital I/O pins of card are set to outputs.

OutputAllDigital

Syntax
void OutputAllDigital(int CardAddress, int Data);

Parameters
CardAddress: The address of previously opened card.
Data: Value between 0 and 255 that is sent to the digital output port (8 channels).

Description
The channels of the digital output port are updated with the status of the corresponding bits in the data parameter.

Example
 InOutMode(CardAddress, 0, 0);
 OutputAllDigital(CardAddress, 0x55);

ClearDigitalChannel

Syntax
void ClearDigitalChannel(int CardAddress, int Channel);

Parameters
CardAddress: The address of previously opened card.
Channel: Value between 1 and 8 which corresponds to the output channel that is to be cleared.

Description
The selected channel is cleared.

Example
 InOutMode(CardAddress, 0, 0);
 ClearDigitalChannel(CardAddress, 3);

ClearAllDigital

Syntax
void ClearAllDigital(int CardAddress);

Parameter
CardAddress: The address of previously opened card.

Result
All digital outputs are cleared.

Example
 InOutMode(CardAddress, 0, 0);
 ClearAllDigital(CardAddress);

SetDigitalChannel

Syntax
void SetDigitalChannel(int CardAddress, int Channel);

Parameters
CardAddress: The address of previously opened card.
Channel: Value between 1 and 8 which corresponds to the output channel that is to be set.

Description

The selected digital output channel is set.

Example
 if (CheckBox3->Checked)
 SetDigitalChannel(CardAddress, 3);
 else
 ClearDigitalChannel(CardAddress, 3);

SetAllDigital

Syntax
void SetAllDigital(int CardAddress);

Parameter
CardAddress: The address of previously opened card.

Description
All the digital output channels are set.

Example
 InOutMode(CardAddress, 0, 0);
 SetAllDigital(CardAddress);

ReadDigitalChannel

Syntax
bool ReadDigitalChannel(int CardAddress, int Channel);

Parameters
CardAddress: The address of previously opened card.
Channel: Value between 1 and 8 which corresponds to the input channel whose status is to be read.

Result
bool: TRUE means that the corresponding digital input of the card is HIGH.
FALSE means that the input is LOW.

Description
The status of the selected Input channel is read.

Example
 if(ReadDigitalChannel(CardAddress, 3))
 label19->Text = "3: On";
 else
 label19->Text = "3: Off";

ReadAllDigital

Syntax
int ReadAllDigital(int CardAddress);

Parameter
CardAddress: The address of previously opened card.

Result
int: The 8 LSB correspond to the status of the digital input channels. '1' means that the corresponding input of the
card is HIGH, '0' means that the input is LOW.

Description
The function returns the status of the digital inputs of the card.

Example
 i = ReadAllDigital(CardAddress);

 CheckBox1->Checked = (i & 1)>0;
 CheckBox2->Checked = (i & 2)>0;
 CheckBox3->Checked = (i & 4)>0;
 CheckBox4->Checked = (i & 8)>0;
 CheckBox5->Checked = (i & 16)>0;
 CheckBox6->Checked = (i & 32)>0;
 CheckBox7->Checked = (i & 64)>0;
 CheckBox8->Checked = (i & 128)>0;

SetPWM

Syntax
void SetPWM(int CardAddress, int Channel, int Data, int Freq);

Parameters
CardAddress: The address of previously opened card.

Channel: The PWM output channel 1 or 2.

Data: Value between 0 and 255 which is to be sent to the PWM output of the card. The duty cycle of the PWM output
corresponds to the data value: 0 = 0%, 255 = 100% duty cycle.

