
Adafruit Data Logger Shield
Created by Bill Earl

Last updated on 2015-01-06 08:30:13 AM EST

2
4
4
4
6
6
7
8
8
9
9

10
11
12
15
15
16
17
19
20
22
23
24
25
30
31
31
33
33

Guide Contents

Guide Contents
Overview
The new and improved logging shield

Features:
Installing the Headers
Assembly with male headers

Cut the headers to length:
Position the headers:
Position the shield:
And solder!

Assembly with Stacking Headers:
Position the headers:
And solder!

Shield Overview
Using the Real Time Clock

What is a Real Time Clock?
Talking to the RTC
First RTC test
Setting the time
Reading the time

Using the SD Card
Formatting under Windows/Mac

For Mega and Leonardo Users!
Mega and Leonardo Users!

For the Mega and Leonardo
Using the SD Library with the Mega and Leonardo
cardinfo

Light and Temperature Logger
Introduction

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 2 of 68

35
35
36
38
38
38
38
39
40
40
41
43
45
45
47
47
52
55
55
56
58
59
59
59
60
60
63
63
65
66

Build It!
Items you'll need:
The sensors

Wiring it up
Position the sensors
Prepare some jumpers
Install the Jumpers
Make the connections
Add more jumpers for the Sensors
And also for the LEDs
Solder and trim all connections
Prepare the Battery Pack

Use It!
Sensor test
Logging sketch

Plotting with a spreadsheet
Using Gnuplot
Other plotters

Portable logging
Fridge logging
Conclusion!

Code Walkthrough
Introduction
Includes and Defines
Objects and error()
Setup
Main loop
Timestamping
Log sensor data

Downloads

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 3 of 68

Overview

The new and improved logging shield
Our latest version of this popular shield has all the features of the popular original, but
comes pre-assembled. You can be up and running with it in less than 15 minutes - saving
data to files on any FAT16 or FAT32 formatted SD card, to be read by any plotting,
spreadsheet or analysis program. This tutorial will also show you how to use two free
software programs to plot your data. The included Real Time Clock timestamps all your data
with the current time, so that you know precisely what happened when!

The data logger is a reliable, well-rounded and versatile design. It is easily expanded or
modified and come well supported with online documentation and libraries.

Features:

SD card interface works with FAT16 or FAT32 formatted cards. 3.3v level shifter
circuitry prevents damage to your SD card
Real time clock (RTC) keeps the time going even when the Arduino is unplugged. The
battery backup lasts for years
Included libraries and example code for both SD and RTC mean you can get going
quickly
Prototyping area for soldering connectors, circuitry or sensors.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 4 of 68

Configurable indicator leds
Onboard 3.3v regulator is both a reliable reference voltage and also reliably runs SD
cards that require a lot of power to run

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 5 of 68

Installing the Headers
The Adafruit Data Logger shield comes tested assembled with all components and microSD
socket already on it, but you'll still need need to put headers on so you can plug it into an
Arduino

We don't pre-assemble the headers on because there's two options! You can either use
plain 0.1" male headers (included with the shield) or Arduino Shield Stacking
headers (http://adafru.it/85).

Assembly with male headers
Most people will be happy with assembling he shield with male headers. The nice thing about
using these is they don't add anything to the height of the project, and they make a nice
solid connection. However, you won't be able to stack another shield on top. Trade offs!

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 6 of 68

http://adafruit.com/products/85

Cut the headers to length:
Line the header strip up with the holes on the
edge of the shield and cut 4 sections of header
strip to fit.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 7 of 68

http://learn.adafruit.com/assets/7027

Position the headers:
Insert the header sections - long pins down -
into the female headers on your Arduino.

Position the shield:
Align the shield with the header pins and press
down.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 8 of 68

http://learn.adafruit.com/assets/7028
http://learn.adafruit.com/assets/7029
http://learn.adafruit.com/assets/7030

And solder!
Solder each pin to assure good electrical
contact. For tips on soldering, refer to the
Adafruit Guide to Excellent
Soldering (http://adafru.it/c6b).

Assembly with Stacking Headers:
Stacking headers give your data logger shield extra flexibility. You can combine it with other
shields such as the RGB/LCD Display shield (http://adafru.it/714) to make a compact logging
instrument complete with a user interface. You can also stack it with one or more Proto-
Shields (http://adafru.it/51) to add even more prototyping space for interfacing to sensors.

