Operating Manual

6890.5060, 6890.5061, 6890.5066, 6890.5067, 6890.5069

Monitor for speed, standstill and direction of rotation with incremental encoder signals

Product features:

- Compact and most versatile monitor series for control of overspeed, underspeed, standstill and direction of rotation
- Logical monitoring of remote motion enable signals
- Universal inputs for connection to incremental encoders (TTL, RS422 or HTL), proximity switches, photocells remote TTL signals
- Extremely wide frequency range, operating from 0.1 Hz up to 1 MHz
- Easy setup by means of four keys and LCD menu
- All models include serial RS232 interface

Available devices:

6890.5060: Monitor with 3 programmable output relays and 1 analog output
6890.5061: Monitor with 3 fast switching transistor outputs and 1 analog output
6890.5066: Monitor with 1 analog output only
6890.5067: Monitor with 3 programmable output relays only
6890.5069: Monitor with 3 fast switching transistor outputs only

Version:	Description:
6890.5060_01b_af/kk/hk_07/07	First edition in English
6890.5060_02a_af/kk/hk_01/08	Commands "Force Relays" and "Freeze Relays" added
6890.5060_03a_af/hk_11/08	Command Monitor for remote enable signal
6890.5060_03b_pp_11/11	Chapter 6.2.2 "Encoder properties" replaced TTL by HTL
6890.5060_03c_p__07/12	Hint: "Special Menu" is password protected (Chap. 6.2.5)
6890.5060_03d_pp_11/12	Changed "Setting Range" for parameter "Wait Time" (code A3)
6890.5060_04a_sn_12/12	Additional device 6890.5061 and 6890.5069
6890.5060_04b_hk/nw_04/13	Small corrections
6890.5060_04c_sn_06/14	Small corrections Analog-Menu
6890.5060_04d/ag_04/15	Small corrections Analog-Menu. New chapter 1. "Safety Instructions and Responsibility".
6890.5060_04e_ag / Aug-15	- Analog output 4.13 - hint: only V or mA can be used (not both together) - Analog menu 7.2.7 - some hints and a setup example supplemented - Some smaller corrections and modulations
6890.5060_05a_af / 0kt-16	Parameter Analogue ABS added Parameter Preselection Mode increased to 9 9

Legal notices:

All contents included in this manual are protected by the terms of use and copyrights of motrona GmbH . Any reproduction, modification, usage or publication in other electronic and printed media as well as in the internet requires prior written authorization by motrona GmbH .

Table of Contents

1. Safety Instructions and Responsibility 5
1.1. General Safety Instructions 5
1.2. Use according to the intended purpose 5
1.3. Installation 6
1.4. Cleaning, Maintenance and Service Notes 6
2. Introduction 7
3. Available Models 7
4. Electrical Connections 8
4.1. 6890.5060 8
4.2. 6890.5061 9
4.3. 6890.5066 10
4.4. 6890.5067 11
4.5. 6890.5069 12
4.6. Power Supply 13
4.7. Auxiliary Output for Encoder Supply 13
4.8. Impulse Inputs for Encoders and Sensors 13
4.9. Control Inputs 13
4.10. Serial Interface 14
4.11. Relay Outputs K1 - K3 (6890.5060 and 6890.5067 only) 14
4.12. Transistor Outputs K1 - K3 (6890.5061 and 6890.5069 only) 14
4.13. Scalable Analog Output (6890.5060, 6890.5061 and 6890.5066 only) 14
5. LCD Display and Keys 15
6. Keypad Operation 16
6.1. Normal Operation 16
6.2. Keypad Interlock 16
6.3. General Setup Procedure 17
6.4. Changing Parameters on the Setting Level 17
6.5. Return from the Menu, Time-Out Function 18
6.6. Reset all Parameters to Factory Default Values 18
7. Menu Structure and Parameter Description 19
7.1. Survey of Menus 19
7.2. Parameter Descriptions 20
7.2.1. Preselection's 20
7.2.2. Definitions for the Encoder or Speed Sensor 20
7.2.3. Serial Readout Menu 21
7.2.4. Special-Menu 22
7.2.5. Key-Pad-Menu. 22
7.2.6. Command-Menu. 23
7.2.7. Analog-Menu 24
7.2.8. Serial Menu 25
7.2.9. Switching -Menu 27
7.2.10. Linear.-Menu 31
7.2.11. Display -Menu 32
8. Example for Commissioning 33
9. Appendix 35
9.1. Hints for Use of the Linearization Function 35
9.2. Data Readout via Serial Interface 36
9.3. "Relay Action", override relay states by programmed states 37
9.3.1. Override relay/output states by programmable ON / OFF states 37
9.3.2. Freeze the actual switching state of all relays 37
9.4. Monitoring of remote motion enable signals 38
9.4.1. Definition of a speed window 38
9.4.2. Assignment of a control input 38
9.4.3. Assignment of the control polarity 38
9.4.4. Setting of a Start-up delay time 38
9.4.5. Setting of an appropriate Standstill definition 38
10. Dimensions: 39
11. Technical Specifications 40

1.Safety Instructions and Responsibility

1.1. General Safety Instructions

This operation manual is a significant component of the unit and includes important rules and hints about the installation, function and usage. Non-observance can result in damage and/or impairment of the functions to the unit or the machine or even in injury to persons using the equipment!
Please read the following instructions carefully before operating the device and observe all safety and warning instructions! Keep the manual for later use.

A pertinent qualification of the respective staff is a fundamental requirement in order to use these manual. The unit must be installed, connected and put into operation by a qualified electrician.

Liability exclusion: The manufacturer is not liable for personal injury and/or damage to property and for consequential damage, due to incorrect handling, installation and operation. Further claims due to errors in the operation manual as well as misinterpretations are excluded from liability.

In addition the manufacturer reserve the right to modify the hardware, software or operation manual at any time and without prior notice. Therefore, there might be minor differences between the unit and the descriptions in operation manual.

The raiser respectively positioner is exclusively responsible for the safety of the system and equipment where the unit will be integrated.

During installation or maintenance all general and also all country- and application-specific safety rules and standards must be observed.

If the device is used in processes, where a failure or faulty operation could damage the system or injure persons, appropriate precautions to avoid such consequences must be taken.

1.2. Use according to the intended purpose

The unit is intended exclusively for use in industrial machines, constructions and systems. Nonconforming usage does not correspond to the provisions and lies within the sole responsibility of the user. The manufacturer is not liable for damages which has arisen through unsuitable and improper use.

Please note that device may only be installed in proper form and used in a technically perfect condition and in accordance to the Technical Specifications (see chapter 11).

The device is not suitable for operation in explosion-proof areas or areas which are excluded by the EN 61010-1 standard.

1.3. Installation

The device is only allowed to be installed and operated within the permissible temperature range. Please ensure an adequate ventilation and avoid all direct contact between the device and hot or aggressive gases and liquids.
Before installation or maintenance, the unit must be disconnected from all voltage-sources. Further it must be ensured that no danger can arise by touching the disconnected voltagesources.

Devices which are supplied by AC-voltages, must be connected exclusively by switches, respectively circuit-breakers with the low voltage network. The switch or circuit-breaker must be placed as near as possible to the device and further indicated as separator.

Incoming as well as outgoing wires and wires for extra low voltages (ELV) must be separated from dangerous electrical cables (SELV circuits) by using a double resp. increased isolation.

All selected wires and isolations must be conform to the provided voltage- and temperatureranges. Further all country- and application-specific standards, which are relevant for structure, form and quality of the wires, must be ensured. Instructions about the permissible wire crosssections for wiring are described in the chapter 11 "Technical Specifications".

Before first start-up it must be ensured that all connections and wires are firmly seated and secured in the screw terminals. All (inclusively unused) terminals must be fastened by turning the relevant screws clockwise up to the stop.

