tin Texas
Instruments

TI-30X II

Tl-30 X IIS: A Guide for Teachers

Developed by
Texas Instruments Incorporated

Activities developed by
Gary Hanson and Aletha Pasket t

Illustrated by
J ay Garrison

About the Authors

Gary Hanson and Alet ha Paskett are math teachers in the J ordan Independent S chool District in S andy, Ut ah. They developed the Act ivit ies sect ion and assist ed in evaluat ing the appropriat eness of the examples in the How to Use the Tl-30 XIIS sect ion of this guide.

Important Notice Regarding Book Materials

Texas Instruments makes no warranty, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this book. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

Note: Using calculators other than the TI-30X IIS may produce results different from those described in these materials.

Permission To Reprint or Photocopy

Permission is hereby granted to teachers to reprint or photocopy in classroom, workshop, or seminar quantities, the pages or sheets in this book that carry a Texas Instruments copyright notice. These pages are designed to be reproduced by teachers for use in classes, workshops, or seminars, provided each copy made shows the copyright notice. Such copies may not be sold, and further distribution is expressly prohibited. Except as authorized above, prior written permission must be obtained from Texas Instruments Incorporated to reproduce or transmit this work or portions thereof in any other form or by any other electronic or mechanical means, including any information storage or retrieval system, unless expressly permitted by federal copyright law.

Send inquiries to this address:
Texas Instruments Incorporated
7800 Banner Drive, M/S 3918
Dallas, TX 75251
Attention: Manager, Business Services
Note: If you request photocopies of all or portions of this book from others, you must include this page (with the permission statement above) to the supplier of the photocopying services.

\author{
Texas Instruments
 www.ti.com/calc
 ti-cares@ti.com
 Copyright © 1999 Texas Instruments Incorporated.
 Except for the specific rights granted herein, all rights are reserved. Printed in the United States of America.
 [^0]}

About the Teacher Guide

How the Teacher Guide is Organized

This guide consists of two sections: Act ivit ies and How to Use the TI-30XIIS. The Act ivities section is a collection of activities for int egrat ing the $\mathrm{TI}-30 \mathrm{X}$ IIS int o mathemat ics instruction. The How To Use the Tl-30 X IIS section is designed to help you teach students how to use the calculat or.

Activities

The act ivities are designed to be teacherdirected. They are int ended to help develop mathematical concepts while incorporating the $\mathrm{Tl}-30 \mathrm{XIS}$ as a teaching tool. Each activity is self-cont ained and includes the following:

- An overview of the mathematical purpose of the activity.
- The mathematical concepts being developed.
- The materials needed to perform the act ivity.
- The detailed procedure, including step-bystep Tl-30XIS key presses.
- A student act ivity sheet.

How to Use the Tl-30XIIS

This section contains examples on trans parency masters. Chapters are numbered and include the following.

- An int roduct ory page describing the calculator keys present ed in the example, the location of those keys on the $\mathrm{Tl}-30 \mathrm{XIS}$, and any pert inent notes about their functions.
- Transparency masters following the int roductory page provide examples of practical applications of the key(s) being discussed. The key(s) being discussed are circled on the Tl-30XIIS keyboard.

Things to Keep in Mind

- While many of the examples on the transparency masters may be used to develop mathemat ical concepts, they were not designed specifically for that purpose.
- For maximum flexibility, each example and act ivity is independent of the ot hers. Select the transparency master appropriate for the key you are teaching, or select the act ivity appropriate for the mathemat ical concept you are teaching.
- If an example does not seem appropriate for your curriculum or grade level, use it to teach the function of a key (or keys), and then provide relevant examples of your own.
- To ensure that everyone starts at the same point, have students reset the calculator by pressing ON and CLEAR simult aneously or by pressing [2nd [RESET] and then select ing \mathbf{Y} (yes).

Conventions Used in the Teacher Guide

- In the text, brackets [] around a key's symbol/name indicate that the key is a second, or alternate, funct ion.

For example: [sin-1]

- On the transparency masters, second functions are shown just as they appear on the keyboard.
For example: $\frac{\operatorname{Sin}-1}{\operatorname{SIN}}$

How to Order Additional Teacher Guides

To place an order or to request information about Texas Instruments (TI) calculators, use our e-mail address: ti-cares @ti.com visit our Tl calculat or home page: www.ti.com/calc or, call our toll-free number:
1-800-TI-CARES (1-800-842-2737)

About the TI-30XIIS

Two-Line Display

The first line (entry line) displays an entry of up to 88 digits (47 digits for the stat and constant entry lines). Entries begin on the left; those with more than 11 digits scroll to the right. Press (1) and (1) to scroll the entry line. Press 2nd (1) or 2nd (1) to move the cursor immediately to the beginning or end of the entry.

The second line (result line) displays a result of up to 10 digits, plus a decimal point, negative sign, x10 indicator, and 2-digit positive or negative exponent. Results that exceed the digit limit are displayed in scientific notation.

Display Indicators

Refer to Appendix B for a list of the display indicators.

Order of Operations

The TI-30X IIS uses the Equation Operating System (EOS ${ }^{\text {TM }}$) to evaluate expressions. The operation priorities are listed on the transparency master in Chapter 4, Order of Operations and Parentheses (page 41).

Because operations inside parentheses are performed first, you can use $\square \square$ to change the order of operations and, therefore, change the result.

2nd Functions

Pressing 2nd displays the 2nd indicator, and then accesses the function printed above the next key pressed. For example, 2nd [$\sqrt{ }$] $25 \square$ ENTIER calculates the square root of 25 and returns the result, 5 .

Menus

Certain TI-3OX IIS keys display menus: MEMVAR, 2nd [RCL], STO , 2nd [STAT], STATVAR, 2nd [EXIT STAT], PRB, DRG, 2nd [$R \rightarrow P$], ${ }^{\circ \rightarrow}$ 2nd [SCI/ENG], 2nd [FIX] and 2nd [RESET]. Press (1) or (1) to move the cursor and underline a menu item. To return to the previous screen without selecting the item, press CLEAR. To select a menu item:

- Press ENTER while the item is underlined, or
- For menu items followed by an argument value (for example, nPr), enter the value while the item is underlined. The item and the argument value are displayed on the previous screen.

Previous Entries $\Theta \odot$

After an expression is evaluated, use Θ and Θ to scroll through previous entries, which are stored in the TI-3OX IIS history. You cannot retrieve previous entries while in STAT mode.

Error Messages

Refer to Appendix C for a listing of the error messages.

Last Answer (Ans)

The most recently calculated result is stored to the variable Ans. Ans is retained in memory, even after the TI-30X IIS is turned off. To recall the value of Ans:

- Press 2nd [ANS] (Ans displays on the screen), or
- Press any operation key (\square, \square, etc.) as the first part of an entry. Ans and the operator are both displayed.

About the TI-30XIIS (Continued)

Resetting the TI-3OXIIS
Pressing $O N$ and CLEAR simultaneously or pressing 2nd [RESET] and then selecting Y (yes) resets the calculator.
Resetting the calculator:

- Returns settings to their defaultsstandard notation (floating decimal) and degree (DEG) mode.
- Clears memory variables, pending operations, entries in history, statistical data, constants, and Ans (Last Answer).

Note: The examples on the transparency masters assume all default settings.

Automatic Power Down ${ }^{\text {TM }}\left(\right.$ APD $^{\text {TM }}$)
If the TI-3OX IS remains inactive for about 5 minutes, APD turns it off automatically. Press ON after APD. The display, pending operations, settings, and memory are retained.

Table of Contents

About the Authors
About the Teacher Guide
About the TI-30XIIS

Activities

The Better Batter -
The FIX Key
Star Voyage -
Scientific Notation
Trig Functions
What's My Score -
1-Variable Statistics
Heart Rates -
1-Variable Statistics
WNBA Stats -
2-Variable Statistics23

How to Use the TI-30XIIS

1 TI-30XIIS Basic Operations29
2 Clear, Insert, and Delete 33
3 Basic Math 36
4 Order of Operations and Parentheses 40
5 Constant 43
6 Decimals and Decimal Places 45
7 Memory 47
8 Fractions 52
9 Pi 58

How to Use the TI-30XIIS (Continued)
10 Powers, Roots, and Reciprocals 61
11 Probability68

12 Statistics
75

13 Trigonometry 81
14 Notation 88

15 Logarithms and Antilogarithms 91
16 Angle Settings and Conversions

17 Polar and Rectangular
Conversions 98
18 Hyperbolics 100
Appendix AA-1

Quick Reference to Keys
Appendix B
Display Indicators
Appendix C
Error Messages
Appendix D
Support and Service Information
Appendix E
Warranty Information

The Better Batter The FIX Key2
Star Voyage -
Scientific Notation
Trig Functions 10
What's My Score? -
1-Variable Statistics 14
Heart Rates
1-Variable Statistics
WNBA Stats -
2-Variable Statistics23

The Better Batter - The FIX Key

Overview

St udents use [2nd [FIX] on the Tl-30 X IIS to change numbers to different place values. Students calculate batt ing averages using the $\mathrm{Tl}-30 \mathrm{XIS}$ and then round their answers to 3 decimal places.

Introduction

1. Have students practice rounding the following numbers to 3 decimal places using pencil and paper.
a. 2.35647
2.356
b. 15.3633
15.363
c. 0.02698
0.027
2. Have students round the following numbers to 4 decimal places using the TI-30X IIS.
a. 4.39865
4.3987
b. 72.965912
72.9659
c. 0.29516
0.2952
d. 0.00395
0.0040

Activity

Present the following problem to students:
You are going to play Virtual Baseball. You need to select 9 players from the list to be on your team. Choose the players with the best batting averages. Find the batting averages (number of hits \div number of times at bat) rounded to 3 decimal places for each player. Make a list of your players in order, from highest to lowest.

