Read this document carefully before using this device. The guarantee will be expired by damages if you don't attend to the directions in the user manual. Also we don't accept any compensations for personal injury, material damage or capital disadvantages.

ENDA EDP2041 DIGITAL POTENTIOMETER

Thank you for choosing ENDA EDP2041 potentiometer.

* $35 \times 77 \mathrm{~mm}$ sized.
* 4 digits display.
* Easy to use by front panel keypad.
* Communication via RS-485 Modbus protocol or synchronous running between two or more potentiomers. (Optional)
* Preset value can be adjusted from external buttons.
* Display scale can be adjusted between -1999 and 9999.
(Full scale can not be higher than a 9999)
* Decimal point can be adjusted between 1. and 3 . digits.
* 0-10V,0-20 mA a and 4-20mA output with adjustable minimum and maximum values.

* 'Soft on' and 'soft off' properties can be selected.
* Parameter access protection on 3 levels.
* CE marked according to European Norms.

Order Code : EDP2041-
1- Supply Voltage 2-Modbus Option
230VAC... 230 V AC
RS.......With RS-485 Modbus communication
Empty.....Without RS-485 Modbus communication
SM...........9-30V DC / 7-24V AC

TECHNICAL SPECIFICATIONS

ENVIRONMENTAL CONDITIONS	
Ambient/storage temperature	$0 \ldots+50^{\circ} \mathrm{C} /-25 \ldots+70^{\circ} \mathrm{C}$ (without icing)
Max. relative humidity	80\% Relative humidity for temperatures up to $31 \%^{\circ} \mathrm{C}$, decreasing linearly to 50% at $40^{\circ} \mathrm{C}$.
Rated pollution degree	$\begin{array}{ll}\text { According to EN } 60529 & \begin{array}{l}\text { Front panel : } \\ \text { Rear panel : }\end{array} \\ \end{array}$
Height	Max. 2000m
Do not use the device in locations subject to corrosive and flammable gases.	

ELECTRICAL CHARACTERISTICS	
Supply	230V AC $+10 \%-20 \%, 50 / 60 \mathrm{~Hz}$ or 24 V AC $\pm 10 \% 50 / 60 \mathrm{~Hz}$ or optional 9-30V DC / 7-24V AC $\pm 10 \%$ SMPS
Power consumption	Max. 7VA
Wiring	2.5mm ${ }^{\text {2 }}$ screw-terminal connections
Date retention	EEPROM (Min. 10 years)
EMC	EN 61326-1: 2006 (Performance criterion B for the EMC standards)
Safety requirements	EN 61010-1: 2010 (pollution degree 2, overvoltage category II, measurement category I)
INPUTS	
Upwards input (UP)	Contact input or max. 24VDC logic input (active low)
Downwards input (DOWN)	Contact input or max. 24VDC logic input (active low)

OUTPUT	
0-10V output	Digitally adjusted maximum 10 mA, max. 10 V potentiometer output. Accuracy :\%0.1 Resolution : 1 mV Fluctuation : Maximum 30 mV Rise time from 0 to 10 V is maximum 300 ms
OUTPUT	
0-20mA output	Digitally adjusted maximum 12V, max. 20 mA potentiometer output. Accuracy: \%0.1 Resolution : $2 \mu \mathrm{~A}$ Fluctuation : Maximum $60 \mu \mathrm{~A}$ Rise time from 0 to 20 mA is maximum 300 ms

HOUSING

Housing type	Suitable for flush-panel mounting according to DIN 43 700.
Dimensions	W77xH35xD71mm
Weight	Approx. 350g (after packing)
Enclosure material	Self extinguishing plastics
While cleaning the device, solvents (thinner, benzine, acid etc.) or corrosive materials must not be used.	

TERMS

1) Adjusted potentiometer value is seen in run mode
Parameter name, value or its unit in programming mode.
2) Increment key during run mode

Increment or parameter selection key during programming mode.
3) Decrement key during run mode.