Stacking headers are installed from the top of the board instead of the bottom, so the
procedure is a little different than for installing simple male headers.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 9 of 68

http://learn.adafruit.com/assets/7031
http://learn.adafruit.com/assets/7032
http://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://www.adafruit.com/products/714
http://www.adafruit.com/products/51

Position the headers:
Insert the headers from the top of the shield,
then flip the shield over and place it on a
flat surface. Straighten the headers so that they
are vertical.

Be sure to insert the headers from the TOP of the shield so that they can be soldered
from the BOTTOM.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 10 of 68

http://learn.adafruit.com/assets/7034

And solder!
Solder each pin for a solid electrical connection.

Tip: Solder one pin from each header
section. If any of them are crooked, simply
re-heat the one solder joint and straighten it
by hand. Once all headers are straight,
continue soldering the rest of the pins.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 11 of 68

http://learn.adafruit.com/assets/7035
http://learn.adafruit.com/assets/7036

Shield Overview

The datalogger shield has a few things to make it an excellent way to track data

Top Left - There's a real time clock (RTC) which has a chip, crystal, and backup battery for
up to 7 years of timekeeping

Middle Left - an on-board 3.3V regulator keeps the shield's 3V parts running smoothly.
There's also a green PWR (Power) good LED

Top Middle - A big SD card holder can fit any SD/MMC storage up to 32G and and small as
32Meg. If you have a MicroSD card, there are low cost adapters which will let you fit these in.
SD cards are tougher to lose than MicroSD. Simply Push or Pull the card into this slot

Top Right - We have two user-configuratble LEDs. Connect a wire from any Arduino pin to L1
or L2 marked pads and pull high to turn on LED1 or LED2

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 12 of 68

A reset button will reset the entire Arduino, handy for when you want to restart the board

Middle - A level shifter keeps the SD card safe from the potentially-damaging 5V signals
from the Arduino. It will work with 3V signals as well.

We also have some extra breakouts shown above, around the breakout board area

3V - this is the 3V out of the regulator. Its a good quality 3.3V reference which you
may want to power sensors. Up to 50mA is available
SQ - this is the optional Squarewave output from the RTC. You have to send the
command to turn this on but its a way of optionally getting a precision squarewave. We
use it primarily for testing
WP - this is the Write Protect pad on the SD card, you can use this to detect if the
write-protect tab is on the card by checking this pin
CD - this is the card detect pad on the SD card. When this is connected to ground, an
SD card is inserted. We suggest using the internal pullup on an Arduino pin if you want

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 13 of 68

to use this pad
CS - this is the Chip Select pin for the SD card. If you need to cut the trace to pin 10
because it is conflicting, this pad can be soldered to any digital pin and the software
re-uploaded
L2 and L1 - these are optional user-LEDs. Connect to any digital pin, pull high to turn
on the corresponding LED. The LEDs already have 470 ohm resistors in series.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 14 of 68

Using the Real Time Clock

What is a Real Time Clock?
When logging data, its often really really useful to have timestamps! That way you can take
data one minute apart (by checking the clock) or noting at what time of day the data was
logged.

The Arduino does have a built-in timekeeper called millis() and theres also timers built into
the chip that can keep track of longer time periods like minutes or days. So why would you
want to have a separate RTC chip? Well, the biggest reason is that millis() only keeps track
of time since the Arduino was last powered - that means that when the power is turned on,
the millisecond timer is set back to 0. The Arduino doesnt know its 'Tuesday' or 'March 8th'
all it can tell is 'Its been 14,000 milliseconds since I was last turned on'.

OK so what if you wanted to set the time on the Arduino? You'd have to program in the date
and time and you could have it count from that point on. But if it lost power, you'd have to
reset the time. Much like very cheap alarm clocks: every time they lose power they blink
12:00

While this sort of basic timekeeping is OK for some projects, a data-logger will need to have
consistant timekeeping that doesnt reset when the Arduino battery dies or is
reprogrammed. Thus, we include a separate RTC! The RTC chip is a specialized chip that
just keeps track of time. It can count leap-years and knows how many days are in a month,
but it doesn't take care of Daylight Savings Time (because it changes from place to place)

This image shows a computer motherboard with a Real Time Clock called the
DS1387 (http://adafru.it/aX0). Theres a lithium battery in there which is why its so big.