See the table on page 3 for solutions.

Math Concepts

- rounding
- place value
- division
- comparing and

Materials

- TI-30 X IIS
- pencil
- student activity
ordering decimals -

1. Enter the first number.

4.39865

2. Press [2nd [FIX] to display the menu that lets you set the number of decimal places.
F0123456789
3. Press 4 to select 4 decimal places.
4.39865
4. Press ENTER.
4.39865
4.3987

The Better Batter - The FIX Key (Continued)

Player	Number of Hits	Number of Times at Bat	Batting Average
C. Ripken	122	368	0.332
Puckett	119	363	0.328
Molitor	119	364	0.327
Greenwell	104	334	0.311
Tartabull	103	311	0.331
Palmeiro	120	366	0.328
Franco	109	344	0.317
Joyner	105	338	0.311
Boggs	106	329	0.322
Baines	91	290	0.314
Sax	113	388	0.291
Williams	20	74	0.270
Sheridan	15	63	0.238
Barfield	64	284	0.225
Mattingly	109	367	0.297
Hall	87	280	0.311

The Better Batter - Name The FIX Key

Problems

1. Round the following numbers to 3 decimal places.
a. 2.35647
b. 15.3633
c. 0.02698
2. Using the TI-30X IIS, round the following numbers to 4 decimal places.
a. 4.39865 \qquad
b. 72.965912 \qquad
c. 0.29516 \qquad
d. 0.00395 \qquad

The Better Batter - Name

 The FIX Key
Problem

You are going to play Virtual Baseball. You need to select 9 players from the list to be on your team. Choose the players with the best batting averages.

Procedure

1. Find the batting averages (number of hits \div number of times at bat) rounded to 3 decimal places for each player.

Player	Number of Hits	Number of Times at Bat	Batting Average (rounded to 3 decimal places)
C. Ripken	122	368	
Puckett	119	363	
Molitor	119	364	
Greenwell	104	334	
Tartabull	103	311	
Palmeiro	120	366	
Franco	109	344	
Joyner	105	338	
Boggs	106	329	
Baines	91	290	
Sax	113	388	
Williams	20	74	
Sheridan	15	63	
Barfield	64	284	
Mattingly	109	367	
Hall	87	280	

2. Make a list of your players in order, from highest to lowest.

Player 1
Player 2
\qquad
\qquad
Player 3 \qquad
Player 4 \qquad
\qquad
Player 5

Player 6
Player 7
Player 8
Player 9
\qquad
\qquad
\qquad
\qquad

Star Voyage - Scientific Notation

Overview

Students investigate scientific not ation by changing numbers into scient ific not ation, and then using them in calculations.

Introduction

Set up the activity by telling your students:
The standard form for scientific notation is $\boldsymbol{a} \times \mathbf{1 0}^{\boldsymbol{n}}$, where \boldsymbol{a} is greater than or equal to 1 and less than 10 , and \boldsymbol{n} is an integer.

1. Have students practice writing the following numbers in scientific notation using pencil and paper.
a. 93000000
9.3×10^{7}
b. 384000000000
3.84×10^{11}
c. 0.00000000000234
2.34×10^{-12}
d. 0.0000000157
1.57×10^{-8}
2. Have students change the following numbers into scientific notation using the TI-30X IIS.
a. 12000000
1.2×10^{7}
b. 974000000
9.74×10^{8}
c. 0.0000034
3.4×10^{-6}
d. 0.000000004
4×10^{-9}

Note: Answers assume the default floating decimal setting.
3. Have students change the following numbers into floating decimal (standard notation).
a. $\quad 5.8 \times 10^{7}$
58000000
b. 7.32×10^{5}
732000
c. 6.2×10^{-6}
0.0000062
d. 3×10^{-8}
0.00000003

Note: To enter a negative number, press Θ and then enter the number.

Math Concepts

- scientific notation
- addition
- division

1. Enter the first number.

12000000
2. Press 2nd [SCI/ENG].

FLO SCI ENG

3. Press (1) ENEER ENEER. 12000000
1.2×10^{07}
4. Enter 5.8; press 2nd 国. 5.8E
5. Enter 7; press 2nd [SC//ENG].

FLO SCI ENG
3. Press (1).

```
FLO SCI ENG
```

4. Press ENTER ENTER.
5.8E7
5.

Star Voyage - Scientific Notation (Continued)

Activity

Present the following problem to students:
You are a captain of a starship. You have been assigned to go to Alpha Centauri and you have 5 years to get there. The distance from the sun to Alpha Centauri is 2.5×10^{13} miles. The distance from the earth to the sun is approximately 9.3×10^{7} miles. Your ship can travel at the speed of light. You know that light can travel a distance of 6×10^{12} miles in 1 light year. Will you be able to get to Alpha Centauri on time?

Procedure

1. Using the TI-30X IIS, find the total distance you need to travel.
$2.5 \times 10^{13}+9.3 \times 10^{7}=2.5000093 \times 10^{13}$ miles
2. Next, find out how long it will take you to travel the distance. (distance traveled $\div 1$ light year)
$2.5000093 \times 10^{13} \div 6 \times 10^{12}=4.166682167$ years
3. Can you make the trip in the given time?

Yes

Extension

Now that you have been successful, you have been asked to make another trip. The distance from the Sun to Delta Centauri is 9×10^{13} miles. How long will it take you to get there from Earth?
≈ 15 years

Hint: Make sure your calculator is in scientific notation mode before beginning addition.

Hint: The Earth is approximately 9.3×10^{7} miles from the Sun.
\qquad

Problems

1. Write the following numbers in scientific notation.

Standard Notation
a. 93000000
b. 384000000000
c. 0.00000000000234
d. 0.0000000157
2. Using the TI-30X IIS, change the following numbers into scientific notation. Standard Notation Scientific Notation
a. 12000000
b. 974000000
c. 0.0000034
d. 0.000000004
3. Using the TI-30X IIS, change the following numbers into floating decimal notation (standard).

Scientific Notation
Standard Notation
a. $\quad 5.8 \times 10^{7}$
b. 7.32×10^{5}
c. 6.2×10^{-6}
d. 3×10^{-8}
\qquad
\qquad
\qquad
\qquad

Star Voyage -

 Scientific NotationName \qquad

Problem

You are a captain of a starship. You have been assigned to go to Alpha Centauri, and you have 5 years to get there. The distance from the Sun to Alpha Centauri is 2.5×10^{13} miles. The distance from the Earth to the Sun is approximately 9.3×10^{7} miles. Your ship can travel at the speed of light. You know that light can travel a distance of 6×10^{12} miles in 1 light year. Will you be able to get to Alpha Centauri on time?

Procedure

1. Using the TI-30X IIS, find the total distance that you need to travel.
\qquad
Hint: Make sure your calculator is in scientific notation mode before you begin addition.
2. Next, find out how long it will take you to travel the distance. (distance traveled $\div 1$ light year) \qquad
\qquad
3. Can you make the trip in the given time? \qquad

Extension

Now that you have been successful, you have been asked to make another trip. The distance from the Sun to Delta Centauri is 9×10^{13} miles. How long will it take you to get there from Earth?
Hint: The Earth is approximately 9.3×10^{7} miles from the Sun.

Trig Functions

Overview

Students pract ice solving sine, cosine, and tangent ratios, and solve problems involving trigonomet ric ratios.

Introduction

Introduce the trigonometric ratios to students.
$\sin =$ opposite leg \div hypotenuse
cos $=$ adjacent leg \div hypotenuse
tan $=$ opposite leg \div adjacent leg

1. Have students find the trigonometric ratios for the triangle using the above definitions. Round to the nearest hundredth if necessary. (Use 2nd [FIX] for rounding.)
a. $\sin C$
$3 \div 5=0.60$
b. $\cos \mathrm{C}$
$4 \div 5=0.80$
c. $\tan \mathrm{C}$
$3 \div 4=0.75$
d. $\sin \mathrm{A}$
$4 \div 5=0.80$
e. $\cos \mathrm{A}$
$3 \div 5=0.60$
f. $\quad \tan \mathrm{A}$
$4 \div 3=1.33$
2. Have students find the value of each ratio using the TI-30X IIS. Round to the nearest 10 thousandth.
a. $\quad \sin 71^{\circ}$
0.9455
b. $\tan 31^{\circ}$
0.6009
c. $\cos 25^{\circ}$
0.9063
3. Have students find the measure of each angle using the TI-30X IIS. Round to the nearest degree.
$\begin{array}{lll}\text { a. } & \sin B=0.4567 & 27 \text { degrees } \\ \text { b. } & \cos A=0.6758 & 47 \text { degrees } \\ \text { c. } & \tan C=5.83 & 80 \text { degrees }\end{array}$

Math Concepts

- multiplication
- division
- trigonometric ratios

Materials

- TI-30X IIS
- pencil
- student activity

To set 2 decimal places:

1. Press 2 nd [FIX$]$.

F0123456789
2. Press 2 to select 2 decimal places.

To find $\sin 71^{\circ}$:

1. Press SIN.
$\sin ($
2. Enter 71; press \square ENTIER.
$\sin (71)$
0.945518576
3. Press [2nd $[\mathrm{FIX}] 4$.
$\boldsymbol{\operatorname { s i n }}(71)$
0.9455

To find B when $\sin B=0.4567$:

1. Press 2nd [sin ${ }^{-1]}$.
$\sin ^{-1}($
2. Enter .4567; press \square [ENTERT.
$\mathbf{s i n}^{-1}(.4567)$
27.1744
3. Press [2nd $[\mathrm{FIX}] 0$.
$\sin ^{-1}(.4567)$
4.

