

Beginner’s Guide

to the

PI LCD

Part 2: Display

, W8BH

1) INTRODUCTION

In Part 1 of this series, we assembled the Pi LCD from mypishop.com, and tested the
‘wiring and the switches’. Now it’s time to concentrate on the display itself. You may have
purchased either a 16x2 or a 20x4 display with your kit. I’ll assume that you have the 16x2
display, and show you the small changes required for using the larger display.

2) THE HD44780 LCD CONTROLLER

Our display, like many backlit LCD modules available today, uses a 16-pin interface. We
should thank Hitachi for
developing this widely used,
informal standard.

Pins 1 & 2 power the
controller. Pin 3 is connected
to the potentiometer and used
to adjust display contrast.
Pins 15 & 16 power the
backlight. On our board, we
don’t need to read data from
the display, so we keep the
Read/Write line tied to
ground. This leaves 10
digital pins we can use for
data communication.

http://w8bh.net/pi/PiLCD1.pdf
http://www.mypishop.com/
http://en.wikipedia.org/wiki/Hitachi_HD44780_LCD_controller

The LCD controller gives us two ways to send data: in one-byte (8 bit) chunks, or as two
consecutive nibbles (4 bit). The second approach seems more complicated, but very
frequently used. Why? It simplifies the hardware, and lets us talk to the LCD with half as
many data lines. In general, I/O lines are a scarce resource! We use the 4-bit method on
this board, and need only 6 I/O lines (2 control + 4 data) to communicate with the LCD.

Here are the digital I/O connections between our Pi and the LCD controller:

GPIO# LCD Pin Function

7 4 Register Select

8 6 Enable

17 11 Bit 0 (Data line D4)

18 12 Bit 1 (Data line D5)

27 13 Bit 2 (Data line D6)

22 14 Bit 3 (Data line D7)

Now we have enough information to program our data lines on the Pi. We need to set up 6
GPIO lines as outputs. I like to give each line a name, rather than just a number

GPIO.setup(LCD_D4,GPIO.OUT)

GPIO.setup(LCD_D5,GPIO.OUT)

GPIO.setup(LCD_D6,GPIO.OUT)

 …

If you want to, you can put all the output lines in a list, and then loop through them:

OUTPUTS = [LCD_RS, LCD_E, LCD_D4, LCD_D5, LCD_D6, LCD_D7]

for ioLine in OUTPUTS:

 GPIO.setup(ioLine,GPIO.OUT)

3) NIBBLES & BYTES

Put on your thinking cap, because it’s time for the hard part: sending data to the LCD
controller. There are 8 bits to each byte, but we can only send 4 bits at a time. And we
have to time them according to the controller’s specifications. Check out the datasheet for
the specific details. The gist is to send the upper 4 bits of the data, toggle the enable pin,
and then send the lower 4 bits. The half-byte chunks are called nibbles.

def SendByte (data):

 SendNibble(data) #send upper bits first

 PulseEnableLine() #pulse the enable line

 data = (data & 0x0F)<< 4 #shift 4 bits to left

 SendNibble(data) #send lower bits now

 PulseEnableLine() #pulse the enable line

def PulseEnableLine():

 #Pulse the LCD Enable line; used for clocking in data

 mSec = 0.0005 #use half-millisecond delay

 time.sleep(mSec) #give time for inputs to settle

 GPIO.output(LCD_E, GPIO.HIGH) #pulse E high

http://w8bh.net/pi/HD44780.pdf
http://en.wikipedia.org/wiki/Nibble

 time.sleep(mSec)

 GPIO.output(LCD_E, GPIO.LOW) #return E low

 time.sleep(mSec) #wait before doing anything else

Each waiting period is specified in the HD44780 datasheet. You can minimize wait times
by following the specifications exactly. I chose a lazier method. I empirically picked a delay
that is longer than necessary, but short enough to minimize visual distractions: one
millisecond. It works. Even half a millisecond is OK on my displays. Go much shorter,
however, and you’ll need to account for all of the timing requirements listed in the spec. It is
up to you.

