

## 83 Series - Modular timers 16 A

## Mono-function timer range

83.11 - ON-delay, multi-voltage
83.21 - Interval, multi-voltage
83.41 - Off-delay with control signal, multi-voltage

- 1 Pole
- 22.5 mm wide
- Eight time scales from 0.05 s to 10 days
- High input/output isolation
- Wide supply range (24...240)V AC/DC
- 35 mm rail (EN 60715) mount
- "Blade + cross" - both flat blade and cross head screw drivers can be used to adjust the range and function selectors, the timing trimmer, and to disengage the rail mounting clip
- Multi-voltage versions with "PWM clever" technology

| For outline drawing see page 5 | Wiring diagram (without control signal) | Wiring diagram (without control signal) | Wiring diagram (with control signal) |
| :---: | :---: | :---: | :---: |
| Contact specification |  |  |  |
| Contact configuration | 1 CO (SPDT) | 1 CO (SPDT) | 1 CO (SPDT) |
| Rated current/Maximum peak current A | 16/30 | 16/30 | 16/30 |
| Rated voltage/ <br> Maximum switching voltage <br> V AC | 250/400 | 250/400 | 250/400 |
| Rated load AC1 VA | 4000 | 4000 | 4000 |
| Rated load AC15 (230 V AC) VA | 750 | 750 | 750 |
| Single phase motor rating (230 V AC) kW | 0.5 | 0.5 | 0.5 |
| Breaking capacity DC1: $30 / 110 / 220 \mathrm{~V}$ A | 16/0.3/0.12 | 16/0.3/0.12 | 16/0.3/0.12 |
| Minimum switching load mW (V/mA) | 300 (5/5) | 300 (5/5) | 300 (5/5) |
| Standard contact material | AgNi | AgNi | AgNi |
| Supply specification |  |  |  |
| Nominal voltage ( $\mathrm{U}_{\mathrm{N}}$ ) V AC ( $50 / 60 \mathrm{~Hz}$ ) | 24... 240 | 24... 240 | 24... 240 |
| V DC | 24... 240 | 24... 240 | 24... 240 |
| Rated power AC/DC VA ( 50 Hz )/W | < 1.5/<2 | < 1.5/<2 | < 1.5/<2 |
| Operating range V AC | 16.8... 265 | 16.8... 265 | 16.8... 265 |
| V DC | 16.8... 265 | 16.8... 265 | 16.8... 265 |
| Technical data |  |  |  |
| Specified time range | (0.05 ...1)s, (0.5 ..10)s, (0.05...1)min, (0.5 ...10)min, (0.05...1)h, (0.5 ...10)h, (0.05 ..1)d, (0.5 ..10)d |  |  |
| Repeatability \% | $\pm 1$ | $\pm 1$ | $\pm 1$ |
| Recovery time ms | 200 | 200 | 200 |
| Minimum control impulse ms | - | - | 50 |
| Setting accuracy-full range \% | $\pm 5$ | $\pm 5$ | $\pm 5$ |
| Electrical life at rated load in AC1 cycles | $50 \cdot 10^{3}$ | $50 \cdot 10^{3}$ | $50 \cdot 10^{3}$ |
| Ambient temperature range ${ }^{\circ} \mathrm{C}$ | $-20 \ldots+60$ | $-20 \ldots+60$ | $-20 \ldots+60$ |
| Protection category | IP 20 | IP 20 | IP 20 |
| Approvals (according to type) | CEEAL PG Reme |  |  |



## Ordering information

Example: 83 series, modular timers, 1 CO (SPDT) - 16 A, supply rated at (24...240)V AC/DC.


