
CD-ROM FOR THE
LEARNING PACKAGE

This learning package includes a CD-ROM that contains various
programs and examples. The CD-ROM will make it easier for you
to work with this book. The examples printed here are included
on the CD-ROM.

P Arduino™ developer environment (IDE)
P Example program code for the learning package
P VB.NET-programs

 |
You can exchange your own programs with other users online. The
example programs are subject to the Open-Source license GPL
(General Public License). Therefore, you are entitled to modify,
publish and provide the programs to other users under the
conditions of the GPL, provided that you subject your programs
to the GPL as well.

As of Windows 7/8/8.1, 32 and 64 bit or higher, Linux 32 and 64
bit, Mac OS X, CD-ROM-drive, Java

Note
This learning package includes VB.NET-programs that work only
under Windows. The basic Arduino™-programs for these ex-
periments work on other operating systems as well. Only the
.NET-PC-programs need a Windows operating system with .NET
Framework for experimentation.

 |
Arduino™ is subject to continuous further development. Updates
can be downloaded free of charge from the web-
site .

CONTENT OF THE
LEARNING PACKAGE

The learning package includes all parts that you need for the
experiments. Please check the parts for completeness before
starting the experiments!

Note
The Arduino™-UNO-micro controller PCB is not included in the
delivery. Since this is a learning package targeted at the
advanced Arduino™ programmer, an Arduino™ UNO or MEGA should
already be present at the workplace. The boards are available
at low costs at Conrad Electronic, in the Franzis Shop or at
other online businesses.

Parts List
1 x breadboard Tiny, 1 x LCD 16 x 2 blue, 1 x pin strip 16 pins
for soldering in, 1 x button, 1 x NTC 472, 1 x photo tran-
sistor, 1 x 10 kΩ, 1 x 2.2 kΩ, 1 x 330 Ω, 14 x jumpers

The Arduino™ PCBs and the display are mainly secured against
errors, so that it is hardly possible to damage the PC. The
connections of the USB-socket are not insulated on the bottom
of the PCB. If you place the PCB onto a metal conductor, there
may be a higher current, which may damage the PC and the PCB.

Observe the following safety rules!

PAvoid metal objects under the PCB or insulate the entire bottom
with a non-conductive protective board or insulating tape.

PKeep mains units, over voltage sources or live conductors with

http://arduino.cc/

more than 5 Volt (V) away from the experimenting PCB.

PIf possible, do not connect the PCB to the PC directly, but via
a hub. This usually includes an additional effective pro-
tection circuit. If something happens anyway, the hub, and not
the PC, will usually be damaged.

THE PARTS AND THEIR
FUNCTION

The parts of the learning packages are presented here and the
respective functions are explained briefly. The following
experiments will provide the practical experience with the
circuit technology of the electronics.

On the breadboard, you can set up your circuits without sol-
dering. Our breadboard is made up of 17 columns and 5 rows. The
columns with 5 contacts each are connected to each other in a
line (from top down, see figure). The separating bridge in the
middle of the breadboard marks that no connection to the other
field of 17 columns and 5 rows is present. It has proven to be
helpful to uncoil the connection wires of the parts diagonally
first, to produce a kind of wedge at the wire ends. This makes
it easier to plug the parts into the breadboard. If it is
difficult to plug in the parts anyway, best use small
high-precision mechanic flat nose pliers to push the part into
the breadboard with a little more pressure.

The learning package includes several pre-customised jumpers.
They are used for connections between the breadboard and the
Arduino™-PCB. The jumpers have a small pin on both sides that
can be pushed into the experimenting board and the Arduino™-PCB
easily. However, be careful anyway so that no pin will acci-
dentally break off or bend!

A button has a similar function as a switch. You already know
switches from switching light on and off in the apartment. When
we push the rocker down, the light comes on. When we push it up,
the light goes out again. A switch remains in its position. This
is different for a button. When we push the button, the circuit
is closed. It will only remain closed while we push the button.
When we release it, it will open the circuit again and the light
will go out. The button will automatically return to its original
or resting position with its internal mechanics.

There are buttons that close the circuit when actuated, and such
that open the circuit . Buttons that close a circuit are often
called »N. O.« (normally open) and those that open the circuit
»N. C.« (normally closed). The figure shows a button that is
enclosed with the learning package. It closes the circuit when
pushed and the current can then flow from contact 1 to 2. The
two other contacts each are connected with each other.

3.4 | Resistors
Resistors are needed to limit current and to set working points,
or as voltage dividers in electrical circuits. The unit for
electrical resistance is Ohm (Ω). The prefix Kilo (k, thousand)
or Mega (M, million) shortens the way of writing large re-
sistances.

1 kΩ = 1000 Ω

10 kΩ = 10,000 Ω

100 kΩ = 100,000 Ω

1 MΩ = 1,000,000 Ω

10 MΩ = 10,000,000 Ω

In circuit diagrams, the symbol Ω is usually left out and 1 kΩ
is shortened to 1 k. The value of the resistor is applied to the
resistor in the form of a colour code. Usually, there are three
coloured rings, and an additional fourth ring that indicates the
accuracy of the resistor. Metal film resistors have a tolerance
of only 1 %. This is indicated by a brown tolerance ring that
is a little wider than the other four colour rings. This is to
prevent mistakes for a normal value ring with the meaning »1«.

Resistors with a tolerance of +/--5 % are available at the values
of the E24-series, with each decade containing 24 values at about
equal distance to the adjacent value.

The resistors of the E24 standard series are as follows:

1.0 / 1.1 / 1.2 / 1.3 / 1.5 / 1.6 / 1.8 / 2.0 / 2.2 / 2.4 /
2.7 / 3.0 / 3.3 / 3.6 / 3.9 / 4.3 / 4.7 / 5.1 / 5.6 / 6.2 /
6.8 / 7.5 / 8.2 / 9.1

The colour code is read from the ring closer to the edge of the
resistor. The first two rings represent two digits, the third
ring the multiplier of the resistance value in Ohm. A fourth one
indicates the tolerance.

A resistor with the colour rings yellow, violet, brown and gold
has the value 470 Ω at a tolerance of 5 %. Try to identify the
resistors of the learning package right away.

Advice
Entering the search term »Resistance code calculator« online
will return many resistor colour code calculators, e.g.
un-
der http://www.ab-tools.com/de/software/resistancesrechner/
or http://www.dieelektronikerseite.de/Tools/resistancesrec
hner.htm.

There also is an old version as shown in the figure below. This
»resistance gauge« or vitrometer permits quick determination of
the resistance without a computer just by turning the colour
wheels. This way, you will memorise the colour codes much more
quickly than in the computer version.

3.5 | Temperature Sensor
To record temperatures, an NTC-temperature sensor is enclosed.
The designation NTC means »negative temperature coefficient« and
says that the resistance will drop when the temperature rises.
This is a hot conductor. The NTC in the learning package has a
resistance of 4.7 kΩ at 25 °C/298.15 K (Kelvin).

http://www.ab-tools.com/de/software/resistancesrechner/
http://www.dieelektronikerseite.de/Tools/resistancesrechner.htm
http://www.dieelektronikerseite.de/Tools/resistancesrechner.htm

3.6 | Photo Transistor
To determine brightness, modern electronics often use photo
transistors. The learning package includes a part that looks very
similar to a white light emitting diode, except that it is a photo
transistor. It not only looks different from the normal bipolar
transistors but also has no base connection. The base, i.e. the
input of a normal transistor that is responsible for the current
control between the collector and emitter is the light falling
into the housing in a photo transistor. The light hits the silicon
there and makes a lower or higher current flow between the
collector and emitter depending on the light strength.

3.7 | LC-Display
The main actor of this learning package is the blue-white LCD.
The learning package uses an LCD with two rows 16 columns with
5 x 8 dots each. These displays can now also be purchased
separately in any good electronics store or online store for a
few Euro. They are available in green, blue, amber, yellow and
a few special colours that are usually more expensive. In our
case, a blue LCD is installed. The LCD controller installed is
a KS0066/HD44780 that is produced by many manufacturers - more
on this later.

Before you can use the LCD in the experiments, you need to solder
the enclosed 16-pin pin strip into the contacts of the LCD. For
this, plug the pin strip with the short contacts into the LCD
from behind and solder only one contact on first. This way, you
can align the pin strip cleanly at a 90°-angle. When the pin strip
has been aligned, you can solder on the other pins. If you have
no soldering gun yet, get a cost-efficient hand-held soldering
gun with an output between 20 and 30 W and electric wire solder.
This investment will pay off when dealing with Arduino™ and
electronics in any case.

FIRST FUNCTION TEST

Wire your first experiment as shown in the figure. Be careful
to not bend or even break the pins of the jumpers.

At the end, check the circuit for accuracy again carefully to
avoid damage to parts.

Info
If you are working with Arduino™ for the first time, you need
to download the Arduino™ developer environment first. You can
find it on the official Ar-
duino™-websitehttp://www.arduino.cc.
Here, you can select your operating system and determine if
you want to use the installer or the Zip-version. In the
installer version, you install Arduino™ like a normal standard
program. In the Zip-version, you need no installation. Unzip
the Zip file and save it in a desired storage site on your
computer. This has the benefit that you can save the Arduino™-
 e.g. on a USB drive and take it along anywhere.

Attention
Only save Arduino where you have all rights to read, write,
etc.!

For the first function test, load the following program onto the
Arduino™-board. The example programs can all be found on the
enclosed CD in the Examples folder.

The program will make a text and a kind of counter appear on the
LCD and is well suitable as the first function test to check that
everything is working properly because it is very small and
well-structured.

Example code: LCD

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 void setup()
009 {
010 // LED-Backlighting
011 analogWrite(9, 150);
012
013 // LCD output
014 lcd.begin(16, 2);
015 lcd.setCursor(0, 0);
016 lcd.print("**ARDUINO LCD**");
017 lcd.setCursor(0, 1);

http://www.arduino.cc/

018 lcd.print("CNT:");
019 }
020
021 void loop()
022 {
023 lcd.setCursor(5, 1);
024 lcd.print(millis() / 1000);
025 }

In the first line of the program, you can see that operation of
the of the LCD requires integration of the Arduino™ Library with
the name LiquidCrystal.h. It includes the more complex code that
is needed to control the display. You can look in the Ar-
duino™-folder, under Arduino\libraries\LiquidCrystal, and
check out the LiquidCrystal.h and LiquidCrystal.cpp files to get
an idea of the function of the Library. To open these files, it
is recommended to use, e.g., the program Notepad++. You can
download it free of charge from
http://www.notepad-plus-plus.org.

You will see that this Library will do a lot of work for you that
other programmers have already completed. In our Ar-
duino™-program, we integrate only the header file with
LiquidCrystal.h. Arduino™ will now automatically know all LCD
functions.

In the next line, we inform Arduino™ which pins of the LCD are
connected to the Arduino™-PCB.

001 LiquidCrystal lcd(11, 10, 2, 3, 4, 5)

The next command determines the brightness of our display
backlighting. The LED of the LCD is connected to the Arduino™
digital/PWM-port D9. It can be used as a simple digital port or
a PWM (pulse-width modulated port). In our tests, we use it as
a PWM-port. Thus, we can set the brightness of the backlighting
gradually. The value 150 already makes the LED shine sufficiently
brightly. If the PWM-value is chosen lower, the LED will be
darker. Try changing the value and observe what happens.

001 analogWrite(9, 150)

Initialisation is almost completed. Now you need to indicate how
many columns and rows the LCD has: 16 columns/individual
characters and 2 rows.

http://www.notepad-plus-plus.org/

001 lcd.begin(16, 2)

The basic initialisation is now completed. Now we can use
lcd.setCursor to determine the position of the cursor and thus
the text to be output.

