Selection diagram

product option
accessory sold separately

Contact blocks	
$\mathbf{1 8}$	1NO+1NC, slow action
$\mathbf{9}$	2NC, slow action
$\mathbf{2 0}$	1NO+2NC, slow action
$\mathbf{2 1}$	3NC, slow action
$\mathbf{2 2}$	2NO+1NC, slow action
$\mathbf{3 3}$	1NO+1NC, slow action
$\mathbf{3 4}$	2NC, slow action

Actuating head	
$\mathbf{7 8}$	longitudinal head
$\mathbf{8 3}$	left transversal head (FD-FL housing only)
$\mathbf{8 4}$	right transversal head (FD-FL housing only)

Preinstalled cable gland or connectors

> no cable gland or connector (standard)
with assembled cable gland suitable for $\varnothing 6$ to $\varnothing 12 \mathrm{~mm}$ cables range
with M12 metal connector assembled and
wired, 8 poles (only for contact blocks $20,21,22$)
...
For the complete list of all combinations, please contact our technical office.

Threaded conduit entry

	PG 13,5 (standard)

2 M20x1,5

Contacts type

	silver contacts (standard)
G	silver contacts gold plated $1 \mu \mathrm{~m}$

Main data

- Metal or polymer housing, from one to three conduit entries
- Protection degree IP67
- In conformity with EN 418
- 7 contact blocks available
- Transversal head or longitudinal head versions
- M12 assembled connector versions
- Silver contacts gold plated versions
- Several accessories available

Markings and quality marks:

Approval IMQ:
Approval UL:
Approval EZU:

EG605 (FD-FL-FC series) EG606 (FP series)
E131787 1010151

Technical data

Housing

Housing type FP made of glass-reinforced polymer, self-extinguishing, shockproof thermoplastic resin with double insulation \square
Housing type FD and FC made of metal, coated with baked epoxy powder.
FD, FP and FC series one conduit entry
FL series three conduit entries
Protection degree:
IP67

General data

Ambient temperature:
from $-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Version for operation in ambient temperature from $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ on request
Max operating frequency: $\quad 1$ operation cycles / 6 s
Mechanical endurance: $\quad 1$ million of operations cycles ${ }^{1}$
Max actuating speed: $\quad 0,5 \mathrm{~m} / \mathrm{s}$
Min. actuating speed: $\quad 1 \mathrm{~mm} / \mathrm{s}$
(1) One operation cycle means two movements, one to close and one to open contacts, as foreseen by IEC 947-5-1 standard.

Cross section of the conductors (flexible copper wire)

Contact blocks 20, 21, 22, 33, 34:	min. $1 \times 0,34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)	
Contact blocks 18, 9:	max. $2 \times 1,5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)	
	min.	$1 \times 0,5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20 $)$
	max. $2 \times 2,5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)	

In conformity with standards:

IEC 947-5-1, IEC 337-1, EN 60947-5-1, CEI EN 60947-5-1, CEI 17-45, EN 1088, EN ISO 12100-1, EN ISO 12100-2, EN 418, NFC 63-140, VDE 0660-200, VDE 0113, CENELEC EN 50013.

Approvals:

IEC 947-5-1, UL 508.

In conformity with requirements requested by:

Low Voltage Directive 73/23/EEC and subsequent modifications and completions. Machinery Directive 98/37/EEC.
Electromagnetic Compatibility 89/336/EEC and subsequent modifications and completions.
Positive contact opening in conformity with standards:
IEC 947-5-1, EN 60947-5-1, CEI EN 60947-5-1, VDE 0660-206.
(For the correct installation of all articles, please see "Utilization requirements" chapter, from page $6 / 1$ to page 6/4.