Overvoltages at the connections must be limited to values in accordance to the overvoltage category II.

For placement, wiring, environmental conditions, as well as shielding and earthing/grounding of the supply lines, the general standards of industrial automation industry and the specific shielding instructions of the manufacturer are valid. Please find all respective hints and rules on www.motrona.com/download.html --> "[General EMC Rules for Wiring, Screening and Earthing]".

1.4. Cleaning, Maintenance and Service Notes

To clean the front of the unit please use only a slightly damp (not wet!), soft cloth. For the rear no cleaning is necessary. For an unscheduled, individual cleaning of the rear the maintenance staff or assembler is self-responsible.

During normal operation no maintenance is necessary. In case of unexpected problems, failures or malfunctions the device must be shipped back to the manufacturer for checking, adjustment and reparation (if necessary). Unauthorized opening and repairing can have negative effects or failures to the protection-measures of the unit.

2. Introduction

This new series of monitors has been designed as control modules for mounting inside of electric control cabinets. The units are suitable for speed monitoring of machines, signalling overspeed, underspeed, zero motion and the direction of rotation. Units providing an analog output can moreover be used for closed-loop control or feedback purpose within a control system.

Very special advantages of these new monitors are the wide frequency range, the extremely fast response and the remarkable versatility with regard to possible input formats and programmable monitoring functions.

3. Available Models

There are five models available, all with fully similar basic functions, but with different options concerning the outputs.

4. Electrical Connections

4.1. 6890.5060

Terminal	Text	Function
01	GND	GND, common minus potential
02	Vin	Power input, +17 ... 30 VDC
03	GND	GND, common minus potential
04	$+5,2 \mathrm{~V}$	Aux. output 5.2 V / 200 mA
05	A	Impulse input, channel A
06	$/$ A	Impulse input, channel /A (=A inverted)
07	B	Impulse input, channel B
08	$/ B$	Impulse input, channel /B (=B inverted)
09	Control 2	Control input with programmable function
10	Control 1	Control input with programmable function
11	GND	GND, common minus potential
12	+10 V Out	Analog output 0 ... 10 V
13	20 mA out	Analog output 0.. 20 mA
14	GND	GND, common minus potential
15	RXD	Serial RS232 interface, data input
16	TXD	Serial RS232 interface, data output
17	K1NO	Relay 1, normally open contact
18	K1NC	Relay 1, normally closed contact
19	K1C	Relay 1, common contact
20	K2NO	Relay 2, normally open contact
21	K2NC	Relay 2, normally closed contact
22	K2C	Relay 2, common contact
23	K3NO	Relay 3, normally open contact
24	K3NC	Relay 3, normally closed contact
25	K3C	Relay 3, common contact

4.2. 6890.5061

Terminal	Text	Function
01	GND	GND, common minus potential
02	Vin	Power input, +17 ... 30 VDC
03	GND	GND, common minus potential
04	$+5,2 \mathrm{~V}$	Aux. output $5.2 \mathrm{~V} / 200 \mathrm{~mA}$
05	A	Impulse input, channel A
06	/A	Impulse input, channel /A $=$ A inverted)
07	B	Impulse input, channel B
08	$/$ B	Impulse input, channel /B (=B inverted)
09	Control 2	Control input with programmable function
10	Control 1	Control input with programmable function
11	GND	GND, common minus potential
12	+10 V Out	Analog output 0 ... 10 V
13	20 mA out	Analog output 0 .. 20 mA
14	GND	GND, common minus potential
15	RXD	Serial RS232 interface, data input
16	TXD	Serial RS232 interface, data output
17	NC	Not connected
18	NC	Not connected
19	NC	Not connected
20	NC	Not connected
21	GND	GND, common minus potential
22	Com +	Common positive input for transistor outputs K1-K3
23	K1 out	Output K1, transistor PNP 30 V, 350 mA
24	K2 out	Output K2, transistor PNP 30 V, 350 mA
25	K3 out	Output K3, transistor PNP 30 V, 350 mA

4.3. 6890.5066

Terminal	Text	Function
01	GND	GND, common minus potential
02	Vin	Power input, +17 ... 30 VDC
03	GND	GND, common minus potential
04	$+5,2 \mathrm{~V}$	Aux. output 5.2 V / 200 mA
05	A	Impulse input, channel A
06	/A	Impulse input, channel /A (=A inverted)
07	B	Impulse input, channel B
08	$/$ B	Impulse input, channel /B (=B inverted)
09	Control 2	Control input with programmable function
10	Control 1	Control input with programmable function
11	GND	GND, common minus potential
12	+10 V Out	Analog output 0 ... 10 V
13	20 mA out	Analog output 0 .. 20 mA
14	GND	GND, common minus potential
15	RXD	Serial RS232 interface, data input
16	TXD	Serial RS232 interface, data output
17	NC	Not connected
18	NC	Not connected
19	NC	Not connected
20	NC	Not connected
21	NC	Not connected
22	NC	Not connected
23	NC	Not connected
24	NC	Not connected
25	NC	Not connected

4.4. 6890.5067

Terminal	Text	Function
01	GND	GND, common minus potential
02	Vin	Power input, +17 ... 30 VDC
03	GND	GND, common minus potential
04	$+5,2 \mathrm{~V}$	Aux. output 5.2 V / 200 mA
05	A	Impulse input, channel A
06	$/ A$	Impulse input, channel /A (=A inverted)
07	B	Impulse input, channel B
08	$/ B$	Impulse input, channel /B (=B inverted)
09	Control 2	Control input with programmable function
10	Control 1	Control input with programmable function
11	GND	GND, common minus potential
12	NC	Not connected
13	NC	Not connected
14	GND	GND, common minus potential
15	RXD	Serial RS232 interface, data input
16	TXD	Serial RS232 interface, data output
17	K1NO	Relay 1, normally open contact
18	K1NC	Relay 1, normally closed contact
19	K1C	Relay 1, common contact
20	K2NO	Relay 2, normally open contact
21	K2NC	Relay 2, normally closed contact
22	K2C	Relay 2, common contact
23	K3NO	Relay 3, normally open contact
24	K3NC	Relay 3, normally closed contact
25	K3C	Relay 3, common contact

4.5. 6890.5069

Terminal	Text	Function
01	GND	GND, common minus potential
02	Vin	Power input, +17 ... 30 VDC
03	GND	GND, common minus potential
04	$+5,2 \mathrm{~V}$	Aux. output 5.2 V / 200 mA
05	A	Impulse input, channel A
06	/A	Impulse input, channel /A $=$ A inverted)
07	B	Impulse input, channel B
08	$/$ B	Impulse input, channel /B $=$ B inverted)
09	Control 2	Control input with programmable function
10	Control 1	Control input with programmable function
11	GND	GND, common minus potential
12	NC	Not connected
13	NC	Not connected
14	GND	GND, common minus potential
15	RXD	Serial RS232 interface, data input
16	TXD	Serial RS232 interface, data output
17	NC	Not connected
18	NC	Not connected
19	NC	Not connected
20	NC	Not connected
21	GND	GND, common minus potential
22	Com +	Common positive input for transistor outputs K1-K3
23	K1 out	Output K1, transistor PNP 30 V, 350 mA
24	K2 out	Output K2, transistor PNP 30 V, 350 mA
25	K3 out	Output K3, transistor PNP 30 V, 350 mA

4.6. Power Supply

The units require a DC supply from 17 to 30 V which must be applied to terminals 1 and 2 . Depending on the input voltage level and internal states, the power consumption may vary and lies in a range of about 70 mA with a 24 V input (plus encoder currents taken from the auxiliary voltage output).

4.7. Auxiliary Output for Encoder Supply

Terminals 4 and 3 provide a $+5.2 \mathrm{VDC} / 200 \mathrm{~mA}$ auxiliary output for supply of encoders and sensors.