001 lcd.setCursor(0, 0)

The first parameter indicates the position within the row, i.e.
0 to 15 in this case. The second parameter indicates the row
number, i.e. 0 or 1.

Now we can output the text in the specified position at the LCD
with the commandlcd.print.

001 lcd.print("**ARDUINO LCD**”)

We can also see that we always need to write »lcd.« before the
actual function of the LCD output. This specifies that we use
the class lcd that we have integrated with #include <Liquid-
Crystal.h>. Now Arduino™ knows where the call comes from and
which class is responsible for it when »translating«, referred
to as »compiling« by specialists.

If you have ever dealt with the programming language C++ before,
you will recognise by the ending *.cpp, that these are
C++-classes. Arduino™ is basically based on C++. This is a good
way of programming own classes or Library and providing them to
other Arduino™ users.

After this brief C++-excursion, let us return to our example.
Up to now, we still remained in the function Setup()-which is gone
through once at all times when starting the program and that is
mostly used for start configuration. In it, we can pre-initialise
variables before the actual program start and pre-configure the
hardware.

The following Loop() function is an endless loop that is never
ended. This is the Arduino™-main loop for our program at the same
time. Here, we call the runtime in milliseconds at each run with
the function millis() . Division by 1,000 will lead to the output
in seconds. We will represent the program runtime in seconds on
the LCD.

001 lcd.setCursor(5, 1)

002 lcd.print(millis() / 1000)

Since the function millis() is very interesting, we will try
another experiment before dealing with the LC-display in more
detail, since the function millis() can also be used to measure
time of program runs, as shown in the following example .

Example code: TIME_DIFF

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 long time_diff, diff;
009
010 void setup()
011 {
012 // LED-Backlighting
013 analogWrite(9, 150);
014
015 // LCD output
016 lcd.begin(16, 2);
017 lcd.setCursor(0, 0);
018 lcd.print("**ARDUINO LCD**”);
019 lcd.setCursor(0, 1);
020 lcd.print("TIME DIFF: ");
021 }
022
023 void loop()
024 {
025 diff = millis();
026
027 // Myprogram start
028
029 lcd.setCursor(11, 1);
030 lcd.print(diff – time_diff);
031 delay(100);
032
033 // My program end
034 time_diff = diff;
035 }

The example code shows how to determine the program runtime .
For this, we read the current counter status of millis() at every

new program run and subtract the last counter reading that was
saved at the end of the program. The delay(100) at the end of the
program simulates a longer program runtime. Your program code
must be between // My program start and // My program end , to
determine the throughput time of your program code.

The first experiments and thus also the function test have hereby
been completed successfully. Leave the circuit set up as it is.
You will need it and expand it in the following experiments. In
the following chapters, you will learn a bit more about the
LC-display and its properties.

SETUP AND FUNCTION
OF THE LC-DISPLAYS

LCDs are used in many electronic devices, such as entertainment
electronics, measuring devices, mobile phones, digital clocks
and calculators. Head-up-Displays and video projectors also use
this technology. The following figure shows the LCD from the
learning package. This is a standard-5x8-dot-matrix-display
with 2 rows with 16 characters each.

An LCD generally consists of 2 individual glass panes and a special
liquid in between. The special characteristic of this liquid is
that it will turn the polarisation level of light. This effect is
influenced by applying an electrical field. The two glass plates
are therefore vaporised with a very thin metal layer each. To get
polarised light, a polarisation film is stuck to the upper glass
plate. This is called the polariser. Another such film must be
applied to the bottom glass plate, with its polarisation level
turned by 90°. This is the analyser.

In the resting condition, the liquid turns the polarisation level
of the incoming light by 90°, so that it can pass the analyser
unhindered. The LCD is thus transparent. Applying a specific
voltage to the vaporised metal layer now will cause the crystals
to turn in the liquid. This will turn the polarisation level of
the light by, e.g., another 90°: The analyser blocks out the
light; the LCD has become opaque.

 |
Polarisation in LC-displays does not mean polarity of the voltage
supply, but the gas, liquid and filter structure of the display.

Most LCDs are TN-displays (Twisted-Nematic-displays). They contain
a liquid that turns the polarisation level of light by 90°. STNs
(Super-Twisted-Nematics) turn the polarisation level of light by
at least 180°. This improves the display's contrast. However, this
technique will lead to a certain colouration of the display. The
most common colourations are called yellow-green and blue mode. A
grey mode appears more blue than grey in practice. To compensate
for the undesired colour effect, FSTN-technology uses another foil
on the outside. The resulting light loss, however, makes this
technology only sensible for lit displays. The different colours
appear only in unlit or white-lit displays, however. Once the
lighting is coloured (e.g. LED-lighting yellow-green), the re-
spective display colour moves to the background. A blue-mode-LCD
with yellow-green LED-lighting will always look yellow-green.

Small displays with low display scope are usually controlled
statically. Static displays have the best contrast and the
maximum possible angle. TN-technology fully meets its purpose
here (black-white display, cost-efficient). However, as the
displays grow, more and more lines would be needed in static
operation (e.g. 128 x 64 graphics = 8,192 segments = 8,192
lines). Since this number of lines would not fit on the display,
nor a control-IC, Multiplex operation is chosen. The display is
structured in rows and columns and a segment is located at each
crossing point (128 + 64 = 192 lines). Here, row by row is scanned
(64 x, i.e. multiplex rate1 : 64). Since only 1 row at a time
is active, however, the contrast and also viewing angle suffer
with increasing multiplex rate.

5.3 | Viewing Angle 6 O'Clock /12 O'Clock
Every LC-display has a preferred viewing direction. Viewed from
this direction, the display has the best contrast. Most displays
are produced for the 6 o'clock viewing angle (also: bottom view,
BV). This angle corresponds to that of the calculator lying flat
on the table. 12 o'clock displays (top view, TV) are best
integrated into the front of a table unit. All displays can be
read vertically from the front.

5.4 | Reflective, Transflective, Transmissive
Reflective (unlit) displays have a 100%-reflector on the rear.
Lighting from the rear is not possible. Transflective displays
have a partially permeable reflector on the rear. They can be

read with and without lighting. This makes them unlit, but a
little dimmer than a reflective version. Nevertheless, it is
probably the best compromise for lit LCDs. Transmissive displays
have no reflector at all. They can only be read with lighting
but are very bright. The LCD in the learning package is a
transflective LCD.

5.5 | The Controller of the LC-Display
Dot-matrix-displays are produced by many manufacturers around
the world (and particularly in Taiwan). In addition to displays
from large providers like Data-Vision, there are also displays
of which the manufacturer cannot be determined at all. Luckily,
the function and connection of the displays are always the same.
In this learning package, we will deal with displays that use
a controller type HD44780 (or compatible), e.g. the KS0066.

The consistent behaviour of all displays is due to a controller
chip that has become established as the standard and that is
installed by all manufacturers. This is the HD44780 by Hitachi.

5.6 | This is How the Display is Controlled by the Display Controller
The following figures show how the display controller (KS0066)
is connected to the display. These circuits do not need to be
performed by you. They are already present on the LCD modules.

The controllers are partially differently connected to the
displays and may also be switched differently depending on
manufacturer. Thus, it is possible that a single-line
16-character display is made up of 2 x 8 characters. You need
to check the data sheet for this. Larger displays also often use
two controller chips that have a Chipselect- (CS) or two Enable
lines. The reason for this is that a controller only has a
character buffer of 80 characters. By connecting several display
controllers, the character buffer will increase by another 80
characters each. The displays also have another connection and
are relatively easy to distinguish from the stand-
ard-LCD-modules. It can be assumed that a display without
lighting has 14 pins and one with lighting has 16 pins.

5.7 | The Contrast Setting of the Display
As in other screens, we can set the contrast for LCD-modules as
well. This is done, e.g., with a 10-kΩ-potentiometer, that is
switched as a variable voltage distributor. Since the LCDs have

a very low scatter of the electrical properties by now, the
technology used in the learning package can also be used with
a single fixed resistor. For this, we use a 2.2-kΩ-resistor that
is placed between the ground and the contrast connection Vee of
the LCD to firmly set the contrast.

When using a potentiometer without ballast, the adjustable range
that affects the contrast is very low, however. For a better
spread of the contrast range, it is recommended to Switch a
corresponding ballast between Vcc (+5 V) and one end of the
potentiometer.

The voltage at the pin Vee should be adjustable between 0 and
1.5 V. This circuit is suitable for an ambient temperature of
0 to 40 °C. If the adjustable range is not optimal, (some LCDs
deviate from this), we need to change the ballast. Practical
values are in the range from 10 to 22 kΩ.

If we use the display outside of the normal temperature range
(0 to 40 °C), it is recommended to perform the wiring as shown
in the circuit diagram above. This circuit adjusts the contrast
to the ambient conditions. The temperature will be measured with
a temperature sensor NTC (Negative Temperature Coefficient
Thermistor) that will shift the contrast voltage via the
PNP-transistor. The LCD-modules can no longer be read properly
at too-low temperatures below 0 °C. The contrast is tempera-
ture-dependent.

5.8 | The Character Set
The displays have a character set that is firmly integrated in
the display controller. By sequencing the upper and lower 4 bits,
the data byte for the corresponding ASCII-character will be
formed. Example of the ASCII-character A: 01000001

Let us do an experiment with the LCD-character set. The following
program code shows how you can write the characters from the
character table onto the display. Special characters like the
degree symbol or the Ohm symbol are not possible via a strong
output. Since this is the expanded character set of the LCD ,
we need to do so using the character table.

001 lcd.write(B11110100)

Here, we will write the binary value in the display controller
to output the Omega character. The B at the beginning of the

figure sequence marks that this is a sequence of numbers in binary
annotation.

The upper and lower 4 bits for the Omega character are made up
as follows:

001 upper = 1111
002 lower = 0100

Try outputting other characters as well, checking the , character
table.

Upload
The experiment requires the LCD basic wiring that you set up in
the function test.

Example code: CHARACTER SET

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 void setup()
009 {
010 // LED-Backlighting
011 analogWrite(9, 150);
012
013 // LCD-output
014 lcd.begin(16, 2);
015 lcd.setCursor(0, 0);
016 lcd.write(B11110100);
017
018 }
019
020 void loop()
021 {
022 // Nothing to do...
023 }

5.9 | Pin Assignment of the Common LCDs
Most displays without lighting have a pin assignment as that in
the following table. If you use a different LCD than the one
included in the learning package at a later time, we recommend

first looking at the associated data sheet to avoid damage to
the LCD .

LCD-modules with lighting always require a little care. Some
manufacturers do not apply the LED backlighting contacts to pins
15 and 16, but to pins 1 and 2. Again, check the manufacturer's
data sheet before connecting the LCD.

Info
The LCD of the learning package has the LED-connections on pin
15 (+ = anode) and 16 (- = cathode).

If you have no data sheet at hand for the LCDs, e.g. if you have
purchased the LCD on an electronics flea market, you need to track
the tracks to find the backlighting connections. They are usually
a little thicker than the other tracks. When you are sure which
connections are responsible for lighting, you can use a mul-
timeter set to diode testing to determine polarity. The passage
duration must return a passage voltage between 2 and 4 V. Another
option would be to identify the LED-pins and polarity when making
the LED light up with a mains unit or a battery of approx. 5 V
and a relatively high ballast (approx. 1–4.7 kΩ). The high
ballast has a relatively small danger of destruction of the LCD.

THE ARDUINO™
LIQUITCRYSTAL LI-
BRARY
As we have already learned in the function test, the Arduino™
LiquidCrystal Library has a number of functions specifically
determined for output on the LCD. Now you will learn more about
the LCD functions.

