```
    File E41791
    Project 5107556.1197121
    August 9, 2019
            REPORT
            on
Switches, Appliance and Special Use - Certified to IEC Standard
                    Marquardt GmbH
                            Rietheim-Weilheim
```

Copyright © 2019 UL LLC
UL LLC authorizes the above named company to reproduce this Report only for purposes as described in the Conclusion, provided it is reproduced in its entirety.

File E41791
Vol. 10
Sec. 3
Page 1
Issued: 2019-08-09

DESCRIPTION
PRODUCT COVERED:
USL, CNL, Appliance Switches: Mechanical push button switch
Note: comma "," is used as decimal separator.

Model	Load	Amp	Volt	Hz	$\begin{aligned} & \text { Temp } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Pol/ Thr/ Cir	Endur	IP	Dis
1004 ww / o suff .0000 thru . 9999	RM	$6(2,5)$	250	$50 / 60$	T125	$\begin{aligned} & 1 / 1.2 \\ & / 1.2 \\ & 2.3 \end{aligned}$	5E4	40	μ
	RM	10(4)	250	50/60	T125	$\begin{aligned} & 1 / 1,2 \\ & / 1.2, \\ & 2.3 \end{aligned}$	5E4	40	μ
	RM	16 (4)	250	50/60	T125	$\begin{aligned} & 1 / 1,2 \\ & / 1.2 \\ & 2.3 \end{aligned}$	25E3	40	μ
	RM	16 (4)	250	50/60	T125	$\begin{aligned} & 1 / 1,2 \\ & / 1.2 \\ & 2.3 \end{aligned}$	1E4	40	μ
	RM	16(8)	250	50/60	T125	$\begin{aligned} & 1 / 1.2 \\ & / 1.2 \\ & 2.3 \end{aligned}$	25E3	40	μ
	RM	16(8)	250	50/60	T125	$\begin{aligned} & 1 / 1.2 \\ & / 1.2 \\ & 2.3 \end{aligned}$	1E4	40	μ

Model	Load	Amp	Volt	Hz	Temp ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pol/ } \\ & \text { Thr/ } \\ & \text { Cir } \\ & \hline \end{aligned}$	Endur	IP	Dis
$\begin{aligned} & 1005 \\ & \text { ww/o } \\ & \text { suff } \\ & .0000 \\ & \text { thru } \\ & .9999 \end{aligned}$	R	22	28	DC	T100	$\begin{aligned} & 1 / 1,2 \\ & / 1.2, \\ & 2.3 \end{aligned}$	1E4	40	$\begin{gathered} \text { Full } \\ (>3 \\ \mathrm{mm}) \end{gathered}$
	RM	$6(2,5)$	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	8 (8)	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	10(4)	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	10(6)	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	10 (10)	250	50/60	T100	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	Full
	RM	12 (12)	250	50/60	T85	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	Full
	RM	16 (4)	250	$50 / 60$	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	16(6)	250	50/60	T100	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	16 (16)	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	21(8)	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	25E3	40	$\begin{aligned} & \mu / \\ & \text { Full } \end{aligned}$
	RM	$6(2,5)$	400	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	10(4)	400	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	1E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	16 (4)	400	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	20(4)	400	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	1E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$

Model	Load	Amp	Volt	Hz	Temp ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pol/ } \\ & \text { Thr/ } \\ & \text { Cir } \\ & \hline \end{aligned}$	Endur	IP	Dis
$\begin{aligned} & 1006 \\ & \text { ww/o } \\ & \text { suff } \\ & .0000 \\ & \text { thru } \\ & .9999 \end{aligned}$	R	22	28	DC	T100	$\begin{aligned} & 1 / 1,2 \\ & / 1.2, \\ & 2.3 \end{aligned}$	1E4	40	$\begin{gathered} \text { Full } \\ (>3 \\ \mathrm{mm}) \end{gathered}$
	RM	$6(2,5)$	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	8 (8)	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	10(4)	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	10(6)	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	10 (10)	250	50/60	T100	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	Full
	RM	12 (12)	250	50/60	T85	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	Full
	RM	16 (4)	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	16 (16)	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	21(8)	250	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	25E3	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	$6(2,5)$	400	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \mu / \\ & \text { Full } \end{aligned}$
	RM	10(4)	400	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	1E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	16 (4)	400	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	5E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$
	RM	20(4)	400	50/60	T125	$\begin{aligned} & 1 / 1 \\ & / 1.2 \end{aligned}$	1E4	40	$\begin{aligned} & \hline \mu / \\ & \text { Full } \end{aligned}$

