
ROSCHWEGE GmbH

Germany

Datasheet

High Efficacy UV LED Emitter 365nm / 11W

RSW-P11-365-0

£High Efficacy 365nm 11W UV LED

Ultra-small foot print – 7.0mm x 7.0mm

Surface mount ceramic package with integrated glass lens

Very low Thermal Resistance (1.1°C/W)

Individually addressable die

Electrically neutral thermal path

Highest Radiant Flux density

JEDEC Level 1 for Moisture Sensitivity Level

Lead (Pb) free and RoHS compliant

Reflow solderable (up to 6 cycles)

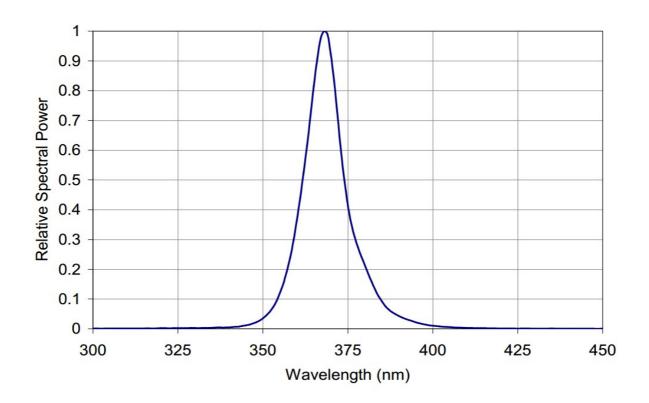
Emitter available on Standard and Serially connected MCPCB (optional)

The **RSW-P11-365-0** UV LED emitter provides superior radiometric power in the wavelength range specifically required for applications like curing, sterilization, currency verification, and various medical applications. With a 7.0mm x 7.0mm ultra-small footprint, this package provides exceptional optical power density. The patented design has unparalleled thermal and optical performance. The high quality materials used in the package are chosen to optimize light output, have excellent UV resistance, and minimize stresses which results in monumental reliability and radiant flux maintenance.

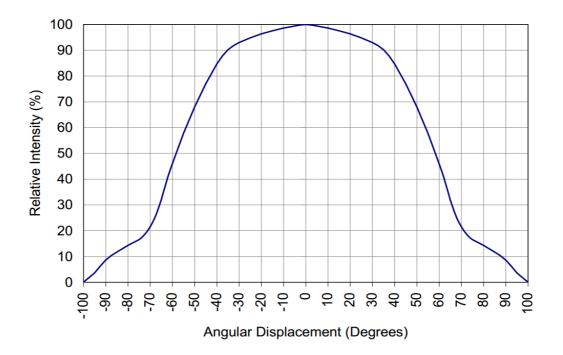
Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
DC Forward Current	İF	700	mA	
Peak Pulsed Forward Current	I FP	850	mA	
Reverse Voltage	VR	See Note 1	V	
Storage Temperature	Tstg	-40 ~ +150	°C	
Junction Temperature	TJ	100	°C	
Soldering Temperature	Tsol	180	°C	
Allowable Reflow Cycles		6		
ESD Sensitivity		> 2 kV HBM Class 3B JESD22-A114-D		

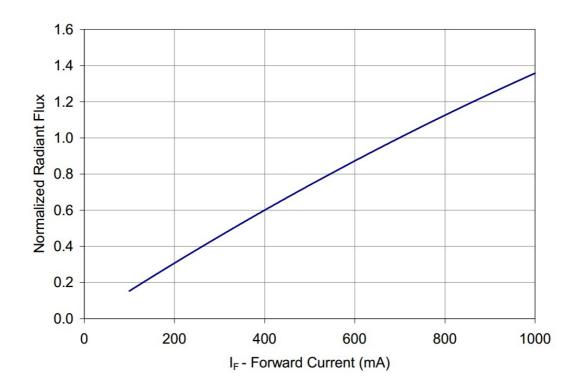
¹⁾ LEDs are not designed to be reverse biased