LiquidCrystal specifies with which Arduino™-pins the LCD is
connected. The LCD can be configured in 4- or 8-bit mode. To use
it in 8-bit mode, you need to indicate eight instead of four data

pins (D0 to D7) and connect them to the Arduino™-PCB.

001 LiquidCrystal lcd(rs, enable, d4, d5, d6, d7)
002 LiquidCrystal lcd(rs, rw, enable, d4, d5, d6, d7)
003 LiquidCrystal lcd(rs, enable, d0, d1, d2, d3, d4, d5, d6, d7)
004 LiquidCrystal lcd(rs, rw, enable, d0, d1, d2, d3, d4,
 d5, d6, d7)

Our learning package uses the following configuration:

001 // RS, E, D4, D5, D6, D7
002 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);

RS= Arduino™-Pin D11

E = Arduino™-Pin D10

D4= Arduino™-Pin D2

D3= Arduino™-Pin D3

D2= Arduino™-Pin D4

D1= Arduino™-Pin D5

.begin() initialises the LCD with the indicating rows and columns.
Our LCD has 2 rows and 16 columns. Parametrisation therefore
needs to be as follows:

001 lcd.begin(16, 2)

.clear() deletes the displayed characters and positions the cursor
in the upper left corner.

001 lcd.clear()

.home() only positions the cursor in the upper left corner. No
characters are deleted.

001 lcd.home()

.setCursor() sets the cursor to the specified position. As so often
in informatics, this count starts at zero. The upper left
position, i.e. the first character in row 1, is as follows:

001 lcd.setCursor(0, 0)

The first parameter is the character position, the second
parameter is the row.

6.6 | .write()
.write() writes a single character onto the LCD. This can be used
to output special characters from the character table as well,
or to indicate the ASCII-code for the character.

Arduino™-Syntax

001 lcd.write(64)

The character @ has the decimal digit 64 in ASCII code.

Individual ASCII-characters are marked with an apostrophe. We
can also write as follows:

Arduino™-Syntax

001 lcd.write('@')

6.7 | .print()
With .print(), we can output entire character sequences, called
Strings. It is also possible to output variables this way. For

this, there is a number of formatting parameters (BASE), that
are indicated as second parameter.

Arduino™-Syntax

001 lcd.print(data, BASE)
002
003 lcd.print("Arduino") // only a text is output
004
005 int variable1 = 100
006 lcd.print(variable1) // the value of "Variable 1"
 is output
007
008 lcd.print(40 + 2) // the total of 40 + 2
 is output
009
010 lcd.print(3.1415, 2) // only 3.14 is output
011
012 lcd.print(42, BIN) // 42 is output in binary

6.8 | .cursor()
.cursor() switches on the cursor. If the cursor has been off, it
is visible again now.

Arduino™-Syntax

001 lcd.cursor()

6.9 | .noCursor()
.noCursor() switches off the cursor (invisible).

Arduino™-Syntax

001 lcd.noCursor()

6.10 | .blink()
.blink() switches on the cursor and makes it flash.

Arduino™-Syntax

001 lcd.blink()

6.11 | .noBlink()
.noBlink() switches off the cursor and ends flashing.

Arduino™-Syntax

001 lcd.noBlink()

6.12 | .noDisplay()
.noDisplay() switches off the display. The character and cursor
position are saved.

Arduino™-Syntax

001 lcd.noDisplay()

6.13 | .display()
.display() switches on the LCD again after a .noDisplay(). The
last values are restored.

Arduino™-Syntax

001 lcd.display()

6.14 | .scrollDisplayLeft()
.scrollDisplayLeft() scrolls the screen content to the left by one
character every time it is called.

Arduino™-Syntax

001 lcd.scrollDisplayLeft()

6.15 | .scrollDisplayRight()
.scrollDisplayRight() scrolls the screen content to the right by one
character every time it is called.

Arduino™-Syntax

001 lcd.scrollDisplayRight()

6.16 | .autoscroll()
.autoscroll() automatically scrolls the display content from the
right to the left. When the end of the character string is
reached, the scroll direction is automatically switched. It is
pushed on 1 x (scrolled) at each call.

Arduino™-Syntax

001 lcd.autoscroll()

6.17 | .noAutoscroll()
.noAutoscroll() ends the .autoscroll()-function.

Arduino™-Syntax

001 lcd.noAutoscroll()

6.18 | .leftToRight()
.leftToRight() specifies the output direction of the characters.
They are written from the left to the right.

Arduino™-Syntax

001 lcd.leftToRight()

6.19 | .rightToLeft()
.rightToLeft() specifies the output direction of the characters.
They are written from the right to the left.

Arduino™-Syntax

001 lcd.rightToLeft()

6.20 | .createChar()
.createChar() creates a dedicated character. For this, we need to
create an array with eight data fields, by defining our
character. lcd.createChar gives our character a serial number with
the first parameter. The Second parameter hands over the name
of the array. Up to eight own characters, which are called with
0 to 7 can be created.

Arduino™-Syntax

001 byte myChar[8] = {
002 B00000,
003 B10001,
004 B00000,
005 B00000,
006 B10001,
007 B01110,
008 B00000,
009 }
010
011 void setup()
012 {
013 lcd.createChar(0, myChar)
014 lcd.begin(16, 2)
015 lcd.write(byte(0));
016 }

LCD FUNCTIONS

The following example summarises the LCD functions explained
above in a larger example. Look at the program code and change
a few of the parameters just described to fully understand the
function.

The experiment requires the LCD basic writing that you set up
in the function test.

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);

007
008 #define Backlight 9
009
010 int i;
011
012 void setup()
013 {
014 analogWrite(Backlight, 200);
015
016 lcd.begin(16, 2);
017 lcd.setCursor(0, 0);
018 lcd.print("ARDUINO LCD”);
019 delay(1000);
020 lcd.clear();
021 }
022
023 void loop()
024 {
025 // Cursor flashing and position change
026 lcd.clear();
027 lcd.setCursor(0, 0);
028 lcd.print("blink/setCursor");
029 delay(1000);
030 lcd.clear();
031
032 lcd.setCursor(0, 0);
033 lcd.blink();
034 delay(1500);
035
036 lcd.setCursor(15, 0);
037 delay(1500);
038
039 lcd.setCursor(0, 1);
040 delay(1500);
041
042 lcd.setCursor(15, 1);
043 delay(1500);
044
045
046 // Cursor on/off
047 lcd.noBlink();
048 lcd.clear();
049 lcd.setCursor(0, 0);
050 lcd.print("cursor on/off");
051 delay(1000);
052 lcd.clear();
053 lcd.home();
054 lcd.cursor();

055
056 char txt[6] = {"HALLO"};
057 for(i = 0; i < 5; i++)
058 {
059 lcd.print(txt[i]);
060 delay(500);
061 }
062
063 lcd.noCursor();
064 delay(2000);
065
066
067 // Scroll LCD
068 lcd.clear();
069 lcd.noBlink();
070 lcd.setCursor(0, 0);
071 lcd.print("scroll LCD");
072 delay(1000);
073 lcd.setCursor(0, 0);
074
075 for(i = 0; i < 16; i++)
076 {
077 lcd.scrollDisplayLeft();
078 lcd.setCursor(0, 0);
079 lcd.print("FRANZIS ARDUINO IS MEGA GREAT!");
080 delay(350);
081 }
082
083 delay(1500);
084
085 for(i = 0; i < 16; i++)
086 {
087 lcd.scrolldisplayRight();
088 lcd.setCursor(0, 0);
089 lcd.print("FRANZIS ARDUINO IS MEGA GREAT!");
090 delay(350);
091 }
092
093 delay(1500);
094 }

What is new is that we indicate the pin for the backlighting
with #define backlight. This is a preprocessor command that will
replace all names occurring in the source code with the des-
ignation Backlight by the value 9. This way, you can perform
changes to parameters very quickly without having to search the
entire source code.

Advice
For more on the subject of preprocessors, see:
http://www.mikrocontroller.net/articles/C-Pr%C3%A4prozesso
r

The following program point offers an option for outputting
characters individually as if on an old typewriter:

001 char txt[6] = {"HELLO"};
002 for(i = 0; i < 5; i++)
003 {
004 lcd.print(txt[i]);
005 delay(500);
006 }

Here, an array with 6 characters is set up and preassigned with
the string »HELLO« . We always need to set up the array bigger
by 1 because an invisible string termination (\0) is added
automatically.

The For()-loop outputs every single character from the array with
a brief pause. For the entire thing to look more like a
typewriter, the cursor is switched on.

CREATING OWN
CHARACTERS

Creating own characters as has already been described just now
using .createChar() is often needed when using dot-matrix LCDs,
since many characters needed in practice are not included in the
character table of the LCD. There is the option of creating own
characters dot by dot for this and displaying them then. If you
need, e.g., a smiley, you can define it via an array and send
it to the LCD.

There is the option of filing up to eight own characters in the
RAM (memory) of the LCD. The array for our special character must
be 8 bytes large and is best written as shown in the example code.
The character can, e.g., be designed on a checked drawing pad.
You can see that it is made up of 8 rows at 5 values each, which

http://www.mikrocontroller.net/articles/C-Pr%C3%A4prozessor
http://www.mikrocontroller.net/articles/C-Pr%C3%A4prozessor

reflect our 5 x 8 dots in the LCD. Where we set a 1 in the binary
code, a white dot will appear later. With lcd.write(byte(0)), we
write the character onto the LCD.

The example makes the entire thing even clearer. Try to produce
a battery symbol or a thermometer.

The experiment requires the LCD basic writing that you set up
in the function test.

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 byte myChar[8] = {
009 B00000,
010 B10001,
011 B00000,
012 B00000,
013 B10001,
014 B01110,
015 B00000,
016 };
017
018 void setup()
019 {
020 // LED-Backlighting
021 analogWrite(9, 150);
022
023 lcd.createChar(0, myChar);
024 lcd.begin(16, 2);
025 lcd.write(byte(0));
026 }
027
028 void loop()
029 {
030
031 // Nothing to do...
032
033 }

DIMMING BACKLIGHT

The following experiment shows how we can automatically set the
LCD-lighting brighter or darker. By changing the PWM-value at pin
D9, the brightness of the backlighting is adjusted gradually. If
the PWM-value is chosen higher, the LED will be brighter. A lower
value will dim the lighting. By changing the PWM-value, we will
change the plus-pause ratio between activation and deactivation
duration of the 5-V-signal at D9. The following figure illustrates
this.

Transfer the program and observe the LED. This already looks
almost as if the display had been brought to life.

The experiment requires the LCD basic writing that you set up
in the function test.

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 #define Backlight 9
009
010 byte i = 0;
011 byte flag = 0;
012 unsigned long previousMillis = 0;
013 const long interval = 10;
014
015 void setup()
016 {
017 analogWrite(Backlight, 0);
018
019 lcd.begin(16, 2);
020 lcd.setCursor(0, 0);
021 lcd.print("**ARDUINO LCD**”);
022 }
023
024 void loop()
025 {
026 unsigned long currentMillis = millis();
027 if(currentMillis – previousMillis >= interval)
028 {

029 if(flag==0)i++;
030 if(flag==1)i--;
031
032 if(i==255)flag=1;
033 else if(i==0)flag=0;
034
035 analogWrite(Backlight, i);
036
037 previousMillis = currentMillis;
038 }
039 }

The experiment also shows how an automatic up/down counter with
a limit can be put into practice. It is important that the
variable named flag receives a defined starting value of 0. When
starting the program, the variable i is counted up to 255 . If
we wanted to start at full brightness, we would have to initialise
the variable flag with 1 and the variable i with 255.