EXPLANATION OF COLUMN HEADINGS

Model - Cat. No. - Identifier used by the manufacturer for a specific switch Model or Catalog number.
f/b - followed by, ww/o - With or without,
Load - identify the load according the Testing. R= resistive, RM= resistive and motor, $\mathrm{RC}=$ resistive and capacitive, L=tungsten lamp load, Spc= specific load, mA =load below 20mA, SpcL, SpcT = specific lamp load such as US L or $T, I=$ inductive, $S p c M=$ specific motor rating, $T V=$ television, $G P=$ general purpose, $G P M=$ general purpose and motor, GPhp= general purpose and horse power.
Amps - the steady state amp value of the switch. Per pole value may be marked "PP" and is verified by the circuit connection.
Volt - the Voltage (RMS) value.
Hz - the Frequency or range such as (50-60).
Temp - The declared operating temperature of the switch.
Pol/Thr/Cir - The number of Poles (Pol) and Throws (Thr) represented by the switch construction (where "M" indicates multiple poles (more than 2). The circuit (Cir) is identified by a code explained in the standard and appendix pages (Table 2 of 61058-1).
IP - Degree of protection against ingress of solid objects and dust, and harmful ingress of water.
DIS - Disconnect air gap across open contact, electronic is indicated by "e", micro indicated "micro", FULL indicated with a measurement in mm.
SPCA - Identifies Special Conditions of Acceptability that must be considered in the end product. A list of typical SPCOAs (represented with a number) are found in the WOYR2 guide card. Conditions other than the typical are represented with a letter and described in the specific volume and section follow-up procedure description.

Products designated USL have been investigated using requirements contained in IEC Standard for Switches for Appliance, IEC 61058-1 edition 4 and IEC 61058-1-1 edition 1.
Products designated CNL have been investigated using requirements contained in CSA Standard for Switches for Appliance, CSA C22.2 No. 61058-1:17 edition 3 and CSA C22.2 No. 61058-1-1:17 edition 1.

Products also comply with requirements contained in UL Standard for Switches for Appliance, UL 61058-1:17 edition 5 and UL 61058-1-1:17 edition 1.

Sec. 3

Switch Declaration: Use table for general and indicate differences below.

Model	100 ww/o suff. 4,5,6 w/wo Suff. 0000-9999		
Ambient Temp. C	See table page 1	Type Reference	CT
Total Cycles	See table page 1	Glow Wire Temp. C	850
IP rating	See table page 1	PTI	250 /175
Electric shock Class	II	Over Voltage Category	II / III
Pollution degree Macro	3	Impulse withstand Volt	$\begin{aligned} & 2500 \quad / \\ & 4000 \end{aligned}$
Pollution degree Micro	2	Disconnect	μ, or full
Actuation	Push-button (lever)	Test Circuit	$\begin{aligned} & 1.2 \text { or } \\ & 2.2 \end{aligned}$

Terminal	Type	Wire range	Flexible/ Rigid	Wire type	Prepared or Unprepared	Specific test amps
$\begin{aligned} & \text { C, NO, } \\ & \text { NC } \end{aligned}$	Quick connect or screw	1,5-4,0 mm^{2}	Rigid	S+ST	Prepared	≤ 16
		1,0-2,5 mm ${ }^{\text {2 }}$	Flexible	ST		
$\begin{aligned} & \mathrm{C}, \mathrm{NO}, \\ & \mathrm{NC} \end{aligned}$	Solder	1,5-4,0 mm ${ }^{\text {2 }}$	Rigid	S+ST	Unprepared	≤ 16
		1,0-2,5 mm ${ }^{\text {2 }}$	Flexible	ST		
$\begin{aligned} & \text { C, NO, } \\ & \text { NC } \end{aligned}$	PCB solder or Quick connect	2,5-6,0 mm ${ }^{2}$ $1,5-4,0 \mathrm{~mm}^{2}$	Rigid	S+ST	Prepared	$\begin{aligned} & \leq 22 \\ & \leq 16 \end{aligned}$
$\begin{aligned} & \text { C, NO, } \\ & \text { NC } \end{aligned}$	Solder,	2,5-6,0 mm^{2} 1,5-4,0 mm^{2}	Rigid	S+ST	Unprepared	$\begin{aligned} & \leq 22 \\ & \leq 16 \end{aligned}$
$\begin{aligned} & \text { C, NO, } \\ & \text { NC } \end{aligned}$	Screw	1,0-1,5 mm ${ }^{\text {2 }}$	Rigid	S+ST	Prepared (Crimped end sleeve)	≤ 16

```
File E41791 Vol. 10 Sec. 3 Page 6 Issued: 2019-08-09
and Report
```