Trig Functions (continued)

Activity

Present the following problem to students:
You need to build a ramp to your front door. The distance from the ground to the bottom of the door is 1.5 feet. You don't want the angle of incline to be more than 6 degrees. The distance from the street to the door is 20 feet. Is there enough room to build the ramp?

Procedure

1. Make a drawing of the problem.

20 ft .
2. Use the trigonometric ratio tan $=$ opposite leg \div adjacent leg
to find angle A.
Angle A is 4.3 degrees (rounded to the nearest tenth). Yes, there is enough room to build the ramp.

Extension

Present the following problem to students:
You want to start the ramp 15 feet away from the door. Can you do that and still have the angle of incline be less than 6 degrees?

Yes, angle A is 5.7°.

1. Press [2nd [Tan-1].
$\tan ^{-1}($
2. Enter $\mathbf{1 . 5} \div \mathbf{2 0}$ and press \square ENTIER.
$\tan ^{-1}(1.5 / 20)$
4.3
3. Press [2nd [tan-1].
tan $^{-1}($
4. Enter $\mathbf{1 . 5} \div \mathbf{1 5}$ and press ENTIER.
$\tan ^{-1}(1.5 / 15$
5.7

Trig Functions

Problems

1. Find the trigonometric ratios for the triangle. Round to the nearest hundredth. (Use [nd [FIX] for rounding.)
a. $\sin C$ \qquad
b. $\cos C$
c. $\tan C$ \qquad
d. $\sin A$ \qquad

e. $\cos A$ \qquad
f. $\tan A$ \qquad
2. Using the TI-30X IIS, find the value of each ratio. Round to the nearest ten thousandth.
a. $\sin 71^{\circ}$ \qquad
b. $\tan 31^{\circ}$ \qquad
c. $\cos 25^{\circ}$ \qquad
3. Using the TI-30X IIS, find the measure of each angle. Round to the nearest degree.
a. $\sin B=0.4567$ \qquad
b. $\cos A=0.6758$
c. $\tan C=5.83$
\qquad
\qquad

Trig Functions

Problem

You need to build a ramp to your front door. The distance from the ground to the bottom of the door is 1.5 feet. You don't want the angle of incline to be more than 6 degrees. The distance from the street to the door is 20 feet. Is there enough room to build the ramp?

Procedure

1. Make a drawing of the problem.
2. Use the trigonometric ratio tan = opposite leg \div adjacent leg to find angle A. (Round your answer to the nearest tenth.) \qquad
\qquad
3. Is there room to build the ramp? \qquad

Extension

You want to start the ramp 15 feet away from the door. Can you do that and still have the angle of incline be less than 6 degrees?

What's My Score? - l-Variable Statistics

Overview

Students use the given test scores to find averages.

Math Concepts

- averages

Materials

- Tl-30 X IIS
- pencil
- student activity

Introduction

Discuss finding averages with your students.

Activity

Present the following problem to students:
You and your friend are having a contest. The one who gets the highest average on their math tests for one quarter wins. Your scores are 98, 89, 78, 98, and 100. Your friend's scores are 89, 89, 97, 90, and 100. Who is the winner?

Procedure

1. Have students find the average of their scores using the TI-30X IIS. Remember to enter 2 as the frequency for 98 and 1 for all others.

What's My Score? - IVariable Statistics (continued)

2. Now find the average of your friend's scores.

Remember to put 2 as the frequency for 89 and 1 for all others.
3. Who won?

Your friend: 93 (You had 92.6.)

Extension

Present the following problem to students:
Your friend took a test on the day you were absent and scored 95. What score do you need to get so that you are the winner?

The score you need: 98
Note: Make sure you exit the STAT mode before going on to another problem.

1. Press [2nd [STAT] (1) (1) ENTIER to select CLRDATA.
2. Press DATA and enter the friend's first score.

$$
\text { X1 = } 89
$$

3. Continue entering the friend's scores and frequencies, following steps 3 and 4 on the previous page.
4. When finished, press STATVAR (1) to select \bar{x}, the average. Write it down.
n $\overline{\mathrm{x}}$ Sx σx 93.0
5. Press [2nd [stat] and (1) (1) to CLRDATA. Press ENDER.
6. Recalculate your friend's average, making sure to include the new score.
7. Use guess and check to figure out what score you need to get.
8. To exit STAT mode, press 2nd [EXIT STAT] ENTERA.

What's My Score? -1-Variable Statistics

Problems

1. You and your friend are having a contest. Whoever gets the highest average on their math tests for one quarter wins. Your scores are $98,89,78,98$, and 100. Your friend's scores are $89,89,97,90$, and 100 . Who is the winner?

Your average \qquad
Your friend's average \qquad
2. Your friend took a test on the day you were absent and scored 95 . What score do you need to get so that you are the winner?

Your friend's new average \qquad
The score you need \qquad

Heart Rates - 1-Variable Statistics

Overview

Students use the statistics functions of the TI-3OX IIS calculator to investigate the effect of exercise on heart rate.

Introduction

Students may be placed in smaller groups for this activity to minimize the amount of data to be entered. Ask students:

- What do you think the average heart rate is for someone your age?
- What about after exercising?

Activity

Have students complete the following investigation to check their estimations.

1. Have students check their resting heart rate by timing their pulse for 1 minute. (You could have them time for 10 seconds and then multiply by 6 , but this could be the quietest minute of your day!)
2. Collect data on the chart. Enter each student's heart rate and a mark in the frequency column. As other students have the same heart rate, add another tally mark in the frequency column.
3. Enter the heart rate data into the TI-30X IIS.
a. Enter the first heart rate on the chart as the first \mathbf{X} value, and the number of tallies for that heart rate as the frequency.
b. You must press Θ between entries. For example, enter the first heart rate, and then press Θ. Enter the first frequency, and then press \odot.

For example, assume a class of 22 students:

Rate	Students	Rate	Students
60	3	63	3
61	5	64	1
62	6	65	4

Math Concepts

- mean, minimum, maximum, and range

Materials

- TI-30X IIS
- stopwatch or a watch with a second hand
- student activity

1. Press 2 nd $[\mathrm{STAT}]$ ENTER.
2. Press DATA to enter the heart rates and frequencies.
$\mathbf{X 1 =}$
3. Enter first heart rate and press Θ. FRQ=
4. Enter the first frequency and press Θ.
5. Continue entering until you have entered all the heart rates and frequencies.

Heart Rates - 1-Variable Statistics (Continued)

4. Check the statistics calculations. After students display $\boldsymbol{\Sigma x}$ (Sigma), explain that $\Sigma \mathbf{x}$ is the sum of all the heart rates. Ask students:

- How many heartbeats were there in one minute?
- Is the average heart rate higher or lower than you expected?

5. Now we will see the effect of some exercise on heart rate. Tell students:

If at any point during this portion of the activity you experience pain, weakness, or shortness of breath, stop immediately.
6. Have the students run in place for 2 minutes and then give them these instructions:
a. Time your pulse for 1 minute.
b. Record your heart rate as before.
c. Enter the data into the calculator.
d. Compare the average heart rate after running with the resting heart rate.
7. Now have the students do jumping jacks for 2 minutes. Instruct them to time their pulse for 1 minute again and record as before. Have them enter the data into the calculator again and calculate the average heart rate after jumping jacks. Compare to the other 2 averages.

8 How fit is the class? If the class (or individual) heart rate after jumping jacks is less than 90 , then you are in great shape. If it is higher than 125 , then you are in poor shape.
9. Instruct students to make a histogram of the 3 sets of data they collected. Ask students:

- How are the histograms the same?
- How are they different?
- Is the data grouped the same, or is it more spread out in one graph compared to another?

1. Press STATVAR.
n \bar{x} Sx σx
2.

n should equal the total number of student sampled.
2. Press (1) to \bar{x} to see the average heart rate.
n $\underline{\bar{x}} \mathrm{Sx} \sigma x$
62.
3. Press (1) (1) (1) to $\Sigma \mathbf{x}$.
$\underline{\mathrm{x}} \quad \mathrm{xx}^{2}$
1370.

Note: The numbers show the results for the example described above. Your students' results will vary depending on the size of group and the heart rate readings.

Heart Rates -
 1-Variable Statistics
 Name

\qquad

Problem

What do you think the average heart rate is for someone your age? What about after exercising?

Procedure

1. Use this table to record your class or group data (resting).

Heartbeats per minute (resting)	Frequency

2. What is the class (group) average? \qquad
3. What is the total number of heartbeats for the minute? \qquad

Heart Rates -
 1-Variable Statistics
 Name

\qquad

4. Use this table to record your class or group data (running).

Heartbeats per minute (running)	Frequency

5. What is the class (group) average? \qquad
6. What is the total number of heartbeats for the minute? \qquad

Heart Rates -
 1-Variable Statistics Date

\qquad

7. Use this table to record your class or group data (jumping).

Heartbeats per minute (jumping)	Frequency

8. What is the class (group) average? \qquad
9. What is the total number of heartbeats for the minute? \qquad
10. How fit is the class? \qquad
\qquad
Note: If the class (or individual) heart rate after jumping jacks is less than 90 , then you are in great shape. If it is higher than 125, then you are in poor shape.
\qquad

11. Now make a histogram for each of the 3 sets of data you collected.
Resting Running Jumping
12. How are the histograms the same? How are they different? \qquad
\qquad
\qquad
13. Is the data grouped the same or is it more spread out in one graph compared to another? \qquad
\qquad
\qquad

WNBA Stats - 2-Variable Statistics

Overview

Students use WNBA statistics to explore the relationship bet ween 2 variables. They use the $\mathrm{TI}-30 \mathrm{X}$ IS to comput e the regression equat ion and evaluate some values.