When the counter value i of 255 or 0 is reached, the varia-
ble flag will always be set from 0 to 1 or from 1 to 0 and the counter
direction will change (i++ increases the counter status, in-
cremented by 1, i-- reduces the counter status, decremented by
1). In the Loop()-function, we do not use a break this time, but
determine the time via the function millis(). Only when a specified
difference that we have declared in the variable previousMillis has
expired will the brightness be changed by one level. This way, the
program will continue to run at full speed outside of the
If()-query. Only if the PWM-value is changed will the throughput
time change a little, since some functions that require a certain
processing time will be called . Here, you can also try to
determine the different throughput times with
the Millis()-function that you have already learned about.

DOT-MATRIX-LCD
CLOCK

In many applications, a clock is needed for program control -
either a simple timer, a control to comply with a precise
schedule, or an operating hours counter. The applications that
need a clock are diverse.

The experiment shows how to program a very simple clock yourself.
The program runs in the Loop()-function, is finite and counts up
at a cycle of 10-ms. If the counter reading cnt = 100, the time

is output. This is done every second. Our user LED L will flash
every second as well. We monitor the function of the program to
ensure that it is still running and to see if an error occurred
in programming. However, note that the clock does not have the
precision of an actual quartz clock since the cycle and the
deviation of the micro controller quartz at 16 MHz is much higher
than in a clock quartz in the Kilohertz range (clock quartz =
32.768 kHz). Deviations of more than one minute per day are not
rare. The accuracy also strongly depends on ambience temperature.
If it fluctuates strongly over time, the clock will also have a
higher time error. We can correct the time deviation with delay ().
Alternatively, we can also use delayMicroseconds() to correct the
deviation even better. For this, configure a digital pin as the
output and toggle it at every program run , change the condition
once at every run. This signal can be trimmed precisely to a
throughput time of 10 ms with an oscilloscope. You can determine
the deviation across an extended period by comparing the time to
a different, precise clock, e.g. a DCF-clock for a while (1 to 2
days), calculating the difference and then correcting the de-
viation with delayMicroseconds().

These variables are then used to set the clock:

001 Second = 12
002 Minute = 0
003 Hour = 0

Advice
For more on the subject of clock quartz,
see: http://de.wikipedia.org/wiki/Uhrenquarz

The experiment requires the LCD basic writing that you set up
in the function test.

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007

http://de.wikipedia.org/wiki/Uhrenquarz

008 #define Backlight 9
009
010 int cnt, Second, Minute, Hour=0;
011 int LED=13;
012
013 void setup()
014 {
015 pinMode(LED, OUTPUT);
016 analogWrite(Backlight, 200);
017 lcd.begin(16, 2);
018
019 // Time specification
020 Second = 12;
021 Minute = 0;
022 Hour = 0;
023 }
024
025 void loop()
026 {
027
028 cnt++;
029 if(cnt == 50)digitalWrite(LED, LOW);
030
031 if(cnt == 100)
032 {
033 digitalWrite(LED, HIGH);
034
035 lcd.setCursor(3, 0);
036
037 if(Hour < 10) lcd.print("0");
038 lcd.print(Hour);
039 lcd.print(":");
040
041 if(Minute < 10) lcd.print("0");
042 lcd.print(Minute);
043 lcd.print(":");
044
045 if(Second < 10) lcd.print("0");
046 lcd.print(Second);
047
048 Second++;
049 if(Second == 60)
050 {
051 Second = 0;
052 Minute++;
053 if(Minute == 60)
054 {
055 Minute = 0;

056 Hour++;
057 if(Hour == 24)
058 {
059 Hour = 0;
060 }
061 }
062 }
063 cnt = 0;
064 }
065
066 delay(10);
067 }

If we were to output the counter readings one to one on the
display, the counter readings below 10 would look strange because
the leading zero would not be displayed. For the clock to have
the familiar »00:00:00«- format, we need to check if the value
is less than 10 before the output.

001 if(Second < 10) lcd.print("0")

If the value is less than 10, a simple output would only display,
e.g. »12:1:8«. However, we check if the value is less and add
a »0« manually if necessary to fill the tens.

CAPACITY METER

Building your own meters with the simplest of media is always
interesting and exciting. Arduino™ permits programming a ca-
pacity meter for small capacitors in the range of 1 nF to approx.
100 µF for our hobby lab at very low costs and effort. This is
how our capacity meter with auto range function works:

At commencement of the measurement, the variable C_time is
initialised with zero. Port D12 is configured as an output and
then immediately switched to LOW (GND), to discharge the
connected capacitor (test piece) before the actual measurement.

After a brief end charging pause of 1 second, port D12 will be
configured as input and the internal pull-up-resistance will be
activated. The pull-up-resistance will now charge the capacitor
to be tested until the port D12 recognises HIGH. The threshold
from when onwards the digital port recognises HIGH is at approx.
3.5 V at an operating voltage of 5 V. This level therefore

depends on the operating voltage and is indicated in the data
sheet for the micro controller at Vcc x 0.7.

001 HIGH = 5V x 0,7

Before a HIGH level is recognised in the digital port, some time
will pass. We measure it within the Do-while-loop using the
variable C_time. C_time is approximately proportional to the
capacity of the capacitor, i.e. when C_time is very large, the
capacity to be measured is very large as well.

To get the proper measured value, we need to convert the variable
(C_time • Factor). The value (factor) must be determined ex-
perimentally with »a few calibration capacitors«, since
recognition of a HIGH level will deviate slightly from controller
to controller in spite of the information Vcc x 0.7 in the data
sheet, and the oscillator frequency of 16 MHz is not 100 % the
same in every board (quartz tolerances). Finally, the measured
value will be divided into Nanofarad (nF) and Mikrofarad (µF)
with a simple If()-query and output on the LCD before a new
measurement starts.

Get a few new capacitors – always use capacitors of which you
know precisely what capacity they have. You may have them
measured by an electronics specialist in the lab. New capacitors
usually have the printed-on values +/- 20 %, depending on type.

Example code: CAPA

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 #define Backlight 9
009
010 int messPort=12;
011 float c_time=0.0;
012 float kapazitaet=0.0;
013
014 void setup()
015 {
016 analogWrite(Backlight,200);
017
018 lcd.begin(16, 2);
019 lcd.setCursor(0,0);
020 lcd.print("C-METER");
021 }
022
023 void loop()
024 {
025 // Discharging
026 pinMode(messPort,OUTPUT);
027 digitalWrite(messPort,LOW);
028 c_time=0.0;
029 delay(1000);
030
031 // Charging
032 pinMode(messPort,INPUT);
033 digitalWrite(messPort,HIGH);
034
035 // Measuring
036 do
037 {
038 c_time++;
039 }while(!digitalRead(messPort));
040
041 // Converting
042 kapazitaet=(c_time*0.06162)*10.0;
043
044 // Range
045 if(kapazitaet<999)

046 {
047 lcd.setCursor(0,1);
048 lcd.print(kapazitaet);
049 lcd.print("nF ");
050 }
051 else
052 {
053 lcd.setCursor(0,1);
054 lcd.print(kapazitaet/1000);
055 lcd.print("uF ");
056 }
057
058 delay(1000);
059 }

RANDOM NUMBERS –
THE LOTTERY RESULTS
GENERATOR

When writing measuring, control, regulating or playing programs,
it is often of benefit to generate random numbers, e.g. when
lights are to go on and off at different times in a house to
program a presence simulator. For this purpose, the Ar-
duino™-random()-function can be used. This permits a simple
lottery number generator that will draw 6 out of 49 for you. You
will no longer have to think about which numbers you are supposed
to take when you complete your lottery slip.

For the setup of the lottery number generator, you need a button
and an aerial. The button is debounced in the software. The button
and switch tend not to close the contact 100 % at once but to
trigger several times after being pushed. This is comparable to
tossing a ball to the floor. It will bounce a few times before
finally resting on the ground. This happens much faster in a
button, but the Arduino™-micro controller is so fast that it will
still record these millisecond »hops«. To avoid this, the button
is debounced by being queried twice in sequence with a break of
50 ms, which is enough for a debouncing routine in practice . Only
if the second evaluation still recognises a LOW at input D7 will
the instruction between the brackets be executed.

At commencement of the program, we switch the port D7 to INPUT

and activate the internal pull-up-resistance, by
ing digitalWrite() to write a 1 for HIGH on the input. Now a voltage
of approx. 5 V is pending at the input in the resting condition.
Now you can pull the input against GND (ground) with the button.
This pull-up-resistance is integrated in the microcontroller and
has a value of approx. 20 to 50 kΩ. Regarding function, it is
the same as if applying an external resistor from input D7 to
+5 V. In the resting condition, the program will therefore always
recognise a HIGH at input D7 and a LOW when the button is pushed.
Therefore, the button query is applied with a question mark in
the program. This is called the NOT-operator in C-programming.
Since it is known that an If()-query checks for TRUE , everything
else will be interpreted as FALSE . If the If()-query has been
performed without this operator, the condition would always be
TRUE. It would then already be performed before the button had
even been pushed. The NOT-operator inverts the status of the
button. 1 turns into 0 and 0 turns into 1 and the If()-query is
now only TRUE if the button has actually been pushed.

Example code: LOTTERY

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 #define Backlight 9
009 #define button 7
010
011 int i, zahl=0;
012 int Anz = 6;
013
014 void setup()
015 {
016 analogWrite(Backlight, 200);
017
018 pinMode(button, INPUT);
019 digitalWrite(button, HIGH);
020
021 lcd.begin(16, 2);
022 lcd.setCursor(0, 0);
023 lcd.print("LOTTO 6 of 49");
024 delay(1000);
025 lcd.clear();
026
027 randomSeed(analogRead(0)*5);

028
029 }
030
031 void loop()
032 {
033 lcd.clear();
034 lcd.setCursor(0, 0);
035 lcd.print("PUSH BUTTON");
036
037 while(digitalRead(button));
038 {
039 if(!digitalRead(button))
040 {
041 delay(50);
042 if(!digitalRead(button));
043 {
044 lcd.clear();
045 lcd.setCursor(0, 0);
046 lcd.print("YOUR LOTTERY NUMBERS");
047
048 lcd.setCursor(0, 1);
049 for(i=0;i<Anz;i++)
050 {
051 zahl=random(49);
052 zahl++;
053 lcd.print(zahl);
054 lcd.print(" ");
055 delay(500);
056 }
057
058 delay(5000);
059 }
060 }
061 }
062 }

When starting the program, randomSeed() generates a value as
starting point for the Random()-function. When changing the value
of randomSeed(), different random numbers will be generated in each
case. If the value of randomSeed() always were the same when the
program starts, the same random number series would be generated
every time, which would not be helpful for playing lottery.

Our aerial is used here. To produce different values with the
function randomSeed(), we use an ADC-input connected to a jumper
and remaining open on the other side. This acts like an aerial
and produces a higher noise at the analogue input and thus a
different value for randomSeed() in each case. This works best if

you put your hand next to the aerial or if the aerial is placed
near electrical devices. The result with different number series
can only be seen when you push the reset button on the Ar-
duino™-PCB and then have the numbers output. You can enter a
fixed number instead of analogRead() once to see that the same
number sequences will appear every time after the reset.

BAR CHART DISPLAY

Bar chart displays are often used in measuring technology. They
are also called bar displays. They display a visual/trend
measured value. When setting electronic circuits, a bar chart
display makes things much easier because the trend towards max.
or min. can be read more easily than in digital numeric value
displays. We know this display and progress bar in computer
programs as well, e.g. when installing a program. Here, the bar
shows how far the installation has already progressed. Gen-
erally, the bar chart display shown in the experiment is an
analogue display on a digital basis. Electromechanical bar chart
displays were already used in early electronics. Our bar chart
display, however, uses a modern LCD and a microcontroller.

