1 General Information

- Pneumatics has a variety of advantages over other control and driving systems. When being used however, general design guidelines and specific regulations for machines and equipment relating to with pneumatics, (e.g. those complying to DIN 24558, pneumatic equipment) as well as general safety regulations must be complied with.

- When using Norgren products the specifications applicable in each case must be observed, as for example:
 - all necessary Accident Prevention Regulations
 - all the relevant VDI guidelines (in particular VDI 2853 and VDI 3229)
 - all the guidelines, safety regulations and instruction leaflets concerned
 - the relevant DIN standards (e.g. DIN 31000 and DIN 31001)
 - instructions for installation and maintenance for Norgren pneumatic equipment and controls (which are obtainable from Norgren)
 - EG “Machines” guidelines (particulary in the area of fluid technology)
 - “General Safety Requirements of Fluid Technology Systems and Components” (CEN Document)
 - The products may not be used outside the specified “Technical Parameters” (e.g. pressure and temperature).
 - The consequences of a breakdown of a product, e.g., through incorrect operating procedures, ageing or malfunction, should be taken into consideration.
 - System designers and the subsequent operators must follow the existing operating guidelines and strictly adhere to the installation and operating instructions.
 - System designers must make the end-users aware in the User Instructions that adequate safety measures are to be taken in order to protect people and equipment.
 - Norgren must be consulted before using the product with fluids other than those specified, for non-industrial applications, life support systems and other applications outside the published specification list.
 - In order to avoid unrestricted movements of equipment components where no displacement limiters are provided, supplementary means must be made available and used.
 - Unclean and incorrectly oiled compressed air will shorten the life-span of the pneumatic components.
 - Variations in compressed air can lead to irregular functioning of the pneumatic components and hence of the production equipment.
 - Improper fitting and improper handling of compressed air appliances can lead to premature failure and can be dangerous.
2 Cylinders

- The displacement range of the cylinders, pistons and all the other associated actuations must be safeguarded against to protect and equipment. (Recommended guidelines VDI 2853 or DIN 31001)

2.1 Single acting cylinders with spring return

- Dismantling of the cylinders should be carried out with the utmost care as the cylinder is pre-stressed by means of the mechanical spring.

2.2 Bellow cylinders

- Pneumatic bellow cylinders must not be used outside specified operating parameters.
- To avoid overstretching or excessive movement of the bellows, external stops must be provided.
- A contact-free stroke movement of the bellows with respect to neighbouring components is essential.
- The pneumatic bellow cylinders must not be supplied with compressed air if the edge of the bellows is not completely encapsulated by the end-plates.
- If only two of the four fastening bolts are used, the end-plates must be additionally supported.

2.3 Impact cylinders

- Due to the high kinetic energy content in the impact cylinder, precautionary measures must be taken.
- Impact cylinders may only be operated when adequately safeguarded.

3 Air valves

- Air valves can have an undefined switching position when switching on equipment. Therefore it is possible that the equipment makes an uncontrolled sudden movement. Care should therefore be taken when switching on equipment.

3.1 5/3 wax valves and non-return valves

- When using 5/3-way valves with closed centre position or non-return valves in pneumatic control systems and plants it is to be noted that certain areas of such systems and plants may remain under pressure after they have been shut off and vented. The utmost care should therefore be exercised when carrying out repair work.
- The areas of the system which remain under pressure after being shut off and vented are to be provided with special markings (e.g. "pressure line") in circuit diagrams. It is also highly advisable to provide these circuit diagrams with a special text, e.g.: "WARNING! Due care is to be exercised during repair work to areas marked "pressure line" in this system."
Care should always be taken during installation of pneumatic cylinders and valves to ensure that they are fitted in such a manner that they are protected against dirt, water or other contamination as well against mechanical damage. The environmental temperature for normal cylinders should not exceed 80° C, and the same applies to normal valves. Cylinders fitted with heatresistant seals may be used for temperatures up about 150° C.