Activity

Present the following problem to students:
Do you think WNBA (Women's National Basketball Association) playing time (in minutes per game) is related to how many points a player scores? Do you think it is related to how many rebounds a player gets? Or is it related to the player's field goal percentage?

Procedure

1. Put the calculator in STAT mode and choose 2-VAR statistics.
2. Using the table in the activity (page 26), enter the data. Enter points per game as the \mathbf{X}-variable and minutes per game (playing time) as the Y -variable.

Math Concepts

- 2 -variable statistics

Materials

- TI-30X IIS
- pencils
- student activity1. Press 2nd [stat] and then (1).

1-VAR 2-VAR
2. Press ENTER to select 2-VAR.

1. Press [DATA.
$\mathrm{X} 1=$
2. Enter 10.1 (points per game for the first player, Rhonda Mapp).
$\mathrm{X} 1=10.1$
3. Press Θ.

Y1=1
4. Enter 21.7 (minutes per game for Rhonda Mapp).
Y1=21.7
5. Press Θ and enter data for the second player.
6. Enter data for each player in the table. Press Θ after entering each data point.

WNBA Stats - 2-Variable Statistics (Continued)

3. Calculate the statistical data.

You may want to fix the decimal to 2 places before doing the statistical calculations.

Ask students:

- What is the average points scored for the players shown?
- What is the average playing time?
- What is the total number of points scored per game for all the given players?

You may want to discuss the other statistical variables and what they mean.
4. The form of the equation is $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}+\boldsymbol{b}$. Write the equation for the line of best fit (round to the nearest hundredth).
$1.56 \mathrm{x}+7.02$
5. The closer the correlation coefficient value is to 1 (or -1), the better the correlation between the two variables. Write the correlation coefficient.
$r=.91$
6. Now calculate how many minutes you would expect a player to play if she averages 15 points per game.

1. Press [2nd [FIX].

E0123456789
2. Press 2.

1. Press STATVAR.
n $\overline{\mathrm{x}} \mathrm{Sx} \sigma \mathrm{x} \overline{\mathrm{y}}$
12.00
2. Press (1) to $\overline{\mathrm{x}}$.
n $\overline{\mathrm{x}} \mathrm{Sx} \sigma \mathrm{x} \overline{\mathrm{y}}$
9.33
3. Press (1) (1) (1) to \bar{y}.
$n \bar{x} S x \sigma \bar{x}$
21.59
4. Press (1) (1) (1) to $\boldsymbol{\Sigma} \boldsymbol{x}$.

Sy $\sigma y \underline{\Sigma x}$
112.00

1. Press (1) until you get to \mathbf{a}. This is the slope of the line of best fit.
$\Sigma X Y$ a b r
1.56
2. Press (1) to \mathbf{b}. This is the y-intercept of the line.
$\boldsymbol{\Sigma X Y} \mathbf{a} \underline{\mathbf{b}} \mathbf{r}$
7.02
3. Press (1) to \mathbf{r}. This is the correlation coefficient.
$\begin{aligned} \Sigma X Y & \text { a } \quad \begin{array}{r}\text { r } \\ 0.91\end{array}\end{aligned}$
4. Press (1) (1) to y^{\prime}.
$\mathbf{x}^{\prime} \mathbf{y}^{\prime}$
5. Press ENTERA.
6. Type $15 \square$ and press ENTERP. $y^{\prime}(15)$
30.44

WNBA Stats - 2-Variable Statistics (Continued)

7. Now calculate how many points you would expect a player to score if she plays 35 minutes a game.
8. Discuss the correlation as a class. Ask students:

- Are there other factors affecting the players' minutes per game besides points scored?
- What about defense, rebounding, etc.?

Extension

Now have students use the calculator to investigate the correlation of the other data in the chart such as the relation of field goal percentage to minutes per game, or rebounds per game to minutes per game. (Remember, since you have already entered the minutes in \mathbf{Y}, you only need to enter the new data in $\mathbf{X .}$)

Ask students:
Which 2 variables have the closest correlations? (That is, which have the correlation coefficient closest to 1 or -1 ?)

1. Press STATVAR.
$\underline{\mathrm{n}} \overline{\mathrm{x}} \mathrm{Sx} \sigma \mathrm{x} \overline{\mathbf{y}}$
12.00
2. Press © (1) (1) to x^{\prime}.
$\underline{x}^{\prime} \mathbf{y}^{\prime}$
3. Press ENTER.
4. Type $35 \square$ and press

ENTERT.
$\mathbf{x}^{\prime}(35)$
17.92

WNBA Stats -
 Name 2-Variable Statistics

\qquad

Problem

Do you think WNBA playing time (in minutes per game) is related to how many points a player scores? Do you think it is related to how many rebounds a player gets? Or is it related to the player's field goal percentage?

Procedure

Use the following table of data to explore the relationships of different pairs of data. Begin by entering the points per game as the \mathbf{x}-variable and the minutes per game as the \mathbf{Y}-variable.

Player	Field Goal Percentage	Points per Game	Rebounds per Game	Minutes per Game
1. Rhonda Mapp	.506	10.1	4.3	21.7
2. Vicky Bullet	.441	13.3	6.5	31.6
3. Janeth Arcain	.426	6.8	3.6	21.9
4. Cynthia Cooper	.446	22.7	3.7	35
5. Elena Baranova	.420	12.9	9.3	33.6
6. Malgozata Dydek	.482	12.9	7.6	28
7. Heidi Burge	.509	6.7	3.3	16.7
8. Keri Chaconas	.297	4.8	.8	13.2
9. Rebecca Lobo	.484	11.7	6.9	29.2
10. Coquese Washington	.294	1.9	.9	8.1
11. Toni Foster	.467	4.9	1.9	13.6
12. Maria Stepanova	.426	3.3	1.9	6.5

WNBA Stats -2-Variable Statistics

Name

Extension

Use the calculator to investigate the correlation of the other data in the table such as the relation of field goal percentage to minutes per game, or rebounds per game to minutes per game. (Remember, since you have already entered the minutes per game in \mathbf{Y}, you only need to enter the new data in \mathbf{X}.)

1. What is the average field goal percentage?
\qquad
2. Write the equation for the line of best fit.
\qquad
3. Write the correlation coefficient.
\qquad
4. What is the average number of rebounds per game?
\qquad
5. Write the equation for the line of best fit.
\qquad
6. What is the total number of rebounds per game for all the given players?
\qquad
7. Write the equation for the line of best fit.
\qquad
8. Write the correlation coefficient.
\qquad
9. Which 2 variables have the closest correlation? (That is, which have the correlation coefficient closest to 1 or -1 ?)

Tl-30XIIS Basic Operations

Keys

1 ON turns on the calculator.
2. 2nd turns on the $\mathbf{2 n d}$ indicator and accesses the function shown above the next key you press.
3. 2nd [off] turns off the calculator and clears the display.
4. ENIER completes the operation or executes the command.
5. 2nd [ANS] recalls the most recent ly calculated result and displays it as Ans.
6. (1) and (1) move the cursor left and right to scroll the ent ry line. Press 2nd (1) or 2nd (1) to scroll to the beginning or end of the ent ry line.
Θ and Θ move the cursor up and down through previous entries. 2nd Θ or 2nd Θ scroll to the beginning or end of history.

7. 2nd [RESET] displays the RESET menu.

RESET: $\mathbf{N} \mathbf{Y}$

- Press ENTER when $\mathbf{N}(n o)$ is underlined to ret urn to the previous screen without resetting the calculator.
- Press ENTER when \mathbf{Y} (yes) is underlined to reset the calculator. The message MEM CLEARED is displayed.

Note: Pressing ON and CLEAR simult aneously resets the calculat or immediately. No menu or message is dis played.

Notes

- The examples on the transparency masters assume all default settings.
- Resetting the calculator:
- Returns settings to their defaults: floating decimal (standard) notation and degree (DEG) mode.
- Clears memory variables, pending operations, entries in history, statistical data, constants, and Ans (Last Answer).
- The entry line can cont ain up to 88 characters. When \leftarrow or \rightarrow appear in the display, the ent ry line contains more characters to the left or right. When \uparrow or \downarrow appear, more characters are locat ed above or below the entry line.
- Press ON after Automatic Power Down ${ }^{\text {TM }}$ (APD ${ }^{T M}$). The display, pending operations, settings, and memory are ret ained.

Second, Off, Arrows, Equals

Reset

Last Answer (Ans)

Clear, Insert, and Delete

Keys

1 CLEAR clears characters and error messages. Once the display is clear, it moves the cursor to the most recent entry.
2. [2nd [iNS] lets you insert a character at the cursor.
3. DEL deletes the character at the cursor. Hold (DEL down to delete all characters to the right. Then, each time you press [DEL, it deletes 1 character to the left of the cursor.

Notes

- The examples on the transparency masters assume all default settings.
- Pressing CLEAR does not affect the memory, statistical registers, angle units, or numeric notation.

Delete and Insert

Enter $4569+285$, and then change it to $459+2865$. Complete the problem.

DEL 2nd DEL

Clear

Basic Math 3

Keys

1 + adds.
2. \square subtracts.
3. \boxtimes mult iplies.
4. \rightarrow divides.
5. ENTER completes the operation or executes the command.