In the simplest case, we would be able to display a full character
for each display step (5 x 8 dots). We can only implement a very
general display of 0 to 16 then. It would be nice if you could
use the individual five columns of every single character. Since
we can generate eight own characters, it is simple to program
a bar chart display with 5 x 16 = 80 characters/conditions.

The experiment requires the LCD basic writing that you set up
in the function test.

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 #define LCD_LENGHT 16.0
009
010 int value;
011 byte flag = 0;
012
013 byte MyChar0[8] = {

014 B00000,
015 B00000,
016 B00000,
017 B00000,
018 B00000,
019 B00000,
020 B00000,
021 B00000,
022 };
023
024 byte MyChar1[8] = {
025 B10000,
026 B10000,
027 B10000,
028 B10000,
029 B10000,
030 B10000,
031 B10000,
032 B10000,
033 };
034
035 byte MyChar2[8] = {
036 B11000,
037 B11000,
038 B11000,
039 B11000,
040 B11000,
041 B11000,
042 B11000,
043 B11000,
044 };
045
046 byte MyChar3[8] = {
047 B11100,
048 B11100,
049 B11100,
050 B11100,
051 B11100,
052 B11100,
053 B11100,
054 B11100,
055 };
056
057 byte MyChar4[8] = {
058 B11110,
059 B11110,
060 B11110,
061 B11110,

062 B11110,
063 B11110,
064 B11110,
065 B11110,
066 };
067
068 byte MyChar5[8] = {
069 B11111,
070 B11111,
071 B11111,
072 B11111,
073 B11111,
074 B11111,
075 B11111,
076 B11111,
077 };
078
079 void draw_bargraph(byte percent)
080 {
081 byte i, c1, c2;
082
083 lcd.setCursor(0, 0);
084 lcd.print(percent);
085 lcd.print("% ");
086
087 lcd.setCursor(0, 1);
088
089 percent = map(percent, 0, 100, 0, 80);
090
091 c1 = percent / 5;
092 c2 = percent % 5;
093
094 for(i = 0; i < c1; ++i)
095 {
096 lcd.write(byte(5));
097 lcd.write(c2);
098 }
099
100 for(i = 0; i < 16 – (c1 + (c2 ? 1 : 0)); ++i)
101 {
102 lcd.write(byte(0));
103 }
104 }
105
106 void setup()
107 {
108 analogWrite(9,200);
109

110 lcd.createChar(0, MyChar0);
111 lcd.createChar(1, MyChar1);
112 lcd.createChar(2, MyChar2);
113 lcd.createChar(3, MyChar3);
114 lcd.createChar(4, MyChar4);
115 lcd.createChar(5, MyChar5);
116
117 lcd.begin(16, 2);
118 }
119
120 void loop()
121 {
122 double percent;
123
124 if(flag == 0)value++;
125 if(flag == 1)value--;
126 if(value > 1024)flag=1;
127 else if(value == 0)flag=0;
128
129 percent = value / 1024.0 * 100.0;
130 draw_bargraph(percent);
131 delay(10);
132 }

The individual segments of the bar chart display are specified
with the arrays MyChar0 to MyChar5. The program code already shows
how the segments fill with ones bottom-up array by array. In
the Setup()-function, the characters are created
with lcd.createChar().

In the Loop()-function, an Up/Down counter that we know from the
preceding experiments is used again. However, this time, it
counts from 0 to 1,024. This way the counter could easily be
replaced by an Arduino™-analogue input that covers a value range
of 0 to 1,023. The counter value is converted to percent and
handed over to the function draw_bargraph().

The draw_bargraph()-function is exciting. Here, the bar chart
display is put together and displayed. Every time the function
is called, the cursor will be set to position (0, 0). This is
the starting position to re-draw the display. In the first row,
we output the percentage value of the variable percent and write
a percentage sign behind it. The percentage sign will be followed
by two spaces to clear the display from tens or hundreds offset.
The digital value output in percent is thus complete.

Then we use setCursor(0, 1) to place the cursor in the lower, i.e.
the second row of the LCD. To divide the percentage value, which
goes from 0 to 100 % into the 80 individual areas (pixels), we

use the Map()-function. This scales the input value percent, from
0 to 100 to the output value from 0 to 80. The variable percent then
holds a value between 0 and 80, depending on the input val-
ue percent.

Now we determine the value of percent by dividing the number of
boxes to be filled entirely by 5, and write the result into the
variable c1. The modulo operation % determines the rest or the
partial filling. We will write this value into the variable c2.
Now we know how many boxes are to be filled completely and how
many are filled only partially.

In the following For()-loop, we will count up until all filled
boxes are reached, and write a full box onto the LCD in every
loop passage. Since every subsequent output at the LCD auto-
matically moves the characters by one, we will have a bar with
full boxes at the end of the loop. This point of the program also
shows that the For()-loop uses no braces. In the For()-loop, the
compiler only takes the subsequent row into the loop. In this
case, this would be the call of lcd.write(byte(5)). After completing
this first box loop, the box with the partial filling is written
onto the LCD. This leads to a bar that is built pixel by pixel
on the LCD.

Example
The percentage value 43 is to be displayed. We divide the number
43 by 5, which makes 8.6. Since the variable c1 is declared as
byte, only an 8 will be saved in it. Modulo 5 from 43 is 3, which
means three partial strokes.

If the value reduces again, we need to delete the superfluous
characters from the LCD. A new operation, which is called
conditional expression or ternary selection operator, is added
.

Generally, the entire thing can be viewed like an
If-Else-instruction, but it is only an abbreviated C annotation.

The syntax for the conditional instruction would be: Condition
? Expression1 : Expression2

This seems familiar to you, doesn't it? It generally is no
different from:

001 if(condition)
002 {
003 // Expression1
004 }
005 else
006 {
007 // Expression2
008 }
009

010 for(i = 0; i < 16 – (c1 + (c2 ? 1 : 0)); ++i)
011 lcd.write(byte(0))

The loop deletes the superfluous characters from the LCD by
determining how long the area that is not used is and overwriting
it with spaces.

A little know-how is needed for the bar chart display, but once
it has been understood, it can be used easily in many appli-
cations.

LIGHT METER – THE
PHOTOMETER

A photometer is a meter to determine the light density or light
strength. It is used, e.g. by photographers as lighting meter
or in astronomy to determine the brightness of stars.

In chemistry, it is used to determine concentrations. In the last
experiment, we programmed a bar chart display; this time, instead
of the up/down counter, we will hand over a true physical value
and program a simple photometer.

The circuit diagram shows how the photo transistor is connected
to the analogue input (ADC) of the Arduino™-board. The photo
transistor is not easy to tell from a regular LED. It has a clear,
transparent housing, but that is true for some LEDs as well. If
you are not sure if you have an LED or a photo transistor, you
can check the behaviour with a multimeter set to measuring
resistances. For this, connect the collector (C – flattened side
of the housing) to the pulse line and the emitter (E) to the minus
line of the meter. If you darken a photo transistor, the re-
sistance value will change enormously. In an LED, the effect will
be tiny. Multimeters with an auto range function are ideal here
because the measured value can be between a few Kiloohm and
several Megaohm.

Example code: PHOTOMETER

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7

006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 #define LCD_LENGHT 16.0
009
010 const int numReadings = 10;
011 unsigned int readings[numReadings];
012 int index = 0;
013 unsigned int total = 0;
014 int average = 0;
015
016 byte MyChar0[8] = {
017 B00000,
018 B00000,
019 B00000,
020 B00000,
021 B00000,
022 B00000,
023 B00000,
024 B00000,
025 };
026
027 byte MyChar1[8] = {
028 B10000,
029 B10000,
030 B10000,
031 B10000,
032 B10000,
033 B10000,
034 B10000,
035 B10000,
036 };
037
038 byte MyChar2[8] = {
039 B11000,
040 B11000,
041 B11000,
042 B11000,
043 B11000,
044 B11000,
045 B11000,
046 B11000,
047 };
048
049 byte MyChar3[8] = {
050 B11100,
051 B11100,
052 B11100,
053 B11100,

054 B11100,
055 B11100,
056 B11100,
057 B11100,
058 };
059
060 byte MyChar4[8] = {
061 B11110,
062 B11110,
063 B11110,
064 B11110,
065 B11110,
066 B11110,
067 B11110,
068 B11110,
069 };
070
071 byte MyChar5[8] = {
072 B11111,
073 B11111,
074 B11111,
075 B11111,
076 B11111,
077 B11111,
078 B11111,
079 B11111,
080 };
081
082 int adc_AVG(byte channel)
083 {
084 total= total – readings[index];
085 readings[index] = analogRead(channel);
086 total= total + readings[index];
087 index = index + 1;
088
089 if (index >= numReadings)index = 0;
090
091 average = total / numReadings;
092 return average / 1024.0 * 100.0;
093 }
094
095 void draw_bargraph(byte percent)
096 {
097 byte i, c1, c2;
098
099 lcd.setCursor(0, 0);
100 lcd.print("Brightness: ");
101 lcd.print(percent);

102 lcd.print("% ");
103
104 lcd.setCursor(0, 1);
105
106 percent = map(percent, 0, 100, 0, 80);
107
108 c1 = percent / 5;
109 c2 = percent % 5;
110
111 for(i = 0; i < c1; ++i)
112 lcd.write(byte(5));
113
114 lcd.write(c2);
115
116 for(i = 0; i < 16 – (c1 + (c2 ? 1 : 0)); ++i)
117 lcd.write(byte(0));
118 }
119
120 void setup()
121 {
122 analogWrite(9,200);
123
124 lcd.createChar(0, MyChar0);
125 lcd.createChar(1, MyChar1);
126 lcd.createChar(2, MyChar2);
127 lcd.createChar(3, MyChar3);
128 lcd.createChar(4, MyChar4);
129 lcd.createChar(5, MyChar5);
130
131 lcd.begin(16, 2);
132 }
133
134 void loop()
135 {
136 int raw_adc = adc_AVG(0);
137 draw_bargraph(100 – raw_adc);
138 delay(20);
139 }

When you have set up the circuit and transferred the example code
to the Arduino™-board, a value near 100 % will be displayed on
the LCD in bright environments, and the bar of the bar chart will
fill the lower row of the LCD almost completely.

If you darken the photo transistor now, the value will reduce
to near zero. Look at the circuit more precisely. The photo
transistor is connected to the 10-kΩ-resistance at the col-
lector, which is connected to +5 V, and to GND (ground) at the
emitter. The analogue input 0 of the Arduino™-PCB is connected

to the node point of the collector and the resistor. If the photo
transistor is now exposed to light, it will become conductive,
and the voltage drop between collector and emitter will reduce.
We are measuring a very low voltage. When the photo transistor
is darkened, barely any current will flow, the photo transistor
will lock and the collector-emitter voltage will increase. Now
we measure almost the entire 5 V.

Between the two extremes, the photo transistor will be very
dynamic and react even to the smallest light fluctuations. Since
the display would work precisely inverted this way - very bright
would be a low value and dark a very high one - we need to adjust
the measured value. For this, we subtract the measured value from
100 %, to get the desired result. We invert our analogue measured
value.

To keep the bar chart display from »twitching“ too much at
smallest light changes, the bar charge display function had an
average formation added. It smoothens out the analogue measured
values and calculates a sliding average, called AVG for Average,
from it .

For this, the current measured value is added to an array at each
run and, depending on how high the counter reading in this function
is at the moment, divided by it. This will continually return the
current average. The number of measuring series for average
formation is specified in the variable numReadings-. The higher the
number of the values to be averaged, the more precise, but also
the more idle the display. You can experiment with the values here.
Values between 8 and 64 have proven to be sensible. At the end of
the AVG-function, the input value (0 to 1,023) is then calculated
for a percentage for the bar chart function.

