

83 Series - Modular timers 16 A

Features

Mono-function timer range

83.11 - ON-delay, multi-voltage
83.21 - Interval, multi-voltage
83.41 - Off-delay with control signal, multi-voltage

- 1 Pole
- 22.5 mm wide
- Eight time scales from 0.05 s to 10 days
- High input/output isolation
- Wide supply range (24...240)V AC/DC
- 35 mm rail (EN 60715) mount
- "Blade + cross" - both flat blade and cross head screw drivers can be used to adjust the range and function selectors, the timing trimmer, and to disengage the rail mounting clip
- Multi-voltage versions with "PWM clever" technology

For outline drawing see page 5
Contact specification

Technical data

Specified time range

Repeatability	$\%$
Recovery time	ms
Minimum control impulse	ms
Setting accuracy-full range	$\%$
Electrical life at rated load in ACl	cycles
Ambient temperature range	${ }^{\circ} \mathrm{C}$

Protection category
A
83.11

- Multi-voltage
- Mono-function

Al: On-delay
83.21

- Multi-voltage
- Mono-function

DI: Interval

Wiring diagram (without control signal)
83.41

- Multi-voltage
- Mono-function

- Mono-function
BE: Off-delay with control signal

Wiring diagram (with control signal) (without control signal)
1 CO (SPDT)
Wiring diagram
(with control signal)

$250 / 400$	
4,000	

Ordering information

Example: 83 series, modular timers, 1 CO (SPDT) - 16 A, supply rated at (24 $\ldots 240$)V AC/DC.

Technical data

Insulation				
Dielectric strength	between input and output circuit V AC	4,000		
	between open contacts	1,000		
Insulation (1.2/50 $\mu \mathrm{s}$) between input and output kV		6		
EMC specifications				
Type of test		Reference standard	83.01/02/52/11/21/41/82/91	83.62
Electrostatic discharge	contact discharge	EN 61000-4-2	4 kV	4 kV
	air discharge	EN 61000-4-2	8 kV	8 kV
Radio-frequency electromagnetic field	$(80 \div 1,000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$	$10 \mathrm{~V} / \mathrm{m}$
	$(1,000 \div 2,700 \mathrm{MHz}$)	EN 61000-4-3	$3 \mathrm{~V} / \mathrm{m}$	$3 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5$ and 100 kHz) on Supply terminals		EN 61000-4-4	7 kV	6 kV
	on control signal terminal (B1)	EN 61000-4-4	7 kV	6 kV
Surges (1.2/50 $\mathrm{\mu s}$) on Supply terminals	common mode	EN 61000-4-5	6 kV	6 kV
	differential mode	EN 61000-4-5	6 kV	4 kV
on control signal terminal (Bl)	common mode	EN 61000-4-5	6 kV	6 kV
	differential mode	EN 61000-4-5	4 kV	4 kV
Radio-frequency common mode on Supply terminals	($0.15 \div 80 \mathrm{MHz}$)	EN 61000-4-6	10 V	10 V
	$(80 \div 230 \mathrm{MHz}$)	EN 61000-4-6	10 V	10 V
Radiated and conducted emission		EN 55022	class A	class A
Other data				
Current absorption on control signal (B1)		$<1 \mathrm{~mA}$		
- max cable length (capacity of $\leq 10 \mathrm{nF} / 100 \mathrm{~m}$)		150 m		
- when applying a control signal to $B 1$, which is different from the supply voltage at A1/A2		B 1 is isolated from A 1 and A 2 by an opto-coupler, and can therefore be operated at a voltage other than the supply voltage. If using a control signal of between ($24 \ldots 48$) V DC and a supply voltage of $(24 \ldots 240)$ V AC, ensure that the signal - is connected to A 2 and the + is applied to BI , and that L is applied to B 1 and N to A 2 .		
External potentiometer for 83.02/52		Use a $10 \mathrm{k} \Omega / \geq 0,25 \mathrm{~W}$ linear potentiometer. Maximum cable length 10 m . When using an external potentiometer, the timer automatically use its setting in place of the internal setting. Consider the voltage potential at the potentiometer to be the same as the timer supply voltage.		
Power lost to the environment	without contact current W	1.4		
	with rated current W	3.2		
(24) Screw torque	Nm	0.8		
Max. wire size	mm^{2}	solid cable	stranded cable	
		$1 \times 6 / 2 \times 4$	$1 \times 4 / 2 \times 2.5$	
	AWG	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$	

