Selection diagram

Threaded conduit entries (standard)

With cable gland assembled

With M12 plastic connector assembled and wired

With M12 metal connector assembled and wired

Main data

- Metal housing or polymer housing, from one to two conduit entries
- Protection degree IP67
- 9 contact blocks available
- Stainless steel actuator
- M12 assembled connector versions
- Silver contacts gold plated versions
- Stainless steel external parts versions

Markings and quality marks:

Technical data

Housing

Housing type FR, FX and FK made of glass-reinforced polymer, self-extinguishing, shock-proof thermoplastic resin \square
Housing type FM and FZ made of metal, coated with baked epoxy powder.
FR, FM and FK series one conduit entry
FX and FZ series two conduit entries
Protection degree:
IP67

General data

Ambient temperature: from $-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Version for operation in ambient temperature from $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ on request
Max operating frequency: 3600 operations cycles ${ }^{1} /$ hour
Mechanical endurance: $\quad 1$ million of operations cycles ${ }^{1}$
Max actuating speed: $\quad 180 \%$
Min. actuating speed: $\quad 2^{\circ} / s$
(1) One operation cycle means two movements, one to close and one to open contacts, as foreseen by IEC 947-5-1 standard.

Cross section of the conductors (flexible copper wire)

Contact blocks 20, 21, 22, 33, 34:	min.	$1 \times 0,34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
Contact blocks 5, 7, 9, 18:	max.	$2 \times 1,5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
	min.	$1 \times 0,5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
	max.	$2 \times 2,5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

In conformity with standards:

IEC 947-5-1, IEC 337-1, EN 60947-5-1, CEI EN 60947-5-1, CEI 17-45, IEC 204-1, EN 60204-1, CEI 44-5, EN 1088, EN ISO 12100-1, EN ISO 12100-2, IEC 529, EN 60529, CEI 70-1, NFC 63-140, VDE 0660-200, VDE 0113, CENELEC EN 50013, BG-GS-ET-15.

Approvals:

IEC 947-5-1, UL 508.

In conformity with requirements requested by:

Low Voltage Directive 73/23/EEC and subsequent modifications and completions. Machinery Directive 98/37/EEC.
Electromagnetic Compatibility 89/336/EEC and subsequent modifications and completions.
Positive contact opening in conformity with standards:
IEC 947-5-1, EN 60947-5-1, CEI EN 60947-5-1, VDE 0660-206.

For the correct installation of all articles, please see "Utilization requirements" chapter, from page $6 / 1$ to page 6/4.

Electrical data			Utilization categories			
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	10 A 500 VAC 600 VDC 400 VAC for contact blocks 20, 21, 22, 33, 34 fuse 10 A 500 V type aM 3	Alternate current: AC15 ($50 \ldots . .60 \mathrm{~Hz}$)			
			Ue (V)	250	400	500
			le (A)	6	4	1
			Direct current: DC13			
			$\begin{aligned} & \mathrm{Ue}(\mathrm{~V}) \\ & \mathrm{Ie}(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & 24 \\ & 6 \end{aligned}$	$\begin{aligned} & 125 \\ & 1,1 \end{aligned}$	$\begin{aligned} & 250 \\ & 0,4 \end{aligned}$
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	4 A 250 VAC 300 VDC fuse 4 A 500 V type gG 3	Alternate current: AC15 ($50 \ldots . .60 \mathrm{~Hz}$)			
			Ue (V)	24	120	250
			le (A)	4	4	4
			Direct c	rent:		
			Ue (V)	24	125	250
			le (A)	4	1,1	0,4
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	2 A 30 VAC 36 VDC fuse 2 A 500 V type gG 3	Alternate current: AC15 ($50 \ldots . .60 \mathrm{~Hz}$)			
			Ue (V)	24		
			le (A)	2		
			Direct c	rent:		
			$\mathrm{Ue}(\mathrm{V})$	24		
			$\mathrm{le}(\mathrm{A})$	2		

Description

These safety switches have been designed to control gates or guards that protect the hazardous parts of machines. They are very sensitive and positively open the contact block after few rotation degrees, sending the stop signal immediately. The head adjustable in 90° steps allows their installation in four different positions. Available with polymer or metal housing, with protection degree IP67. Its special shape allows to use this type of switches also in those areas where dust and dirt could block working of normal safety switches with separate actuator.

Rotating heads

Removing the four fastening screws, in all switches, it is possible to rotate the head in 90° steps.

Installation examples

Data type approved by IMQ and EZU

Rated insulation voltage (Ui): 500 VAC
400 VAC for contact blocks 20, 21, 22, 33, 34
Thermal current (Ith): 10 A
Protection against short circuits: fuse 10 A 500 V type aM
Protection degree: IP67
MV terminals (screw clamps)
Pollution degree 3
Utilization category: AC15

Forms of the contact element: $Z b, Y+Y, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact block 5, 7, 9, 18, 20, 21, 22, 33, 34
In conformity with standards: EN60947-1, EN 60947-5-1 and subsequent modifications and completions, fundamental requirements of the Low Voltage Directive $73 / 23$ EEC and subsequent modifications and completions.