NOMENCLATURE:

100 x.	xxxx
I	II

I	Basic switch 1004. / 1005. / 1006.
II	0000 through 9999 denote body and actuator color, and external variations not affecting the electrical or mechanical operation of the switch.

File E41791 Vol. $10 \quad$\begin{tabular}{c}
Sec. 3

and Report

\quad Page 7

2019-08-09
\end{tabular}

FIGURE \& ILLUSTRATIONS:
The following Figures \& Illustrations are included in this Report.

re and	tion Index
Fig. 1	Overall View
Fig. 2	Internal View
Fig. 3	Overall view of model 1005.
Fig. 4	Disassembly of Model 1005.
Fig. 5	Overall view of model 1005.
Fig. 6	Internal view of model 1004, also representing the whole series.
Ill. 1	Technical drawing of model 1005.3510 (SPDT)
Ill. 2	Clearances and Creepage Distances
Ill. 3	Overall view, internal view, lever types
Ill. 4	Nomenclature
Ill. 5	Declaration of Conformity on Production Methods
Ill. 6	Markings
Ill. 7	List of Materials

```
File E41791 Vol. 10 Sec. 3 Page 8 Issued: 2019-08-09
                                and Report
TECHNICAL CONSIDERATIONS (NOT FOR FIELD REPRESENTATIVE'S USE):
Use - The switches covered by this Report are for use only in complete
equipment where the suitability of the combination is determined by UL.
MARKING:
General requirements on marking refer to Section General.
```

File E41791 Vol. 10 Sec. 3 Page 9 Issued: 2019-08-09 and Report

CONSTRUCTION DETAILS:

Corrosion Protection - All ferrous metal parts are protected against corrosion by plating, painting, galvanizing or equivalent.

Spacing - Spacing between uninsulated live-metal parts of opposite polarity and also those parts and dead-metal parts, including openings for mounting screws have been evaluated to the requirements of the standard.

Clearance and creepage distance - These spacings have been judged on the basis of the required clearances in Table 12, 13 and 14.

The following spacings requirements are based on the parameters: Pollution degree: inside 2, outside 3; material group: IIIa; Working voltage: 250 V; Rated impulse withstand voltage 2500 V:

File E41791 Vol. 10 Sec. 3 Page 10 Issued: 2019-08-09 and Report

The following spacings requirements are based on the parameters: Pollution degree: inside 2, outside 3; material group: II; Working voltage: 400 V; Rated impulse withstand voltage 2500 V for full and micro disconnection and 4000 V for micro disconnection.

Spacings were measured at the following locations:					
A - for PD2 between moving arm and switch surface where the actuator is					
B and C - for PD2 between stationary contact carrier and moving arm; for PD3 between NC terminal and COM terminal. Details refer to Ill. 2					
$\begin{aligned} & \text { Table } 22 \text { - } \\ & 24 \end{aligned}$	Creepage distance Cd and clearance Cl across:	Required Cd	(mm)	Required	1 (mm)
Locations		PD3 (outside)	$\begin{aligned} & \hline \text { PD2 } \\ & \text { (inside) } \end{aligned}$	$\begin{aligned} & \hline \text { PD3 } \\ & \text { (outside) } \end{aligned}$	$\begin{aligned} & \hline \text { PD2 } \\ & \text { (inside) } \end{aligned}$
-	Functional	X	X	X	X
A	Basic	$5,6(1,8)+$	2,8 (4,8)	1,5 (1,8)	1,5 (5,6)
-	Supplementary	X	X	X	X
-	Reinforced	X	X	X	X
B	Full disconnection	$4,5(13,5)$	2,8 (3,4)	1,5 (2)	1,5 (2)
C	Micro disconnection	4,5 (13,5)	2,8 (3,4)	0,5 (2)	X

+: to fulfil the required creepage distance for basic insulation, the switch shall be installed to an insulation material with adequate size and/or thickness or to dead metal parts which is separated to live parts with minimum basic insulation or to earthed metal parts.