Decrement or parameter selection key during programming mode.
4) Used for selecting run or programming modes and for adjusting parameters.
(1)
$12,5 \mathrm{~mm} 4$ digits 7 segment red LED display
(2),(3),(4) Keypad

Micro switch

DIMENSIONS

CONNECTION DIAGRAM
ENDA EDP2041 is intended for installation in control panels. Make sure that the device is used only for intended purpose. The electrical connections must be carried out by a qualified staff and must be according to the relevant locally applicable regulations. During an installation, all of the cables that are connected to the device must be free of electrical power. The device must be protected against inadmissible humidity, vibrations, severe soiling.Make sure that the operation temperature is not exceeded. The cables should not be close to the power cables or components.

ENDA industrial electronics sn: xxxxxxxxx Epproal-230VAC CE 230VAC $+10 \%-20 \%$
50160 Hz 5 FA $\mathrm{AC}+10 \%$
2 VVA

ENDA industrial electronics sn:xxxxxxxx EDP2041-230VAC-RS

ENDA industrialelectronics sn: xxxxxxxxx

 Holding screw Note : 1) Mains supply cords shall meet the requirements of IEC 60227 or IEC 60245. 2) In accordance with the safety regulations, the power supply switch shall bring the identification of the relevant instrument and it should be easily accessible by the operator.

CONNECTION DIAGRAM FOR SYNCHRONOUS RUNNING

NOTE :

- d.Rdr. parameter should be selected [.Pot in master potentiometer. In this case $d . R d r$. parameter of other potentiometers aren't used. But be sure that [. P_{\circ} ot isn't selected in slave potentiometers to prevent confusion. Settings of slave potentiometers change proportional to setting of master potentiometer For example; When Max. output of master potentiometer is changed from 10 V to 5 V , max. output of slave potentiometers decrease half of previous value proportional to this. If previous output of slave potentiometer is 6 V , it decreases 3 V . P.on.c parameter of slave potentiometer should be selected of \mathcal{F} in order to understand master potentiometer when slave is energized.
- Computer should be used to change only a few potentiometers. In this case, there is not master potentiomer. Output of the required potentiometer is changed according to $d . R d r$. parameter.
- Baud rate of potentiometers must be same in both conditions. 120 Ohm termination resistor should be used at the ends and beginning of transmission line See www.enda.com.tr/EDP2041.htm for detailed information.
key is pressed whole in the run mode, preset setup mode is entered and PrSt. message is displayed. Message appears when the Δ or ∇ button is pressed, the preset value starts to flash. $\Delta \nabla$ By using keys , preset value can be adjusted. Preset value can be adjusted by using external buttons as well. External buttons become disable in programming mode.If the device is also controlled by a potentiometer, adjustable preset value appears as above.

Entering from programming mode to run mode:
If no key is pressed within 20 seconds during programming mode data is strored automatically and the run mode is entered. After pressing Δ button and ∇ then passed SEI
to the program menu by pressing key is pressed in combination with stire keys and the information is recorded.

$d . P_{n} t==$ Display decimal point parameter Decimal point can be adjusted between 1. and 3. digits.
See NOTE 1 for programming.
教

Scale the lower value of the output based on of $4 P$ parameter selection, it is $0 V, 0 \mathrm{~mA}$ or 4 mA
See NOTE 1 for programming

Adjustable between (L. $S C L+10$) and 9999 .
Scale the upper value of the output based on, ot $y P$. parameter not be greater than 9999.See NOTE 1 for programming.
$L O L=$ The lower limit of the preset value. See NOTE 1 for programming.

$H, L, L=$ The upper limit of the preset value.
Adiustable between $(L a L+10)$ and $H \zeta C i$ See NOTE 1 for programming.d.Adr:=Device address for ModBus.

Adjustable between $1-247$ or selectable τ.Pot. When $c . P$. $\begin{aligned} & \text { t. is } \\ & \text { sele }\end{aligned}$ potentiometers can be adjusted dependent on it.
See NOTE 1 for programming See NOTE 1 for programming
\triangle This parameter is acive devien
Adjustable;off,2400,4800,9600, 19200 and 38400 .
Is active device with RS485 communication option.