The RTC we'll be using is the DS1307 (http://adafru.it/con). It's low cost, easy to solder, and
can run for years on a very small coin cell.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 15 of 68

http://www.maxim-ic.com/app-notes/index.mvp/id/503
http://www.adafruit.com/partfinder/ic#rtc

As long as it has a coin cell to run it, the DS1307 will merrily tick along for a long time, even
when the Arduino loses power, or is reprogrammed.

Talking to the RTC
The RTC is an i2c device, which means it uses 2 wires to to communicate. These two wires
are used to set the time and retreive it. On the Arduino, the pins are 'fixed' to be Analog 4
and 5 for the built in i2c capability. This is a bit annoying since of course we want to have up
to 6 analog inputs to read data and now we've lost two. There is a way to use other
pins...however, the hardware is by default set up for Analog 4 and 5 so lets start with that

You MUST have a coin cell installed for the RTC to work, if there is no coin cell, it will act
strangly and possibly hang the Arduino so ALWAYS make SURE there's a battery
installed, even if its a dead battery.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 16 of 68

and then later we'll show how to modify the shield!

For the RTC library, we'll be using a fork of JeeLab's excellent RTC library. Please download it
now. (http://adafru.it/cfG) Then install it in your Arduino directory (http://adafru.it/aYM) in a
folder called RTClib

First RTC test

The first thing we'll demonstrate is a test sketch that will read the time from the RTC once a
second. We'll also show what happens if you remove the battery and replace it since that
causes the RTC to halt. So to start, remove the battery from the holder while the Arduino is
not powered or plugged into USB. Wait 3 seconds and then replace the battery. This resets
the RTC chip. Now load up the following sketch (which is also found in Examples->RTClib-
>ds1307) and upload it to your Arduino with the datalogger shield on!

// Date and time functions using a DS1307 RTC connected via I2C and Wire lib

#include <Wire.h>

#include "RTClib.h"

RTC_DS1307 RTC;

void setup () {

 Serial.begin(57600);

 Wire.begin();

 RTC.begin();

 if (! RTC.isrunning()) {

 Serial.println("RTC is NOT running!");

 // following line sets the RTC to the date & time this sketch was compiled

 // uncomment it & upload to set the time, date and start run the RTC!

 //RTC.adjust(DateTime(__DATE__, __TIME__));

 }

}

void loop () {

 DateTime now = RTC.now();

 Serial.print(now.year(), DEC);

 Serial.print('/');

 Serial.print(now.month(), DEC);

 Serial.print('/');

 Serial.print(now.day(), DEC);

 Serial.print(' ');

 Serial.print(now.hour(), DEC);

 Serial.print(':');

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 17 of 68

http://learn.adafruit.com/adafruit-data-logger-shield/downloads
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Now run the Serial terminal and make sure the baud rate is set correctly at 57600

bps you should see the following:

 Serial.print(':');

 Serial.print(now.minute(), DEC);

 Serial.print(':');

 Serial.print(now.second(), DEC);

 Serial.println();

 Serial.print(" since 1970 = ");

 Serial.print(now.unixtime());

 Serial.print("s = ");

 Serial.print(now.unixtime() / 86400L);

 Serial.println("d");

 // calculate a date which is 7 days and 30 seconds into the future

 DateTime future (now.unixtime() + 7 * 86400L + 30);

 Serial.print(" now + 7d + 30s: ");

 Serial.print(future.year(), DEC);

 Serial.print('/');

 Serial.print(future.month(), DEC);

 Serial.print('/');

 Serial.print(future.day(), DEC);

 Serial.print(' ');

 Serial.print(future.hour(), DEC);

 Serial.print(':');

 Serial.print(future.minute(), DEC);

 Serial.print(':');

 Serial.print(future.second(), DEC);

 Serial.println();

 Serial.println();

 delay(3000);

}

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 18 of 68

Whenever the RTC chip loses all power (including the backup battery) it will report the time
as 0:0:0 and it won't count seconds (its stopped). Whenever you set the time, this will
kickstart the clock ticking. So basically the upshot here is that you should never ever
remove the battery once you've set the time. You shouldn't have to and the battery holder is
very snug so unless the board is crushed, the battery wont 'fall out'

Setting the time
With the same sketch loaded, uncomment the line that starts with RTC.adjust like so:

// following line sets the RTC to the date & time this sketch was compiled
RTC.adjust(DateTime(__DATE__, __TIME__));

This line is very cute, what it does is take the Date and Time according the computer you're
using (right when you compile the code) and uses that to program the RTC. If your computer
time is not set right you should fix that first. Then you must press the Upload button to
compile and then immediately upload. If you compile and then upload later, the clock will be
off by that amount of time.