This kind of photometer can also be reprogrammed to automatically
activate and deactivate lighting or, as the next experiment
shows, be turned into an alarm system.

ALARM SYSTEM

The photometer can also be used as an alarm system that will react
to the smallest light changes. At the beginning of the alarm
system program, the current light intensity at the analogue input
A0 that is used as the reference point for the measurement will
be determined . If the voltage value in the continuous meas-
urement increases or reduces due to a light change (e.g. a person
walking past), and if this exceeds or undercuts the specified
threshold, the alarm will trigger.

Since brightness in a room will change over the course of the
day, a new reference value (current voltage of the photometer)
will be determined automatically every 10 seconds to be used as

the new reference point for continuous measurements.

We therefore compare a fixed light value that is measured anew
every 10 seconds to the light value of the continuous meas-
urement. The defined threshold will only cause the alarm to be
tripped if the current light value +/- exceeds or undercuts the
threshold.

001 cnt++;
002 if(cnt > 2000)
003 {
004 cnt = 0;
005 value = analogRead(PHOTOTRANSITOR)
006 }

If the variable cnt is above 2,000, a new value will be read from
the analogue input A0. An inserted pause that influences the
program run speed will only increment the variable cnt by 1 every
5 ms. This leads to a value of 5 ms x 2,000 = 10,000 ms = 10
seconds.

001 Threshold = 25
002 if(analogRead(PHOTOTRANSITOR) > (value + Threshold) ||
 analogRead(PHOTOTRANSITOR) < (value – Threshold))

Here, the value of the variable named Threshold is set. It is
responsible for trigger sensitivity and should not be set too
high or too low, since the alarm system will either barely react
at all or trigger too many false alarms otherwise. The evaluation
of the continuous measured value that is recorded every 5 ms will
take place in this program row.

To test this, run your hand over the phototransistor at a distance
of approx. 50 cm in a normally lit room. the alarm will trip.
This can even be done very quickly. The detector will record you
at once if darkening by your hand exceeds 5 ms.

The alarm system could also be placed in a refrigerator and add
a counter variable to the alarm message, to record the opening
cycles of the refrigerator. In the refrigerator experiment, you
will find that the LCD will change its contrast and will also
turn very idle. Just try it out.

We use the same setup as for the photometer light meter!

001 // Integrating LCD-Library

002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 #define Backlight 9
009
010 int PHOTOTRANSITOR = 0;
011 int cnt = 0;
012 int value, Threshold;
013
014 void setup()
015 {
016 analogWrite(Backlight, 200);
017 lcd.begin(16, 2);
018 lcd.setCursor(1, 0);
019 lcd.print("ALARM SYSTEM!!!");
020 value = analogRead(PHOTOTRANSITOR);
021 }
022
023 void loop()
024 {
025
026 Threshold = 25;
027
028 cnt++;
029 if(cnt > 2000)
030 {
031 cnt = 0;
032 value=analogRead(PHOTOTRANSITOR);
033 }
034
035
036 if(analogRead(PHOTOTRANSITOR) > (value + Threshold) ||
 analogRead(PHOTOTRANSITOR) < (value – Threshold))
037 {
038 lcd.setCursor(1, 1);
039 lcd.print("<<< ALARM >>>”);
040 delay(2000);
041 value=analogRead(PHOTOTRANSITOR);
042 }
043 else
044 {
045 lcd.setCursor(0, 1);
046 lcd.print(" ");
047 }
048

049 delay(5);
050
051 }

DIGITAL VOLTMETER
WITH BAR CHART DIS-
PLAY AND USB INTER-
FACE

With what you have learned so far, you can now program a digital
Voltmeter with analogue bar chart display. The bar chart display
will be valuable for setting work. You can see much more precisely
where, e.g., the maximum or minimum is, on an analogue display
than on a digital display with pure numeric output. As a special
feature, we supplement the program with a serial output that will
send your measured data to the PC via the USB interface. Here,
we use the USB- interface already present on the Ar-
duino™-UNO-board that we are already using for programming.

Resistors R1 and R2 are not needed in this experiment and are
not enclosed with the learning package! They will, however, be
further explained in this chapter. If you need them, you can
purchase them in a specialist electronics store later.

You can use the circuit to measure very precise voltages between
0 and 5 V using the analogue input A0 without the two resistors
R1/R2. However, ensure that you do not connect any higher
voltages to the connection, since the Arduino™-board would be
damaged by this. You may already measure the voltage of one or
two Mignon cells (AA) or Micro cells (AAA) extremely precisely
with the circuit. The example is very similar to that of the
photometer, but with a few different details. This time, we also
use the serial interface (UART = Universal Asynchronous Receiver
Transmitter) of the Arduino™-micro controller. The measured data
are sent through the serial interface of the micro controller
(UART) to the UART-to-USB-converter on the Arduino™-PCB , which
passes it on to the PC. The serial connections D0/RX and D1/TX
are already firmly connected to the converter and no further

wiring work is required for this. On the PC-side, a virtual
Comport is produced when installing the Arduino™-PCB. This is
already used for programming. Now, we can also simply use it to
transfer data to the PC. For this, we only need to initialise
the UART interface in the program. This is configured
with Serial.begin(). The parameter 19200 between the brackets
represents the transfer speed. Initialisation only needs to be
executed once at program start in the Setup()-function.

001 Serial.begin(19200)

Baud is the unit for the symbol rate in message and telecom-
munications technology. 19200 Baud means , that 19,200 symbols
per second will be transferred. The symbol rate can contain
different numbers of bits depending on coding and must be set
equally on the transmitter and receiver sides to permit
transmission.

The following lines are now used to send the measured result of
the ADC (0 to 1013) to the PC directly without prior conversion.
Conversion to Volt takes place in the PC-program, since we only
need to send two individual bytes to the PC this way, which are
much easier to evaluate than a string (ASCII-character string).

Now the buffer of the UART-interface will be emptied with flush.

001 Serial.flush()

Now we will take apart the analogue measured value, which ranges
from 0 to 1023, into a high and a low byte. We will get the high
byte by dividing the measured value by 256.

001 highbyte = adc_raw / 256

We will get the low byte with the modulo operation 256.

001 lowbyte = adc_raw % 256

Then we will send first the high byte and then the low byte to
the PC.

001 Serial.write(highbyte)
002 Serial.write(lowbyte)

To check that the values have been transferred correctly, we can
see a checksum at the end of the transfer that is made up of a
fixed number and the XOR-formation of this, as well as the two
bytes.

001 crc = 170^highbyte^lowbyte
002 Serial.write(crc)

Info
The program also works without PC-program and can be used as
a stand-alone volt meter.

Example code: VOLTMETER

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 #define LCD_LENGHT 16.0
009 #define ADC_CHANNEL 0
010
011 const int numReadings = 20;
012 unsigned int readings[numReadings];
013 int index = 0;
014 unsigned int total = 0;
015
016 byte MyChar0[8] = {
017 B00000,
018 B00000,
019 B00000,
020 B00000,
021 B00000,
022 B00000,
023 B00000,
024 B00000,
025 };
026
027 byte MyChar1[8] = {
028 B10000,
029 B10000,
030 B10000,

031 B10000,
032 B10000,
033 B10000,
034 B10000,
035 B10000,
036 };
037
038 byte MyChar2[8] = {
039 B11000,
040 B11000,
041 B11000,
042 B11000,
043 B11000,
044 B11000,
045 B11000,
046 B11000,
047 };
048
049 byte MyChar3[8] = {
050 B11100,
051 B11100,
052 B11100,
053 B11100,
054 B11100,
055 B11100,
056 B11100,
057 B11100,
058 };
059
060 byte MyChar4[8] = {
061 B11110,
062 B11110,
063 B11110,
064 B11110,
065 B11110,
066 B11110,
067 B11110,
068 B11110,
069 };
070
071 byte MyChar5[8] = {
072 B11111,
073 B11111,
074 B11111,
075 B11111,
076 B11111,
077 B11111,
078 B11111,

079 B11111,
080 };
081
082 int adc_AVG(byte channel)
083 {
084 total= total – readings[index];
085 readings[index] = analogRead(channel);
086 total= total + readings[index];
087 index = index + 1;
088 if (index >= numReadings)index = 0;
089 return total / numReadings;
090 }
091
092 void draw_bargraph(byte percent)
093 {
094 byte i, c1, c2;
095
096 lcd.setCursor(0, 1);
097
098 percent = map(percent, 0, 100, 0, 80);
099
100 c1 = percent / 5;
101 c2 = percent % 5;
102
103 for(i = 0; i < c1; ++i)
104 lcd.write(byte(5));
105
106 lcd.write(c2);
107
108 for(i = 0; i < 16 – (c1 + (c2 ? 1 : 0)); ++i)
109 lcd.write(byte(0));
110 }
111
112 void setup()
113 {
114 analogWrite(9, 200);
115
116 lcd.createChar(0, MyChar0);
117 lcd.createChar(1, MyChar1);
118 lcd.createChar(2, MyChar2);
119 lcd.createChar(3, MyChar3);
120 lcd.createChar(4, MyChar4);
121 lcd.createChar(5, MyChar5);
122 lcd.begin(16, 2);
123
124 Serial.begin(19200);
125 }
126

127 void loop()
128 {
129 double percent;
130 float voltage;
131 byte highbyte, lowbyte, crc;
132 int adc_raw = adc_AVG(ADC_CHANNEL);
133
134 voltage = (5.0 / 1024.0) * adc_raw;
135
136 lcd.setCursor(0, 0);
137 lcd.print(voltage, 2);
138 lcd.print(" V ");
139
140 percent = voltage / 5.0 * 100.0;
141 draw_bargraph(percent);
142
143 Serial.flush();
144 highbyte=adc_raw/256;
145 lowbyte=adc_raw%256;
146 Serial.write(highbyte);
147 Serial.write(lowbyte);
148 crc=170^highbyte^lowbyte;
149 Serial.write(crc);
150
151 delay(20);
152 }

To start the PC-program, you only need to execute the EXE file
in the folder ...\VOLTMETER\vb.net\bin\Release. Then choose the
Comport, which is identical to the one you have already set in
the Arduino™-IDE for the program transfer. If you click Connect
now, the voltage in the PC-program will be displayed.

The VB.NET-program is enclosed as source code and can be used
as a basis for your own experiments. For this, you need to
download the free Visual-Basic-Express-Version by Microsoft.
You can find it
athttps://www.visualstudio.com/downloads/download-visual-stu
dio-vs. When you have opened the program with Visual Basic, you
will see the source code and the designer before you. The designer
displays the visual control elements such as buttons, texts
fields, etc. Now have a look at the source code of the Voltmeter
program by switching to source code view.

001 Imports System.IO.Ports.SerialPort
002 Imports System.Text.Encoding

First, we will import the functions needed for the serial

interface and coding. Without importing the Encoding Library,
we will, e.g., be unable to evaluate any values exceeding 128,
since we cannot switch the interface to UTF-8 format then. Our
measured result would be wrong then!

001 Dim input_data(10) As Byte

input_data(10) is used to set up an array that can take up up to
10 bytes. The received bytes from the serial interface will be
filed in this later.

001 Private Sub Form1_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles MyBase.Load

In the function Form1_load(), present Comports will be found now.
They are listed in the combo box. The Form1_Load()-function will
automatically be called first when the program starts – similar
to the Setup()-function of our Arduino™-program.

001 Private Sub Button_Connect_Click(ByVal sender As System.
 Object, ByVal e As System.EventArgs) Handles
 Button_Connect.Click

In the function Button_Connect_Click(), you will configure and open
the serial interface at the same time. This function is called
when clicking the Connect button.