## Technical data

| Insulation |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dielectric strength | between input and output circuit V AC | 4000 |  |  |  |
|  | between open contacts VAC | 1000 |  |  |  |
| Insulation (1.2/50 $\mu \mathrm{s}$ ) between input and output kV |  | 6 |  |  |  |
| EMC specifications |  |  |  |  |  |
| Type of test |  | Reference standard | 83.01/02/52/11/21/41/82/91 |  | 83.62 |
| Electrostatic discharge | contact discharge | EN 61000-4-2 | 4 kV |  | 4 kV |
|  | air discharge | EN 61000-4-2 | 8 kV |  | 8 kV |
| Radio-frequency electromagnetic field | ( $80 \div 1000 \mathrm{MHz}$ ) | EN 61000-4-3 | $10 \mathrm{~V} / \mathrm{m}$ |  | $10 \mathrm{~V} / \mathrm{m}$ |
|  | $(1000 \div 2700 \mathrm{MHz}$ ) | EN 61000-4-3 | $3 \mathrm{~V} / \mathrm{m}$ |  | $3 \mathrm{~V} / \mathrm{m}$ |
| Fast transients (burst) (5-50 ns, 5 and 100 kHz ) | on Supply terminals | EN 61000-4-4 | 7 kV |  | 6 kV |
|  | on control signal terminal (B1) | EN 61000-4-4 | 7 kV |  | 6 kV |
| Surges (1.2/50 $\mu \mathrm{s}$ ) on Supply terminals | common mode | EN 61000-4-5 | 6 kV |  | 6 kV |
|  | differential mode | EN 61000-4-5 | 6 kV |  | 4 kV |
| on control signal terminal (B1) | common mode | EN 61000-4-5 | 6 kV |  | 6 kV |
|  | differential mode | EN 61000-4-5 | 4 kV |  | 4 kV |
| Radio-frequency common mode on Supply terminals | ( $0.15 \div 80 \mathrm{MHz}$ ) | EN 61000-4-6 | 10 V |  | 10 V |
|  | $(80 \div 230 \mathrm{MHz}$ ) | EN 61000-4-6 | 10 V |  | 10 V |
| Radiated and conducted emission |  | EN 55022 | class A |  | class A |
| Other data |  |  |  |  |  |
| Current absorption on control signal (B1) |  | $<1 \mathrm{~mA}$ |  |  |  |
| - max cable length (capacity of $\leq 10 \mathrm{nF} / 100 \mathrm{~m}$ ) |  | 150 m |  |  |  |
| - when applying a control signal to B1, which is different from the supply voltage at A1/A2 |  | B1 is isolated from A1 and A2 by an opto-coupler, and can therefore be operated at a voltage other than the supply voltage. <br> If using a control signal of between ( $24 . . .48$ )V DC and a supply voltage of $(24 \ldots 240) \vee \mathrm{AC}$, ensure that the signal - is connected to $A 2$ and the + is applied to B 1 , and that L is applied to B 1 and N to A 2 . |  |  |  |
| External potentiometer for 83.02/52 |  | Use a $10 \mathrm{k} \Omega / \geq 0,25 \mathrm{~W}$ linear potentiometer. Maximum cable length 10 m . When using an external potentiometer, the timer automatically use its setting in place of the internal setting. <br> Consider the voltage potential at the potentiometer to be the same as the timer supply voltage. |  |  |  |
| Power lost to the environment | without contact current W | 1.4 |  |  |  |
|  | with rated current W | 3.2 |  |  |  |
| (파) Screw torque |  | 0.8 |  |  |  |
| Max. wire size | $\mathrm{mm}^{2}$ | solid cable |  | stranded cable |  |
|  |  | $1 \times 6 / 2 \times 4$ |  | $1 \times 4 / 2 \times 2.5$ |  |
|  | AWG | $1 \times 10 / 2 \times 12$ |  | $1 \times 12 / 2 \times 14$ |  |

## Outline drawings

83.01

Screw terminal

83.11

Screw terminal

83.41

Screw terminal

83.82

Screw terminal

83.02/52

Screw terminal
$\square$

83.21

Screw terminal

83.62

Screw terminal

83.91

Screw terminal


## Accessories



Sheet of marker tags, for types 83.01/11/21/41/62/82, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$ 060.72
060.72


Potentiometer usable as external potentiometer for type 83.02/52
$10 \mathrm{k} \Omega$ / 0.25 W linear, IP 66


## Functions



* The LED on type 83.62 is illuminated when supply voltage is supplied to timer.

- Possible to control an external load, such as another relay coil or timer, connected to the control signal terminal B1.

* With DC supply, positive polarity has to be connected to B1 terminal (according to EN 60204-1).

** A voltage other than the supply voltage can be applied to the control signal (B1), example:
$\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{~V}$ AC
$\mathrm{B} 1-\mathrm{A} 2=12 \mathrm{VDC}$


## Functions

Wiring diagram

Multi-function
without control signal

with control signal


*** Type 83.02: regulated using an external potentiometer ( $10 \mathrm{k} \Omega-0.25 \mathrm{~W}$ ).
$\mathbf{U}=$ Supply voltage
Type 83.01 83.02







$\mathbf{S}=$ Signal switch
(AI) On-delay.
Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs when power is removed.
(DI) Interval.