Then open up the Serial monitor window to show that the time has been set

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 19 of 68

From now on, you wont have to ever set the time again: the battery will last 5 or more years

Reading the time

Now that the RTC is merrily ticking away, we'll want to query it for the time. Lets look at the
sketch again to see how this is done

void loop () {

 DateTime now = RTC.now();

 Serial.print(now.year(), DEC);

 Serial.print('/');

 Serial.print(now.month(), DEC);

 Serial.print('/');

 Serial.print(now.day(), DEC);

 Serial.print(' ');

 Serial.print(now.hour(), DEC);

 Serial.print(':');

 Serial.print(now.minute(), DEC);

 Serial.print(':');

 Serial.print(now.second(), DEC);

 Serial.println();

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 20 of 68

There's pretty much only one way to get the time using the RTClib, which is to call now(), a
function that returns a DateTime object that describes the year, month, day, hour, minute
and second when you called now().

There are some RTC libraries that instead have you call something like RTC.year() and
RTC.hour() to get the current year and hour. However, there's one problem where if you
happen to ask for the minute right at 3:14:59 just before the next minute rolls over, and
then the second right after the minute rolls over (so at 3:15:00) you'll see the time as
3:14:00 which is a minute off. If you did it the other way around you could get 3:15:59 -
so one minute off in the other direction.

Because this is not an especially unlikely occurance - particularly if you're querying the time
pretty often - we take a 'snapshot' of the time from the RTC all at once and then we can pull
it apart into day() or second() as seen above. Its a tiny bit more effort but we think its
worth it to avoid mistakes!

We can also get a 'timestamp' out of the DateTime object by calling unixtime which counts
the number of seconds (not counting leapseconds) since midnight, January 1st 1970

Since there are 60*60*24 = 86400 seconds in a day, we can easily count days since then as
well. This might be useful when you want to keep track of how much time has passed since
the last query, making some math a lot easier (like checking if its been 5 minutes later, just
see if unixtime() has increased by 300, you dont have to worry about hour changes)

 Serial.print(" since 2000 = ");

 Serial.print(now.unixtime());

 Serial.print("s = ");

 Serial.print(now.unixtime() / 86400L);

 Serial.println("d");

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 21 of 68

Using the SD Card
The other half of the data logger shield is the SD card. The SD card is how we store long
term data. While the Arduino chip has a permanent EEPROM storage, its only a couple
hundred bytes - tiny compared to a 2 gig SD card. SD cards are so cheap and easy to get,
its an obvious choice for long term storage so we use them for the shield.

The shield kit doesn't come with an SD card but we carry one in the shop that is guaranteed
to work (http://adafru.it/aIH). Pretty much any SD card should work but be aware that some
cheap cards are 'fakes' and can cause headaches.

You'll also need a way to read and write from the SD card. Sometimes you can use your
camera and MP3 player - when its plugged in you will be able to see it as a disk. Or you may
need an SD card reader (http://adafru.it/939). The shield doesnt have the ability to display
the SD card as a 'hard disk' like some MP3 players or games, the Arduino does not have the
hardware for that, so you will need an external reader!

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 22 of 68

http://www.adafruit.com/index.php?main_page=product_info&cPath=18&products_id=102
http://www.adafruit.com/products/939

Formatting under Windows/Mac

If you bought an SD card, chances are it's already pre-formatted with a FAT filesystem.
However you may have problems with how the factory formats the card, or if it's an old card
it needs to be reformatted. The Arduino SD library we use supports both FAT16 and
FAT32 filesystems. If you have a very small SD card, say 8-32 Megabytes you might find it
is formatted FAT12 which isnt supported. You'll have to reformat these card. Either way, its
always good idea to format the card before using, even if its new! Note that formatting will
erase the card so save anything you want first

Download the formatter from
https://www.sdcard.org/downloads/formatter_4/ (http://adafru.it/cfL)

Download it and run it on your computer, there's also a manual linked from that page for use

We strongly recommend you use the official SD card formatter utility - written by the
SD association it solves many problems that come with bad formatting!