4.8. Impulse Inputs for Encoders and Sensors

The setup menu of the unit allows individual setting of the desired characteristics of the signal inputs. According to the application the units will accept single-channel signals (input A only with no direction information) as well as dual channel signals A / B including information of the direction of rotation. The following input formats and levels are acceptable:

- symmetric differential input with RS422 format A, /A, B, /B
- asymmetric (single-ended) TTL levels (A and/or B only without inverted channels)
- HTL level 10 ... 30 V , alternatively differential (A, /A, B, /B) or single-ended (A and B only, without inverted channels)
- Signals from proximity switches or photocells providing HTL level (10 ... 30 V)
- NAMUR (2-wire) signals

4.9. Control Inputs

Two programmable control inputs allow the assignment of functions like remote start-up-delay, reset of relay lock, hardware interlock of the keypad and similar.
Both inputs provide PNP characteristics and require HTL level. Also it is possible to set the control function to "active LOW" or "active HIGH".
For evaluation of dynamic events the desired "active edge" can be set (rising or falling edge)

4.10. Serial Interface

The serial RS232 interface in general may be used

- for easy setup and commissioning of the units (with use of the OS32 operator software)
- to change settings and parameters by PC or PLC during the operation
- to read out internal states and actual measuring values by PC or PLC

The subsequent drawing shows how to link the monitor with a PC, using the standard 9-pin SUB-D-9 connector

4.11. Relay Outputs K1 - K3 (6890.5060 and 6890.5067 only)

The units provide three programmable relay outputs (all dry changeover), providing a switching capability of $30 \mathrm{~V} / 2 \mathrm{~A} \mathrm{DC}$ or $125 \mathrm{~V} / 0.6 \mathrm{~A} \mathrm{AC}$ or $230 \mathrm{~V} / 0.3 \mathrm{~A} \mathrm{AC}$. Both, switching characteristics and monitoring function may be programmed for each of the relays individually.

4.12. Transistor Outputs K1 - K3 (6890.5061 and 6890.5069 only)

The units provide three outputs with programmable switching characteristics.
K1 - K3 are fast-switching and short-circuit-proof transistor outputs with a switching capability of
$5 \ldots 30 \mathrm{~V} / 350 \mathrm{~mA}$ each. The switching voltage of the outputs must be applied remotely to the Com+ input (terminal 22). Both, switching characteristics and monitoring function may be programmed for each of the outputs individually.

4.13. Scalable Analog Output ($6890.5060,6890.5061$ and 6890.5066 only)

The units provide a voltage output with a $+/-10 \mathrm{~V}$ range (max. load 2 mA) and a current output with ranges $0 / 4 \ldots 20 \mathrm{~mA}$ (burden $0-270 \mathrm{hm}$), however only one of the two can be used at a time. Beginning and end of the desired conversion range can be set by the operator menu (see section 7.2 .7$)$. The common potential of both outputs refers to GND.

The total resolution is 14 bits. A settling time of approx. $200 \mu \mathrm{~s}$. is required. The overall response time of the analog outputs primarily depends on the selected Sampling Time setting. After volatile jumps of the input signal, the analog outputs may need up to two Sampling Time cycles (plus $200 \mu \mathrm{sec}$.) to stabilize.

```
Important note: "voltage out" and "current out" must not be used together. Please do never connect mA and V simultaneously!
```


5. LCD Display and Keys

The units provide a back-lit LCD display with 2 lines at 16 characters each, and four keys for setup and command control.

During the setup procedure the LCD display indicates the menu with all parameter texts and the set values of the parameters.

During normal operation, the LCD display indicates the following information:

The "Display Menu" allows free scaling of the speed measuring values and the speed-related parameters to any kind of engineering units.

6. Keypad Operation

A summary of all parameters and a detailed description of parameter functions is available under section 6.

For all operation, the units provide four keys which subsequently will be named as shown below:

P	+	$*$	-
PROG	UP	DOWN	ENTER

The key functions depend on the actual operating state of the units. Basically we have to distinguish between Normal Operation and Setup Operation

6.1. Normal Operation

While in normal operation state, the units monitor the speed according to the selected operational parameters and settings. Each of the front keys provides the command functions as attached to it upon setup in the "Command Menu"

6.2. Keypad Interlock

There is a 3-stage conception to protect the keys against unauthorized changes of the configuration respectively against activation of commands.

Stage	Protected Range	Protection by	Key Operations	
Change of Parameters	Commands			
1	---	---	permitted	permitted
2	Menu	Password upon activation of menu	Protection of selectable parts of the menu via password	permitted
3	Keyboard	Hardware-Latch 1	interlocked	permitted
	Hardware Latch 2	All functions interlocked		

The "Key Pad" menu allows to define an individual password for each group of parameters. This function can be used to provide individual access rights to different operators. Upon access to an interlocked section the unit asks for the corresponding password. If the correct password is not entered in time, the unit denies access and automatically returns to normal operation.
The hardware latch function can be activated and deactivated by one of the Control Inputs, or by means of serial access to the corresponding locking register.

Using the Hardware Latch function may accidentally cause a total locking of all functions, when the Control Inputs characteristics have been set inauspiciously.
In this exceptional case you can release the key functions again by either
a) applying the correct logical state (High or Low) to the inputs
b) or resetting the parameters to their default values (see section 6.6)
c) or change the parameters being responsible for the locking by PC

6.3. General Setup Procedure

To change over from normal operation to the setup state, please keep down the PROG key for at least 2 seconds. After this the menu appears and you can select one of the menu groups.
Inside each group you can select the desired parameter and edit the setting according to need. After this you are free to edit more parameters, or to return to normal operation.
The function of the different keys during setup is shown in the table below.

Key	Menu Level	Parameter Level	Setting Level
PROG	Save settings and return to normal operation	Return to Menu Level	Check entry, store result, then go back to Parameter Level
UP	Switch over to next menu	Select next parameter	Increment the highlighted digit or scroll the setting upwards
DOWN	Go back to previous menu	Select previous parameter	Decrement the highlighted digit or scroll the setting downwards
ENTER	Switch over to the Parameter Level of the current menu	Switch over to Setting Level	Shifts the highlighted digit one position to the left, or from utmost left to utmost right

6.4. Changing Parameters on the Setting Level

With signed parameters, the front digit can only be changed between „+" (positive) and „"» (negative). The subsequent example explains how to change a parameter from originally 1024 to a new value of 250000 .

The example assumes that you are already on the Setting Level, i.e. you have already selected the corresponding parameter and read its actual value on the display. Highlighted (blinking) digits are marked by background colour and indicate the cursor position.

No.	Display	Key action	Comment
00	001024		The actual value 1024 is displayed, with the last digit blinking
01		($4 x$	Change last digit to 0
02	001020	\square	Shift cursor to left
03	001020	(7) $2 x$	Change highlighted digit to 0
04	001000	$\checkmark 2 x$	Shift curser to left by 2 positions
05	001000	\checkmark	Change highlighted digit to 0
06	000000)	Shift cursor to left
07	000000	(1) $5 x$	Change highlighted digit to 5
08	050000)	Shift cursor to left
09	050000	$2 x$	Change highlighted digit to 2
10	250000	P	Save new setting and return to Parameter Level

6.5. Return from the Menu, Time-Out Function

At any time the PROG key changes the Menu by one level backwards or fully back to the normal operation mode. The menu also switches automatically one level backwards, every time when for 10 seconds no key has been touched (Time-Out-Function).

6.6. Reset all Parameters to Factory Default Values

If applicable, the whole set of parameters can be reset to factory default values (e.g. because a code for the keypad interlocking has been forgotten, or because the unit does no more work correctly for reasons of bad settings). All default values are indicated in the following parameter tables.