6 . $(-)$ let s you enter a negative number.
7. 2nd [\%] changes a real number to a percent.

Notes

- The examples on the transparency masters assume all default settings.
- The TI-30X IS allows implied multiplication. Example: $3(4+3)=21$
- Do not confuse $(-)$ with \square. \square allows subtraction.
- Results of percent calculations display according to the decimal not at ion mode setting.

Add, Subtract, Multiply, Divide, Equals

Negative Numbers

The temperature in Utah was $-3^{\circ} \mathrm{C}$ at 6:00 a.m. By $10: 00$ a.m. the temperature had risen $12^{\circ} \mathrm{C}$. What was the temperature at $10: 00$ a.m.? Press

Display
(-) 3 母 12
ENTER

$-3+12$		
	9.	
DG6		

Percent

Mike makes $\$ 80$ per week. He saves 15% of his earnings. How much does Mike save per week?

Order of Operations and Parentheses

Keys

$1 \square$ opens a parenthetical expression.
2. \square closes a parenthetical expression.

Notes

- The examples on the transparency masters assume all default settings.
- The transparency master showing the Equation Operating System (EOS ${ }^{\text {TM }}$) demonstrates the order in which the Tl-30XIIS completes calculations.
- Operations inside parentheses are performed first. Use $\square \square$ to change the order of operations and, therefore, change the result.
Example: $1+2 \times 3=7$

$$
(1+2) \times 3=9
$$

Equation Operating System
EOS ${ }^{\text {TM }}$

1 (first)	Expressions inside \square^{\square}
2	Functions that need a and precede the expression, such as the SIN, LOG, or 2nd $\frac{\text { fop }}{\text { form }}$ menu items
3	Functions entered after the expression, such as x^{2} and angle unit modifiers (${ }^{\circ},{ }^{\prime},{ }^{\prime},{ }^{\prime}, \mathbf{r}, \mathbf{g}$)
4	Fractions
5	Exponentiation (\triangle) and roots (2 nd $\sqrt{\frac{8}{\Delta}}$)
6	Negation ($-(-)$
7	Permutations ($\mathbf{n P r}$) and combinations ($\mathbf{n C r}$)
8	Multiplication, implied multiplication, and division
9	Addition and subtraction
10	
11 (last)	ENTEER completes all operations and closes all open parent heses.

Order of Operations

$1+2 \times 3=$ Press		$\pm \boxed{x} \square \square$
$\begin{aligned} & 1 母 2 \boxtimes 3 \\ & \text { ENTER } \end{aligned}$	$1+2 * 3$ 7. DEG	
$(1+2) \times 3=$ Press	Display	
$\begin{aligned} & \square 1 母 2 \square \boxtimes \\ & 3 \text { ENTER } \end{aligned}$	$(1+2) * 3$	

Constant

Keys

1 2nd [K] turns on the constant mode and lets you define a constant. A K displays when the const ant mode is on.
2. ENIER places the contents of \mathbf{K} at the end of the expression in the display.

Notes

- The examples on the transparency masters assume all default settings.
- All functions, except statistics, work in constant mode.
- To enter a constant:

1 Press [2nd [K]. If a constant is already stored, press CLEAR to clear it.
2. Enter your constant (any set of operations, functions, and values).
3. Press ENIER to turn on the const ant mode. K appears in the display.
4. Press CLEAR to clear the dis play.
5. Enter an init ial value. If you do not enter a value, 0 is assumed, and Ans will appear in the dis play.
6. Press ENTER to place the cont ents of \mathbf{K} at the end of the expression and evaluate it.
7. Cont inue pressing ENTER to repeat the constant.

The result is stored in Ans, which is displayed, and the constant is used to evaluat e the new expression.

Constant

Three people babysit for $\$ 3.25$ each per hour. First person works 16 hours. Second person works 12 hours. Third person works 17 hours. How much did each pers on earn?

Press	Display
2nd $\stackrel{\text { K }}{\square}$	$k=$
	оє6

区 3.25
CLEAR

16 ENTER

12 ENITER

17 ENTIER
2nd $\stackrel{K}{\leftrightarrows}$
(Constant mode is off.)

$k=*, 3.25$

DEG K

$\underset{\substack{566 \\ \text { De k }}}{55.25}$

2nd $\stackrel{\text { K }}{\stackrel{-}{\div}}$

Decimals and Decimal Places

6

Keys

$1 \backsim$ enters a decimal point.
2. 2nd [FIX] dis plays the following menu, which lets you set the number of decimal places.

F 0123456789

F \quad Sets floating decimal (standard) notation.

0-9 Sets the number of decimal places.

Notes

- The examples on the transparency masters assume all default settings.
- 2nd $[F I X] \square$ removes the set ting and ret urns to st andard not at ion (float ing decimal).
- The FIX setting affects all decimal results and the mant issa of scientific and engineering not at ion results.
- The TI-30X IIS automatically rounds the result to the number of decimal places select ed. For example, when the decimal is set to 2 places, 0.147 becomes 0.15 when you press ENTER. The TI-30XIS also rounds or pads result ing values with trailing zeros to fit the selected setting. For example, when the decimal is set to 5 places, 0.147 becomes 0.14700 when you press ENIER.
- All results are displayed to the FIX setting until you clear the setting by eit her pressing 2nd [FIX] \square or select ing \mathbf{F} (floating) on the decimal notation menu. Resetting the calculat or also clears the FIX setting.
- After pressing [2nd [FIX], you can select the number of decimal places in 2 ways:
— Press (1) or (1) to move to the number of decimal places you want, and then press ENIER, or
- Press the number key that corres ponds to the number of decimal places you want.
- FIX affects only the results, not the entry.

Decimal, FIX

Memory

Keys

1 STO dis plays the following menu of variables.
ABCDE Lets you select a variable in which to store the displayed value. The new variable replaces any previously stored value.
rand Lets you set a seed value for random integers.
2. MEMVAR displays the following menu of variables.
ABCDE Lets you view the stored value before pasting it in variable form to thedisplay.

3. 2nd [CLRVAR] clears all variables.
4. 2nd [RCL] dis plays the following menu of variables.
ABCDE Lets you view the stored value before pasting it to the display.

Notes

- The examples on the transparency masters assume all default settings.
- You can store a real number or an expression that results in a real number to a memory variable.
- When you select a variable using MEMVAR, the variable name $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$, or $\mathbf{E})$ is displayed on the entry line.
When you select a variable using [2nd [RCL], the value of the stored variable is displayed on the entry line.
- Resetting the calculat or clears all memory variables.
- For more about rand, see Chapter 11 , Probability (page 68).

Store, Memory Variable, Clear Variable

Test scores: $96,76,85$. Weekly scores: $92,83,97$, and 86 . Find the average of test and weekly scores. Find the final average.		STO MEMVAR 2nd MEMVAR LIMAR
Press	Display	
	$\begin{array}{r} 96+76+85 \\ 257 . \\ \text { o6e } \end{array}$	
- 3 E ENIER	Ans/3 85.66566567	
STO* ENERET	Ans $\rightarrow \hat{A}$ 85.66666667	
	$\begin{array}{c\|} \hline 92+83+97+86 \\ 356 . \\ \text { 060 } \end{array}$	
ใ 4 ENETER		
	$\begin{gathered} \text { Ans }+ \text { + } \\ 175.1666657 \\ \text { oce } \end{gathered}$	
(2 2 ENIER	$\begin{gathered} \hline A n s / 2 \\ 87.5333333 \\ \text { ofo } \end{gathered}$	

Store, Recall

Store, Recall

Store, Recall (Continued)

Press	Display	$\begin{array}{r} \mathrm{STO} \\ \text { RCL } \\ \text { 2nd STO } \end{array}$
STO* (1) ENTER	Ans $\rightarrow B$ 23.94	
$\begin{aligned} & 6 \backsim 98 \text { ■ } \\ & 9 \backsim 98 \text { ENTEER } \end{aligned}$	$\begin{array}{r} 6.98+9.98 \\ 16.96 \\ \text { DEa } \end{array}$	
$\begin{aligned} & \text { STO: © (1) (1) } \\ & \hline \text { ENTITER } \end{aligned}$		
$\begin{aligned} & \text { 2nd } \mathrm{RCL} \\ & \text { 2 STO } \\ & \text { ENTEER }+ \end{aligned}$	$27.96+$ DEG	
	$-.96+23.94+$ oec	
$\text { 2nd } \frac{\mathrm{RCL}}{\mathrm{STO}} \text { (1) (1) }$ ENTER ENTER	$\begin{array}{r} 27.96+23.94 \\ 68.86 \end{array}$	

Fractions

Keys

1 Ab/c lets you enter mixed numbers and fractions.
2. 2nd [Ab/cd/e] converts a simple fraction to a mixed number or a mixed number to a simple fraction.
3. 2nd $[F \hookleftarrow D]$ converts a fraction to its decimal equivalent or changes a decimal to its fractional equivalent, if possible.

Notes

- The examples on the transparency masters assume all default settings.
- To enter a mixed number or a fraction, press Ab / C bet ween the whole number and the numerator and between the numerat or and the denominat or.
- You can enter a fraction or mixed number anywhere you can enter a decimal value.
- You can use fractions and decimals together in a calculation.
- Fractional results and entries are aut omatically reduced to their lowest terms.
- Fractional calculations can show fractional or decimal results.
- When possible, calculations involving 2 fractions or a fraction and any int eger will dis play fractional results.
- Calculations involving a fraction and a decimal will always dis play results as decimals.
- For a mixed number, the whole number can be up to 3 digits, the numerat or can be up to 3 digits, and the denominat or can be any number through 1000 .
- For a simple fraction, the numerat or can be up to 6 digits and the denominator can be any number through 1000 .

