Panasonic ideas for life

Compliant with European
standards (reinforced insulation) 1 Form Al1 Form C 6A Slim power relays

FEATURES

1. High density mounting with 5 mm .197 inch width
Space saved with 5 mm .197 inch slim type with 28 mm 1.102 inch length. Allows high density mounting and use in compact devices.
2. Satisfies reinforced insulation standard (EN/IEC 61810-1).
3. High switching capacity

Supports 6A 250 V AC nominal switching capacity (resistive load) and AC15 and DC13 (inductive load).
4. 1 Form A and 1 Form C contact arrangements with options for a variety of applications.
5. 4,000 V high breakdown voltage and 6,000 V high surge breakdown voltage. Controller protection against surges and noise with a breakdown voltage of 4,000 Vrms for 1 min. between contacts and coil, and $6,000 \mathrm{~V}$ surge breakdown voltage between contacts and coil. 6. Resistance to heat and fire; EN60335-1, clause 30 (GWT) approved.
7. Sealed construction allows automatic washing.
8. Complies with all safety standards. UL, C-UL, VDE certified.

TYPICAL APPLICATIONS

1. Interface relays for programmable controllers
2. Output relays for measuring equipment, timers, counters and temperature controllers
3. Industrial equipment, office equipment
4. Household appliances for Europe

ORDERING INFORMATION

	Contact arranger 1: 1 Form A 3: 1 Form C Contact type 0 : Single contact Contact material 2: AgNi type 3: AgNi type/Au-p Coil voltage (DC) 4H: 4.5 V 05: 5 $24: 24 \mathrm{~V} 48: 48$					

[^0]
TYPES

Contact arrangement	Nominal coil voltage	Part No.	Contact arrangement	Nominal coil voltage	Part No.
1 Form A (AgNi type)	4.5 V DC	APF1024H	1 Form C (AgNi type)	4.5 V DC	APF3024H
	5 V DC	APF10205		5V DC	APF30205
	6V DC	APF10206		6V DC	APF30206
	9V DC	APF10209		9V DC	APF30209
	12 V DC	APF10212		12 V DC	APF30212
	18 V DC	APF10218		18 V DC	APF30218
	24 V DC	APF10224		24 V DC	APF30224
	48 V DC	APF10248		48 V DC	APF30248
	60 V DC	APF10260		60 V DC	APF30260
1 Form A (AgNi type/Au-plated)	4.5 V DC	APF1034H	1 Form C (AgNi type/Au-plated)	4.5 V DC	APF3034H
	5 V DC	APF10305		5V DC	APF30305
	6 V DC	APF10306		6 V DC	APF30306
	9V DC	APF10309		9V DC	APF30309
	12 V DC	APF10312		12 V DC	APF30312
	18 V DC	APF10318		18 V DC	APF30318
	24 V DC	APF10324		24 V DC	APF30324
	48 V DC	APF10348		48 V DC	APF30348
	60 V DC	APF10360		60 V DC	APF30360

Standard packing: Tube: 20 pcs.; Case: 1,000 pcs.

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4.5V DC	Max. 70\%V nominal voltage (Initial)	$\begin{gathered} \text { Min. } 5 \% \mathrm{~V} \\ \text { nominal voltage } \\ \text { (Initial) } \end{gathered}$	37.8 mA	119Ω	170 mW	$120 \% \mathrm{~V}$ of nominal voltage
5V DC			34.0 mA	147Ω		
6 V DC			28.3 mA	212Ω		
9V DC			18.9 mA	476Ω		
12 V DC			14.2 mA	847Ω		
18 V DC			9.4 mA	1,906 ${ }^{\text {a }}$		
24 V DC			7.1 mA	3,388,		
48 V DC			4.5 mA	10,618 Ω	217mW	
60 V DC			2.9 mA	20,570	175mW	

PF (APF)
2. Specifications

Characteristic	Item		Specifications	
Contact	Arrangement		1 Form A	1 Form C
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		AgNi type, AgNi type/Au-plated	
Rating	Nominal switching capacity (resistive load)		6 A 250 V AC	
	Max. switching power (resistive load)		1,500 VA	
	Max. switching voltage		250 V AC	
	Max. switching current		6 A (AC)	
	Nominal operating power		170 mW (5 to 24 V DC), 217 mW (48 V DC), 175 mW (60 V DC)	
	Min. switching capacity (Reference value)**		100 mA 5 V DC (without Au-plated), 1 mA 1 V DC (with Au-plated)	
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact and coil	4,000 Vrms for 1 min . (Detection current: 10 mA)	
	Surge breakdown voltage (Between contact and coil)*2		6,000 V (initial)	
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $45^{\circ} \mathrm{C} 113^{\circ} \mathrm{F}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 6A.)	
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 8 ms (Nominal coil voltage applied to the coil, excluding contact bounce time.)	
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms(Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. 98 m/s ${ }^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)	Min. $49 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms.$\left.\right)$	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm	
Expected life	Mechanical		Min. 5×10^{6} (at 180 cpm)	
	Electrical*3		N.O.: Min. 5×10^{4} (at resistive load, 6 cpm and nominal switching capacity)	$\begin{gathered} \text { N.O.: Min. } 5 \times 10^{4}, \text { N.C.: Min. } 3 \times 10^{4} \\ \text { (at resistive load, } \\ 6 \mathrm{cpm} \text { and nominal switching capacity) } \end{gathered}$
Conditions	Conditions for operation, transport and storage*4		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
Unit weight			Approx. 5 g .18 oz	

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2 Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3 For cycle lifetime, refer to "Cautions for Use 4)" in NOTES (page 5)
*4 The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.