For model 1006 of double version, The following spacings. Requirements are based on the parameters: Pollution degree: inside 2, outside 3; material group: II; Working voltage: 400 V ; Rated impulse withstand voltage 4000 V .
Spacings were measured at the following locations:
A - between NO terminals of the two stacked switches.
B - for PD2 between live part (COM) and lever where the actuator is located;
for PD3 between terminal and side (mounting) surface.
C and D - for PD2 between stationary contact carrier and moving arm; for PD3
between NC terminal and COM terminal.
Details refer to Ill. 2

$\begin{aligned} & \text { Table } 22 \text { - } \\ & 24 \end{aligned}$	Creepage distance Cd and clearance Cl across:	Required Cd (mm)		Required Cl (mm)	
Locations		$\begin{aligned} & \hline \text { PD3 } \\ & \text { (outside) } \end{aligned}$	$\begin{aligned} & \hline \text { PD2 } \\ & \text { (inside) } \end{aligned}$	$\begin{aligned} & \text { PD3 } \\ & \text { (outside) } \end{aligned}$	$\begin{aligned} & \hline \text { PD2 } \\ & \text { (inside) } \end{aligned}$
A	Functional	3 (>3)	X	$3(4,6)$	X
B	Basic	$5,6(1,8)+$	2,8 (4,8)	1,5 (1,8)	1,5 (4)
-	Supplementary	X	X	X	X
-	Reinforced	X	X	X	X
C	Full disconnection	$4,5(13,5)$	2,8 (6,8)	3 (4)	3 (4)
D	Micro disconnection	4,5 (13,5)	2,8 (6,8)	0,5 (4)	X

Overall dimensions of the decorative parts of the housing (body / cover) and actuator (rocker) may vary.

GENERAL:
The switches covered by this report are single-pole, single-throw or double-throw push-button switches for incorporated use in Class II Appliances and dirty environment.

They are either provided with solder-, PCB solder, screw or quickconnect terminals. Switch internal parts without sealing and without potting are considered to be IP40.

Overall dimensions of the decorative parts of the housing (body / cover) and actuator (actuating member) may vary.

Switch type 1006. may consist of two switches 1006 . connected with an intermediate plate. Switch type 1006. may have metal levers in different shapes and sizes. A combination with NO and NC type is also possible which is covered by a more unfavorable combination of $\mathrm{NO}+\mathrm{NO}$ or $\mathrm{NC}+\mathrm{NC}$.

File E41791 Vol. 10 Sec. 3 Page 12 Issued: 2019-08-09 and Report

CAT. NO. Series 1004./1005./1006.
Fig. 1 - 4; Ill. 1 - 7
General - The general design, shape and arrangement shall be as illustrated except where variations are specifically described.
The following table shows the BOM of the series 1006 , which represents 1004 and 1005 as well.

Item	Part		Description
1.	Base	R/C (QMFZ2)	
		Material Type:	A3U40G5, mfr. by BASF (E41871)
		Material Grade:	PA66
		CTI:	2
		Alternate Type:	Melopas MP 182, mfr. by Raschig GmbH (E75850)
		Material Grade:	MEL/PF
		CTI:	0
		Alternate Type:	Pocan B4225, mfr. by Lanxess AG (E245249)
		Material Grade:	PBT
		CTI:	3
		Alternate:	Materials as described under Section General, material group A6
		Dimension:	Approx.: $28 \mathrm{~mm} \times 16 \mathrm{~mm} \times 7,3 \mathrm{~mm}$
		Other:	Materials Pocan and Rynite (Material group IIIa) are only to use for switches, which require not more than PTI 175.

File E41791 Vol. 10 Sec. 3 Page 13 Issued: 2019-08-09 and Report

CAT. NO. Series 1004./1005./1006. CONT'D

2.	Cover	R/C (QMFZ2), same as item 1	
		Material Type:	same as item 1
		Material Grade:	same as item 1
		CTI:	same as item 1
		Dimension:	Approx: $28 \mathrm{~mm} \times 16 \mathrm{~mm} \times 10 \mathrm{~mm}$
		Other:	N/A
3.	Actuator	R/C (QMFZ2), same as item 1	
		Material Type:	Ultramid A4H
		Material Grade:	PA66
		CTI:	0
		Alternate Type:	Melopas MP 182, mfr. by Raschig GmbH (E75850)
		Material Grade:	MEL/PF
		CTI:	0
		Alternate:	Alternate: Materials as described under Section General, material group B2 and item 1
		Dimension:	Approx.: 7,1 mm x 5,1 mm x 4,5mm
		Other:	N/A
4.	Lever inside	Material Type	Copper or copper alloy, may be Ag, Au, Sn or Ni plated
		Dimension:	Approx. $15,3 \mathrm{~mm}$ by $7,0 \mathrm{~mm}$ by $6,2 \mathrm{~mm}$ min. thickness $0,8 \mathrm{~mm}$
		Other:	N/A