Please contact our technical service for the list of type approved products.

Data type approved by UL

Utilization categories Q300 (69 VA, 125-250 VDC)
A600 (720 VA, 120-600 VAC)
Data of the housing type 1, 4 X (indoor use only), 12, 13
In conformity with standard: UL 508
For all contact blocks use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor and wire size No. 12-14 AWG. Terminal tightening torque of 7,1 Lb-In.

Please contact our technical service for the list of type approved products.

Dimensional drawings

Contacts type:$\begin{array}{rl\|l} \hline \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & =\text { slow action } \\ \hline \mathbf{L O} & =\text { slow action } \\ & \text { overlapped } \end{array}$	polymer housing	polymer housing	polymer housing
18 L	FR 1896 (${ }^{\text {c }}$ (NO+1NC	FX 1896 ¢ 1NO+1NC	
5 R	FR $596 \quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$	FX $596 \quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$	
7 L0	FR 796 $\quad \Theta$ 1NO+1NC	FX $796 \quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$	
		$\underbrace{0^{\circ} 15^{\circ} \oplus 25^{\circ}}_{7^{\circ}}{ }^{25^{\circ}}$	
9 L	FR $996 \quad \Theta$ 2NC	FX $996 \quad \Theta \quad 2 N C$	
20 L	FR $2096 \quad \Theta \quad 1 \mathrm{NO}+2 \mathrm{NC}$	FX $2096 \quad \Theta \quad 1 \mathrm{NO}+2 \mathrm{NC}$	
21 L	FR $2196 \quad \Theta$ 3NC	FX $2196 \quad \Theta$ 3NC	
		$0{ }_{0}^{0} 6^{\circ}{ }^{\circ}{ }^{16^{\circ}}{ }^{\circ}{ }^{347^{\circ}}$	
22 L	FR 2296 (${ }^{\text {a }}$ 2NO+1NC	FX 2296 ($\quad \rightarrow$ 2NO+1NC	
33 L	FR 3396 (${ }^{\text {c }}$ (NO+1NC	FX 3396 (\quad 1NO+1NC	FK 3396 (${ }^{\text {c }}$ (NO+1NC
34 L	FR $3496 \quad \Theta$ 2NC	FX $3496 \quad \Theta \quad 2 \mathrm{CC}$	FK 3496 $\quad \Theta$ 2NC
Min. force	0,15 Nm (0,4 Nm Θ)	0,15 Nm (0,4 Nm Θ)	0,15 Nm (0,4 Nm Θ)

Items with code on the green background are available in
background are
stock

How to read travel diagrams
All measures in the diagrams are in degrees

IMPORTANT:
In safety applications it is necessary to activate the switch at least up to the positive opening point indicated in the diagrams with the symbol Θ. Operate the switch at least with the positive opening force, indicated between brackets, below each article, next the value of minimum force.

	metal housing	metal housing
Contacts type: $\begin{array}{c\|c} \hline \mathbf{R} & =\text { snap action } \\ \hline \hline \mathbf{L} & =\text { slow action } \\ \hline \mathbf{L O} & =\text { slow action } \\ & \text { overlapped } \end{array}$		
18 L	FM $1896 \quad \Theta$ 1NO+1NC	FZ 1896 ¢ 1NO+1NC
5 R	FM $596 \quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$	FZ $596 \quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$
7 L0	FM $796 \quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$	FZ 796 $\quad \Theta$ 1NO+1NC
9 L	FM $996 \quad \Theta$ 2NC	FZ 996 $\quad \Theta$ 2NC
20 L		FZ 2096 (${ }_{\text {c }}$ (NO+2NC
21 L	FM $2196 \quad \Theta$ 3NC	FZ $2196 \quad \Theta$ 3NC
22 L	FM $2296 \quad \Theta$ 2NO+1NC	FZ 2296 ($\quad \rightarrow 2 \mathrm{NO}+1 \mathrm{NC}$
33 L	FM 3396 (${ }^{\text {a }}$ (NO+1NC	FZ 3396 (${ }^{\text {c }}$ (NO+1NC
	$0 \quad 6^{\circ} \Theta 16^{\circ}$ $9^{\circ} \quad 347^{\circ}$ 9°	
34 L	FM $3496 \quad \Theta$ 2NC	FZ $3496 \quad \Theta$ 2NC
Min. force	0,15 Nm (0,4 Nm Θ)	0,15 Nm (0,4 Nm Θ)

