Germany

Datasheet

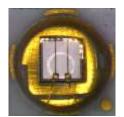
High Power UV-LED Emitter

RSW-P01-385-2.pdf

Conrad Art. Nr.: 491115 / STAR-UV385-01-00-00

Key Features

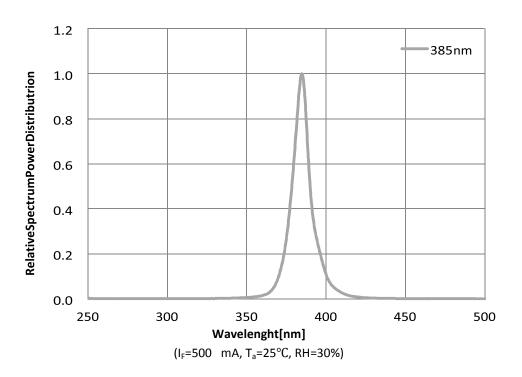
- Super high power output
- Designed for highcurrent operation
- Low thermal resistance
- SMT solderable
- Lead Free product
- RoHS complient


Typical Applications

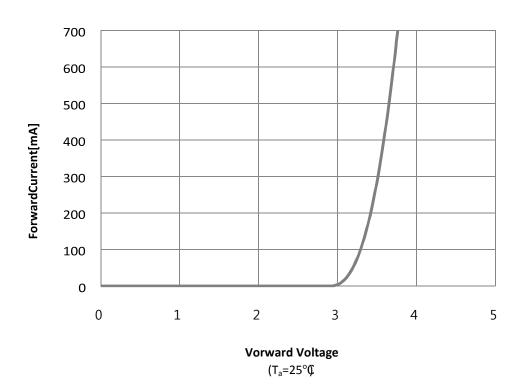

- UV Curing
- Printing
- Coating
- Adhesive
- Counterfeit Detection/Security
- UV Torch
- Fluorescence Photography
- Dental Curing
- Crime Inspection
- Oil leak Detection

Description

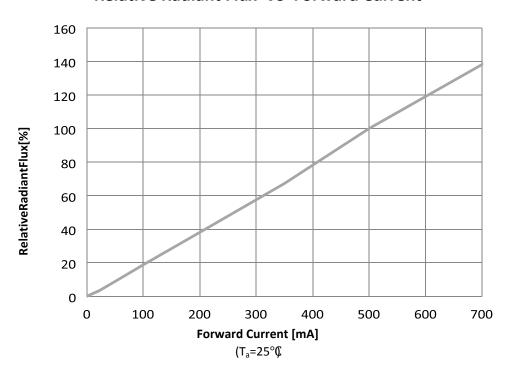
The RSW-P01-385-2 High power UV LED series are designed for high current operation and high power output applications. It incorporates state of the art SMD design and low thermal resistant material. Z5 NUV LED is ideal UV light source for curing, printing, and detecting applications.

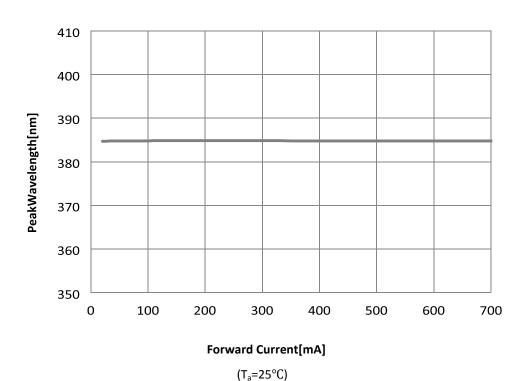

Characteristics

Parameter	Symbol	Value	Unit
Peak wavelength	λ_{p}	385	nm
Radiant Flux	Ф _е [3]	1100	mW
Forward Voltage	V_{F}	3.6	V
Spectrum Half Width	Δλ	12	nm
View Angle	201/2	120	deg.
Thermal resistance	RθJ-s[5]	7.8	oC \M