REFERENCE DATA

1. Electrical life

Tested sample: APF30224

Load type		Voltage	Current	Ambient temperature	No. of ops.
Resistive load		250 V AC	6 A	$85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$	30,000
Inductive load	AC 15	250 V AC	3 A	$25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$	20,000
	DC 13	24 V DC	2 A	$25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$	6,000

Notes: 1. Switch contacts are all on N.O. side.

2. AC 15 and DC 13 comply with IEC-60947-5-1 testing conditions.

2. Max. switching capacity

Load Limit Curve
3. Coil temperature rise Tested sample: APF30224 Measured portion: Inside the coil Ambient temperature: $28^{\circ} \mathrm{C} 82^{\circ} \mathrm{F}$

4. Ambient temperature characteristics

Tested sample: APF30224, 6 pcs.

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. 1 Form A type

CAD Data

External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)
COIL

2. 1 Form C type

CAD Data

External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Schematic (Bottom view)

SAFETY STANDARDS

Certification authority	File No.	Applicable standard	Rating	Remarks
UL, C-UL	E120782	UL508, CSA C22.2 No.14 UL1604 (class I, Division 2, Group A, B, C, D)	277 V AC 8A, General use, $24 \mathrm{~V} \mathrm{DC} \mathrm{6A} ,\mathrm{General} \mathrm{use}$, B300, R300 (Pilot Duty)	
VDE	40027672	EN/IEC 61810-1	250V AC 6A (cos $\phi=1.0) 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F} \mathrm{F}$ N.O. side, N.C. side 250V AC 8A (cos $\phi=1.0) 25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$	Insulation: Reinforced insulation between contact and coil. Resistance to heat and fire; EN60335-1, clause $30(G W T) ~ a p p r o v e d . ~$

NOTES

\square Usage, transport and storage conditions

1) Temperature:
-40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$
2) Humidity: 5 to $85 \% \mathrm{RH}$
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

- Solder and cleaning conditions

1) Please obey the following conditions when soldering automatically.
(1) Preheating: Within $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ (solder surface terminal portion) and within 120 seconds
(2) Soldering iron: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$ (solder temperature) and within 6 seconds (soldering time)
2) Please obey the following conditions when soldering manually.
Thoroughly clean the iron tip.
(1) Soldering iron: 30 to 60 W
(2) Soldering iron tip temperature: $350^{\circ} \mathrm{C}$ $662^{\circ} \mathrm{F}$
(3) Soldering time: within approx. 3

seconds

3) Since this is not a sealed type relay, do not clean it as is. Also, be careful not to allow flux to overflow above the PC board or enter the inside of the relay.

■ Cautions for use

1) For precautions regarding use and explanations of technical terminology, please refer to our web site.
(panasonic-electric-works.net/ac)
2) To ensure good operation, please keep the voltage on the coil ends to $\pm 5 \%$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) of the rated coil operation voltage. Also, please be aware that the pick-up voltage and drop-out voltage may change depending on the temperature and conditions of use.
3) Keep the ripple rate of the nominal coil voltage below 5%.
4) The cycle lifetime is defined under the standard test condition specified in the JIS C 5442 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to 95° F, humidity 25 to 75%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors. Also, be especially careful of loads such as those listed below.
(1) When used for AC load-operating and the operating phase is synchronous. Rocking and fusing can easily occur due to contact shifting.
(2) Highly frequent load-operating When highly frequent opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.

Three countermeasures for these are listed here.

- Incorporate an arc-extinguishing circuit.
- Lower the operating frequency
- Lower the ambient humidity

5) Minimum switching capacity provides a guideline for low level load switching. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
6) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded.
7) If the relay has been dropped, the appearance and characteristics should always be checked before use.
8) Incorrect wiring may cause
unexpected events or the generation of heat or flames.
9) The amount of relay operation noise will vary depending on the substrate used for mounting. Please use after verifying with the relay mounted on the substrate.

We recommend this extra manufacturers socket. It is only available in Europe.

PF (APF) relay socket

APF1-PS-GD

FEATURES

1. Socket incorporates LED-indication
2. It is equipped with a hold-down clip and an integrated casting mechanism
3. Suitable for PCB-mounting

PIN LAYOUT
HANDLING

(+,-) Polarity of LED
Bottom view

Push down the hold-down clip in order to cast the relay.

NOTE: The PF relay approvals do not apply to the PF relay socket.

[^0]: Note: UL/C-UL/VDE approved type is standard.