Outline drawings

83.01

Screw terminal

83.11

Screw terminal

83.41

Screw terminal

83.82

Screw terminal

83.02/52

Screw terminal

83.21

Screw terminal
\square

83.62

Screw terminal
0

83.91

Screw terminal
0

Accessories

Sheet of marker tags, for types $83.01 / 11 / 21 / 41 / 62 / 82$, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$

Potentiometer usable as external potentiometer for type 83.02/52
$10 \mathrm{k} \Omega / 0.25 \mathrm{~W}$ linear, IP66

| LED* | Supply
 voltage | NO output
 contact | Open | |
| :---: | :---: | :---: | :---: | :---: | Closed | Contacts |
| :---: |

* The LED on type 83.62 is illuminated when supply voltage is supplied to timer.

- Possible to control an external load, such as another relay coil or timer, connected to the control signal terminal B1.

* With DC supply, positive polarity has to be connected to B1 terminal (according to EN 60204-1).

[^0]
Functions

Wiring diagram
Multi-function
without control signal

NOTE: The timing function must be set when the timer is deenergised. Or for the $83.02 / 52$, when the contact mode selector is in the OFF position.
83.02 type
Contact mode selector

Functions
Wiring diagram

83.52 type

Contact mode selector
2 timed contacts

OFF

1 timed +
1 instantaneous contact

\qquad

Functions with control signal and pause signal (example: BEp)

Both output contacts (15-18 and 25-28) follow the timing function

Functions

Z1-Z2 open: (LI) function Z1-Z2 linked: (PI) function
with control signal

Z1-Z2 open: (LE) function Z1-Z2 linked: (PE) function

$\mathbf{U}=$ Supply voltage
$\mathbf{S}=$ Signal switch \quad - Output contact

Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs when power is removed.
(DI) Interval.

Apply power to timer. Output contacts transfer immediately. After the preset time has elapsed, contacts reset.
(BI) Power off-delay (True off-delay).
Apply power to timer (minimum 500 ms). Output contacts transfer immediately. Removal of power initiates the preset delay, after which time the output contacts reset.
(SD) Star-delta.
Apply power to timer. The star contact (λ) closes immediately. Atter preset delay has elapsed the star contact (λ) resets contact (Δ) closes and remains in that position, until reset on power off.

(BE) Off-delay with control signal.

Power is permenently applied to the timer.
The output contacts transfer immediately on closure of the control signal (S). Opening the control signal initiates the preset delay, after which time the output contacts reset.
(ㄴI) Asymmetrical flasher (starting pulse on)- (Z1-Z2 open). Apply power to timer. Output contacts transfer immediately applied. The ON and OFF times are independently adjustable.
(PI) Asymmetrical flasher (starting pulse off) - (Z1-Z2 linked). Apply power to timer. Output contacts transfer after time T1 has elapsed and cycle between OFF and ON for as long as power is applied. The ON and OFF times are independently adjustable.
(LE) Asymmetrical flasher (starting pulse on) with control signal - (Z1-Z2 open).
Power is permenently applied to the timer.
Closing control signal (S) causes the output contacts to transfer immediately and cycle between ON and OFF, until opened.

(PE) Asymmetrical flasher (starting pulse off) with control signal - (Z1-Z2 linked).

Power is permenently applied to the timer.
Closing the control signal (S) initiates delay T1 after which the output contacts transfer and continue to cycle between OFF and ON , until the control signal is opened.

[^0]: ** A voltage other than the supply voltage can be applied to the control signal (B1), example:
 $\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{~V} \mathrm{AC}$
 $\mathrm{B} 1-\mathrm{A} 2=12 \mathrm{~V} \mathrm{DC}$