001 SerialPort1.PortName = ComboBox_Comport.Text
002 SerialPort1.BaudRate = 19200
003 SerialPort1.Encoding = System.Text.Encoding.UTF8
004 SerialPort1.Open()

Here, we specify the Comport, the Baud rate and the Encoding,
and open the interface with SerialPort1.Open(), which will then be
ready to transfer and receive.

001 Private Sub Button_Disconnect_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 Button_Disconnect.Click

The function Button_Disconnect_Click() closes the interface again. It

is then available for other programs again, such as the Ar-
duino™-IDE. If you want to transfer any program changes or other
programs to your Arduino™-board, you need to terminate the
program first or click Disconnect to release the interface again.

001 Private Sub SerialPort1_DataReceived(sender As Object
 , e As System.IO.Ports.SerialDataReceivedEventArgs)
 Handles SerialPort1.DataReceived
002
003 Dim cnt As Byte
004 Dim in_bytes As Byte
005 Dim HighByte As Byte
006 Dim LowByte As Byte
007 Dim crc As Byte
008 Dim crc_ok As Byte
009 Dim data_Word As Integer
010 Dim voltage As Single
011
012 Try
013
014 ' This is where the data are received
015 If SerialPort1.IsOpen Then
016
017 Control.CheckForIllegalCrossThreadCalls
 = False
018
019 ' How many Bytes are in the buffer
020 in_bytes = SerialPort1.BytesToRead
021
022 ' Collect all bytes
023 For cnt = 1 To (in_bytes)
024 input_data(cnt) = SerialPort1.ReadByte
025 Next
026
027 ' Empty buffer
028 SerialPort1.DiscardInBuffer()
029
030 HighByte = input_data(1)
031 LowByte = input_data(2)
032 crc = input_data(3)
033
034 ' Checksum
035 crc_ok = 170 Xor input_data(1) Xor input_
 data(2)
036
037 If crc = crc_ok Then
038
039 ' High and Low Byte are

 assembled again
040 data_Word = ((HighByte * 256) + LowByte)
041 voltage = data_Word * (5.0 / 1024.0)
042
043 ' RAW value conversion and display as
 voltage
044 Label1.Text = Format(voltage, "0.00 V")
045
046 End If
047
048 End If
049
050 Catch ex As Exception
051 End Try
052
053 End Sub

In the function SerialPort1_DataReceived(), the most interesting part
of the VB.NET-program will now follow. This function will be
called every time data are received from the serial interface.
Here, we read the bytes that our Arduino™-program sends, and
process them right away. Before reading and processing, we always
check if the connection is opened first and then check how many
bytes are available in the reception buffer. Then we read the
bytes into the input_data()-arrays and assign the received values
to the variables HighByte, LowByte and crc. Last, we will calculate
the checksum by applying the same procedure as in our Ar-
duino™-program. If the calculated and the received checksum are
the same, no transmission error has occurred. Now we need to
perform measured value calculation. To get a certain formatting,
we use the Format()-function of VB.NET and output the formatted
value on the Label1.

16.1 | Expansion of the Measuring Range
If you want to measure higher voltages, you need a pre-voltage
divider, consisting of the resistors R1 and R2. You can use them
to expand the input voltage range as desired. However, observe
that the resolution will also reduce with an increasing input
voltage range.

In our experiment, which is meant for an input voltage of 5 V,
we have a resolution of 0.00488 V or 4.88 mV per conversion step.
Our digital value of the analogue input can dissolve 1,024 steps,
since it has a digital resolution of 10 bits.

Conversion steps (Steps): 1,024 = 210
Resolution per Digit = UADC / Steps

5 V / 1,024 = 0.00488 V = 4.88 mV

If we were to raise the input voltage range to 30 V, the
resolution would deteriorate five-fold ((30 V – 5 V) / 5 V = 5).
We would »only« be working with a resolution of 0.0244 V = 24.4 mV
anymore.

Now we can determine the voltage divider for a measuring range
up to 30 V. We already know that we want to expand the input range
from 5 V to 30 V, which corresponds to factor 5. The measuring
input for voltage measurements must not be too low-Ohmic and
should be at least 100 kΩ. Modern voltage meters in contrast,
have an input resistance of 10 MΩ to put as little stress as
possible on the voltage source and to avoid falsifying the
measuring result as far as possible.

Let us assume an input resistance of approx. 100 kΩ and define
the resistor R1 at 100 kΩ. In a serial circuit, the ratio of the
voltages is identical to the ratio of the resistors to each other.
The resistor R2 only needs to be 1/5 as large as the resistance
of R1. We take 100 kΩ / 5 and will receive the value 20 kΩ for R2.

Let us now determine the current that flows in the circuit. In
a serial circuit, the current through the resistors is the same
and the voltages will be divided. The current through the
resistors is calculated as follows:

I = U / RTotal
30 V / 120 kΩ = 0.25 mA

The following voltage drop would result at R2 then:

U = R2 x I
20 kΩ x 0.25 mA = 5 V

At an applied voltage of 15 V, the value at the ADC would be:

15 V / 120 kΩ = 0.125 mA
20 kΩ x 0.125 mA = 2.5 V

Let us calculate the power loss across the resistors at maximum
input voltage now:

P = U x I
30 V x 0.25 mA = 7.5 mW

You can now calculate your own matching voltage divider and
adjust the measured value in the program by multiplying it by
your voltage divider factor. The measuring error can be de-
termined by experimenting with a precise voltage meter and is
included in calculation of the multiplication factor. Observe
the resistance values of the E-series and do not try to include
the mathematically determined values in a circuit by using
unusual E-series or even trying to switch resistors in series
or in parallel to get precisely the calculated resistance.

This calculation also does not consider the input resistance of
the ADC. In the Arduino™-UNO ATmega328, it is at approx. 100 kΩ.

Therefore, we should not go any higher than 100 kΩ with the input
voltage divider to still get useful measuring results. For more
precise results, you may perform the calculation for a loaded
voltage divider and include the resistance of the ADC in R2.

Also consider that the tolerance adds up in a serial circuit.
If you are using two resistors with 5 % tolerance each for the
circuit shown, the total tolerance is already at 10 %.

The values of the E12-series have turned out to be ideal. They
are available in every electronic shop and are part of the
standard series. When building meters, however, the tolerances
of the components should be kept as low as possible for the most
precise measuring results.

Advice
The following link will take your to an online tool with which
you can calculate voltage divid-
ers: http://www.peacesoftware.de/
einigewerte/spannungsteiler.html

TEMPERATURE DISPLAY
IN DEGREES CELSIUS
AND FAHRENHEIT

This experiment shows how you can use a cost-efficient temperature
resistor like the NTC (Negative Temperature Coefficient Ther-
mistor) used here to program a simple LCD-thermometer.

An NTC is a resistor that changes its resistance depending on
its temperature. The NTC is called a hot conductor. This means
that its resistance reduces when the temperature increases.

The circuit diagram shows the setup in more detail. This is
another variable voltage divider, consisting of a 10-kΩ-fixed
resistor and the variable NTC-resistor. As the temperature
drops, the resistance of the NTC increases and so does the voltage
at the analogue input A0.

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>

http://www.peacesoftware.de/einigewerte/spannungsteiler.html
http://www.peacesoftware.de/einigewerte/spannungsteiler.html

003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 #define Backlight 9
009 #define ADC_NTC 0
010
011 float temp_celsius, temp_fahrenheit;
012 int ADC_raw;
013
014 float Grad_to_Fahrenheit(float grad)
015 {
016 return (9.0 / 5.0) * grad + 32;
017 }
018
019 void setup()
020 {
021 analogWrite(Backlight, 200);
022 lcd.begin(16, 2);
023 lcd.setCursor(0, 0);
024 lcd.print("THERMO – ARDUINO");
025 Serial.begin(9600);
026 delay(2000);
027 lcd.clear();
028 }
029
030 void loop()
031 {
032 ADC_raw = analogRead(ADC_NTC);
033 temp_celsius = (580.0 – ADC_raw) / 10;
034 temp_fahrenheit = Grad_to_Fahrenheit(temp_celsius);
035
036 lcd.setCursor(0, 0);
037 lcd.print(temp_celsius, 1);
038 lcd.write(223);
039 lcd.print("C ");
040
041 lcd.setCursor(0, 1);
042 lcd.print(temp_fahrenheit, 1);
043 lcd.write(223);
044 lcd.print("F ");
045
046 Serial.print("Temperature = ");
047 Serial.print(temp_celsius);
048 Serial.print(" °C");
049
050 Serial.print(" | ");

051 Serial.print(temp_fahrenheit);
052 Serial.println(" °F");
053
054 delay(1000);
055 }

The resistance curve of the NTC is not precisely linear and needs
to be adjusted by a calculation.

001 temp_celsius = (580.0 – ADC_raw) / 10

To receive the output not only in degrees Celsius, the value will
be converted to Fahrenheit and displayed on the LCD.

001 float Grad_to_Fahrenheit(float grad)
002 {
003 return (9.0 / 5.0) * grad + 32;
004 }

As you can see, we can write calculations at once after the
command return and do not need to hand it over to a variable first.
This function calculates the value in degrees Fahrenheit, as used
in the US system based on the degrees Celsius.

In this program, the serial interface is also used and the same
value is output on the LCD and additionally through an
ASCII-string via the UART-interface. When opening the Ar-
duino™-internal terminal program and setting its interface to
9,600 Baud, you will receive the measured values in plain text
in the terminal program.

TEMPERATURE PLOT-
TER WITH
USB-INTERFACE

Let us expand the thermometer with a VB.NET-program and change
the program code so that the plain text output as in the
predecessor program will be replaced by sending only the

temperature value to the PC. The circuit remains the same, but
the program is changed as follows:

001 Serial.flush()
002 highbyte=ADC_raw/256
003 lowbyte=ADC_raw%256
004 Serial.write(highbyte)
005 Serial.write(lowbyte)
006 crc=170^highbyte^lowbyte
007 Serial.write(crc)

As you can see, we transfer the temperature value like the
measured value of the voltage in the digital USB-Voltmeter. You
can find the complete program on the enclosed CD-ROM. It is called
»TEMP_PLOT“. The program code does not need to be listed beyond
this, because it corresponds to the predecessor program.

However, some things have changed in theVB.NET-program. It has
been expanded by a graphical output. For this, a control element
with the name »AutoRedraw« has been programmed that draws a
continuous line in the X and Y directions, depending on the input
variable, and serves as a temperature plotter. This program is
enclosed as source code and can be used for your own experiments.
A detailed description of the drawing functions would, however,
exceed the scope of this learning package. Relevant websites such
as www.vb-paradise.de and VB.NET-text books can be used to learn
more about VB.NET-programming.

WEBSYNCHRONOUS
CLOCK

We have already programmed a clock in this learning package.
Since it is not very precise and subject to a very large deviation
in the course of the operating time, we now program a
web-synchronous clock, knowing about the serial transmission
between PC and Arduino™. It is websynchronous, because the
Windows time is by default automatically reconciled with an
online time server in the background. In this VB.NET-program,
we will now send the time of the PC to Arduino™ and output it
on the LCD. The VB.NET-program is enclosed as an executable EXE
file and as source code.

The experiment requires the LCD basic writing that you set up
in the function test.