To execute this Reset procedure, you have to take the following steps:

7. Menu Structure and Parameter Description

All parameters are combined to groups, arranged in several menus. Settings are only necessary for parameters which are really relevant for the individual application.

7.1. Survey of Menus

This section provides an overview of the menus and their assignments to the different functions of the units. The menu names are printed bold, and associated parameters are arrayed directly under the menu names.

Menu texts are in English language, according to the presentation on the LCD display

Preselect.-Menu*
Preselection 1
Preselection 2
Preselection 3

Encoder-Menu
Encoder Proper
Direction
Sampling Time
Wait Time
Filter
Set Value

Key-Pad-Menu
Protect Menu M01
Protect Menu M02
Protect Menu M03
_.
Protect Menu M09
Protect Menu M10
Protect Menu M11

Command-Menu

Key Up Func.
Key Down Func.
Key Enter Func.
Input 1 Config.
Input 1 Func.
Input 2 Config.
Input 2 Func.

Switching-Menu*
Pulse Time 1
Pulse Time 2
Pulse Time 3
Hysteresis 1
Hysteresis 2
Hysteresis 3
Preselect Mode 1
Preselect Mode 2
Preselect Mode 3
Output Polarity
Start up Mode
Start up Relay
Lock Relay
Standstill Time

Linear.-Menu**
P1(x)
P1(y)
P2(x)
P2(y)
.
P14(x)
P14(y)
P15 (x)
P15(y)

P14(x)
P14(y)
P15(x)
P15(y)

Ser.Readout Menu
Multiplier
Divider
Offset

Special-Menu
Linear Mode**
Freq. Control
Input Filter

Analog-Menu** *
Analogue Format
Analogue Start
Analogue End
Analogue Swing
Analogue Offset
Analogue ABS

Serial-Menu
Unit Number
Serial Baud Rate
Serial Format
Serial Protocol
Serial Timer
Register Code

Display-Menu
Up-Date-Time
Display Mode
Encoder Factor
Multiplier

(*) not relevant with 6890.5066
$\left({ }^{* *}\right)$ not relevant with 6890.5067, 6890.5069
$\left({ }^{* * *)}\right.$ partially inactive with 6890.5066

7.2. Parameter Descriptions

7.2.1. Preselection's

Preselection parameters are not relevant for model 6890.5066

These parameters assign the desired switching points to the relays/outputs. The preselection's use the same engineering units as the display of the actual speed (see Display-Menu).

Preselection Menu	Code	Setting Range	Default
Preselection1	$„ 00 "$	$-1000000.0 \ldots+1000000.0$	100.0
Switching point of relay 1/ out 1 (engineering units)			
Preselection2	$„ 01 "$	$-1000000.0 \ldots+1000000.0$	200.0
Switching point of relay 2/ out 2 (engineering units)			
Preselection3	$„ 0 "^{\prime \prime}$	$-1000000.0 \ldots+1000000.0$	300.0
Switching point of relay 3/ out 3 (engineering units)			

7.2.2. Definitions for the Encoder or Speed Sensor

Encoder-Menu	Code	Setting Range	Default
Encoder Proper	„A0"	$0 . .11$	0
Encoder properties			
$0 \mathrm{~A} / \mathrm{B} / 90^{\circ}$ quadrature, RS 422 or HTL differential			
$1 \mathrm{~A} / \mathrm{B} / 90^{\circ}$ quadrature, single-ended, HTL NPN*			
$2 \mathrm{~A} / \mathrm{B} / 90^{\circ}$ quadrature, single-ended, HTL PNP			
$3 \mathrm{~A} / \mathrm{B} / 90^{\circ}$ quadrature, single-ended, TTL level			
4 A=Impulse, B=direction, RS422 or HTL differential			
5 A=Impulse, B=direction, single-ended, HTL NPN*			
6 A=Impulse, B=direction, single-ended, HTL PNP			
7 A=Impulse, B=direction, single-ended, TTL level			
8 Channel A only, RS422 or HTL differential			
9 Channel A only, single-ended, HTL NPN*			
10 Channel A only, single-ended, HTL PNP			
11 Channel A only, single-ended, TTL level			
Direction	"A1"	0, 1	0
Definition of the direction of rotation with quadrature encoders			
0 forward when A leads B			
1 forward when B leads A			

(*) With settings HTL / NPN the input terminals are connected to the power supply voltage of the unit (+24 V) via internal pull-up resistors. For this reason it is advisable to first set the encoder properties correctly, prior to connecting TTL encoders to the unit.

Setting HTL / NPN is also suitable for use with NAMUR (2-wire) proximities. (connect the positive wire of the sensor to the input terminal and the negative wire to GND)

Encoder-Menu	Code	Setting Range	Default
Sampling Time Internal time base for sampling of the input frequency (sec.)	"A2"	0.001..9.999	0.001
Wait Time Time to wait before unit detects zero speed (sec.) Impulse distances greater than this time will be takes as zero	"A3"	0.01..9.99	1.00
Filter Digital filter for smoothing of unstable frequencies 0 Filter off (very fast response to frequency changes) $1 \mathrm{~T}(63 \%)=1,9 \mathrm{msec}$. with Sampling Time $=1 \mathrm{msec}$. $2 \mathrm{~T}(63 \%)=3,8 \mathrm{msec}$. with Sampling Time $=1 \mathrm{msec}$. etc. $7 \mathrm{~T}(63 \%)=122 \mathrm{msec}$. with Sampling Time $=1 \mathrm{msec}$. (very slow response to frequency changes)	"A4"	$0 . .7$	0
Set Value Fixed frequency set value for encoder simulation (Hz) (see also "Command"-Menu)	„A5"	$\begin{gathered} -1000000.0 \ldots \\ +1000000.0 \end{gathered}$	0

7.2.3. Serial Readout Menu

An actual value proportional to the input frequency can be read out via serial link, accessing the serial readout register (code:8). As a Basic Value this register uses the scaling set for the analog output, i.e. a range from 0 to 10000 units corresponding to $0-100,00 \%$ of the full scale output (see section 7.2.7 "Analog Menu"). This readout can still be rescaled to user-friendly engineering units, using the following parameters:

Serial Readout Menu	Code	Setting Range	Default
Multiplier	„A8"	$-9.9999 \ldots+9.9999$	+1.0000
Divider	„A9"	$0.0000 \ldots 9.9999$	0.0000
Offset (absolute term)	„BO"	$-99999999 \ldots+99999999$	0

$$
\text { Readout }(: 8)=\text { Basic Value } \times \frac{\text { Multiplier }}{\text { Divider }}+\text { Offset }
$$

- The definition of the "Basic Value" occurs in the "Analog Menu" and is also available
for the 6890.5067 units without analog output
- the ratio Multiplier / Divider must never be greater than 15000
- Setting "Divider" to zero will skip the rescaling procedure, resulting in a shorter
response time with all functions of the unit

More details about serial communication can be found in the appendix.

7.2.4. Special-Menu

Special-Menu	Code	Setting Range	Default
Linear Mode Programmable linearization for Basic Value and Analog Output 0 Linearization off 1 Linearization range $0 \mathrm{~V} \ldots+10 \mathrm{~V}$ 2 Linearization range $-10 \mathrm{~V} \ldots+10 \mathrm{~V}$	„B3"	$0 . .2$	0
Freq. Control Defines behaviour and response of the unit to sudden interruptions of the input frequency. This parameter must only be changed in very special cases and under special instruction of an motrona engineer. Otherwise please use always the default setting "2"!	"B4"	$0 . .2$	2
Input Filter Digital filter for limitation of the input frequency 0 Filter off, the full range of frequency will be evaluated 1 Filter to cut frequencies higher than 500 kHz 2 Filter to cut frequencies higher than 100 kHz 3 Filter to cut frequencies higher than 10 kHz	"B5"	$0 . .3$	0

Using the Input Filter will cause wrong frequency measurement when you use the unit with frequencies higher than indicated above.

