IDUINO for Maker's life

(SE017)Digital Temperature Sensor

1. Introduction

This module has both analog signal output pin and digital signal output pin, which is different from analog temperature sensor(module33) and other temperature sensor module. A thermistor is a type of resistor whose resistance is dependent on temperature, more so than in standard resistors. The word is a portmanteau of thermal and resistor. Thermistors are widely used as inrush current limiter, temperature sensors (NTC type typically), self-resetting overcurrent protectors, and self-regulating heating elements.

The Module's feature as below:

Feature	Value
Model No.	NTC-MF52 3950
Temperature Range	-55℃~+125℃
Accuracy	+/- 0.5℃
Accuracy	+/- 0.5°C

2.Pinout

Pin	Description
A0	Analog signal output pin
D0	Digital signal output pin
G	Gnd
"+"	Vcc(reference voltage:5V DC)

Temperature convert Formula

Here we use Steinhart–Hart equation to calculate the corresponding temperature. The equation is

$$\frac{1}{T} = A + B \ln(R) + C[\ln(R)]^3,$$

www.openplatform.cc

where:

T is the temperature (in Kelvins)

R is the resistance at T (in ohms)

A, B, and C are the Steinhart–Hart coefficients which vary depending on the type

and model of thermistor and the temperature range of interest. (The most general form of the applied equation contains a [ln(R)]^2 term, but this is frequently neglected because it is typically much smaller than the other coefficients).

Note: For this module, the recommended coefficients of A,B,C are

A equals 0.001129148; B equals 0.000234125; C equals 0.0000000876741;

More, the same item products has a little bit different A,B,C coefficients , which depends your environmental temperature. If the recommended coefficients are not accurate enough, you'd better amend the A,B,C coefficients by Thermistor Calculator tool.

3 Example

This is a simple code for the NTC thermistor module, Connection as below:

www.openplatform.cc

Example code :

```
******Code begin*****
#include <math.h>
double Thermister(int RawADC) {
double Temp;
Temp = log(((10240000/RawADC) - 10000));
Temp = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * Temp * Temp ))*
Temp );
Temp = Temp - 273.15;
return Temp;
}
void setup() {
Serial.begin(9600);
}
void loop()
 { Serial.print(Thermister(analogRead(0)));
 Serial.println("c");
 delay(1000); }
*****Code End*****
```