Installation of the cylinders
In order to prevent premature wear of the seals and piston rod bearings, the cylinders must be carefully aligned during installation. It is absolutely imperative that should be no forces acting at right angles to the cylinders axis. A wiper is fitted in the bearing to prevent dirt penetrating into the cylinder. If a cylinder is employed in a dirty environment (cement dust, residues from flame-cutting operations etc.) it is advisable to provide special protection for the piston rod (a bellows sleeve may be used). Every cylinder is authorized for a certain maximum working pressure which may be exceeded. Adjustable cushions are fitted in both ends of the cylinders. When installing a cylinder care should be taken to ensure that the cushions adjusting screws remain easily accessible, so that the cushions can be adjusted at any time to suit the working conditions.

Installation of valves
Main control valves, i.e. valves which control reversal of cylinders, should be installed as close to the cylinders as possible in order to eliminate unnecessary air consumption. Under no circumstances valves serving as limit switches may be used as stops.

Routing of pipework
Pipework in the main supply network in the plant should be installed at a slightly inclined angle. Long runs should be alternately inclined downwards and upwards. Any condensate water then collects at the lowest points in the pipework. At such points a pipe should be fitted leading vertically downwards to a small condensate receiver. The latter should be emptied from time to time. An automatic drain valve will do this automatically if fitted in place of a condensate receiver. Branches leading from the main line to consumption points should be installed pointing vertically upwards and then curving downwards. Do not use bends of too small radius. Carefully blow out all pipes before installing them, so as to remove any dirt and chips. Do not hemp for making seals! Liquid sealing agents or, still better, sealing tape (Fluflex or Diring) ensure that contamination, such as fibres when hemp is used, does not get into the pipework.

Maintenance
As a rule Norgren cylinders and valves require hardly any maintenance. All seals (o-rings and packing-rings) are made of synthetic, oil-resistant rubber. However, the condition of the compressed air determines the life of the installation. For this reason the air used should be treated so that it is suitable for the purpose in the interests of long life. Clean air, free of water and containing oil fog, ensures long service life for the equipment. A filter with water separator incorporated in the line removes small particles from the air and separates out water. The condensate collects in a receiver mounted on the filter and should be drained off from time to time. If an automatic drain valves is mounted on the filter it is absolutely certain that it will not be forgotten to drain off the condensate. The cleaned air now has to have oil added to it. Every engineer knows that sliding parts have to be lubricated and therefore provides lubrication for bearings and other moving parts. In a cylinder, too, the piston and piston rod slide, and the slides in the valve also move. It is very often not considered necessary to lubricate such parts- and then the penalty is paid in the form of premature wear of packings and bearing. In order to lubricate a pneumatic control system properly a lubricator is installed in the air line; this lubricator saturates the compressed air with a fine fog of oil droplets. These droplets remain suspended in the air and are carried to the lubricating points in the cylinders and valves. The size of lubricator selected depends on the volume of air flowing through the line and NOT on the consumption. One must differentiate between consumption per unit time and rate of flow per unit of time.

And now an example
Lubricators have a wide flow range, but care must still be taken to match the size of lubricator to air flow, and it’s important to distinguish between consumption and air flow. Thus if a circuit consumes 5 cubic feet of air per cycle and this cycle occupies 10 seconds and occurs once every two minutes, the average consumption is 2 ½ cfm but the rate of flow is 30 cfm when calculating the capacity of lubricator required. We recommend the following grades of oil for use in the oilers:

<table>
<thead>
<tr>
<th>Lemon Oil</th>
<th>Tellus C32</th>
<th>Fa. Shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aral Oil</td>
<td>Vitam DE32</td>
<td>Fa. Aral</td>
</tr>
<tr>
<td>BP Oil</td>
<td>Energol HLP32</td>
<td>Fa. BP</td>
</tr>
<tr>
<td>Esso Oil</td>
<td>Nuto H32</td>
<td>Fa. Esso</td>
</tr>
<tr>
<td>Mobil Oil</td>
<td>D.T.E. Oil Light</td>
<td>Fa. Mobil Oil</td>
</tr>
<tr>
<td>or corresponding oils of other makes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The micro-lubricators are suitable for oils with a viscosity from 20 to 200 cSt at an operating temperature of 20° C. Lighter oils should not be used, as in most cases an excess of lubrication.