Fractions

At the party, you ate $5 / 6$ of the pepperoni pizza and $\downarrow / 10$ of the saus age pizza. How much pizza did you eat?

Mixed Numbers

A baby weighed $43 / 8$ pounds at birth. In the next 6 months, she gained $23 / 4$ pounds. How much does she weigh?

Mixed Number to Fraction, Fraction to Mixed Number

Sam is making his birthday cake. The recipe calls for $31 / 2$ cups of flour. He has only a $1 / 2$-cup measuring cup. To find out how many times Sam must use his measuring cup, change the mixed number to a fraction.

$$
31 / 2 \div 1 / 2=7
$$

Show the mixed number again.

2nd $A b / C$ ENTER

Fraction to Decimal

J uan swims 20 laps in 5.72 minutes. Mary swims 20 laps in
5 3/4 minutes. Change Mary's time to a decimal to det ermine who swims faster.
Press Display

5 Ab/c 3 Ab/C $5,3,4 \Rightarrow F \Downarrow \square$
$42 \mathrm{nd} \frac{\mathrm{F} \cdot \mathrm{D}}{\mathrm{PRB}}$
DEG
ENTER

$$
\begin{gathered}
5,3,4 F \| \square \\
5.75
\end{gathered}
$$

Decimal to Fraction

Change 2.25 to its fractional equivalent.

Press	Display
$2 \square 25$	2251F*
$\begin{aligned} & \text { 2nd } \mathrm{F} \leftrightarrow \mathrm{DR} \text { ENTER } \end{aligned}$	2.lity

Pi

Keys

1π dis plays the value of pi rounded to 10 digits (3.141592654).

Notes

- The examples on the transparency masters assume all default settings.
- Int ernally, pi is stored to 13 digits (3.141592653590).
- After pressing [2nd [FIX], you can select the number of decimal places in 2 ways:
- Press (1) or (1) to move to the number of decimal places you want, and then press ENTER, or
- Press the number key that corresponds to the number of decimal places you want.

The trans parency masters show both ways.

Circumference

Use this formula to find the amount of border you need if you want to put a circular border all the way around the tree.

Press	Display
2 区 π - 15	$2 * \pi * 1.5$
ENTER	9.424777961

Area

> Use this formula to find how much of a lawn would be covered by the sprinkler. Round your answer to the nearest whole number, and then ret urn to floating decimal mode.

$$
\mathrm{A}=\pi \mathrm{r}^{2}=\pi \mathrm{x} \mathbf{4}^{2}
$$

Powers, Roots, and Reciprocals 10

Keys

1 x x^{2} squares the value.
2. 2nd $[\checkmark]$ calculates the square root.
3. 2nd $[\sqrt[x]{x}]$ calculates the specified root (x) of the value.
4. $x-1$ calculates the reciprocal.
5. \triangle raises a value to a specified power.

Notes

- The examples on the transparency masters assume all default settings.
- To use $\widehat{\wedge}$, enter the base, press $\boldsymbol{\wedge}$, and then enter the exponent.
- The base (or mant issa) and the exponent may be eit her positive or negative. Refer to Domain under Error Messages in Appendix C (page C-1) for restrictions.
- The result of calculations with $\boldsymbol{\wedge}$ must be within the range of the Tl-30 XIIS.
- A sign change takes precedence over exponents.

$$
\text { Example: }-5^{2}=-25
$$

$$
(-5)^{2}=25
$$

Squares

Square Roots

Use this formula to find the length of the side of a square clubhouse if $3 \mathrm{~m}^{2}$ of carpet would cover the floor. Round your answer to 0 decimal places.

Cubes

Use this formula to find the volume of a cube with sides 2.3 meters long. Change your answer to a fraction.

$$
V=L^{3}=2.3^{3}
$$

Powers

Roots

If the volume of a cube is $125 \mathrm{~cm}^{3}$ what is the length of each side?	
Press	Display
3 2nd $\stackrel{x}{\wedge} 125$ ENTER	$3 \times \sqrt[x]{125}$ ${ }_{0.6}^{5 .}$

2nd $\sqrt[x]{\wedge}$

Reciprocals

The chart below shows the amount of time spent building model ships. $\begin{array}{ll}\begin{array}{l}\text { Time } \\ \text { Spent } \\ \text { Building }\end{array} & \begin{array}{l}\text { Portion } \\ \text { Completed }\end{array} \\ \frac{\text { Per Hour }}{10 \text { hrs. }}\end{array}$
$\frac{\text { Ships }}{\text { Sailing }}$
Steam
Luxury
5 hrs.
$5 H_{3} \mathrm{hrs}$.
?
How much of each model was completed per hour?
$\frac{\text { Press }}{\text { Sailing ship: }}$

Steam ship:

x^{-1}

Probability 11

Keys

1 PRB dis plays the following menu of functions.

nPr	Calculates the number of possible permutations.
nCr	Calculates the number of possible combinations.
\vdots	Calculates the factorial. RAND Generates a random $10-$ digit real number between 0 and 1
RANDI	Generates a random int eger between 2 numbers that you specify.

Notes

- The examples on the transparency masters assume all default settings.
- A combination is an arrangement of objects in which the order is not important, as in a hand of cards.
- A permutation is an arrangement of objects in which the order is important, as in a race.
- A factorial is the product of all the positive int egers from 1to n, where n is a positive whole number ≤ 69.
- To control a sequence of random numbers, you can store (STO円) an integer to RAND just as you would store values to memory variables. The seed value changes randomly when a random number is generated.
- For RANDI, use a comma to separate the 2 numbers that you specify.

Combination (nCr)

You have space for 2 books on your bookshelf. You have 4 books to put on the shelf. Use this formula to find how many ways you could place the 4 books in the 2 spaces.

$4 \mathrm{nCr} 2=x$

 A B D D

Permutation (nPr)

Four different people are running in a race. Use this formula to find how many different ways they can place 1st and 2nd.

| $A B$ and $B A$ | $A B$ | $A C$ | $A D$ |
| :--- | :--- | :--- | :--- | :--- |
| count as 2 | $B A$ | $B C$ | $B D$ |
| permutations. | $C A$ | $C B$ | $C D$ |
| | $D A$ | $D B$ | $D C$ |

Press	Display
4 PRB	MFY MLT ! \rightarrow
	DEG
2 ENTER	4 mFr 2
	$\underset{\sim}{12}$

Factorial (!)

Using the digits $1,3,7$, and 9 only one time each, how many 4-digit numbers can you form?
$4!=x$
$\begin{array}{llll}1 & 3 & 7 & 9 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D}\end{array}$

PRB

Random (RAND)

Generate a sequence of random numbers.

Results will vary.

Random (RAND)

Set las the current seed and generate a sequence of random numbers.

Random Integer (RAND)

Generate a random int eger from 2 through 10 .		PRB
Press	Display	
PRB (1)	$- \text { RAMDI EAMDII }$	
ENIER 2 2nd ${ }^{\text {a }}$	- AMDIC 2, 16)	
$10 \square$	DEG	
ENTER	$\text { RAFIIT 2, 10) } \rightarrow+$	
Results will vary.		

Statistics 12

Keys

1 2nd [STAT] dis plays a menu from which you can select 1-VAR, 2-VAR or CLRDATA.

1-VAR Analyzes data from 1 set of data with 1 measured variable- x.

2-VAR \quad Analyzes paired data from 2 sets of data with 2 measured variables $-x$, the independent variable, and y, the dependent variable.
CLRDATA Clears data values without exit ing STAT mode.
2. DATA lets you enter data points (x for 1-VAR stats; x and y for $\mathbf{2 - V A R}$ stats).

3. 2nd [EXIT STAT] dis plays the following menu that lets you clear dat a values and exit STAT mode.

EXIT ST: $\underline{Y} \mathbf{N}$

- Press ENTER when \mathbf{Y} (yes) is underlined to clear data values and exit STAT mode.
- Press ENTER when $\mathbf{N}(\mathrm{no})$ is underlined to ret urn to the previous screen wit hout exit ing STAT mode.

4. STATVAR dis plays the menu of variables with their current values.
n \quad Number of x (or x, y) data points.
\bar{x} or $\bar{y} \quad$ Mean of all x or y values.
Sx or Sy Sample standard deviation of x or y.
$\sigma \mathbf{x}$ or $\sigma \mathbf{y} \quad$ Population standard deviat ion of x or y.
$\Sigma \mathbf{x}$ or $\Sigma \mathbf{y} \quad$ Sum of all x values or y values.
Σx^{2} or $\Sigma y^{2} \quad$ Sum of all x^{2} values or y^{2} values.
$\Sigma x y \quad$ Sum of $(x \times y)$ for all $x y$ pairs in 2 lists.
a Linear regression slope.
b Linear regression y-int ercept.
r Correlation coefficient.

Notes

- The examples on the transparency masters assume all default settings.
- To save the last data point or frequency value ent ered, you must press ENTER or Θ.
- You can change data points once they are entered.

Entering l-VAR Stat Data

Five students took a math test. Using their scores, enter the data points-85, 85, 97,53, 77 .