7.2.5. Key-Pad-Menu

Key-Pad-Menu (Passwords for menu groups)	Code	Setting Range	Default
Protect Menu 01 (Preselect-Menu)	,C0"	$\begin{gathered} 0.999999 \\ 0=\text { no interlock } \end{gathered}$	0
Protect Menu 02 (Encoder-Menu)	,C1"		
Protect Menu 03 (Ser.Readout.-Menu)	,C2"		
Protect Menu 04 (Special-Menu) a)	„C3"	$1-999999=$ password for the corresponding group	6079
Protect Menu 05 (Key-Pad-Menu)	„C4"		
Protect Menu 06 (Command-Menu)	„C5"		
Protect Menu 07 (Analog-Menu)	„C6"		
Protect Menu 08 (Serial-Menu)	,C7"		
Protect Menu 09 (Switching-Menu)	,C8"		
Protect Menu 10 (Linear-Menu)	„C9"		
Protect Menu 11 (Display-Menu)	„D0"		

a) This menu is protected by the password 6079 due to factory setting. After entry of the password please press the Enter button ω at least 2 seconds.

7.2.6. Command-Menu

Command-Menu (assignment of functions)			Code	Setting Range	Default
Key Up Func.			„D7"	$0 . .9$	0
Supplementary command function of the UP key					
0 no function					
1 Activati	serial data transmission				
2 For	med relay/output states / fre	(a)(c)			
3 Freque	ulation according to paramete	Set Value"			
4 Freeze	input frequency				
5 Remote	-up-delay function	(a)			
6 Releas	frelay 1				
7 Releas	of relay 2	(a)			
8 Releas	f relay 3				
9 Releas	f all relays 1-3	(a)			
Key Down Func			„D8"	$0 . .9$	0
Supplementary command function of the DOWN key		(see UP)			
Key Enter Func.			„D9"	$0 . .9$	0
Supplementary command function of the ENTER key		(see UP)			
Input 1 Config.			„E0"	0.3	0
Switching characteristics of input „Control1"					
0 Static Iow					
1 Static H					
2 Dynamic	g edge				
3 Dynamic	ing edge				
Input 1 Func.			„E1"	$0 . .12$	0
Control function of input „Control1"					
0 no function					
1 Activati	serial data transmission				
2 Force pr	med relay/output states / Fre	(a)(c)			
3 Frequen	ulation according to paramete	Set Value"			
4 Freeze	input frequency				
5 Remote	up-delay function	(a)			
6 Release	of relay 1/transistor output 1				
7 Releas	of relay 2/transistor output 2				
8 Releas	of relay 3/transistor output 3	(a)			
9 Releas	of all relays 1-3/output 1-3				
10 Interlock	parameter access via keypad				
11 Total k	interlock				
12 Command monitor for remote motion enable signal					
Input 2 Config.	(see Input 1 Config.)		„E2"	$0 . .3$	0
Input 2 Func.	(see Input 1 Func.)		„E3"	$0 . .12$	0

(a) these parameters are not relevant for model 6890.5066.
$\begin{array}{lll}\text { (b) see section } \underline{6.2} & \text { (c) see section } \underline{9.3} & \text { (d) see section } \underline{9.4}\end{array}$

7.2.7. Analog-Menu

Analog-Menu (settings for analog outputs)	Code	Setting Range	Default
Analogue Format Output format and range of the analog output $0-10 \mathrm{~V}$ to +10 V 10 V to +10 V 24 mA to 20 mA 30 mA to 20 mA	„E6"	$0 . .3$	0
Analogue Start *) Start value (engineering units) for 0 V resp. -10 V or $0 \mathrm{~mA} / 4 \mathrm{~mA}$ Please note: „Analog Start" represents the value, where the analog output should start with 0 V . ${ }^{*}$... see example below	„E7"	$\begin{array}{r} -1000000.0 \\ \ldots+1000000.0 \end{array}$	+0000000.0
Analogue End End value (engineering units) for 10 V or 20 mA	„E8"	$\begin{array}{r} -1000000.0 \\ \ldots+1000000.0 \end{array}$	+0001000.0
Analogue Swing Max. output value ($1.00=10 \mathrm{~V}$ or 20 mA) Example: adjustment for a limitation to $8 \mathrm{~V}=00.80$	„E9"	0 ... 10.00	01.00
Analog Offset Shift of the zero position (mV)	„FO"	-9999 ... 9999	0000
Analogue ABS Only positive voltage values are displayed. Please note: Independent of the parameters Analogue Start and Analogue End, only positive values are displayed. At normal case (Analogue ABS=0) the displayed voltage value is for example $-1,234 \mathrm{~V}$. If Analogue $\mathrm{ABS}=1$, in this case $1,234 \mathrm{~V}$ would be displayed.	„F1"	$0 . . .1$	0

The settings above are at the same time used to generate the Basic Value 0-10 000 (corresponding to $0-100,00 \%$), which finally can be read out from the serial register with access code :8 (see 7.2.3)
*) Example: If a display range of -250 to +250 must output a proportional analog range from -10 V to +10 V , the "Analog Start" parameter must be set to 0 and the "Analog End" value to +250 .

7.2.8. Serial Menu

Serial transmissions will operate in either the "PC Mode" or in "Printer Mode".
With "PC-Mode", the unit receives a request string and responds with a corresponding data string. For details of the protocol see separate description "SERPRO".
With "Printer Mode" the unit sends data without any request and under Timer control as described subsequently.

As soon as the unit receives a character, it automatically switches over to PC Mode and operates according to protocol. When for a period of 20 sec. no character has been received, the unit switches automatically back to "Printer Mode" and starts cyclic data transmission again.

Serial -Menu (Configuration of the serial link)	Code	Setting Range	Default
Unit Number (Serial device address) A unit number between 11 and 99 can be assigned to each unit. The address must not contain any zeros (0) since these addresses are reserved for collective addressing of several units.	„90"	$11 . . .99$	11
Serial $0=$ $960 u d$ Rate (Transmission speed) $1=$ 4800 Baud $2=$ 2400 Baud $3=$ 1200 Baud $4=$ 600 Baud $5=$ 19200 Baud $6=$ 38400 Baud	„91"	$0 . .6$	0
Serial Format (Format of transmit data) $0=$ 7 Data, Parity even, 1 Stop 1= 7 Data, Parity even, 2 Stop $2=$ 7 Data, Parity odd, 1 Stop $3=$ 7 Data, Parity odd, 2 Stop $4=$ 7 Data, no Parity, 1 Stop $5=$ 7 Data, no Parity, 2 Stop $6=$ 8 Data, Parity even, 1 Stop $7=$ 8 Data, Parity odd, 1 Stop 8= 8 Data, no Parity, 1 Stop $9=$ 8 Data, no Parity, 2 Stop	„92"	$0 \ldots 9$	0

Serial -Menu (Configuration of the serial link)			Code	Setting Range	Default
Serial Protocol			„F3"	$0 . .1$	0
Determines the sequence of characters sent, when you use the serial output for cyclic data transmission under timer control ($x x x x x x x$ is the measuring value transmitted). $\begin{array}{ll} 0= & \text { Transmission = Unit Nr. }- \text { Data, LF, CR } \\ 1= & \text { Transmission = Data, LF, CR } \end{array}$ Setting "1" removes the unit address from the string which allows a slightly faster transmission cycle.					
	11	Unit No. +/- X X X X X X LF CR +/- X X X X X X LF CR			
Serial Timer This register determines the cycle time in seconds for cyclic transmission when the Printer Mode is switched on. With setting " 0 " all cyclic transmission is switched off and the unit will only send data upon request (PC mode).			"F4"	0 ... 9.99	0
Register Code Serial access code of the register which, in Printer Mode, should be transmitted with every cycle. The most important registers are shown below.			„F5"	$\begin{gathered} 0 \ldots 19 \\ (: 0) \ldots(; 9) \end{gathered}$	8
Setting	Code	Register contents			
7	:7	Actual analog output value $10000=10 \mathrm{~V}=20 \mathrm{~mA}$			
8	:8	User-defined readout value (see 7.2.3)			
9	:9	Frequency detected on the input (Scaling is 0.1 Hz)			
11	;1	Actual LCD display value			

7.2.9. Switching -Menu

These parameters are not relevant for model 6890.5066 .