001 // Integrating LCD-Library
002 #include <LiquidCrystal.h>
003
004 // Specifying LCD pins
005 // RS, E, D4, D5, D6, D7
006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007
008 #define Backlight 9
009
010 byte Hour, Minute, Second;
011
012 void setup()
013 {
014 Serial.begin(9600);
015
016 analogWrite(Backlight, 200);
017
018 lcd.begin(16, 2);
019 lcd.clear();
020 lcd.setCursor(0, 0);
021 lcd.print("ARDUINO PC-CLOCK”);
022
023 Hour= 0;
024 Minute = 0;
025 Second= 0;
026 }
027
028 void loop()
029 {
030
031 if(Serial.available()>3)
032 {
033 Hour = Serial.read();
034 Minute = Serial.read();
035 Second = Serial.read();
036
037 lcd.setCursor(0, 1);
038 lcd.print("NOW: ");
039
040 if(Hour < 24)
041 {
042 if(Hour < 10) lcd.print("0");
043 lcd.print(Hour);

044 lcd.print(":");
045 }
046 if(Minute < 60)
047 {
048 if(Minute < 10) lcd.print("0");
049 lcd.print(Minute);
050 lcd.print(":");
051 }
052 if(Second < 60)
053 {
054 if(Second < 10) lcd.print("0");
055 lcd.print(Second);
056 }
057 }
058
059 Serial.flush();
060 delay(100);
061 }

The basic structure of the program corresponds to that of the
regular clock (RTC) that we have already learned about at the
beginning of the learning package.

This time, we receive no data in the VB.NET-program, but send
data from the PC to the Arduino™. The data correspond to hours,
minutes and seconds in the form of bytes. We read them with the
Arduino™ when Serial.available() is larger than three. This
characterises that three bytes are pending in the reception
buffer. We use Serial.read() to systematically read in the three
arriving bytes and assign them to the Arduino™-variables for
hour, minute and second. That is it on the side of Arduino™.
Let us look at the transmission function in the VB.NET program.
For this, we use a timer set to 500 ms.

001 Private Sub Timer1_Tick(sender As System.Object, e As
 System.EventArgs) Handles Timer1.Tick
002
003 If SerialPort1.IsOpen Then
004
005 SerialPort1.Write(Chr(Now.Hour) & Chr(Now.
 Minute) & Chr(Now.Second))
006 Label1.Text = Now.Hour & ":" & Now.Minute &
 ":" & Now.Second
007
008 End If
009 End Sub

The timer could also be set to 1,000 ms. It is also possible that
the second output will jerk on the LCD now and then because the
data overlap. It is better to set the update time a little faster
or just to half, to make the output appear more fluent.

In the VB.NET-timer function, a check is performed before the
actual output for safety purposes to see whether the serial
connection is opened. If this is the case, SerialPort1.Write() will
be used to transfer the time data. For this, we use the
function Now(). It contains the time and date and may be instructed
with the parameters Hour, Minute and Second to output only the desired
places. To convert the values for the transmission to bytes, each
value will be converted with Char() to one byte.

Our PC clock shows the precise time on the LCD now .

ANNEX

We distinguish between voltage, current, resistance and the
units in which the values are measured (e.g. Volt or Ampere).
Every unit has an abbreviation that is used in the formulas. The
abbreviations permit a short and well-structured annotation.
Instead of current equal 1 Ampere we write only I = 1 A.

These abbreviations are used in all formulas in his book.

Value Abbreviation Unit Abbreviation

Voltage U Volt V

Current I Ampere A

Resistance R Ohm Ω

Power P Watt W

Frequency f Hertz Hz

Time t Second s

Wavelength Λ (Lambda) Metres m

Inductiveness L Henry H

Capacity C Farad F

Area A Square me- m²

tres

ASCII-Table

Charac

ter
decima

l
hexadecima

l
binary Description

Charac

ter
decima

l
hexadecima

l
binary Description

NUL 000 000 00000000 Null Character

SOH 001 001 00000001 Start of Header

STX 002 002 00000010 Start of Text

ETX 003 003 00000011 End of Text

EOT 004 004 00000100 End of Transmission

ENQ 005 005 00000101 Enquiry

ACK 006 006 00000110 Acknowledgment

BEL 007 007 00000111 Bell

BS 008 008 00001000 Backspace

HAT 009 009 00001001 Horizontal TAB

LF 010 00A 00001010 Line Feed

VT 011 00B 00001011 Vertical TAB

FF 012 00C 00001100 Form Feed

CR 013 00D 00001101 Carriage Return

SO 014 00E 00001110 Shift out

SI 015 00F 00001111 Shift in

DLE 016 010 00010000 Data Link Escape

DC1 017 011 00010001 Device Control 1

DC2 018 012 00010010 Device Control 2

DC3 019 013 00010011 Device Control 3

DC4 020 014 00010100 Device Control 4

NAK 021 015 00010101 Negative Acknowledgment

SYN 022 016 00010110 Synchronous Idle

ETB 023 017 00010111 End of Transmission Block

CAN 024 018 00011000 Cancel

Charac

ter
decima

l
hexadecima

l
binary Description

EM 025 019 00011001 End of Medium

SUB 026 01A 00011010 Substitute

ESC 027 01B 00011011 Escape

FS 028 01C 00011100 File Separator

GS 029 01D 00011101 Group Separator

RS 030 01E 00011110 Request to Send, Record

Separator

US 031 01F 00011111 Unit Separator

SP 032 020 00100000 Space

! 033 021 00100001 Exclamation Mark

« 034 022 00100010 Double Quote

035 023 00100011 Number Sign

$ 036 024 00100100 Dollar Sign

% 037 025 00100101 Percent

& 038 026 00100110 Ampersand

‘ 039 027 00100111 Single Quote

(040 028 00101000 Left Opening Parenthesis

) 041 029 00101001 Right Closing Parenthesis

* 042 02A 00101010 Asterisk

+ 043 02B 00101011 Plus

, 044 02C 00101100 Comma

- 045 02D 00101101 Minus or Dash

. 046 02E 00101110 Dot

/ 047 02F 00101111 Forward Slash

0 048 030 00110000
1 049 031 00110001
2 050 032 00110010
3 051 033 00110011
4 052 034 00110100
5 053 035 00110101
6 054 036 00110110

Charac

ter
decima

l
hexadecima

l
binary Description

7 055 037 00110111
8 056 038 00111000
9 057 039 00111001
: 058 03A 00111010 Colon

; 059 03B 00111011 Semi-Colon

< 060 03C 00111100 Less Than

= 061 03D 00111101 Equal

> 062 03E 00111110 Greater Than

? 063 03F 00111111 Question Mark

@ 064 040 01000000 AT Symbol

A 065 041 01000001
B 066 042 01000010
C 067 043 01000011
D 068 044 01000100
E 069 045 01000101
F 070 046 01000110
G 071 047 01000111
H 072 048 01001000
I 073 049 01001001
J 074 04A 01001010
K 075 04B 01001011
L 076 04C 01001100
M 077 04D 01001101
N 078 04E 01001110
O 079 04F 01001111
P 080 050 01010000
Q 081 051 01010001
R 082 052 01010010

Charac

ter
decima

l
hexadecima

l
binary Description

S 083 053 01010011
T 084 054 01010100
U 085 055 01010101
V 086 056 01010110
W 087 057 01010111
X 088 058 01011000
Y 089 059 01011001
Z 090 05A 01011010
[091 05B 01011011 Left opening Bracket

\ 092 05C 01011100 Back Slash

] 093 05D 01011101 Right closing Bracket

^ 094 05E 01011110 Caret

_ 095 05F 01011111 Underscore

` 096 060 01100000
a 097 061 01100001
b 098 062 01100010
c 099 063 01100011
d 100 064 01100100
e 101 065 01100101
f 102 066 01100110
g 103 067 01100111
h 104 068 01101000
i 105 069 01101001
j 106 06A 01101010
k 107 06B 01101011
l 108 06C 01101100
m 109 06D 01101101
n 110 06E 01101110

Charac

ter
decima

l
hexadecima

l
binary Description

o 111 06F 01101111
p 112 070 01110000
q 113 071 01110001
r 114 072 01110010
s 115 073 01110011
t 116 074 01110100
u 117 075 01110101
v 118 076 01110110
w 119 077 01110111
x 120 078 01111000
y 121 079 01111001
z 122 07A 01111010
{ 123 07B 01111011 Left opening Brace

| 124 07C 01111100 Vertical Bar

} 125 07D 01111101 Right closing Brace

~ 126 07E 01111110 Tilde

DEL 127 07F 01111111 Delete

PROCUREMENT
SOURCES

	CD-ROM for the learning package
	1.1 | Content of the CD-ROM
	1.2 | GPL (General Public License)
	1.3 | System Requirements
	1.4 | Updates and Support

	Content of the learning package
	2.1 | Safety Information

	The parts and their function
	3.1 | Breadboard
	3.2 | Jumpers
	3.3 | Buttons
	3.4 | Resistors
	3.5 | Temperature Sensor
	3.6 | Photo Transistor
	3.7 | LC-Display

	First function test
	Example code: LCD
	Example code: TIME_DIFF

	Setup and function of the LC-displays
	5.1 | Polarisation of Displays
	5.2 | Static Control, Multiplex Operation
	5.3 | Viewing Angle 6 O'Clock /12 O'Clock
	5.4 | Reflective, Transflective, Transmissive
	5.5 | The Controller of the LC-Display
	5.6 | This is How the Display is Controlled by the Display Controller
	5.7 | The Contrast Setting of the Display
	5.8 | The Character Set
	Upload
	Example code: CHARACTER SET

	5.9 | Pin Assignment of the Common LCDs

	The Arduino™ LiquitCrystal Library
	6.1 | LiquidCrystal
	Arduino™-Syntax

	6.2 | .begin()
	Arduino™-Syntax

	6.3 | .clear()
	Arduino™-Syntax

	6.4 | .home()
	Arduino™-Syntax

	6.5 | .setCursor()
	Arduino™-Syntax

	6.6 | .write()
	Arduino™-Syntax
	Arduino™-Syntax

	6.7 | .print()
	Arduino™-Syntax

	6.8 | .cursor()
	Arduino™-Syntax

	6.9 | .noCursor()
	Arduino™-Syntax

	6.10 | .blink()
	Arduino™-Syntax

	6.11 | .noBlink()
	Arduino™-Syntax

	6.12 | .noDisplay()
	Arduino™-Syntax

	6.13 | .display()
	Arduino™-Syntax

	6.14 | .scrollDisplayLeft()
	Arduino™-Syntax

	6.15 | .scrollDisplayRight()
	Arduino™-Syntax

	6.16 | .autoscroll()
	Arduino™-Syntax

	6.17 | .noAutoscroll()
	Arduino™-Syntax

	6.18 | .leftToRight()
	Arduino™-Syntax

	6.19 | .rightToLeft()
	Arduino™-Syntax

	6.20 | .createChar()
	Arduino™-Syntax

	LCD functions
	Upload
	Example code: FUNCTIONS

	Creating own characters
	Upload
	Example code: OWN CHARACTERS

	Dimming backlight
	Upload
	Example code: LCD_LED

	Dot-Matrix-LCD Clock
	Upload
	Example code: RTC

	Capacity Meter
	11.1 | Setup of the capacitor meter
	11.2 | Calibrating your Capacitor Meter
	Example code: CAPA

	Random Numbers – The Lottery Results Generator
	Example code: LOTTERY

	Bar chart display
	Upload
	Example code: BARGRAPH
	Example

	Light Meter – the Photometer
	Example code: PHOTOMETER

	Alarm system
	Upload
	Example code: ALARM

	Digital Voltmeter with Bar Chart Display and USB Interface
	Example code: VOLTMETER
	16.1 | Expansion of the Measuring Range

	Temperature Display in Degrees Celsius and Fahrenheit
	Example code: LCD THERMO

	Temperature Plotter with USB-Interface
	Websynchronous Clock
	Upload
	Example code: PC Time

	Annex
	20.1 | Electrical Units
	20.2 | ASCII-Table

	Procurement sources
	Conrad Electronic SE
	Electronic Assembly GmbH