Freq: The PWM frequency:
1: 2929.68 Hz
2: 11718.75 Hz
3: 46875 Hz

Example
 SetPWM(CardAddress, 1, 128, 3);
 // The duty cycle of the PWM output #1 is set to 50%, frequency 46875 Hz

OutputAllPWM

Syntax
void OutputAllPWM(int CardAddress, int Data1, int Data2);

Parameters
CardAddress: The address of previously opened card.
Data1: Value between 0 and 255 which is to be sent to the PWM 1 output of the card .
Data2: Value between 0 and 255 which is to be sent to the PWM 2 output of the card

Example
 OutputAllPWM (0, 128, 128);
 // The duty cycle of the PWM outputs of card address 0 are set to 50%

ResetCounter

Syntax
void ResetCounter(int CardAddress);

Parameter
CardAddress: The address of previously opened card.

Description
The 32 bit pulse counter is reset.

Example
 ResetCounter(CardAddress);

ReadCounter
Syntax

unsigned int ReadCounter(int CardAddress);

Parameter
CardAddress: The address of previously opened card.

Result
unsigned int: The content of the 32 bit pulse counter.

Description
The function returns the status of the 32 bit pulse counter.
The counter counts the pulses fed to the digital terminal number 1. Both input and output pulses are counted. The
counter increments on the rising edge.

Example
 TextBox1->Text = (ReadCounter(CardAddress)).ToString();

Connected

Syntax
int Connected();

Result
int: The return value indicate the number of VM167 cards connected.
0: No cards connected
1: Card at the Card Address 0 found.
2: Card at the Card Address 1 found.
3: Cards at the Card Address 0 and 1 found.

Description
Checks that USB connection to the cards is valid.

Example
 int Cards;
 ...
 Button1_Click(..)
 {
 Cards = OpenDevices(); // open
 ...
 }
 ...
 if (Cards != Connected()) // check if card still connected
 Button1_Click(sender, e); // if not, try to reconnect

VersionFirmware

Syntax
int VersionFirmware(int CardAddress);

Parameters
CardAddress: The address of previously opened card.

Result
int: A 32 bit integer where the firmware version (4 digits) is represented. Each byte is one digit.

Description
The firmware version info of the card is read.

Example
 int ver;
 ver = VersionFirmware(CardAddress);

 label17->Text = "Firmware v"+(ver >> 24).ToString()+"." +((ver >> 16) & 0xFF).ToString()

 +"."+((ver >> 8) & 0xFF).ToString()+"."+(ver & 0xFF).ToString();

VersionDLL

Syntax
int VersionDLL();

Result
int: A 32 bit integer where the DLL version (4 digits) is represented. Each byte is one digit.

Description
The DLL version info is read.

Example
 int ver;

 ver = VersionDLL();
 label18->Text = "DLL v"+(ver >> 24).ToString()+"."+((ver >> 16) & 0xFF).ToString()+"."

 +((ver >> 8) & 0xFF).ToString()+"."+(ver & 0xFF).ToString();

ReadBackPWMOut

Syntax
void ReadBackPWMOut(int CardAddress, int *Buffer);

Parameter
CardAddress: The address of previously opened card.
Buffer: Pointer to array of two 32 bit integers where the data will be read.

Description
The values of the PWM outputs are read back to an array of two 32 bit integers.

Example
 int PWM[2];
 ReadBackPWMOut(CardAddress, PWM);
 TrackBar1->Value = PWM[0];
 TrackBar2->Value = PWM[1];
 Label15->Text = TrackBar1->Value.ToString();
 Label16->Text = TrackBar2->Value.ToString();

ReadBackInOutMode

Syntax
int ReadBackInOutMode(int CardAddress);

Parameter
CardAddress: The address of previously opened card.

Result
int: Value between 0 and 3 representing the input/output mode of the digital terminals.
0: All the digital I/O terminals are outputs
1: The digital I/O terminals 1 to 4 are inputs and terminals 5 to 8 are outputs.
2: The digital I/O terminals 1 to 4 are outputs and terminals 5 to 8 are inputs.
3: All the digital I/O terminals are inputs

Description
The input / output mode of the digital terminals is read back.