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 23 of 68

https://www.sdcard.org/downloads/formatter_4/

For Mega and Leonardo Users!
If you are using an Leonardo or Mega, you will have to update the SD card library to add 'SD
card on any pin' support. To update your library, follow the instructions on this
page (http://adafru.it/c75).

Next, select the CardInfo example sketch

This sketch will not write any data to the card, just tell you if it managed to recognize it, and
some information about it. This can be very useful when trying to figure out whether an SD
card is supported. Before trying out a new card, please try out this sketch!

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 24 of 68

http://learn.adafruit.com/adafruit-data-logger-shield/for-the-mega-and-leonardo

Go to the beginning of the sketch and make sure that the chipSelect line is correct, for the
datalogger shield we 're using digital pin 10 so change it to 10!

Mega and Leonardo Users!
Don't forget to change sd.begin() to specify the pin numbers as below

SD.begin(10,11,12,13);

OK, now insert the SD card into the Arduino and upload the sketch

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 25 of 68

Open up the Serial Monitor and type in a character into the text box (& hit send) when
prompted. You'll probably get something like the following:

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 26 of 68

Its mostly gibberish, but its useful to see the Volume type is FAT16 part as well as the
size of the card (about 2 GB which is what it should be) etc.

If you have a bad card, which seems to happen more with ripoff version of good brands, you
might see:

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 27 of 68

The card mostly responded, but the data is all bad. Note that the Product ID is "N/A" and
there is no Manufacturer ID or OEM ID. This card returned some SD errors. Its basically a
bad scene, I only keep this card around to use as an example of a bad card! If you get
something like this (where there is a response but its corrupted) you should toss the card

Finally, try taking out the SD card and running the sketch again, you'll get the following,

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 28 of 68

It couldn't even initialize the SD card. This can also happen if there's a soldering error or if the
card is really damaged

If you're having SD card problems, we suggest using the SD formatter
mentioned above first to make sure the card is clean and ready to use!

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 29 of 68

For the Mega and Leonardo
If you are using an Leonardo or Mega, you will have to replace the existing SD card library to
add 'SD card on any pin' support. If you have an Uno/Duemilanove/Diecimila, this is not
required.

First, find the "core libraries" folder - if you are using Windows or Linux, it will be in the folder
that contains the Arduino executable, look for a libraries folder. Inside you will see an SD
folder (inside that will be SD.cpp SD.h etc)

In the libraries folder, make a new folder called SDbackup. Then drag the SDfolder into
SDbackup, this will 'hide' the old SD library without deleting it

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 30 of 68

Now we'll grab the new SD library, visit https://github.com/adafruit/SD (http://adafru.it/aP6)
and click theZIP download button, or click the button below

Download the SD Library Zip

http://adafru.it/cxl

Uncompress and rename the uncompressed folder SD. Check that the SD folder contains
SD.cpp and SD.h

Place the SD library folder your sketchbook libraries folder. You may need to create the
libraries subfolder if its your first library. For more details on how to install libraries, check out
our ultra-detailed tutorial at (http://adafru.it/aYM)http://learn.adafruit.com/adafruit-all-about-
arduino-libraries-install-use (http://adafru.it/aYM)

Using the SD Library with the Mega and Leonardo
Because the Mega and Leonardo do not have the same hardware SPI pinout, you need to
specify which pins you will be using for SPI communication with the card. For the data logger
shield, these will be pins 10, 11, 12 and 13. Find the location in your sketch where SD.begin()
is called (like this):

and change it to add these pin numbers as follows:

cardinfo
The cardinfo sketch uses a lower level library to talk directly to the card, so it calls card.init()
instead of SD.begin().