Indications $|\mathrm{f}|$ mean that only the absolute value of the frequency is considered. With all other indications, frequencies are categorically signed (+ with forward and - with reverse)

Switching -Menu (Switching characteristics of relays/outputs)	Code	Setting Range	Default
Pulse Time 1 Rel.1: Duration of timed output, sec. (0=static)	„F8"	0 ... 9.99	0
Pulse Time 2 Rel.2: Duration of timed output, sec. (0=static)	„F9"	0 ... 9.99	0
Pulse Time 3 Rel.3: Duration of timed output, sec. (0=static)	"G0"	0 ... 9.99	0
Hysteresis 1 Rel.1: Switching Hysteresis (engineering units)	"G1"	0 ... 99999.9	0
Hysteresis 2 Rel.2: Switching Hysteresis (engineering units)	"G2"	0 ... 99999.9	0
Hysteresis 3 Rel.3: Switching Hysteresis (engineering units)	"G3"	0 ... 99999.9	0
Preselect Mode 1 (switching operation for relay 1/output 1) $\|f\|>=\mid$ Preselection\| (catch*) $\|\mathrm{f}\|<=\mid$ Preselection \mid with start-up-delay (catch*) $\|f\|==\mid$ Preselection \mid with start-up-delay (catch*) Standstill ($\mathrm{f}=0$) after expiration of standstill time $\mathrm{f}>=$ Preselection (catch*) (also suitable for signalization of forward direction) $5 \mathrm{f}<=$ Preselection (catch*) (also suitable for signalization of reverse direction) $6 \quad \mathrm{f}==$ Preselection (catch*) 7 Relay/output signals "forward" when a positive frequency ($f>0$) is detected. This information disappears upon detection of "standstill" 8 Relay/output signals "reverse" when a negative frequency ($\mathrm{f}<0$) is detected. This information disappears upon detection of "standstill"	"G4"	$0 . .9$	0
$9 \quad \mathrm{f}>$ (Preselection + Hysteresis) or f < (Preselection - Hysteresis) with start-up suppression and latch *) The parameter Preselection forms the center, the hysteresis specifies the area around.			
Preselect Mode 2 (switching operation for relay 2/output 2) see Preselection Mode 1	"G5"	$0 . .8$	0
Preselect Mode 3 (switching operation for relay 3/output 3) see Preselection Mode 1	"G6"	$0 . .8$	0

*) The corresponding relay/output can be used with catch operation, when a catch function has been assigned to it under parameter „Lock Relay".

Switching -Menu (Switching characteristics of the relays/outputs)	Code	Setting Range	Default
Output Polarity (Relay/output active „on" or active „off" *)	"G7"	$0 . .7$	0
Parameter with binary interpretation			
0 all Relays are energized when the assigned event occurs			
1 Relay 1/transistor output 1 inverted			
2 Relay 2 transistor output 2 inverted			
3 Relay 1\&2 transistor output 1\&2 inverted			
4 Relay 3 transistor output 3 inverted			
5 Relays $1 \& 3$ transistor output $1 \& 3$ inverted			
6 Relays $2 \& 3$ transistor output 2\&3 inverted			
7 All relays inverted			
Start-up Mode	„G8"	$0 . .10$	0
Start-up-delay after power-up and after standstill			
0 No start-up-delay			
1 Start-up-delay 1 second			
2 Start-up-delay 2 seconds			
3 Start-up-delay 4 seconds			
4 Start-up-delay 8 seconds			
5 Start-up-delay 16 seconds			
6 Start-up-delay 32 seconds			
7 Start-up-delay 64 seconds			
8 Start-up-delay 128 seconds			
9 Automatic delay until to first overstepping of the set value			
10 Start-up-delay by remote signal			
Start up Relay / Switching Output	"G9"	$0 . .7$	0
Assignment of a start-up-delay function to the relays/outputs			
$0 \quad$ No start-up-delay for any of the relays			
1 Relay 1/transistor output 1 provides start-up-delay			
2 Relay 2/transistor output 2 provides start-up-delay			
3 Relays 1\&2/transistor output 1\&2 provide start-up-delay			
4 Relay 3/transistor output 3 provides start-up-delay			
5 Relays 1\&3/transistor output 1\&3 provide start-up-delay			
6 Relays $2 \& 3 /$ transistor output $2 \& 3$ provide start-up-delay			
$7 \quad$ All relays provide start-up-delay			

*) Active "on" means the relay/output will be energized upon occurrence of the assigned event. Active "off" means the relay/output will be de-energized upon occurrence of the assigned event.

Switching -Menu (Switching characteristics of the relays/outputs)	Code	Setting Range	Default
Lock Relay/Switching Output Assignment of a catch function to the relays *) 0 No catch function for any of the relays 1 Relay 1/output 1 with catch (release by key/control input) 2 Relay 2/output 2 with catch (release by key/ control input) 3 Relays 1\&2/output 1\&2 with catch (release by key/control input) 4 Relay 3/output 3 with catch (release by key/control input) 5 Relays $1 \& 3 /$ output $1 \& 3$ with catch (release by key/control input) 6 Relays $2 \& 3 /$ output $2 \& 3$ with catch (release by key/control input) 7 all Relays/outputs with catch (release by key/control input) 8- similar to 0-7, but catch to release by key/by control input and 15 automatically upon standstill	„H0"	$0 . .15$	0
Standstill Time Time setting for standstill definition A time of $x x . x x$ seconds after detection "zero input frequency" the unit signals "standstill" and re-activates the start-up-delays	„H1"	0..99.99	0
Relay / Switching Output Action (for more details see section 9.3) Selection of the relays/transistor outputs of which the switching state should be overridden by key command or remote command (nonselected relays will continue normally) 0 No relay/transistor output selected 1 Relay $1 /$ transistor output 1 2 Relay 2/transistor output 2 3 Relays 1 \& 2/transistor output 1\&2 4 Relay 3/transistor output 3 5 Relays $1 \& 3 /$ transistor output $1 \& 3$ 6 Relays $2 \& 3 /$ transistor output $2 \& 3$ 7 All relays/transistor outputs selected 8 Freeze actual switching state of all relays/transistor outputs	"K8"	0... 8	0

${ }^{\text {* }}$) According to parameter settings, the catch situation can be released by either pressing one of the front keys or by a remote control signal or automatically upon detection of standstill (see "Command menu").