Press	Display
$\text { 2nd } \frac{\text { stat }}{\text { DATA }}$	$\underline{1-U A R ~} 2$-UAR -
ENTIER DATA	$X_{1}=\quad \quad 1$
	stat deg
85	$\chi_{1}=85$
	stat oco
\odot	FRal ${ }^{\text {a }}$,
	stat ofe
2	FRal $=2$,
	stat ofo
$\odot 97$	$\mathrm{K}_{2}=97$
	star ofa
$\odot \odot 53$	$\chi_{3}=53$, ${ }^{\text {a }}$
	star ofo
$\bigcirc \bigcirc 77$ ENTER	$\mathrm{K}_{4}=77 \quad{ }^{\text {a }}$
	stat $\begin{aligned} & \text { 77, } \\ & \text { Deg }\end{aligned}$

Continued
2nd DATA DATA

Viewing the Data (Continued)

Find the number of data points (\mathbf{n}), the mean ($\overline{\mathrm{x}}$), the sample standard deviation ($\mathbf{s x}$), the population standard deviation (σx), the sum of the scores ($\Sigma \mathbf{x}$), and the sum of the squares (Σx^{2}).

Press	Display
STATVAR	$\underline{\square}$
	${ }_{\text {stat }}{ }_{\text {dec }}^{5}$

(

15.39512123
(

(

$$
\begin{align*}
& \text { - } \underline{x x} \quad \Sigma x^{2} \\
& \begin{array}{ll}
\text { stat } & 397 \\
\hline \text { dea }
\end{array}
\end{align*}
$$

Continued

Removing Data Points (Continued)

Entering 2-VAR Stat Data

Viewing the Data (Continued)

If the st ore sells 32 pairs of shoes in J une, predict the J une sales of Brand A. When finis hed, exit STAT mode and clear all data points.

Trigonometry
 13

Keys

1 TAN calculates the tangent.
2. 2nd [$\left.\mathrm{TAN}^{-1}\right]$ calculates the inverse tangent.
3. COS calculates the cosine.
4. 2nd [$\left.\cos ^{-1}\right]$ calculates the inverse cosine.
5. SIN calculates the sine.
6. 2nd [$\left.\mathrm{SIN}^{-1}\right]$ calculat es the inverse sine.

Notes

- The examples on the transparency masters assume all default settings.
- Before start ing a trigonometric calculation, be sure to select the appropriate angle mode setting (degree, radian, or gradient - S ee Chapt er 16 , Angle Settings and Conversions). The calculator interprets values according to the current angle-unit mode setting.
- \square ends a trig function.

Tangent

Use this formula to find the distance from the light house to the boat. Round your answer to the nearest whole number, and then ret urn to floating decimal mode.

Inverse Tangent

Use this formula to find the angle of depression. Round your answer to the nearest tenth, and then return to floating decimal mode.

TAN $\mathrm{x}=\mathbf{6 0 0} / \mathbf{2 5 0 0}$

Cosine

Use this formula to find how far the base of the ladder is from the house. Round your answer to the nearest whole number, and then ret urn to floating decimal mode.

$$
\text { D = } 5 \times \operatorname{COS} 75
$$

Inverse Cosine

Sine

Use this formula to find the length of the ramp. Round your answer to the nearest whole number, and then ret urn to floating decimal mode.

D = 15/SIN 12

SIN

Inverse Sine

Use this formula to find the angle of the conveyor belt. Round your answer to the nearest tenth, and then ret urn to float ing decimal mode.

2nd $\frac{\mathrm{SIN}^{-1}}{}$

Notation
 14

Keys

1 2nd [SCI/ENG] dis plays the following numeric notation mode menu.

FLO Restores standard mode (float ing decimal).

SCI

ENG

Turns on scient ific mode and dis plays results as a number from 1to 10 ($1 \leq \mathrm{n}<10$) times 10 to an int eger power. Turns on engineering mode and dis plays results as a number from 1to 1000 $(1 \leq n<1000)$ times 10 to an int eger power. The int eger power is always a mult iple of 3.

2. 2nd [EE] lets you enter and calculate the exponent.

Notes

- The examples on the transparency masters assume all default settings.
- You can enter a value in scient ific not ation regardless of the numeric notation mode setting. For a negative exponent, press $(-)$ before ent ering it.
- Results requiring more than 10 digits are aut omatically displayed in scientific notation.
- For the decimal not ation mode, refer to 2nd [FIX] in Chapter 6, Decimals and Decimal Places.
- These modes (FLO, SCI, and ENG) affect only the display of results.

Engineering, Scientific, Floating Decimal

Enter 12543 , which will be in float ing decimal not ation (default), and alternate bet ween scientific and engineering not ations.

Exponent

The Earth is 1496×108 kilometers from the S un. J upiter is 7.783×108 kilomet ers from the Sun. Enter the numbers in scientific notation and determine how far away the Earth is from J upiter.

Press	Display
$7 \square 78$	7.783E8-1.4 -
2nd $\frac{\text { EE }}{\frac{\mathrm{EE}}{x^{-1}} 8}$	628700000

$$
\begin{aligned}
& \square 1 \odot 496 \\
& \text { 2nd } \frac{E E-1}{x-1} 8
\end{aligned}
$$

ENTIER

Logarithms and Antilogarithms $\quad 15$

Keys

1 LOG calculates the common logarithm (base 10).
2. LN calculates the natural logarithm (base e, where $e=2.718281828459$).
3. 2nd [10^{x}] calculates the common ant ilogarithm (10 raised to the power of the value).
4. [2nd $\left[e^{\mathrm{x}}\right]$ calculat es the nat ural ant ilogarithm (e raised to the power of the value).

Notes

- The examples on the transparency masters assume all default settings.
- \square ends a logarithmic function.

Common Logarithm, Natural Logarithm

Find $\log 23$ rounded to 4 decimal places. Then find $\ln 23$ rounded to 4 decimal places and ret urn to floating decimal not ation.

Common Antilogarithm, Natural Antilogarithm

Find antilog 3.9824 rounded to 4 decimal places. Then find ant iln 3.9824 rounded to 4 decimal places. When finished, ret urn to floating decimal not ation.

2nd $\frac{10^{x}}{}$

Angle Settings and Conversions $\mathbf{1 6}$

Keys

1 DRG displays the following menu that lets you change the angle mode setting to DEG, RAD, and GRD wit hout affecting the value in the display.
DEG Sets degree mode.
RAD Sets radian mode.
GRD Sets gradient mode.
The default setting is DEG.

2. displays a menu that lets you specify the unit of an angle.

- \quad Specifies degrees.
, Specifies minutes.
" Specifies seconds.
r Specifies radians.
g Specifies gradients.
DMS Lets you convert an angle from decimal degrees to DMS notation.

Notes

- The examples on the transparency masters assume all default settings.
- Angles with a trig function ignore the angle mode setting and dis play results in the original unit. Ot herwise, angles (without a trig function) are converted and displayed according to the angle mode setting.
- You enter decimal-degree angles the same as you would any ot her number.
- For decimal/DMS conversions, the calculat or interprets all values as degrees, regardless of the angle-unit setting.
- DMS angles are entered as 0 (degrees), '(minutes), and "(seconds).

Degrees, Minutes, and Seconds to Decimal

Fraction to Degrees, Minutes, and Seconds

How much is $2 / 3$ of an hour in hours, minutes, and seconds?

Degrees, Radians, Gradients

Polar and Rectangular Conversions

Keys

1 2nd [$R \leftrightarrow P$] dis plays the following menu that lets you convert rectangular coordinates (χ, y) to polar coordinates (r, θ) or vice versa.

R>Pr Converts rect angular coordinate to polar coordinate r.
R>P \boldsymbol{P}_{θ} Converts rect angular coordinate to polar coordinate θ.
$\mathbf{P} \mathbf{R} \chi$ Converts polar coordinate to rect angular coordinate χ.
PヤRy Converts polar coordinate to rect angular coordinate y.

2. 2nd [,] ent ers a comma.

Notes

- The example on the trans parency master assumes all default settings.
- Before st art ing calculations, set angle mode as necessary.

Polar to Rectangular

Convert the polar ordered pair $(7,30)$ to rectangular using the DEG $\left({ }^{\circ}\right)$ angle unit.

The rect angular ordered pair is 6.062177826 ,3.5.

Hyperbolics 18

Keys

1 2nd [HYP] accesses the hyperbolic (sinh, cosh, tanh) funct ion of the next trig key that you press.

Notes

- The example on the trans parency master assumes all default settings.
- Hyperbolic calculations are not affected by the angle mode setting - whet her or not the calculator is in RAD (radian), GRD (gradient), or DEG (degree) modes.

Sine, Cos ine, Tangent

$2 \mathrm{nd}{ }^{\text {HYP }}$

Quick Reference to Keys

KEY	FUNCTION
(1) (1) $\Theta \odot$	Moves the cursor left and right so you can scroll the entry line. Press 2nd (1) or 2nd (1) to scroll to the beginning or end of the entry line. Moves the cursor up and down so you can see previous entries. Press 2nd \odot or 2nd Θ to scroll to the beginning or end of the history.
$\pm \square \boxed{\square}$	Adds, subtracts, multiplies, and divides.
(0)-9	Enters the digits 0 through 9.
$\begin{aligned} & \square \\ & \square \end{aligned}$	Opens a parenthetical expression. Closes a parenthetical expression.
x^{-1}	Calculates the reciprocal.
x^{2}	Squares the value.
π	Enters the value of pi rounded to 10 digits (3.141592654).
\square	Enters a decimal point.
(-)	Indicates the value is negative.
ヘ	Raises a value to a specified power.
O'10	Displays the following menu that lets you specify the unit of an angle. - Specifies degrees. , Specifies minutes. " Specifies seconds. r Specifies radians. 9 Specifies gradients. DMS Lets you convert an angle from decimal degrees to DMS notation.
2nd	Turns on the 2 nd indicator and accesses the function shown above the next key that you press.
2nd [10 ${ }^{\text {a }}$]	Calculates the common antilogarithm (10 raised to the power of the value).
2nd [$\sqrt{-}$]	Calculates the square root.