File E41791 Vol. 10 Sec. $3 \quad$ Page 14 Issued: 2019-08-09 and Report

CAT. NO. Series 1004./1005./1006. CONT'D

Item	Part	Description	
5.	Pin	Material Type	Copper or copper alloy
		Dimension:	Approx. dia 1,0 mm, length 7,4 mm
		Other:	N/A
6.	Movable Contact Carrier	Material Type	a) Contact - Silver alloy or copper alloy b) Contact carrier - copper alloy, may be Ag, Au, Sn or Ni plated c) Spring - Spring steel
		Dimension:	a) Contact - overall height approx. 0,5 mm, min. 3,0 mm dia b) Contact carrier - overall 16 mm by 6,4 mm by 0,4 mm thick c) Spring - dia Approx. 1,9 mm, wire dia 0,4 mm or free length approx. $12,7 \mathrm{~mm}$
		Other:	Contact riveted or welded to contact carrier
7.	Stationary contact	Material Type	Silver alloy or silver alloy plated on copper alloy base, may be plated
		Dimension:	min. 3,5 mm dia, min $0,5 \mathrm{~mm}$ thick
		Other:	riveted to terminal
8.	Terminals	Material Type	a) Quick connect type - copper alloy, may be Ag, Au, Sn or Ni plated b) Solder terminals - copper alloy, may be Ag, Au, Sn plated c) PCB solder terminals - copper alloy, may be Ag, Au, Sn or Ni plated d) screw terminals - copper alloy, may be Ag, Au, Sn or Ni plated
		Dimension:	a) Quick connect type $-6,3 \mathrm{~mm}$ by $0,8 \mathrm{~mm}$ thick or $4,8 \mathrm{~mm}$ by $0,8 \mathrm{~mm}$ b) Solder terminals $-3,6 \mathrm{~mm}$ or $4,2 \mathrm{~mm}$ by 1,0 mm, provided with a hole c) PCB solder terminals $-1,0 \mathrm{~mm}$ by 1,0 mm d) screw terminal - Approx. 19 mm by 7 mm by 7 mm
		Other:	may be bend

File E41791 Vol. 10 Sec. $3 \quad$ Page 15 Issued: 2019-08-09 and Report

CAT. NO. Series 1004./1005./1006. CONT'D

9.	```Inter- mediate plate (optional)```	R/C (QMFZ2), same as item 1	
		Material Type: \quad Ultramid A3X2G5(f2) (r),	
			Alternate: Materials as described under Section General, material group A2
		Material Grade:	PA66
		CTI:	0
		Alternate Type:	Hard paper mfr. by Karl Späh GmbH
		Material Grade:	Hard paper $0,8 \mathrm{~mm} \pm 0,1 \mathrm{~mm}$ thickness according to DIN EN 60893-3-3
		CTI:	-
		Dimension:	approx.overall $46,8 \mathrm{~mm}$ by $30,0 \mathrm{~mm}$, height 32,0 mm
		Other:	N/A
10.	Lever outside (optional)	Material Type	Steel
		Dimension:	Approx. 50 mm by 20 mm by 8 mm min. thickness 0,6 mm
11.	$\begin{aligned} & \text { Rivet } \\ & \text { (optional) } \end{aligned}$	Material Type	Copper or copper alloy Approx. dia from $1,3 \mathrm{~mm}$ to $2,0 \mathrm{~mm}$, length 9,3 mm, min. thickness 0,2 mm 1006. (double version): Approx. dia from $1,3 \mathrm{~mm}$ to $2,0 \mathrm{~mm}$, length $21,6 \mathrm{~mm}$, min. thickness $0,25 \mathrm{~mm}$
		Dimension:	
12.	Wire (optional)	It is to be determined in the end use product.	