Switching -Menu (Switching characteristics of the relays/outputs)				Code	Setting Range	Default
Action Polarity (for more details see section 9.3) Desired override state of the corresponding relays/transistor outputs (parameter is out of function when "Relay Action" is set to " 8 ")				"K9"	0... 7	0
Setting	Relay/out K1	Relay/out K2	Relay/out K3			
0	0	0	0			
1	1	0	0			
2	0	1	0			
3	1	1	0			
4	0	0	1			
5	1	0	1			
6	0	1	1			
7	1	1	1			
$0=$ Coil of the relay is de-energized - transistor output off. $1=$ Coil of the relay is energized - transistor output on						

7.2.10. Linear.-Menu

Linear.-Menu (Interpolation points for linearization)	Code	Setting Range	Default
P1(x) \% Interpolation point 1, original value	„H2"	-100.000...100.000	100.000
P1(y) \% Interpolation point 1, substitute value	„H3"		
$\mathrm{P} 2(\mathrm{x})$ etc.	,.H4"		
P2(y) etc.	,H5"		
P3(x)	„H6"		
P3(y)	„H7"		
P4(x)	„H8"		
P4(y)	„H9"		
P5(x)	„ 10 "		
P5(y)	,11"		
P6(x)	, $12 \times$		
P6(y)	„I3"		
P7(x)	"14"		
P7(y)	,15"		
P8(x)	"I6"		
P8(y)	,17"		
P9(x)	„I8"		
$\mathrm{Pg}(\mathrm{y})$,19"		
P10(x)	„.J0"		
P10(y)	„J1"		
P11(x)	„J2"		
P11(y)	",J3"		
P12(x)	"J4"		
P12(y)	„J5"		
P13(x)	"J6"		
P13(y)	„J7"		
P14(x)	„.J8"		
P14(y)	„J9"		
P15(x)	„K0"		
P15(y)	„K1"		
P16(x)	„K2"		
P16(y)	,K3"		

7.2.11. Display -Menu

Display -Menu	Code	Setting Range	Default
Up-Date-Time	„K4"	0.05...1.00	0.10
Update time of the LCD display (seconds)			
Display Mode	"K5"	$0 . .4$	0
Scaling of the unit's engineering units and the actual LCD display			
0 Hz			
1 kHz (switch points and analog output remain in Hz)			
2 RPS (revolutions per second) $=\mathrm{f} /$ Encoder Factor (*)			
3 RPM (revolutions per minute) $=60 \mathrm{xf} /$ Encoder Factor (*)			
4 Customer-specific units set by Encoder-Factor und Multiplier Display = $\mathrm{f} \times$ Multiplier / Encoder Factor (*)			
Encoder Factor number of impulses per revolution "ppr" (with Display-Modes 2-4 only)	„K6"	$1 . .99999$	1
Multiplier Impulse multiplier (with display-Mode 4 only) Display $=\mathrm{fx}$ Multiplier / Encoder Factor	„K7"	$1 . .200$	1

*) $f=$ Input frequency in Hz
With display modes 2-4 also the switching point settings will use the same engineering units as set for the display

8. Example for Commissioning

The following example is to explain setup and commissioning of the units with a typical application.

- A tooth wheel with 32 teeth should be monitored with respect to speed and standstill
- For speed pick-up we use two proximity switches "Namur-type", which for detection of the direction of rotation are mechanically displaced to generate an impulse offset
- Relay 1 should signal "standstill" when one second after detection of "zero frequency" no further input impulse has been registered
- Relay 2 should generate a timed output pulse of 0.3 seconds when the speed drops below 100 RPM in either forward or reverse direction.
- Relay 3 should switch on and catch when, with forward direction only, the speed exceeds 300 RPM. With reverse direction relays 3 should not respond at all
- Release of the relay 3 catch state should be possible by either a positive signal applied to input "Control1", or by activating the ENTER key.

The table below shows the setup procedure for an application according to the previous example. Parameters which are not mentioned are optional, but not relevant for this function.

Nr ,	Menu	Parameter	Value	Function
1	Preselect Menu	Preselection1 Preselection2 Preselection3	$\begin{aligned} & 100 \\ & 300 \end{aligned}$	unimportant (relay 1 is used for standstill) Switching point for "underspeed" Switching point for "overspeed"
2	Encoder Menu	Encoder Proper. Wait Time	$\begin{gathered} =1 \\ =5,00 \end{gathered}$	A/B/ $90^{\circ}, \mathrm{HTL} /$ NPN for two displaced Namur sensors Frequencies $<0,2 \mathrm{~Hz}$ are considered as "0"
3	Command Menu	Key Enter Func. Input 1 Config. Input 1 Func.	$\begin{aligned} & =7 \\ & =1 \\ & =7 \end{aligned}$	ENTER key to release the relay 3 catch Function of "Control1" input is static HIGH "Control1" input to release the relay 3 catch
4	Switching Menu	Pulse Time 1 Pulse Time 2 Pulse Time 3 Presel. Mode1 Presel. Mode2 Presel. Mode3 Output Polarity Start-up Mode Start-up Relay Lock Relay Standstill Time	$\begin{gathered} \hline=0 \\ =0.30 \\ =0 \\ =3 \\ =1 \\ =4 \\ =0 \\ =0 \\ =0 \\ =4 \\ =1.00 \end{gathered}$	Relay 1 static Relay 2 timed output 0.3 seconds Relay 3 static Relay 1 energizes after lapse of standstill time Relay 2 energizes when absolute value underpasses Relay 3 energizes with positive overstepping only All relays with non-inverted function (energize) No start-up-delay function No relay assignment to start-up-delay Relay 3 to operate with catch function Standstill output 1 second after detection of "frequency $=0$ " (i.e. 6 seconds after the last input pulse)
5	Display Menu	Display Mode Encoder Factor Multiplier	$\begin{aligned} & =3 \\ & =32 \\ & =1 \end{aligned}$	Engineering units are RPM Tooth wheel generates 32 pulses per revolution No specific impulse scaling

9. Appendix

9.1. Hints for Use of the Linearization Function

The linearization function of these units allow to convert a linear input frequency into a non-linear developing, which can be indicated on the LCD display and which is also available as analog signal or as serial data, for further processing.

There are 16 programmable x/y coordinates available, which can be set in any desired distance over the full conversion range. Between two coordinates, the unit uses linear interpolation. Therefore it is advisable to use more coordinates in a range with strong curves and only a few coordinates where the curvature is less.

To specify an individual linearization curve, the „Linearisation Mode" register must be set to either 1 or 2.

The registers P1(x) to P16(x) are used to specify the coordinates on the x -axis. These are the measuring values that the unit normally would generate according to the actual input frequency. These settings must be in \% of full scale.

Now enter the attached values to registers P1(y) to P16(y). These are the values that the unit will generate instead of the x-values, i.e. $\mathrm{P} 2(y)$ will substitute $\mathrm{P} 2(\mathrm{x})$ etc.

9.2. Data Readout via Serial Interface

All register codes shown in the "Serial Menu" are available for serial readout by PC or PLC. For communication the monitors use the Drivecom Protocol according to ISO 1745. All protocol details can be found in our manual SERPRO_2a.doc which is available for download from our homepage www.motrona.com.
To request for a data transmission you must send the following request string to the converter:

EOT	AD1	AD2	C1	C2	ENQ
EOT $=$ control character (Hex 04)					
AD1 $=$ unit address, High Byte					
AD2 $=$ unit address, Low Byte					
C1 $=$ register code, High Byte					
C2 $=$ register code, Low Byte					
ENQ $=$ control character (Hex 05)					

The following example shows the request string for readout of the actual input frequency of a monitor (code :9) from a unit with unit address 11:

ASCII Code:	EOT	1	1	$:$	9	ENQ
Hex Code:	04	31	31	$3 A$	39	05
Binary Code:	00000100	00110001	00110001	00111010	00111001	00000101

After a correct request, the unit will respond:

STX	C1	C2	x x x x x x x	ETX
STX		BCC		
C1	$=$ rentrol character (Hex 02)			
C2	$=$ register code, High Byte			
xxxxx $=$ readout data Byte				
ETX	$=$ control character (Hex 03)			
BCC	$=$ block check character			

For all further details see SERPRO_2a.doc.

9.3. "Relay Action", override relay states by programmed states

Models providing relay outputs allow to temporary change the actual relay states according to a programmable ON / OFF pattern, or to temporary freeze the actual switching states. These override functions can be activated by either touching a front key or by a remote command.

