

H-48F6 Specifications

A. Basic

Туре		Sealed Rechargeable Ni-MH	
Model		HPE-F6-800	
Size		F6	
Nominal Voltage (V)		1.2	
Nominal Capacity (mAh)		800	
Dimension	Width(mm)	16.7±0.2	
Dimension	Height (mm)	47.5±0.3	
Standard Charging	Current (mA)	80	
Standard Charging	Time (h)	14-16	
Ovials Changing	Current (mA)	320	
Quick Charging	Time (h)	3.5	
Devid Changing	Current (mA)	400	
Rapid Charging	Time (h)	2.3	
	Standard Charging	0~45	
Onemption	Rapid Charging	10~40	
Operation	Discharging	-20~65	
Temperature(°C)	Storage	-20~35(RH≤85%)	
Permanent Charging Current (mA)		24~32	
Maximum Discharging Current (mA)(continuous)		1200	
Impedance (m Ω)		≤25 (1000Hz)	
Discharge Cut-off Voltage (V)		1.00	
Charge Retention (20°C)		≥65%	
Weight Approx. (g)		18	

B.Test Report

Tests are carried out within one month of delivery under the following condition:

. 1. Ambient Conditions:

Room Temperature 20±5

Relative Humidity 65%±20%

2. Capacity Testing

2.1 Standard Charging

0.2C discharge to 1.00V/cell

0.1C charging for 14 hours

Rest: 20 minutes

0.2C discharge to 1.00V/cell.

Within 3 charge/discharge cycles, the capacity is no less than 800 mAh (100%).

2.2 Quick Charging

0.2C discharge to 1.00V/cell

0.4C charging for 3.5 hours

Rest: 20 minutes

0.2C discharge to 1.00V/cell.

Within 3 charge/discharge cycles, the capacity is no less than 800 mAh (100%).

2.3 Rapid Charging

0.5C discharge to 1.00V/cell.

0.5C charging for 138 minutes or $-\Delta V=10mV/cell$.

Rest: 20 minutes

0.5C discharge to 1.00V/cell.

Within 3 charging/discharging cycles, the capacity is no less than 760 mAh (95%)

3. Open Circuit Voltage (OCV)

After the battery is fully charged, within 1 hour, the OCV is greater than 1.25V/cell

4. Internal Impedance

After the battery is fully charged, within 1 hour, the impedance is not greater than 25 m Ω , as tested by 1000Hz AC source.

5. Charge Retention

The fully charged battery is held under temperature of $20\pm2^{\circ}$ C for 28 days, the discharged capacity is no less than 520 mAh (65%).

6. Overcharging

Under temperature of 20±5°C, the battery is charged at 0.1C rate for 48 hours. No de- formation of the battery can be found. Standard capacity can be attained under normal discharging operation.

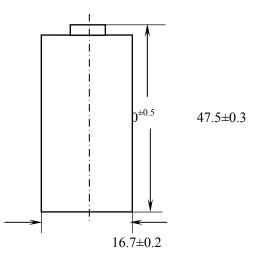
7. Cycle Life

7.1 Normal Cycling Test:

Cycle No.	Charge	Rest	Discharge
1	$0.1C \times 16$ hrs	None	$0.25C \times 2hrs 20mins$
2~48	$0.25C \times 3hrs \ 10mins$	None	$0.25C \times 2hrs 20mins$
49	$0.25C \times 3hrs \ 10mins$	None	0.25C to 1.0V/cell
50	$0.1C \times 16$ hrs	1~4hrs	0.2C to 1.0V/cell

Cycle 1 to 50 shall be repeated until the discharge duration on any 50th cycle becomes less than 3hrs

After 500 cycles of charging/discharging, capacity 480 mAh (60%) can be maintained under the cycling test.


7.2 Fast cycling test (reference) :

Charging: 1C for 66 minutes, under - ΔV control (5mV/cell)

Rest: 20 minutes

Discharging: 1C to 1.00V/cell

After 200cycles of charging and discharging, capacity 480mAh (60%) can be maintained under the cycling test.

C. Abuse Test

	Items	Test conditions	Test results
1.	Overcharge test	0.1C for 48hours	No functional change
		1C for 5hours	Cell venting may occur
2.	Over discharge test	Cell is discharged with 0.2C to 0.00V, then	No rupture
	(Forced discharge)	with 1C forced discharged for 1.5rs	No explosion
			Leakage may occur
3.	Short circuit test	Cell is fully charged with 0.1C for 16hours,	Operation of vent
		then shorted for 1 hour or longer with a $10m\Omega$	Leakage may occur
		load or less	
4.	Vibration test	Cell is vibrated continuously lengthwise for	No physical change
		60minutes	No leakage
		Amplitude: 4mm	Cell electrical performances
		Frequency: 1000times/minutes	unchanged
5.	Shock test	Cell is dropped 3 times from a 1.9m height	No rupture
	(Drop test)	onto solid wood (10mm thick) with random	No leakage
		orientation	
6.	Penetration test	Cell is drilled diameter wise with a 4mm Φ	Temperature increased to a
	(Hole drilling)	drill at a depth of less than 1mm	maximum of 43°C
			Leakage from hole area
7.	Crush test	Cell is crushed with a vice	The compressed area heats up
			to between 500~800°C
8.	Water immersion	a. Cell is immersed in water for one month	No rupture
	test	b. Cell is immersed in salt water with a 5%	No explosion
		concentration for one month	
9.	Fire exposure test	Cell is thrown into a charcoal fire	Swelling and/or breakage of
	(Incineration)		seal plate