Wumber of pages in this document a

Clause 20 Clearances, Creepage Distances and Solid Insulation
Switch 1005.xxxx (NC)

Sec. 3
ILL-2 (Page 3) Issued: 2019-08-09
And Report

Project no. 478682$\} 384$
F睍e E4引791
Page 3/4
Date: 2015-04-10
Switch 1005.xxxx (NO)

INSULATION				
	Creepare 1 drance 1 nho		Clearancesustance (hnh)	
	Lusue	\%uiside	16sme	Oqfasie
Operational	3,4 (1,8)	13,5 (2,8)	$2,0(1,5)$	$3,0(1,5)$
Sasio \% <	$5,6(1,8)$	$3,6(3,6)$	5,6(1,5)	$3,6(1,5)$
S\%luloreed \% < \%	--	-	--	.-
Sqpolenentay	-	-	-	-
Sullsconnect,	.-	-	--	.-
-14001scomuectur	-	-	0,7	-

Table 1: Minimum values of different kinds of insulation for switch 1005.xxxx NO and NC type (no change-over type)
The value in brackets shows the required values by the standard with the following parameters:

- Rated voltage 250 VAC
- Impulse withstand voltage 2500 V
- Material group II
- Pollution degree inside 2
- Pollution degree outside 3

Test conducted by : Falf Drössler

Sec. 3
ILL-2 (Page 4) Issued: 2019-08-09
And Report

Page 4/4
Date: 2015-04-10

Clearances and creepage distances for switch $1006 . x \times x \times$ with quick connect terminais
i) Min creepage distance for basie insuation:
af $=3,6 \mathrm{~mm}$ outside, if a metal screw is used tor tixation (ig. 7)
at $=1,8 \mathrm{~mm}$ outside, if the switch is mounted on a metal surface (ig. 1) $=>$ additiona insulation may be necessary $a 2=5.6 \mathrm{~mm}$ inside (fig. 2)
Min. orsepage distance for functiona insulation inside the switen: $3,4 \mathrm{~mm}$ (fig. 6)
Min Ciearance for functiona insulation
inside the switch 2 mm
Mir. Crespage distance for functiona insulation outside the swith: $13,5 \mathrm{~mm}$ (NC type). Provided with female connectors the cegepage cistance remains unchanged (fig. 3)
Two switches 100 together with combinad outer lever the min creepage distance for functionat insulation between the two poles is $2 \times 4.0=8.0 \mathrm{~mm}(f i g .9)$
i) Min. Clearance for functional insulation outside the switch: $7,2 \mathrm{~mm}$. Provided with female connectore the clearance is reduced to $3,0 \mathrm{~mm}$ (fig. 4)
m) Clearance beween contacts: $0,7 \mathrm{~mm}$ (fig. 3)
a) Solid insulation 0,75 .. $1,4 \mathrm{~mm}$ wal thickness (no fig.)

Figure 9:

INSULATION				
	Cueepage 0 dstance (hanl		Qleatance DIstance (mun)	
	Thslole	Out ${ }^{\text {a }}$ (1)	luside	Oluside
Operatlonal	3,4 (1,8)	8,0 (2,8)	$2,0(1,5)$	$3,0(1,5)$
Basict	$5,6(1,8)$	$3,6(3,6)$	5,6 (1,5)	3,6 (1,5)
Welntoreed	.-	-	--	..
¢ LPplementayy	-	-	-	-
\% U	-	-	\cdots	.
M Meroshsconnection	-	-	0,7	-

Table 1: Minimum values of different kinds of insulation for switch 1006.xxxx NC
The value in brackets shows the required values by the standard with the following parameters:

- Rated voltage 250 VAC
- Impulse withstand voltage 2500 V
- Material group II
- Pollution degree inside 2
- Pollution degree outside 3

(6) Ale Rechte bel Marquard, auch fur den Fall von Schutzrechtsanmeldungen. Jede Verfugungsbefugnis, wie Kople- und Weitergaberecht, bel uns. VERTRAULICH-CONFIDENTIAL

NO - 1005.

Alle Rechte bel Marquard, auch fur den Fall von Schutzrechtsanmeldungen. Jede Verfigunghefugnis, wie Kopie- und Weitergaberecht, bel uns.

$$
\text { This document is the exclucive propery of Marcuard. Without our consent, it may mot be reproduced or given to third parties. }
$$ VERTRAULICH-CONFIDENTIAL

NO - 1005 .