9.3.1. Override relay/output states by programmable ON / OFF states

Parameter "Relay Action" allows to select which of the relays/outputs should be affected by the override action. Parameter "Action Polarity" provides setting of the desired "ON / OFF" pattern" (see section 7.2.9, "Switching Menu"). The desired way of activation this override command can be set by the "Command-Menu" (see 7.2.6).
Application example:
You would like to temporary de-energize relays K1 and K3 by touching the key "UP", whilst relay K2 should continue to function normally.

Action		Parameter settings
1	Assign the Override Command to key "UP"	Key Up Func. = 2
2	Select relays/outputs K1 and K3	Relay Action = 5
3	Set the desired switching state of the	Action Polarity = 2
	relays/outputs (both de-energized)	

9.3.2. Freeze the actual switching state of all relays

This function will temporary freeze all relays in their actual state for the duration where you press a key or apply a remote command. During the freeze period the relays will no more follow any changes of the input frequency

Application example:

You would like to freeze all relays by applying a "High" signal to input "Control1"

Action		Parameter settings
1	Assign the Freeze command to input "Control1"	Input 1 Func. $=2$
2	Set the input to "Active High" characteristics	Input 1 Config = 1
3	Assign the "Freeze relays" function to the input	Relay Action = 8

	- These commands will override the switching states of the selected relays/outputs. All relays/outputs will immediately return to the actual control state after removing the override command. All internal measuring and control cycles will continue normally. - To use these functions, please set the corresponding key and input characteristics to static operation only, since dynamic (edge-triggered) operation would make no sense

9.4. Monitoring of remote motion enable signals

The unit provides a special "Command Monitor" function for logical control of a motion enable signal and the resulting response of the system. In addition to the normal monitoring functions this mode is suitable to generate alarm outputs under any of the following conditions:

- motion is disabled, but still the system moves
- motion is enabled, but the system does not move at all (mechanical deadlock), or the system does not reach the scheduled speed within an expected time (overload)
- the motion command changes over from "enable" to "disable" but the system does not come down to standstill within an expected time

The following parameter settings will activate the Command Monitor function:

9.4.1. Definition of a speed window

The application requires one of the relays to operate in overspeed mode (Preselect Mode = 0) and another relay to operate in underspeed mode (Preselect Mode $=1$). This will define a window for the expected speed under regular motion conditions (see $\underline{7.2 .9}$)

9.4.2. Assignment of a control input

One of the two control inputs has to be set to the control function "12" to activate the monitoring of the command. This input must be connected to the remote Enable/Disable signal (see parameters "Input Function" under 7.2.6)

9.4.3. Assignment of the control polarity

Parameter "Input Config" provides setting of the input polarity as follows:

$$
\begin{array}{lll}
\text { Input Config = } & \Rightarrow & \begin{array}{l}
\text { Motion disabled (stop) corresponds to input level "LOW" } \\
\\
\text { Motion enabled (run) corresponds to input level "HIGH" }
\end{array} \\
\text { Input Config =1 } & \Rightarrow & \begin{array}{l}
\text { Motion disabled (stop) corresponds to input level "HIGH" } \\
\end{array} \\
& \text { Motion enabled (run) corresponds to input level "LOW" }
\end{array}
$$

9.4.4. Setting of a Start-up delay time

Any signal changes from "disable" to "enable" or vice-versa will require some delay until the system could really follow the command (acceleration or deceleration). Therefore it is mandatory to set an appropriate start-up delay time (to the relay/output responsible for "underspeed" only). See section 7.2.9 "Start Up Mode" and "Start Up Relay".

9.4.5. Setting of an appropriate Standstill definition

Under parameter "Standstill Time" an appropriate time must be set (see section 7.2.9).

10.Dimensions:

Front view

Side view

11. Technical Specifications

Power supply:	Input voltage: Protection circuit: Ripple: Consumption:	$17 \ldots 30$ VDC reverse polarity protection $\leq 10 \%$ at 24 VDC approx. 70 mA (unloaded)
Connections:	Connector type:	screw terminals, $1,5 \mathrm{~mm}^{2}$ / AWG 14
Encoder supply:	Output voltage: Output current:	$\begin{aligned} & \text { approx. } 5.2 \mathrm{~V} \\ & \text { max. } 70 \mathrm{~mA} \\ & \hline \end{aligned}$
Incremental input:	Signal levels: Characteristic (HTL): Internal resistance (HTL): Channels: Frequency:	RS422, differential voltage > 1 V TTL: LOW 0 ... $0.5 \mathrm{~V} / \mathrm{HIGH}: 3 \ldots 5.3 \mathrm{~V}$ HTL: LOW $0 \ldots 4 \mathrm{~V}$ / HIGH: $10 \ldots 30 \mathrm{~V}$ NPN / PNP Ri $\approx 4.75 \mathrm{kOhm}$ A, /A, B, /B max. 1 MHz at RS422 and TTL symmetrical max. 350 kHz at HTL and TTL asymmetrical
Control inputs:	Number of inputs: Application: Signal levels: Internal resistance: min. time of dynamic signals: min. time of static signals:	2 inductive proximity switches or control commands LOW < $2.5 \mathrm{~V}, \mathrm{HIGH}>10 \mathrm{~V}$ (max. 30 V), $\mathrm{Ri} \approx 3.9 \mathrm{kOhm}$ $50 \mu \mathrm{~s}$ 2 ms
Analog output: (not with 6890.5067 and 6890.5069)	Voltage output: Current output: Resolution: Accuracy: Oscillation time:	$\begin{aligned} & -10 \ldots+10 \mathrm{~V} / 0 \ldots+10 \mathrm{~V}(\text { max. } 2 \mathrm{~mA}) \\ & 0 \ldots 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA} \text { (burden: max. } 270 \mathrm{ohm}) \\ & 14 \text { bit }(\pm 13 \text { bit) } \\ & 0.1 \% \\ & \text { approx. } 200 \mu \mathrm{~s} \text { (reaction after } 2 \times \text { sampling time }+200 \mu \mathrm{~s}) \end{aligned}$
Relay outputs: (only with 6890.5060 and 6890.5067)	Number of relays: Operating capacity Reaction time:	3 potential free changeover contacts $30 \mathrm{VDC} / 2 \mathrm{~A}$ or $115 \mathrm{VAC} / 0.6 \mathrm{~A}$ or $230 \mathrm{VAC} / 0.3 \mathrm{~A}$ approx. 4 ms
Transistor outputs: (not with 6890.5061 and 6890.5069)	Number of outputs: Signal levels: Output current: Protection: Reaction time:	```3 5 ... 30 VDC (depends on COM+ voltage), PNP max. }350\textrm{mA}\mathrm{ per output short circuit proof < ms```
Serial interface:	Format: Baud rate:	$\begin{aligned} & \hline \text { RS232 } \\ & 2400 \ldots 38400 \text { Baud } \end{aligned}$
Display:	Type: Characteristic:	Background lightened LCD 2 lines, each 16 characters, $3,5 \mathrm{~mm}$
Housing:	Material: Mounting: Dimensions (w x x x d): Protection class: Weight:	Plastic 35 mm top hat rail (according to EN 60715) $72 \times 91 \times 76 \mathrm{~mm}$ IP20 approx. 200 g
Temperature range:	Operation: Storage:	$0^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C} /+32 \ldots+113^{\circ} \mathrm{F}$ (not condensing) $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} /-13 \ldots+158^{\circ} \mathrm{F}$ (not condensing)
Failure rate:	MTBF in years:	23.4 a (long-term usage at $60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}$)
Conformity and standards:	EMC 2004/108/EC: LV 2006/95/EC: RoHS 2011/65/EU:	EN 61000-6-2, EN 61000-6-3, EN 61000-6-4 EN 61010-1 EN 50581

