IDUINO for Maker's life

Analog Temperature Sensor(ST1147)

1. Introduction

A thermistor is a type of resistor whose resistance is dependent on temperature, more so than in standard resistors. The word is a portmanteau of thermal and resistor. Thermistors are widely used as inrush current limiter, temperature sensors (NTC type typically), self-resetting overcurrent protectors, and self-regulating heating elements.

The Module's feature as below:

Feature	Value
Model No.	NTC-MF52 3950
Temperature Range	$-55^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$
Accuracy	$+/-0.5^{\circ} \mathrm{C}$
Pull-up resistor	$10 \mathrm{~K} \Omega$

2.Pinout

Pin	Description
$" \mathbf{S "}$	Signal pin
$"-"$	Gnd
$"+"$	Vcc(reference voltage:5V DC)

Temperature convert Formula

Here we use Steinhart-Hart equation to calculate the corresponding temperature. The equation is

$$
\frac{1}{T}=A+B \ln (R)+C[\ln (R)]^{3},
$$

where:
T is the temperature (in Kelvins)
R is the resistance at T (in ohms)
A, B, and C are the Steinhart-Hart coefficients which vary depending on the type and model of thermistor and the temperature range of interest. (The most general form of the applied equation contains a $[\ln (R)]^{\wedge} 2$ term, but this is frequently neglected because it is typically much smaller than the other coefficients).

Note: For this module, the recommended coefficients of A, B, C are
A equals 0.001129148;
B equals 0.000234125 ;
C equals 0.0000000876741;
More, the same item products has a little bit different $\mathrm{A}, \mathrm{B}, \mathrm{C}$ coefficients, which depends your environmental temperature. If the recommended coefficients are not accurate enough, you'd better amend the A,B,C coefficients by Thermistor Calculator tool.

3 Example

This is a simple code for the NTC thermistor module, Connection as below:

Example code :

```
******Code begin******
#include <math.h>
double Thermister(int RawADC) {
```


IDUINO for Maker's life

```
double Temp;
Temp = log(((10240000/RawADC) - 10000));
Temp = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * Temp * Temp ))*
Temp );
Temp = Temp - 273.15;
return Temp;
}
void setup() {
Serial.begin(9600);
}
void loop()
    { Serial.print(Thermister(analogRead(0)));
    Serial.println("c");
    delay(1000); }
******Code End******
```