(4) Alle Rechte bel Marquardt, auch fur den Fall von Schutzrechtsanmeldungen. Jede Verfugungsbefugnis, wie Kopie- und Weitergaberecht, bel uns.
VERTRAULICH-CONFIDENTIAL

Nomenclature Switch Series 1005. / 1006.

We actually do have different ways to denote our switches:
The longest designation is a 4 digit - full stop -4 digit - dash - 2 digit format,
XXXX.XXXX-XX

The last two digits are only internal and mostly indicating historic issues and are never marked on the switches.

The middle four digits denote terminals, actuators or other visible characteristics. Sometime we also use different four middle letters for identical switches, e.g. in case the rating specifications are different due to economic aspects.
$x \times x x .1234-x x$

The first four letters mostly indicate issues in general the switch series. The first letter denotes often (about 70%) the MQ-Business unit: 1: Switches; 2: Power Tools; 3 Automotive; there are additionally some 4 s and 5 s and some exemptions, too (e.g. 1298 and 2098 are quite identical).
1005. $x \times x \times-x x$
or
1006.xxxx-xx

The second letter of this quadruple originally was intended to indicate a constructional type or an actuating type e.g. $18 \times x$, but this structure was not kept.

Sometimes the second and the third letter share this task, e.g. 100 x .

		spmaralum	. 3

Herewith, the manufacturer

Mambard cmor
Schoss-8t. 16
C7e60a Rethem Wemem

dechare that in accordance with the wqurement of the Standard for Applance Swhches IEC 61058-1 IEC $61050-2-5$ all

are manufactured and assembled following the identical production methods independently of the warquard factory location responsible:

Whth the unavoldable process varizions the products are identical except location specinc marking codes, ifappled.

Futhemore the qually control mehods as well as the end-otine teste are identical in methodology.

Retheim-Wemem,

2015-03-34

LA herbert zeller
MAROUARDT Verwamogs Gmbly
Switches, Sensors and Actuators
Head of Testab

Example of label

 1006....
cover side

base side

1005....

cover side

base side

Sec. 3
ILL-7 (Page 1) Issued: 2019-08-09
And Report

Materials of metal parts switch series 1005.../ 1006....

| Part | Materials Serie... | Copper
 content |
| :---: | :---: | :---: | :---: |

Movable Contact carrier	$\mathrm{CuAg2}$ (optional Ag, Au, Sn or Ni plated)	98%
	$\mathrm{CuZn37}$ (optional Ag, Au, Sn or Ni plated)	63%
$\mathrm{CuZn37}$ Quick connect terminal	(optional Ag, Au, Sn or Ni plated) (op-Cu (optional Ag, Au, Sn or Ni plated)	63%
	Silver alloy	100%
	spring steel	-
Lever inside	CuZn37 (optional Ag, Au, Sn or Ni plated)	-
Lever outside	steel	63%
pin	CuZn39	-
rivet	CuZn37	61%

Sec. 3
ILL-7 (Page 2) Issued: 2019-08-09
And Report
$\begin{array}{|l|l|l|}$\cline { 2 - 3 } \& Material and plating for tabs \& $\left.\mathbf{T}_{\text {max }}{ }^{\circ} \mathbf{C}\end{array}\right]$

		${ }_{\circ}^{\infty}$	$\stackrel{\infty}{\circ}$			$\stackrel{\square}{\square}$			－
		－	\bigcirc	－	\bigcirc	－	\sim	\bigcirc	\bigcirc
	訔	¢	¢	¢	\＆	\＆	苂	¢	¢
							$\begin{aligned} & \stackrel{\rightharpoonup}{\circ}_{0}^{\circ} \\ & \stackrel{\circ}{\square} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$		
							彦		

TEST RECORD NO. 1

SAMPLES:

Samples of the switch series 1004, 1005 and 1006 as indicated below and constructed as described herein, was submitted by the manufacturer for examination and test.
[x] The Model mentioned above was used for test purposes and considered representative of the entire series.

GENERAL:
In this Report the currently certified switch mentioned above are transferred from CCN WOYR2/8 to WHAC/7. The switch construction is as same as before. And added ratings which have been certified by DEKRA Certification B.V. with CBTR Ref. No. 21570821.51-DCC dated 2012-09-19.