Example
 int IOmode;
 IOmode = ReadBackInOutMode(CardAddress);
 if ((IOmode & 1)>0)
 RadioButton3->Checked = true;
 else
 RadioButton4->Checked = true;
 if ((IOmode & 2)>0)

 RadioButton6->Checked = true;
 else
 RadioButton5->Checked = true;

Function declarations in other programming languages

Visual Basic 6.0

Private Declare Function OpenDevices Lib "vm167.dll" () As Long
Private Declare Sub CloseDevices Lib "vm167.dll" ()
Private Declare Sub InOutMode Lib "vm167.dll" (ByVal CardAddress As Long, ByVal HighNibble As Long, ByVal
LowNibble As Long)
Private Declare Function ReadAnalogChannel Lib "vm167.dll" (ByVal CardAddress As Long, ByVal Channel As Long)
As Long
Private Declare Sub ReadAllAnalog Lib "vm167.dll" (ByVal CardAddress As Long, ByRef Buffer As Long)
Private Declare Sub OutputAllDigital Lib "vm167.dll" (ByVal CardAddress As Long, ByVal Data As Long)
Private Declare Sub ClearDigitalChannel Lib "vm167.dll" (ByVal CardAddress As Long, ByVal Channel As Long)
Private Declare Sub ClearAllDigital Lib "vm167.dll" (ByVal CardAddress As Long)
Private Declare Sub SetDigitalChannel Lib "vm167.dll" (ByVal CardAddress As Long, ByVal Channel As Long)
Private Declare Sub SetAllDigital Lib "vm167.dll" (ByVal CardAddress As Long)
Private Declare Function ReadDigitalChannel Lib "vm167.dll" (ByVal CardAddress As Long, ByVal Channel As
Long) As Boolean
Private Declare Function ReadAllDigital Lib "vm167.dll" (ByVal CardAddress As Long) As Long
Private Declare Function ReadCounter Lib "vm167.dll" (ByVal CardAddress As Long) As Long
Private Declare Sub ResetCounter Lib "vm167.dll" (ByVal CardAddress As Long)
Private Declare Sub SetPWM Lib "vm167.dll" (ByVal CardAddress As Long, ByVal Channel As Long, ByVal Data As
Long, ByVal Freq As Long)
Private Declare Sub OutputAllPWM Lib "vm167.dll" (ByVal CardAddress As Long, ByVal Data1 As Long, ByVal Data2
As Long)
Private Declare Function VersionDLL Lib "vm167.dll" () As Long
Private Declare Function VersionFirmware Lib "vm167.dll" (ByVal CardAddress As Long) As Long
Private Declare Function Connected Lib "vm167.dll" () As Long
Private Declare Sub ReadBackPWMOut Lib "vm167.dll" (ByVal CardAddress As Long, ByRef Buffer As Long)
Private Declare Function ReadBackInOutMode Lib "vm167.dll" (ByVal CardAddress As Long) As Long