Electrical data			Utilization categories				
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degrees:	10 A 500 VAC 600 VDC 400 VAC for contact blocks $20,21,22,33,34$ fuse 10 A 500 V type aM 3	Alternate current: AC15 (50...60 Hz)				
			Ue (V)	250	400	500	
			le (A)	6	4	1	
			Direct current: DC13				
			Ue (V)	24	125	250	
			le (A)	6	1,1	0,4	
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degrees:	```4 A 250 VAC 300 VDC fuse 4 A 500 V type gG 3```	Alternate current: AC15 (50...60 Hz)				
			Ue (V)	24	120	250	
			le (A)	4	4	4	
			Direct current: DC13				
			Ue (V)	24	125	250	
			le (A)	4	1,1	0,4	
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degrees:	2 A 30 VAC 36 VDC fuse 2 A 500 V type gG 3	Alternate current: AC15 (50...60 Hz)				
			$\mathrm{Ue}(\mathrm{V}) 24$				
			le (A)	$\stackrel{2}{ }$			
			Direct current: DC13				
			Ue (V)		24		
			le (A)	2			
page	4/69		(1)	to ilefle	Gen	Catalog 18	

Description

These rope operated safety switches are installed on machines or conveyor belts, to activate the emergency stop of the machine on every hand intervention on the rope, from any point. They allow cost savings on machines of medium-large size, where normally many emergency stop push buttons can be replaced by one single switch. Provided with self-control function, they constantly check their correct working operation, signalling with the opening of the contacts an eventual loosening or breaking of the rope. These safety switches, after their activation, keep the contacts open till the reset push button is manually pulled, even if the rope is left free.

Rotating heads

Removing the four fastening screws, in all
 switches, it is possible to rotate the head in 90° steps.

Rope regulation point indicator

All switches are provided with a green ring that shows the area of the correct stretching of the rope. The installer has only to stretch the rope until the black indicator will be in the middle of the green area. In this position it is possible to reset the switch, pulling the reset button, and to close the electrical safety contacts. If a traction (or loosening) of the rope it is high enough to permit the black indicator to go outside the correct stretching area, there will be the reset action and the opening of the safety contacts.

Reset button indicator

If the rope stretching indicator is in the correct operation area, it is possible to close the electric safety contacts pulling the blue reset button. The green ring signal allows to know the switch condition quickly.

Extracts from Standards

EN 418 point 4.1.11
"Any action on the actuator that causes the intervention of the emergency stop signal must cause the mechanical block of the control device as well...".

EN 418 point 4.5 .2 (requirements referring to ropes, when used as actuators)
"In case of break or disconnection of a rope, the emergency stop signal must be automatically generated".

Data type approved by IMQ and EZU
Rated insulation voltage (Ui): 500 VAC
400 VAC for contact blocks $20,21,22,33,34$
Thermal current (Ith): 10 A
Protection against short circuits: fuse 10 A 500 V type aM
Protection degree: IP67
MV terminals (screw clamps)
Pollution degrees 3
Utilization category: AC15

Operation voltage (Ue): 400 VAC $(50 \mathrm{~Hz})$
Operation current (le): 3 A
Forms of the contact element: $Z b, Y+Y, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact block 18, 9, 20, 21, 22, 33, 34
In conformity with standards: EN60947-1, EN 60947-5-1 and subsequent modifications and completions, fundamental requirements of the Low Voltage Directive $73 / 23$ EEC and subsequent modifications and completions.

Please contact our technical service for the list of type approved products.

Data type approved by UL

Utilization categories Q300 (69 VA, 125-250 VDC)
A600 (720 VA, $120-600$ VAC)
Data of the housing type 1, 4 X (indoor use only), 12, 13
In conformity with standard: UL 508
For all contact blocks use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor and wire size
No. 12-14 AWG. Terminal tightening torque of 7,1 Lb-In.

Please contact our technical service for the list of type approved products.