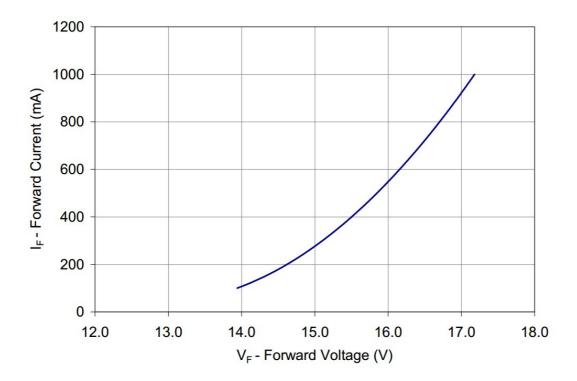

Optical Characteristics @ Tc = 25°C

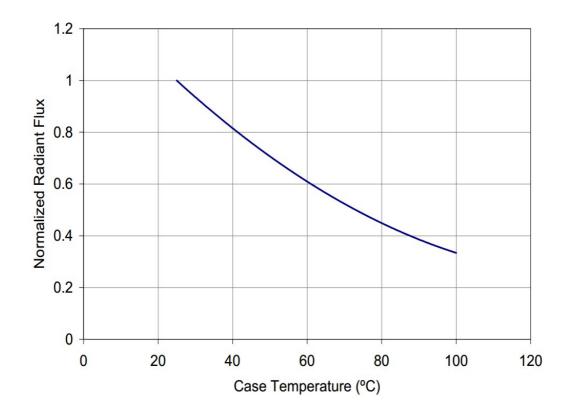
Parameter	Symbol	Typical	Unit
Radiant Flux (@ I _F = 700mA)	Φ	1200	mW
Peak Wavelength	λP	365	nm
Viewing Angle	2Θ1/2	115	Degrees
Total Included Angle	Θ0.9	175	Degrees

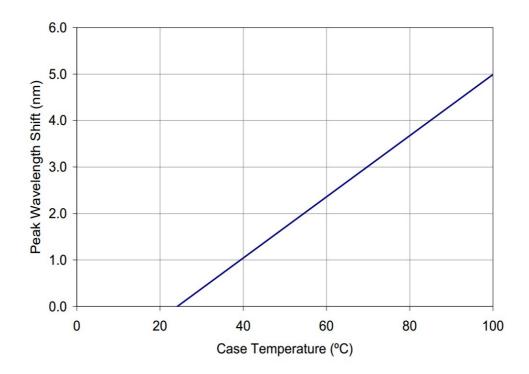

Electrical Characteristics @ Tc = 25°C

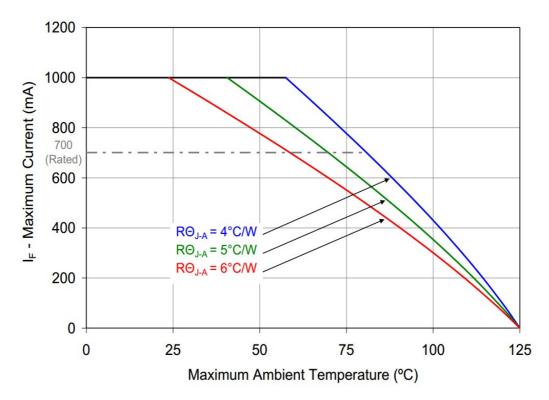
Parameter	Symbol	Typical 1 Die	Typical 4 Dies	Unit
Forward Voltage (@ IF= 700mA)	VF	4,1	16,4	V
Temperature Coefficient of VF	ΔVF/ΔTJ		-14,8	mV/°C
Thermal Resistance (Junction to Case)	RØ _{J-C}		1,1	K/W


Relative Spectral Power vs. Wavelength @ TC = 25°C.


Typical Radiation Pattern


Typical Normalized Radiant Flux vs. Forward Current @ TC = 25°C.


Typical Forward Current vs. Forward Voltage @ TC = 25°C.


Typical Normalized Radiant Flux vs. Case Temperature.

Typical Peak Wavelength Shift over Temperature

Current Derating

- 1. Maximum current assumes that all four LED dice are operating concurrently at the same current.
- 2. ROJ-C [Junction to Case Thermal Resistance] for the RSW-P11-365-0 is typically 1,1°C/W.
- 3. ROJ-A [Junction to Ambient Thermal Resistance] = ROJ-C + ROC-A [Case to Ambient Thermal Resistance].

Notes:

ROSCHWEGE GmbH Technical LED-Solutions

Germany

Technical modifications and errors reserved