When calling card.init(), you must change the call to specify the SPI pins, as follows:

 // see if the card is present and can be initialized:

 if (!SD.begin(chipSelect)) {

 // see if the card is present and can be initialized:

 if (!SD.begin(10, 11, 12, 13)) {

 // we'll use the initialization code from the utility libraries

 // since we're just testing if the card is working!

 while (!card.init(SPI_HALF_SPEED, chipSelect)) {

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 31 of 68

https://github.com/adafruit/SD
https://github.com/adafruit/SD/archive/master.zip
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

 // we'll use the initialization code from the utility libraries

 // since we're just testing if the card is working!

 while (!card.init(SPI_HALF_SPEED, 10, 11, 12, 13)) {

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 32 of 68

Light and Temperature Logger

Introduction
OK now that we have introduced both the RTC and the SD card and verified that they're
working, we can move onto logging!

We'll use a pretty good & detailed demonstration to show off the capabilities of this most
awesome data logging shield: We'll log both temperature and relative light levels to
determine:

1. How much does the temperature in a fridge vary as the compressor turns on and off?
2. Does keeping the door open cause a big temperature drop? How long does it take for

it to cool down?
3. Does the light inside really turn off when the door is closed?

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 33 of 68

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 34 of 68

Build It!

Items you'll need:

Arduino (of course!) a Atmega328 type is best (http://adafru.it/aIH) - we always
recommend going with an official 'classic' Arduino such as the Uno.
Adafruit data logger shield (http://adafru.it/1141) - assembled
SD card formatted for FAT (http://adafru.it/aIH) and tested using our example
sketch (http://adafru.it/clN)
CdS photocell (http://adafru.it/aIH) and a matching 10K pulldown resistor
Temperature sensor with analog out, such as TMP36 (http://adafru.it/aIH)
Battery pack such as a 6-AA 'brick' and a 2.1mm DC jack. (http://adafru.it/aIH)
or you can use a 9V clip for a power supply (http://adafru.it/aIH) but a 9V powered
logger will last only a couple hours so we suggest 6xAA's
Some 22 AWG wire (http://adafru.it/c79), soldering iron, solder (http://adafru.it/c7b),
etc.

You can get most everything in that list in a discounted pack in the Adafruit
shop! (http://adafru.it/aIH)

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 35 of 68

http://www.adafruit.com/index.php?main_page=product_info&cPath=17&products_id=50
http://adafruit.com/products/1141
http://www.adafruit.com/index.php?main_page=product_info&cPath=18&products_id=102
http://learn.adafruit.com/adafruit-data-logger-shield
http://www.adafruit.com/index.php?main_page=product_info&cPath=35&products_id=161
http://www.adafruit.com/index.php?main_page=product_info&cPath=35&products_id=165
http://www.adafruit.com/index.php?main_page=product_info&cPath=38&products_id=248
http://www.adafruit.com/index.php?main_page=product_info&cPath=38&products_id=80
http://www.adafruit.com/category/82_145
http://www.adafruit.com/category/8_84
http://www.adafruit.com/index.php?main_page=product_info&cPath=17_21&products_id=249

The sensors

We'll use two basic sensors to log data, a CdS photocell to track light (http://adafru.it/aIH)
(this will tell us when the door has been opened) and a semiconductor temperature sensor
to log the ambient fridge temperature. (http://adafru.it/aIH)

We have two great tutorials for these sensors on our site, if you haven't used them before
or need some refreshment, please read them now (http://adafru.it/c7d)!

We will wire the sensors as shown in the diagram below.

Note that we connect ARef, the power pin of the temp sensor, and the light sensor to 3.3V
not to 5.0V - we do this because the 5V line is very noisy and the 3.3V regulator is better
filtered. In the actual board we used the 3.3V line from the datalogger's regulator, see the
images below - in theory its the same as the one off of the Arduino but we trust ours more.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 36 of 68

http://www.adafruit.com/index.php?main_page=product_info&cPath=35&products_id=161
http://www.adafruit.com/index.php?main_page=product_info&cPath=35&products_id=165
http://www.ladyada.net/learn/sensors/index.html

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 37 of 68

Wiring it up
The prototyping area on the board is a simple array of holes with soldering pads. The steps
below show how we built this circuit and illustrate some some basic circuit prototyping
techniques. For clarity, we will use the same color wire as shown in the circuit diagram
above:

Position the sensors
The sensors could go anywhere on the
prototyping area, but we chose this
arrangement to simplify connections between
the components later on.