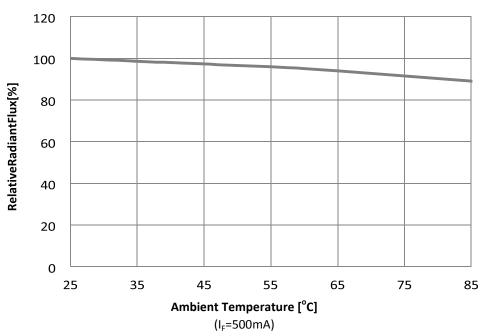

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Forward Current	I _F	700	mA	
Junction Temperature	T _j	125	ōС	
Operating Temperature	Topr	-10 ~ +85	ōС	
Storage Temperature	T_{stg}	-40 ~ +100	δС	

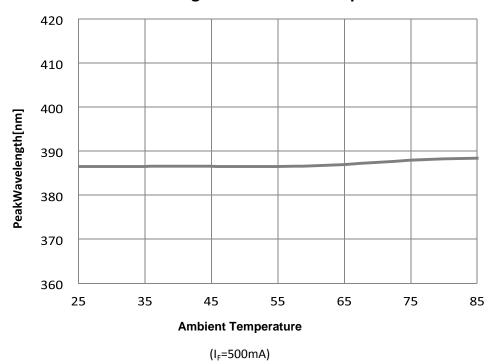

Relative Spectral Power Distribution


Forward Current VS Forward Voltage

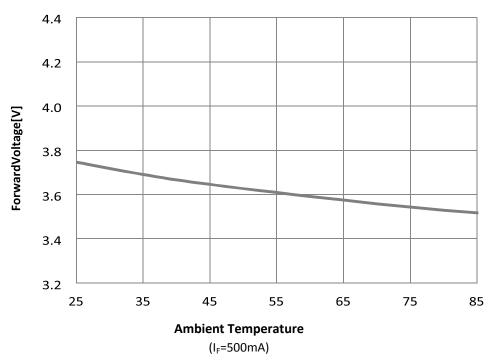
Relative Radiant Flux VS Forward Current

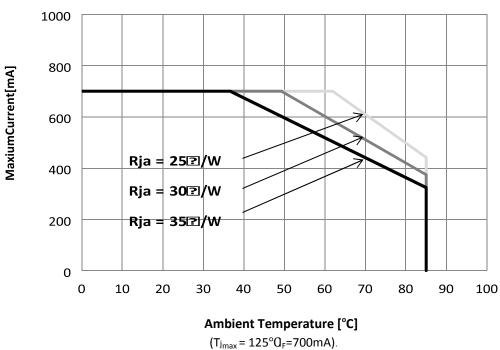


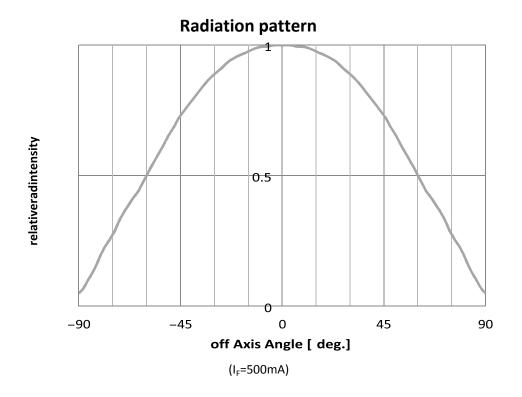
Peak Wavelength VS Forward Current



Date: 27.06.2016 - Roschwege GmbH – Germany - reserves the right to make changes to improve performance without notice


