Panasonic

Compliant with

European standards 1a/1c 6 A slim power relays

PF RELAYS

FEATURES

1. High density mounting with 5 mm . 197 inch width
Space saved with 5 mm .197 inch slim type with 28 mm 1.102 inch length. Allows high density mounting and use in compact devices.
2. Satisfies reinforced insulation standard (EN/IEC 61810-1). 3. High switching capacity Supports 6A 250 V AC nominal switching capacity (resistive load) and AC15 and DC13 (inductive load).
3. 1 Form A and 1 Form C contact arrangements with options for a variety of applications.
4. 4,000 V high breakdown voltage and $6,000 \mathrm{~V}$ high surge breakdown voltage. Controller protection against surges and noise with a breakdown voltage of 4,000 Vrms for 1 min. between contacts and coil, and $6,000 \mathrm{~V}$ surge breakdown voltage between contacts and coil. 6. Resistance to heat and fire; EN60335-1, clause 30 (GWT) approved.
5. Sealed construction allows automatic washing.
6. Complies with all safety standards. UL, C-UL, VDE certified
7. High insulation resistance

Creepage distance between contact and coil terminal: Min. 8.0 mm
Clearance distance between contact and coil terminal: Min. 5.5 mm

TYPICAL APPLICATIONS

1. Interface relays for programmable controllers
2. Output relays for measuring equipment, timers, counters and temperature controllers
3. Industrial equipment, office equipment
4. Household appliances for Europe

ORDERING INFORMATION

Contact arrangement
1: 1 Form A
3: 1 Form C
Contact type
0 : Single contact
Contact material
2: AgNi type
3: AgNi type/Au-plated
Coil voltage (DC)
4H: 4.5 V 05: $5 \mathrm{~V} \quad 06: 6 \mathrm{~V} \quad 09: 9 \mathrm{~V}$ 12: 12 V 18: 18 V
24: 24 V 48: 48 V 60: 60 V
Note: UL/C-UL/VDE approved type is standard.

PF (APF)

TYPES

Contact arrangement	Nominal coil voltage	Part No.	Contact arrangement	Nominal coil voltage	Part No.
1 Form A (AgNi type)	4.5 V DC	APF1024H	1 Form C (AgNi type)	4.5 V DC	APF3024H
	5V DC	APF10205		5V DC	APF30205
	6V DC	APF10206		6V DC	APF30206
	9V DC	APF10209		9V DC	APF30209
	12 V DC	APF10212		12 V DC	APF30212
	18 V DC	APF10218		18 V DC	APF30218
	24 V DC	APF10224		24V DC	APF30224
	48 V DC	APF10248		48 V DC	APF30248
	60 V DC	APF10260		60 V DC	APF30260
1 Form A (AgNi type/Au-plated)	4.5 V DC	APF1034H	1 Form C (AgNi type/Au-plated)	4.5 V DC	APF3034H
	5V DC	APF10305		5V DC	APF30305
	6V DC	APF10306		6V DC	APF30306
	9V DC	APF10309		9V DC	APF30309
	12 V DC	APF10312		12 V DC	APF30312
	18 V DC	APF10318		18 V DC	APF30318
	24 V DC	APF10324		24 V DC	APF30324
	48 V DC	APF10348		48 V DC	APF30348
	60 V DC	APF10360		60 V DC	APF30360

Standard packing: Tube: 20 pcs.; Case: 1,000 pcs.

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4.5 V DC	Max. 70\%V nominal voltage (Initial)	Min. 5\%V nominal voltage (Initial)	37.8 mA	119Ω	170mW	$120 \% \mathrm{~V}$ of nominal voltage
5V DC			34.0 mA	147Ω		
6V DC			28.3 mA	212Ω		
9V DC			18.9 mA	476Ω		
12 V DC			14.2 mA	847Ω		
18 V DC			9.4 mA	1,906		
24V DC			7.1 mA	3,388 ${ }^{1}$		
48 V DC			4.5 mA	10,618 Ω	217mW	
60 V DC			2.9 mA	20,570	175 mW	

2. Specifications

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2 Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3 For cycle lifetime, refer to "Cautions for Use 4)" in NOTES (page 4)
*4 The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.

REFERENCE DATA

1. Electrical life

Tested sample: APF30224

Load type		Voltage	Current	Ambient temperature	No. of ops.
Resistive load		250 V AC	6 A	$85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$	30,000
Inductive load	AC 15	250 V AC	3 A	$25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$	20,000
	DC 13	24 V DC	2 A	$25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$	6,000

Notes: 1. Switch contacts are all on N.O. side.
2. AC 15 and DC 13 comply with IEC-60947-5-1 testing conditions.
2. Max. switching capacity

Load Limit Curve
3. Coil temperature rise

Tested sample: APF30224 Measured portion: Inside the coil Ambient temperature: $28^{\circ} \mathrm{C} 82^{\circ} \mathrm{F}$
4. Ambient temperature characteristics

Tested sample: APF30224, 6 pcs.

1. 1 Form A type

2. 1 Form C type

PC board pattern (Bottom view)

Schematic (Bottom view)

SAFETY STANDARDS

Certification authority	File No.	Applicable standard	Rating	Remarks
UL, C-UL	E120782	UL508, CSA C22.2 No. 14 UL1604 (class I, Division 2, Group A, B, C, D)	277V AC 8A, General use, 24 V DC 6A, General use, B300, R300 (Pilot Duty)	
VDE	40027672	EN/IEC 61810-1	250V AC 6A $(\cos \varphi=1.0) 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ N.O. side, N.C. side 250 V AC $8 \mathrm{~A}(\cos \varphi=1.0) 25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$ N.O. side	Insulation: Reinforced insulation between contact and coil. Resistance to heat and fire; EN60335-1, clause 30 (GWT) approved.

NOTES

\square Usage, transport and storage

conditions

1) Temperature:
-40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$
2) Humidity: 5 to $85 \% \mathrm{RH}$
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage

4) Condensation

Condensation forms when there is a sudden change in temperature under
high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

For Cautions for Use, see Relay Technical Information.

We recommend this extra manufacturers socket. It is only available in Europe.

SPECIFICATIONS

Item	green	Specifications	
LED	24 V DC (other voltages on request)		
Nominal voltage	appr. 4.2 mA		
Nominal current	3 mm		
Diameter			

DIMENSIONS

ORDERING INFORMATION

APF 1 - PS -	
Contact arrangement 1: For all contact arrangements	
Socket type PS: Print socket	
LED indication GD: green OD: orange	

PIN LAYOUT

(+,-) Polarity of LED
Bottom view

HANDLING

NOTE: The PF relay approvals do not apply to the PF relay socket.