$0 .[\cap F$.

Return to
the menu.

NOTE 1

For adjusting a selected parameter first press and hold ${ }^{\text {set }}$ key. Then, by using
keys, adjustment can be made.
If increment key is pressed and held 0.6 seconds, the value of the selected parameter changes rapidly. If waited enough, the value increases 100 at each step. After 1 second following the release of the key, initial condition is returned. The same procedure is valid for the decrement

Default
off Pon.C.

Pon. $C_{C}=$ Selection of the output parameter behavior
$\triangle \square F \bar{F}=$ When first energized, output is the voltage or current that lower limit value is indicated. Attention: If this parameter is selected, the set value that was adjusted before is seen when set button is pressed at first. In addition, if increasing or decreasing that value is wanted the set value is equalized to lower limit value and then adjustment can be done.
on= When first energized, output is the voltage or current hat the set value is indicated.
b.לtr.= When first energized, output is increased slowly from the voltage or current that lower limit value is indicated to the voltage or current that set value is indicated during r.t
See NOTE 1 for programming.
dhAb o.E.E o.E.EY $=$ Adjusted type of the output to preset value with Δ button.
$d S A b=$ Output can not be adjusted to preset value with Δ button.
$E_{\cap} b .=$ Output can be adjusted to preset value with Δ button.
b.on = Output is increased to voltage that set value is displayed with Δ button during r.t See NOTE 1 for programming.
dSAb o.d.EY. $\begin{aligned} & \text { o.d.t } \mathcal{H}=\text { Adjusted type of the output to lower limit value with } \\ & d S A b=\text { Output can not be adjusted to lower limit value with }\end{aligned}$ button.
$\delta L B$. $=$ Output can not be adjusted to lower limit value with
Enb. $=$ Output can be adjusted to lower limit value with button.
d.b. = Output can be adjusted to lower limit value with button.
b.OFF = Output is increased to voltage that lower limit value is displayed with ∇ button
during dE'
See NOTE 1 for programming.
dSAb E.E.EY $\begin{gathered}\text { E.E.EY }=\text { Returning method of the output to } \\ \text { o.E. } Y \text { is set like the output parameter. }\end{gathered}$
dSAb E.d.EY $\begin{aligned} & \text { E.d.tE }=\text { Returning method of the output to } \\ & \text { preset value with the external "Down" input. }\end{aligned}$

..$E Y$ is set like the output parameter.
30 r.t. r.t $:=$ Increasing time for output.
 Adjustable between $1-250$ seconds. Output is
increased slowiy to the lower limit valu during adjusted time.
Adjustable between 1 -250 $=$ Decresing time value. Adjustable between $1-250$ seconds.
Output is decreased slowly the lower limit value during adjusted time.
See NOTE 1 for programming.

.rt. = Increasing and decreasing speed
of preset value. of preset value.
It is adjustedl d'SAb, $1,10,100$ ve 1000 values. $d \leq A b$ is selected, the preset value
can not be changed can not be changed.
Selected according to
Selected according to the value increase or
decrease the preset buttons for fast switching dectease te preset butions for fast switching
mode, the preset value speedy is increased or
decreased mode,the preset value speedy is inceased or
decreased
at each step, 1000 at each step.
$0 - 1 0 \longdiv { 0 . 5 4 P }$
o. $\angle Y P_{0}=$ Output type selection parameter

SEcu. $\quad\left\{\begin{array}{l}0-10=0-10 \mathrm{~V} \text { output usable } \\ 4-20=4-20 \mathrm{~mA} \text { output usable }\end{array}\right.$ Return to $\quad \begin{aligned} 0-20 & =0-20 \mathrm{~mA} \text { output usable }\end{aligned}$ $\underset{\sim}{\text { Return to }}$ See NOTE 1 for programming