Apply power to timer. Output contacts transfer immediately. After the preset time has elapsed, contacts reset.
(GI) Pulse delayed.
Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs after a fixed time of 0.5 s .
(SW) Symmetrical flasher (starting pulse on).
Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on = time off).

## (BE) Off-delay with control signal.

Power is permenently applied to the timer. The output contacts transfer immediately on closure of the control signal ( S ). Opening the control signal initiates the preset delay, after which time the output contacts reset.
(CE) On- and off-delay with control signal.
Power is permenently applied to the timer.
Closing the control signal $(S)$ initiates the preset delay, after which time the output contacts transfer. Opening the control signal initiates the same preset delay, after which time the output contacts reset.
(DE) Interval with control signal on.
Power is permenently applied to the timer.
On momentary or maintained closure of control signal (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.
(WD) Watchdog (Retriggerable interval with control signal on).
Power is permanently applied to the timer.
On momentary or maintained closure of control signal (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset; subsequent closures of control signal during the delay will extend the time. If the closure of the control signal $(S)$ is longer than the preset time $(T)$ then the output contacts reset.

NOTE: The timing function must be set when the timer is de-energised. Or for the $83.02 / 52$, when the contact mode selector is in the OFF position.
83.02 type
Contact mode selector

## Functions

Wiring diagram
Multi-function
with control signal
83.52 type

| Contact mode selector | Functions with control signal and pause signal (example: BEp) | Function SHp |
| :---: | :---: | :---: |
| 2 timed contacts | Both output contacts (15-18 and 25-28) follow the timing function | Both output contacts ( $15-18$ and 25-28) follow the timing function |
| $\begin{aligned} & \text { OFF } \\ & 4 \end{aligned}$ |  <br> Both output contacts [15-18 and 25(21)-28(24)] stay permanently open |  <br> Both output contacts [15-18 and 25(21)-28(24)] stay permanently open |
| 1 timed + 1 instantaneous contact | The output contact 15-18 follows the timing function The output contact 21-24 follows the control signal ( $S$ ) | The output contact 15-18 follows the timing function. The output contact 21-24 is always open, unless during the pause, when is closed |

## Functions

| Wiring diagram | $\mathbf{U}=$ Supply voltage $\quad \mathbf{S}=$ |  | ignal switch $\quad$ - = Output contact |
| :---: | :---: | :---: | :---: |
| Mono-function without control signal | Type 83.11 <br> 83.21 <br> 83.62 <br> 83.82 |  | (AI) On-delay. <br> Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs when power is removed. <br> (DI) Interval. <br> Apply power to timer. Output contacts transfer immediately. After the preset time has elapsed, contacts reset. <br> (BI) Power off-delay (True off-delay). <br> Apply power to timer (minimum 500 ms ). Output contacts transfer immediately. Removal of power initiates the preset delay, after which time the output contacts reset. <br> (SD) Star-3delta. <br> Apply power to timer. The star contact ( $\lambda$ ) closes immediately. After preset delay has elapsed the star contact ( $\lambda$ ) resets. <br> After a further time (settable from 0.05 s to 1 s ) the delta contact ( $\Delta$ ) closes and remains in that position, until reset on power off. |
| with control signal ( S ) | 83.41 |  | (BE) Off-delay with control signal. <br> Power is permenently applied to the timer. The output contacts transfer immediately on closure of the control signal (S). Opening the control signal initiates the preset delay, after which time the output contacts reset. |
| Asymmetrical recycler without control signal <br> Z1-Z2 open: (LI) function Z1-Z2 linked: (PI) function with control signal <br> Z1-Z2 open: (LE) function Z1-Z2 linked: (PE) function | 83.91 |   | (LI) Asymmetrical flasher (starting pulse on)- (Z1-Z2 open). Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ON and OFF times are independently adjustable. <br> (PI) Asymmetrical flasher (starting pulse off) - (Z1-Z2 linked). Apply power to timer. Output contacts transfer after time T1 has elapsed and cycle between OFF and ON for as long as power is applied. The ON and OFF times are independently adjustable. <br> (LE) Asymmetrical flasher (starting pulse on) with control signal -(Z1-Z2 open). <br> Power is permenently applied to the timer. Closing control signal (S) causes the output contacts to transfer immediately and cycle between ON and OFF, until opened. <br> (PE) Asymmetrical flasher (starting pulse off) with control signal -(Z1-Z2 linked). <br> Power is permenently applied to the timer. Closing the control signal (S) initiates delay T1 after which the output contacts transfer and continue to cycle between OFF and ON, until the control signal is opened. |