Test results relate only to the items tested.
[x] Tests were considered covered as follows:

Test	File Reference	Report Date	Test Record No.
8.8 Marking durable	E41791	$2015-05-21$	1
11.8 .3 TERMINAL DISPLACEMENT TEST (TT2) - FLAT QUICK- CONNECT TERMINATION	E41791	$2015-05-21$	1
$14.3 / 15$ Humidity Conditioning / Insulation Resistance And Dielectric (for DC rating)	E 41791	$2015-05-21$	1
17 Endurance - mechanical switch (for DC rating)	E 41791	$2015-05-21$	2
17.6 Evaluation Of Compliance (for DC rating)	E 41791	$2015-05-21$	2
21.1 Ball Pressure test	E 41791	$2015-05-21$	1,2
21.2 Glow wire test	E 41791	$2015-05-21$	1,2
Annex C PTI	E 41791	$2015-05-21$	1,2

and

Test	Report No.	$\begin{aligned} & \text { Report } \\ & \text { Date } \end{aligned}$	Certificate No.	Issued by:
17 Endurance Test - Mechanical Switch:	$\begin{aligned} & 21570821.51- \\ & \text { DCC } \end{aligned}$	$\begin{aligned} & 2012-09- \\ & 19 \end{aligned}$	NL-24592	DEKRA Certification B.V.
17.6 Evaluation Of Compliance				

The following tests were conducted and recorded in DS1.

CONDUCTOR ESCAPE TEST (TT1)	11.7
TERMINAL DISPLACEMENT TEST (TT2) - SCREW-TYPE TERMINAL	11.8 .2
Humidity Conditioning / Insulation Resistance And Dielectric:	$14.3 / 15$
Endurance Test - Mechanical Switch:	17
Evaluation Of Compliance (Te2/Te3):	17.6

The test methods and results of the above tests have been reviewed and found in accordance with the requirements in the standard list below.

Test Record Summary:
The results of this investigation, including construction review and testing,
indicate that the products evaluated comply with the applicable requirements
in the standards noted below and, therefore, such products are judged
eligible to bear UL's Mark as described on the Conclusion Page of this Report.
Standard Evision Date
IEC 61058-1 the standard for Switches for Appliances - Part 1: General Requirements
IEC 61058-1-1 SWITCHES FOR APPLIANCES - PART 1-1: REQUIREMENTS FOR MECHANICAL SWITCHES
CAN/CSA-C22.2 No. 61058-1:17 the standard for Switches for Appliances - Part 1: General Requirements
CAN/CSA-C22.2 No. 61058-1-1:17 Switches for Appliances - Part 1-1: Requirements for Mechanical Switches
UL 61058-1:17 the standard for Switches for Appliances - Part 1: General Requirements
UL 61058-1-1:17 Switches for Appliances - Part 1-1: Requirements for Mechanical Switches

CONCLUSION

Samples of the product covered by this Report have been found to comply with the requirements covering the category and the product is found to comply with UL's applicable requirements. The description and test result in this Report are only applicable to the sample(s) investigated by UL and does not signify UL certification or that the product(s) described are covered under UL's Follow-Up Service Program. When covered under UL's Follow-Up Service Program, the manufacturer is authorized to use the Certification Mark of UL on such products which comply with UL's Follow-Up Service Procedure and any other applicable requirements of UL LLC. The Certification Mark of UL on the product, or the UL symbol on the product and the Certification Mark of UL on the smallest unit container in which the product is packaged, is the only method to identify products investigated by UL to published requirements and manufactured under UL's Listing and Follow-Up Service.

This Report is intended solely for the use of UL LLC (UL) and the Applicant for establishment of UL certification coverage of the described product(s) under UL's Follow-Up Service. UL retains all rights, title and interest (including exclusive ownership) in this Report and all copyright therein. The Applicant or its designated agent shall not disclose or otherwise distribute this Report or its contents to any third party, except as required for purposes of compliance with laws, regulations, or other existing agreements or schemes in which UL is currently a participant. Any other use of this Report including, without limitation, evaluation or certification by a party other than UL is prohibited and renders the Report null and void. UL shall not incur any obligation or liability for any loss, expense, or punitive damages, arising out of, or in connection with, the use or reliance upon the contents of this Report to anyone other than the Applicant as provided in the agreement between UL and Applicant. Any use or reference to UL's name or certification mark(s) by anyone other than the Applicant in accordance with the agreement is prohibited without the express written approval of UL. Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL. Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL. UL shall not otherwise be responsible to anyone for the use of or reliance upon the contents of this Report.

Report by:
Reviewed by:

Chao Zhang
Project Engineer

Nick Tu
Senior Project Engineer