Bytes can be send to the controller as either data byte (characters) or as commands. The
controller uses the input line RS to distinguish the two: anything sent when RS is low is a
command, and anything sent when RS is high is a character. We’ll modify our SendByte
routine to account for this requirement.

 def SendByte(data,charMode=False):

 GPIO.output(LCD_RS,charMode) #set mode: command vs. char

 SendNibble(data) #send upper bits first

 …etc…

By using a default parameter, any call to SendByte will default to a command. Let’s create
a second routine for sending characters:

def SendChar(ch):

 SendByte(ord(ch),True)

Now we have routines for sending commands and characters to the display. It would be
nice to test them right away, but we can’t: we have to initialize the display first. All
HD44780-based displays require certain startup commands to specify things like data-
length, cursor-mode, etc. Without going into a lot of detail here, our display requires the
following “magic bytes” to initialize it: 0x33, 0x32, 0x28, 0x0C, 0x06, 0x01. These
command bytes will set the data-length to 4 bits, turn the cursor off, enable sequential
addressing, and clear the display.

def InitLCD():

 SendByte(0x33) #initialize

 SendByte(0x32) #set to 4-bit mode

 SendByte(0x28) #2 line, 5x7 matrix

 …etc…

It’s time to write something on the LCD display. Write a routine to display a string, like
‘Hello, World’. All we need to do is write each character, one at a time. A simple for-loop
will do the trick:

def ShowMessage(string):

 for character in string:

 SendChar(character)

4) INPUT & OUTPUT

Let’s combine our string-writing ability with the switch input routine from part 1. In Part 1 we
read the status of each switch and displayed it on the console. Now we will display switch
status on the LCD screen instead. First, write something meaningful on the display:

 WriteMessage(‘Press a switch...’)

And put the switch status on the second display line. Wait a sec, how do we put stuff on
the second line? Send a carriage return? Sorry, that doesn’t work. How about sending a
full line of 16 characters to the display? Surely the next character will go on the next line.
No, sorry again.

Characters sent to the LCD controller are placed at the current cursor position. In
sequential mode, the cursor is advanced with each character sent. But unfortunately,
second-line addresses do not immediately follow the first line. The cursor address for Line1
is 0x00. The cursor address for Line 2 is 0x40. Strange, but true. If you have a 20x4
display, the arrangement is even more confusing:

20x4 Display Address

Line 1 0x00

Line 2 0x40

Line 3 0x14

Line 4 0x54

To set the cursor position, send a byte equal to the set cursor command (0x80) + the
desired cursor address. Now we can put together our demo. Four true/false results do not
all fit on a 16 character line. Using the string format of “%d %d %d %d”, the boolean results
are converted to more compact (d for decimal) ones and zeros.

while (True):

 GotoLine(1)

 switchValues = CheckSwitches()

 decimalResult = " %d %d %d %d" % switchValues

 ShowMessage(decimalResult)

 time.sleep(0.2)

That’s it for part 2. We can now read the status of each switch and display short messages
on the LCD display. In part 3 we will add useful display routines for cursor control, text
positioning, and scrolling.

16x2 Display Address

Line 1 0x00

Line 2 0x40

http://w8bh.net/pi/PiLCD2.pdf

6) PYTHON SCRIPT for PI LCD, PART 2:

LCD2: Learning how to control an LCD module from Pi

import time #for timing delays

import RPi.GPIO as GPIO

#OUTPUTS: map GPIO to LCD lines

LCD_RS = 7 #GPIO7 = Pi pin 26

LCD_E = 8 #GPIO8 = Pi pin 24

LCD_D4 = 17 #GPIO17 = Pi pin 11

LCD_D5 = 18 #GPIO18 = Pi pin 12

LCD_D6 = 27 #GPIO21 = Pi pin 13 (Use 21 on Rev.1 Pi’s)