Relative Radiant Flux VS Ambient Temperature


Peak Wavelength VS Ambient Temperature



Forward Voltage VS Ambient Temperature

Allowable Forward Current VS Ambient Temperature

Reliability

Test Condition Note		Failed/Testet	
Ta=85°C, IF=500mA	1000hrs	0/5	
Ta=25°C, IF=500mA 1000hrs		0/5	
Ta max=120°C, Ta min=-40°C			
30min dwell/transfer time : 10sec, 200 cycles		0/22	
1 cycle=1hr			
Temp=260±5°C, Time: 10±1 sec	1 time	0/10	
Temp=260±5°C, 95% Coverage	1 time	0/10	
R=1.5kΩ, C=100pF	3 times Negative	0/22	
Voltage level=2kV	/positive	0/22	
	Ta=85°C, IF=500mA Ta=25°C, IF=500mA Ta max=120°C, Ta min=-40°C 30min dwell/transfer time: 10sec,	Ta=85°C, IF=500mA 1000hrs Ta=25°C, IF=500mA 1000hrs Ta max=120°C, Ta min=-40°C 30min dwell/transfer time : 10sec, 1 cycle=1hr Temp=260±5°C, Time : 10±1 sec 1 time Temp=260±5°C, 95% Coverage 1 time R=1.5kΩ, C=100pF 3 times Negative	

Failure Criteria

Parameter	Symbol	Test Conditions	Max. or Min. allowable shift value
Forward Voltage	V _F	IF=350mA	Max. Initial measurement x 1.2
Radiant Flux	Фе	IF=350mA	Min. Initial measurement x 0.7

Precaution for use

1) Storage

- To avoid moisture penetration, we recommend storing UV LEDs in a dry box with a desiccant. The recommended temperature and Relative humidity are between 5°C and 30°C and below 50% respectively.
- LEDs must be stored properly to maintain the device. If the LEDs are stored for 3 months or more after being shipped from SVC, a sealed container with a nitrogen atmosphere should be used for storage.
- Replace the remained LEDs into the moisture-proof bag and reseal the bag after work to avoid those LEDs being exposed to moisture. Prolonged exposure to moisture can adversely affect the proper functioning of the LEDs.
- If the package has been opened more than 4 eek(MSL_2a) or the color of the desiccant changes, components should be dried for 10-12hr at 60±5°C
- The conditions of resealing are as follows
 - Temperature is 5 to 40°C and Relative humidity is less than 30%

2) Handling Precautions

- VOCs (Volatile organic compounds) emitted from materials used in the construction of fixtures can
 penetrate silicone encapsulants of LEDs and discolor them when exposed to heat and photonic energy.
 The result can be a significant loss of light output from the fixture. Knowledge of the properties of the
 materials selected to be used in the construction of fixtures can help prevent these issues.
- In case of attaching LEDs, do not use adhesives that outgas organic vapor.
- Soldering should be done as soon as possible after opening the moisture-proof bag.
- Do not rapidly cool device after soldering.
- Do not apply mechanical force or excess vibration during the cooling process to normal temperature after soldering.
- Components should not be mounted on warped (non coplanar) portion of PCB.
- The UV LED is encapsulated with a silicone resin for the highest flux efficiency. So it needs to be handled carefully as below
 - Avoid touching silicone resin parts especially with sharp tools such as pincettes(Tweezers) Avoid leaving fingerprints on silicone resin parts.
 - Silicone resin will attract dust so use covered containers for storage.
 - When populating boards in SMT production, there are basically no restrictions regarding the form of the
 pick and place nozzle, except that excessive mechanical pressure on the surface of the resin must be
 prevented.
 - It is not recommend to cover the silicone resin of the LEDs with other resin (epoxy, urethane, etc).

3) Safety for eyes and skin

• The Products emit high intensity ultraviolet light which can make your eyes and skin harmful, So do not look directly into the UV light and wear protective equipment during operation.

4) Cleaning

• This device is not allowed to be used in any type of fluid such as water, oil, organic solvent, etc.

5) Others

- The appearance and specifications of the product may be modified for improvement without notice.
- When the LEDs are in operation the maximum current should be decided after measuring the package temperature.
- The driving circuit must be designed to allow forward voltage only when it is ON or OFF. If the reverse voltage is applied to LED, migration can be generated resulting in LED damage.

Do not handle this product with acid or sulfur material in sealed space

Technical modifications and errors reserved

Date: 27.06.2016 - Roschwege GmbH – Germany - reserves the right to make changes to improve performance without notice