Dimensional drawings

Contacts type: $L \text { = slow action }$				
18 L	FP $1878 \quad \Theta$ 1NO+1NC	FD $1878 \quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$	FD $1883 \quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$	FD $1884 \quad \Theta \quad$ 1NO+1NC
9 L	FP $978 \quad \Theta$ 2NC	FD 978 2NC	FD $983 \quad \Theta$ 2NC	FD $984 \quad \Theta$ 2NC
20 L	FP $2078 \quad \Theta$ 1NO+2NC	FD $2078 \quad \Theta$ 1NO+2NC	FD $2083 \quad \Theta$ 1NO+2NC	FD $2084 \quad \Theta$ 1NO+2NC
21 L	FP $2178 \quad \Theta$ 3NC	FD $2178 \quad \Theta$ 3NC	FD $2183 \quad \Theta$ 3NC	FD $2184 \quad \Theta$ 3NC
22 L	FP $2278 \quad \Theta \quad 2 \mathrm{NO}+1 \mathrm{NC}$	FD $2278 \quad \Theta$ 2NO+1NC	FD $2283 \quad \Theta \quad 2 N O+1 N C$	FD $2284 \quad \Theta \quad 2 N O+1 N C$
33 L	FP $3378 \quad \Theta$ 1NO+1NC	FD $3378 \quad \Theta \quad$ 1NO+1NC	FD $3383 \quad \Theta \quad$ 1NO+1NC	FD $3384 \quad \Theta$ 1NO+1NC
34 L	FP $3478 \quad \Theta$ 2NC	FD $3478 \quad \Theta$ 2NC	FD $3483 \quad \Theta$ 2NC	FD $3484 \quad \Theta$ 2NC
Min. force	Initial $63 \mathrm{~N} . .$. Final $83 \mathrm{~N}(90 \mathrm{~N} \Theta)$	Initial $63 \mathrm{~N} . .$. Final $83 \mathrm{~N}(90 \mathrm{~N} \Theta)$	Initial 147 N ...Final $235 \mathrm{~N}(250 \mathrm{~N} \Theta$)	Initial 147 N ...Final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$
Travel diagrams	page 4/72-group 1	page 4/72-group 1	page 4/72-group 2	page 4/72-group 1

How to read travel diagrams

Travel diagrams table

Contact blocks	Group 1	Group 2
$\begin{array}{lll} 18 & \dot{1}_{14}^{1,3} & -4 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{array}$		
$\begin{array}{lll} 9 & 4_{12}^{11} & -y_{2}^{21} \\ 2 N C & 12 & 22 \end{array}$		
$\begin{array}{\|cccc} 21 & 41 & 21 & 31 \\ 3 N C & 4 & -1 & -4 \\ 32 & 22 & 32 \end{array}$		
$\begin{array}{lllll} 22 & { }_{2}^{11} \\ 2 \mathrm{NO}+1 \mathrm{NC} & { }_{12}^{2} & t_{24}^{23} & -l_{34}^{33} \end{array}$		
$\begin{array}{lll} 33 & \zeta_{14}^{13} & -4 \\ 1 \mathrm{NC}+1 \mathrm{NO} & 14 & 22 \end{array}$		
$\begin{array}{lll} 34 & 4_{12}^{11} & -4 \\ 2 N C & y_{22} \end{array}$		

IMPORTANT:

In safety applications it is necessary to activate the switch at least up to the positive opening point indicated in the diagrams with the symbol Θ.
Operate the switch at least with the positive opening force, indicated between brackets, below each article, next the value of minimum force.

Application examples and max rope length for switches with longitudinal heads

Application examples and max rope length for switches with transversal heads

Example

Max rope length

Max rope length for switches with longitudinal heads

Important: The above data are guaranteed only using original rope and accessories. See page 4/83.

In the diagram, the suggested max. rope lengths with regard to changes of temperature (thermal differential) to which the switch is expected to be exposed in the working area are indicated.
For instance, for an example C installation which expects a thermal differential of $30^{\circ} \mathrm{C}$, a max rope length of 10 meters is suggested.