LCD_D7 = 22 #GPIO22 = Pi pin 15

OUTPUTS = [LCD_RS,LCD_E,LCD_D4,LCD_D5,LCD_D6,LCD_D7]

#INPUTS: map GPIO to Switches

SW1 = 4 #GPIO4 = Pi pin 7

SW2 = 23 #GPIO16 = Pi pin 16

SW3 = 10 #GPIO10 = Pi pin 19

SW4 = 9 #GPIO9 = Pi pin 21

INPUTS = [SW1,SW2,SW3,SW4]

#HD44780 Controller Commands

CLEARDISPLAY = 0x01

SETCURSOR = 0x80

#Line Addresses. (Pick one. Comment out whichever doesn't apply)

#LINE = [0x00,0x40,0x14,0x54] #for 20x4 display

LINE = [0x00,0x40] #for 16x2 display

Low-level routines for configuring the LCD module.

These routines contain GPIO read/write calls.

def InitIO():

 #Sets GPIO pins to input & output, as required by LCD board

 GPIO.setmode(GPIO.BCM)

 GPIO.setwarnings(False)

 for lcdLine in OUTPUTS:

 GPIO.setup(lcdLine, GPIO.OUT)

 for switch in INPUTS:

 GPIO.setup(switch, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def CheckSwitches():

 #Check status of all four switches on the LCD board

 #Returns four boolean values as a tuple.

 val1 = not GPIO.input(SW1)

 val2 = not GPIO.input(SW2)

 val3 = not GPIO.input(SW3)

 val4 = not GPIO.input(SW4)

 return (val4,val1,val2,val3)

def PulseEnableLine():

 #Pulse the LCD Enable line; used for clocking in data

 mSec = 0.0005 #use half-millisecond delay

 time.sleep(mSec) #give time for inputs to settle

 GPIO.output(LCD_E, GPIO.HIGH) #pulse E high

 time.sleep(mSec)

 GPIO.output(LCD_E, GPIO.LOW) #return E low

 time.sleep(mSec) #wait before doing anything else

def SendNibble(data):

 #sends upper 4 bits of data byte to LCD data pins D4-D7

 GPIO.output(LCD_D4, bool(data & 0x10))

 GPIO.output(LCD_D5, bool(data & 0x20))

 GPIO.output(LCD_D6, bool(data & 0x40))

 GPIO.output(LCD_D7, bool(data & 0x80))

def SendByte(data,charMode=False):

 #send one byte to LCD controller

 GPIO.output(LCD_RS,charMode) #set mode: command vs. char

 SendNibble(data) #send upper bits first

 PulseEnableLine() #pulse the enable line

 data = (data & 0x0F)<< 4 #shift 4 bits to left

 SendNibble(data) #send lower bits now

 PulseEnableLine() #pulse the enable line

def InitLCD():

 #initialize the LCD controller & clear display

 SendByte(0x33) #initialize

 SendByte(0x32) #set to 4-bit mode

 SendByte(0x28) #2 line, 5x7 matrix

 SendByte(0x0C) #turn cursor off (0x0E to enable)

 SendByte(0x06) #shift cursor right

 SendByte(CLEARDISPLAY) #remove any stray characters on display

Higher-level routines for displaying data on the LCD.

def SendChar(ch):

 SendByte(ord(ch),True)

def ShowMessage(string):

 #Send string of characters to display at current cursor position

 for character in string:

 SendChar(character)

def GotoLine(row):

 #Moves cursor to the given row

 #Expects row values 0-1 for 16x2 display; 0-3 for 20x4 display

 addr = LINE[row]

 SendByte(SETCURSOR+addr)

Main Program

print "Pi LCD2 program starting. Ctrl-C to stop."

InitIO()

InitLCD()

ShowMessage('Press a switch!')

while (True):

 GotoLine(1)

 switchValues = CheckSwitches()

 decimalResult = " %d %d %d %d" % switchValues

 ShowMessage(decimalResult)

 time.sleep(0.2)

END ###