Visual Basic 2008 Express

Private Declare Function OpenDevices Lib "vm167.dll" () As Integer
Private Declare Sub CloseDevices Lib "vm167.dll" ()
Private Declare Sub InOutMode Lib "vm167.dll" (ByVal CardAddress As Integer, ByVal HighNibble As Integer,
ByVal LowNibble As Integer)
Private Declare Function ReadAnalogChannel Lib "vm167.dll" (ByVal CardAddress As Integer, ByVal Channel As
Integer) As Integer
Private Declare Sub ReadAllAnalog Lib "vm167.dll" (ByVal CardAddress As Integer, ByRef Buffer As Integer)
Private Declare Sub OutputAllDigital Lib "vm167.dll" (ByVal CardAddress As Integer, ByVal Data As Integer)
Private Declare Sub ClearDigitalChannel Lib "vm167.dll" (ByVal CardAddress As Integer, ByVal Channel As
Integer)
Private Declare Sub ClearAllDigital Lib "vm167.dll" (ByVal CardAddress As Integer)
Private Declare Sub SetDigitalChannel Lib "vm167.dll" (ByVal CardAddress As Integer, ByVal Channel As
Integer)
Private Declare Sub SetAllDigital Lib "vm167.dll" (ByVal CardAddress As Integer)
Private Declare Function ReadDigitalChannel Lib "vm167.dll" (ByVal CardAddress As Integer, ByVal Channel As
Integer) As Boolean
Private Declare Function ReadAllDigital Lib "vm167.dll" (ByVal CardAddress As Integer) As Integer
Private Declare Function ReadCounter Lib "vm167.dll" (ByVal CardAddress As Integer) As UInteger
Private Declare Sub ResetCounter Lib "vm167.dll" (ByVal CardAddress As Integer)
Private Declare Sub SetPWM Lib "vm167.dll" (ByVal CardAddress As Integer, ByVal Channel As Integer, ByVal
Data As Integer, ByVal Freq As Integer)
Private Declare Sub OutputAllPWM Lib "vm167.dll" (ByVal CardAddress As Integer, ByVal Data1 As Integer, ByVal
Data2 As Integer)
Private Declare Function VersionDLL Lib "vm167.dll" () As Integer
Private Declare Function VersionFirmware Lib "vm167.dll" (ByVal CardAddress As Integer) As Integer
Private Declare Function Connected Lib "vm167.dll" () As Integer
Private Declare Sub ReadBackPWMOut Lib "vm167.dll" (ByVal CardAddress As Integer, ByRef Buffer As Integer)
Private Declare Function ReadBackInOutMode Lib "vm167.dll" (ByVal CardAddress As Integer) As Integer

Visual C# 2008 Express

 [DllImport("vm167.dll")]
 public static extern int OpenDevices();

 [DllImport("vm167.dll")]
 public static extern void CloseDevices();

 [DllImport("vm167.dll")]

 public static extern int ReadAnalogChannel(int CardAddress, int Channel);

 [DllImport("vm167.dll")]
 public static extern void ReadAllAnalog(int CardAddress, int[] Buffer);

 [DllImport("vm167.dll")]
 public static extern void SetPWM(int CardAddress, int Channel, int Data, int Freq);

 [DllImport("vm167.dll")]
 public static extern void OutputAllPWM(int CardAddress, int Data1, int Data2);

 [DllImport("vm167.dll")]
 public static extern void OutputAllDigital(int CardAddress, int Data);

 [DllImport("vm167.dll")]
 public static extern void ClearDigitalChannel(int CardAddress, int Channel);

 [DllImport("vm167.dll")]
 public static extern void ClearAllDigital(int CardAddress);

 [DllImport("vm167.dll")]
 public static extern void SetDigitalChannel(int CardAddress, int Channel);

 [DllImport("vm167.dll")]
 public static extern void SetAllDigital(int CardAddress);

 [DllImport("vm167.dll")]
 public static extern bool ReadDigitalChannel(int CardAddress, int Channel);

 [DllImport("vm167.dll")]
 public static extern int ReadAllDigital(int CardAddress);

 [DllImport("vm167.dll")]
 public static extern void InOutMode(int CardAddress, int HighNibble, int LowNibble);

 [DllImport("vm167.dll")]
 public static extern uint ReadCounter(int CardAddress);

 [DllImport("vm167.dll")]
 public static extern void ResetCounter(int CardAddress);

 [DllImport("vm167.dll")]
 public static extern int Connected();

 [DllImport("vm167.dll")]
 public static extern int VersionFirmware(int CardAddress);

 [DllImport("vm167.dll")]
 public static extern int VersionDLL();

 [DllImport("vm167.dll")]
 public static extern void ReadBackPWMOut(int CardAddress, int[] Buffer);

 [DllImport("vm167.dll")]
 public static extern int ReadBackInOutMode(int CardAddress);