Quick Reference to Keys (Continued)

KEY	Function
2nd [\%]	Changes a real number to percent. Results display according to the decimal notation mode setting.
2nd [.]	Enters a comma.
2nd [$\sqrt[x]{ }$]	Calculates the specified root (x) of the value.
Ab/c	Lets you enter mixed numbers and fractions.
2nd [Ab / C-d/e]	Converts a simple fraction to a mixed number or a mixed number to a simple fraction.
2nd [ANS]	Recalls the most recently calculated result, displaying it as Ans.
CLEAR	Clears characters and error messages on the entry line. Once the display is clear, it moves the cursor to the last entry in history.
2nd [CLRVAR]	Clears all memory variables.
COS	Calculates the cosine.
2nd [COS ${ }^{-1}$]	Calculates the inverse cosine.
DATA	Lets you enter the statistical data points (x for 1-VAR stats; x and y for 2-VAR stats).
DEL	Deletes the character at the cursor. If you hold (DEL down, it deletes all characters to the right. Then each time you press [DEL, it deletes 1 character to the left of the cursor. Displays the following menu that lets you change the Angle mode to degrees $\left(^{\circ}\right.$), radians (\mathbf{r}), or gradients (\mathbf{g}), and then back to degrees without affecting the value in the display. DEG Sets degree mode. RAD Sets radian mode. GRD Sets gradient mode. When you turn on the TI3OX IIS, it is always in the DEG mode.
2nd [e^{x}]	Calculates the natural antilogarithm (e raised to the power of the value).
2nd [EE]	Lets you enter and calculate the exponent.
ENTER	Completes the operation or executes the command.

Quick Reference to Keys (Continued)

KEY	FUNCTION
2nd [EXIT STAT]	Displays the following menu that lets you clear data values and exit STAT mode. EXIT ST: Y N Press ENTER when Y (yes) is underlined to clear data values and exit STAT mode. Press ENTER when \mathbf{N} (no) is underlined to return to the previous screen without exiting STAT mode.
2nd [F-D]	Converts a fraction to its decimal equivalent or converts a decimal to its fractional equivalent, if possible.
2nd [FIX]	Displays the following menu that lets you set the number of decimal places. FO123456789 F Sets floating decimal (standard) notation. 0-9 Sets number of decimal places.
2nd [HYP]	Accesses the hyperbolic (sinh, cosh, tanh) function of the next trig key that you press.
2nd [INS]	Lets you insert a character at the cursor.
2nd [K]	Turns on the constant mode and lets you define a constant.
LN	Calculates the natural logarithm (base e, where e=2.718281828459).
LOG	Calculates the common logarithm (base 10).
MEMVAR	Displays the following menu of variables. ABCDE Lets you view the stored value before pasting it to the display.
2nd [0FF]	Turns off the calculator and clears the display.
ON	Turns on the calculator.

Quick Reference to Keys (Continued)

KEY	Function
PRB	Displays the following menu of functions. $\mathrm{nPr} \quad$ Calculates the number of possible permutations. $\mathrm{nCr} \quad$ Calculates the number of possible combinations. $!\quad$ Calculates the factorial. RAND Generates a random 10-digit real number between 0 and 1 . RANDI Generates a random integer between 2 numbers that you specify. Separate the 2 numbers with a comma.
2nd [RCL]	Recalls the stored values to the display.
2nd [RESET]	Displays the RESET menu. RESET: N Y Press ENITER when \mathbf{N} (no) is underlined to return to the previous screen without resetting the calculator. Press ENTER when Y (yes) is underlined to reset the calculator. The message MEM CLEARED is displayed. Also, press 0 N and CLEAR simultaneously to reset the calculator immediately. No menu or message is displayed.
2nd [$R \cdots P$]	Displays the following menu that lets you convert rectangular coordinates (X,y) to polar coordinates ($r, \boldsymbol{\theta}$) or vice versa. R Pr Converts rectangular coordinate to polar coordinate r. RIPA Converts rectangular coordinate to polar coordinate θ. PrRX Converts polar coordinate to rectangular coordinate χ. PrRy Converts polar coordinate to rectangular coordinate y.
2nd [SCI/ENG]	Displays the following numeric notation mode menu. FLO Restores standard mode (floating decimal). SCI Turns on scientific mode and displays results as a number from 1 to $10(1 \leq n<10)$ times 10 to an integer power. ENG Turns on engineering mode and displays results as a number from 1 to $1000(1 \leq n<1000)$ times 10 to an integer power. The integer power is always a multiple of 3 .

Quick Reference to Keys (Continued)

KEY	FUNCTION
SIN	Calculates the sine.
2nd [SIN^{-1}]	Calculates the inverse sine.
2nd [STAT]	Displays the following menu from which you can select 1-VAR, 2-VAR, or CLRDATA. 1-VAR Analyzes data from 1 set of data with 1 measured variable-x. 2-VAR Analyzes paired data from 2 sets of data with 2 measured variables- x, the independent variable, and y, the dependent variable. CLRDATA Clears data values without exiting STAT mode.
STATVAR	Displays the following menu of stat variables with their current values.
STO*	Displays the following menu of variables. $A B C D E$ Lets you select a variable in which to store the displayed value. The new variable replaces any previously stored value. rand Lets you set a seed value for random integers.
TAN	Calculates the tangent.
2nd [TAN-1]	Calculates the inverse tangent.

Display Indicators

INDICATOR	MEANING
$\mathbf{2 n d}$	2nd function.
HYP	Hyperbolic funct ion.
FIX	Fixed-decimal sett ing.
SCI, ENG	Scient ific or engineering not ation.
STAT	Stat istical mode.
DEG, RAD, GRAD	Angle mode (degrees, radians, or gradients).
\mathbf{K}	Constant mode.
$\mathbf{x \mathbf { 1 0 }}$	Precedes the exponent in scient ific or engineering not ation.
$\boldsymbol{\uparrow} \downarrow$	An entry is st ored in history before and/or aft er the act ive screen. Press Θ and Θ to scroll.
$\leftarrow \rightarrow$	An entry or menu displays beyond 11 digits. Press © © or © © to scroll.

Error Messages

MESSAGE	MEANING
ARGUMENT	A funct ion does not have t he correct number of arguments.
DIVIDE BY 0	You att empted to divide by 0.
	In statistics, $\mathbf{n}=1$

Support and Service Information

Product
Support

Product
 Service

Other TI
Products and Services

Customers in the U.S ., Canada, Puerto Rico, and the Virgin
Islands Islands

For general questions, contact Texas Instruments Customer Support:
phone: $\quad \mathbf{1 8 0}$-T-CARES (1800-842-2737)
e-mail: ti-cares@ti.com
For technical quest ions, call the Programming Assistance Group of Customer Support:
phone: 1-972-917-8324
Customers outside the U.S., Canada, Puerto Rico, and the Virgin Islands
Contact TI by e-mail or visit the TI calculat or home page on the World Wide Web.
e-mail: ti-cares@ti.com
internet: www.ti.com/calc

Customers in the U.S. and Canada Only

Always contact Texas Instruments Customer Support before returning a product for service.

Customers outside the U.S. and Canada
Refer to the leaflet enclosed with this product or contact your local Texas Inst ruments retailer/distributor.

Visit the TI calculat or home page on the World Wide Web.
www.ti.com/calc

Customers in the U.S. and Canada Only

One-Year Limited Warranty for Electronic Product

This Texas Instruments ("TI") elect ronic product warranty ext ends only to the original purchaser and user of the product.

Warranty Duration. This TI electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.

This Tl electronic product is warranted against defective materials and const ruct ion. this warranty is void if the product has been damaged by accident or UNREAS ONABLE USE, NEGLECT, IMPROPER SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN materials or construction.

Warranty Disclaimers . any implied warranties aris ing out of this sale, including but not LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILTYY AND FITNESS FOR A PARTICULAR PURPOSE, ARE limited in duration to the above one-year period. texas instruments shall not be lable for loss of USE OF THE PRODUCT OR OTHER INCIDENTAL OR CONS EQUENTIAL COSTS, EXPENS ES, OR DAMAGES INCURRED BY the cons umer or any other user.

Some states/provinces do not allow the exclusion or limitation of implied warrant ies or consequential damages, so the above limitations or exclusions may not apply to you.

Legal Remedies. This warrant y gives you specific legal rights, and you may also have ot her rights that vary from state to state or province to province.

Warranty Performance. During the above one (1) year warrant y period, your defect ive product will be either repaired or replaced with a recondit ioned model of an equivalent quality (at Tl's option) when the product is ret urned, postage prepaid, to Texas Instruments Service Facility. The warranty of the repaired or replacement unit will cont inue for the warranty of the original unit or six (6) months, whichever is longer. Ot her than the postage requirement, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value prior to mailing.

Software. S oft ware is licensed, not sold. Tl and its licensors do not warrant that the soft ware will be free from errors or meet your specific requirements. All soft ware is provided "AS IS."

Copyright. The soft ware and any documentation supplied with this product are protected by copyright.

For information about the length and terms of the warranty, refer to your package and/or to the warranty stat ement enclosed with this product, or contact your local Texas Instruments retailer/distributor.

Texas Instruments U.S.A.
7800 Banner Dr.
Dallas, Texas 75251

Texas Instruments Holland B.V.
Rutherfordweg 102
3542 CG Ultrecht - The Netherlands

Printed By:

[^0]: Automatic Power Down, APD, and EOS are trademarks of Texas Instruments Incorporated.