Delphi

function OpenDevices: integer; stdcall; external 'V M167.dll';
procedure CloseDevices; stdcall; external 'VM167.dl l';
function ReadAnalogChannel(CardAddress: integer; Ch annel: integer):integer; stdcall; external 'VM167.d ll';
procedure ReadAllAnalog(CardAddress: integer; Buffe r: Pointer); stdcall; external 'VM167.dll';
function ReadAllDigital(CardAddress: integer): inte ger; stdcall; external 'VM167.dll';
procedure SetPWM(CardAddress: integer; Channel: int eger; Data: integer; Frequency: integer); stdcall;
external 'VM167.dll';
procedure OutputAllPWM(CardAddress: integer; Data1: integer; Data2: integer); stdcall; external 'VM167 .dll';
procedure InOutMode(CardAddress: integer; HighNibbl e: integer; LowNibble: integer);stdcall; external
'VM167.dll';
procedure OutputAllDigital(CardAddress: integer; Da ta: integer);stdcall; external 'VM167.dll';
procedure ClearAllDigital(CardAddress: integer); st dcall; external 'VM167.dll';
procedure ClearDigitalChannel(CardAddress: integer; Channel: integer); stdcall; external 'VM167.dll';
procedure SetDigitalChannel(CardAddress: integer; C hannel: integer); stdcall; external 'VM167.dll';
procedure SetAllDigital(CardAddress: integer); stdc all; external 'VM167.dll';
function ReadCounter(CardAddress: integer):cardinal ; stdcall; external 'VM167.dll';
procedure ResetCounter(CardAddress: integer); stdca ll; external 'VM167.dll';
function VersionFirmware(CardAddress: integer): int eger; stdcall; external 'VM167.dll';
function VersionDLL: integer; stdcall; external 'VM 167.dll';
function Connected: integer; stdcall; external 'VM1 67.dll';
procedure ReadBackPWMOut(CardAddress: integer; Buff er: Pointer); stdcall; external 'VM167.dll';
function ReadBackInOutMode(CardAddress: integer):in teger; stdcall; external 'VM167.dll' ;

Borland C++Builder

#ifdef __cplusplus

extern "C" {

#endif

#define FUNCTION __declspec(dllimport)

FUNCTION int __stdcall OpenDevices();

FUNCTION void __stdcall CloseDevices();

FUNCTION int __stdcall ReadAnalogChannel(int CardAddress, int Channel);

FUNCTION void __stdcall ReadAllAnalog(int CardAddress, int *Buffer);
FUNCTION void __stdcall SetPWM(int CardAddress, int Channel, int Data, int Freq);

FUNCTION void __stdcall OutputAllPWM(int CardAddress, int Data1, int Data2);

FUNCTION void __stdcall OutputAllDigital(int CardAddress, int Data);
FUNCTION void __stdcall ClearDigitalChannel(int CardAddress, int Channel);

FUNCTION void __stdcall ClearAllDigital(int CardAddress);

FUNCTION void __stdcall SetDigitalChannel(int CardAddress, int Channel);
FUNCTION void __stdcall SetAllDigital(int CardAddress);

FUNCTION bool __stdcall ReadDigitalChannel(int CardAddress, int Channel);

FUNCTION int __stdcall ReadAllDigital(int CardAddress);

FUNCTION void __stdcall InOutMode(int CardAddress, int HighNibble, int LowNibble);
FUNCTION unsigned int __stdcall ReadCounter(int CardAddress);

FUNCTION void __stdcall ResetCounter(int CardAddress);

FUNCTION int __stdcall Connected();
FUNCTION int __stdcall VersionFirmware(int CardAddress);

FUNCTION int __stdcall VersionDLL();

FUNCTION void __stdcall ReadBackPWMOut(int CardAddress, int *Buffer);
FUNCTION int __stdcall ReadBackInOutMode(int CardAddress);

#ifdef __cplusplus
}

#endif