Prepare some jumpers
Measure a piece of wire (red) long enough to
reach from the 3v breakout hole to 1/2" past
the temperature sensor. Strip about 3/4" from
one end, and about 1/4" from the other.

Measure another one (yellow) long enough to
reach from the AREF pin to the hole between
the two sensors. Strip 1/2" from one end and
1/4" from the other.

Install the Jumpers
Place the jumpers as shown, with the long
stripped ends nearest the sensors.

Since there are no signal traces between the
holes in the prototyping area, we will use the
long stripped ends to join the legs of the
components on the board.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 38 of 68

http://learn.adafruit.com/assets/7044
http://learn.adafruit.com/assets/7046
http://learn.adafruit.com/assets/7048

Make the connections
Solder the first jumper (red) to the 3v
hole.
Bend the stripped end of the wire so it
rests next to the legs of the light sensor,
the temperature sensor and the end of
the AREF jumper.
Fold the sensor legs and AREF jumper
legs over the 3v jumper and solder to
make the connection.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 39 of 68

http://learn.adafruit.com/assets/7049

Add more jumpers for the
Sensors

From Analog Pin 0 to the hole near the
light sensor and resistor. (white)
From GND to the hole next to the other
end of the resistor (black)
From the Analog pin 1 to the hole next to
the center pin of the temperature sensor
(green)

And also for the LEDs
From L1 to Digital Pin 2 (yellow)
From L2 to Digital Pin 3 (yellow)

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 40 of 68

http://learn.adafruit.com/assets/7051
http://learn.adafruit.com/assets/7052
http://learn.adafruit.com/assets/7053

Solder and trim all connections
Using the same technique of folding the
component legs over the jumper - make all
connections as shown in the wiring diagram.

Make sure that all connections are soldered.
Also solder wires and component legs to the
board where they pass through the holes.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 41 of 68

http://learn.adafruit.com/assets/7054
http://learn.adafruit.com/assets/7056

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 42 of 68

Prepare the Battery Pack
Place the black plastic ferrule from the
connector over the battery pack wires.
Solder the red wire from the battery pack
to the center pin
Solder the the black wire to the outer
barrel.
Crimp to hold the wires securely
Screw the black plastic ferrule on to
cover the solder joints.

Now your Light Temp Logger is wired and ready for testing!

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 43 of 68

http://learn.adafruit.com/assets/7058
http://learn.adafruit.com/assets/7059
http://learn.adafruit.com/assets/7060

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 44 of 68

Use It!
Sensor test
We'll now test the sensors, using this sketch which is a bit of a mashup of the two examples
in our tutorials (http://adafru.it/c7d)

/* Sensor test sketch

 for more information see http://www.ladyada.net/make/logshield/lighttemp.html

 */

#define aref_voltage 3.3 // we tie 3.3V to ARef and measure it with a multimeter!

int photocellPin = 0; // the cell and 10K pulldown are connected to a0

int photocellReading; // the analog reading from the analog resistor divider

//TMP36 Pin Variables

int tempPin = 1; //the analog pin the TMP36's Vout (sense) pin is connected to

 //the resolution is 10 mV / degree centigrade with a

 //500 mV offset to allow for negative temperatures

int tempReading; // the analog reading from the sensor

void setup(void) {

 // We'll send debugging information via the Serial monitor

 Serial.begin(9600);

 // If you want to set the aref to something other than 5v

 analogReference(EXTERNAL);

}

void loop(void) {

 photocellReading = analogRead(photocellPin);

 Serial.print("Light reading = ");

 Serial.print(photocellReading); // the raw analog reading

 // We'll have a few threshholds, qualitatively determined

 if (photocellReading < 10) {

 Serial.println(" - Dark");

 } else if (photocellReading < 200) {

 Serial.println(" - Dim");

 } else if (photocellReading < 500) {

 Serial.println(" - Light");

 } else if (photocellReading < 800) {

 Serial.println(" - Bright");

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 45 of 68

http://www.ladyada.net/learn/sensors/index.html

OK upload this sketch and check the Serial monitor again

 } else {

 Serial.println(" - Very bright");

 }

 tempReading = analogRead(tempPin);

 Serial.print("Temp reading = ");

 Serial.print(tempReading); // the raw analog reading

 // converting that reading to voltage, which is based off the reference voltage

 float voltage = tempReading * aref_voltage / 1024;

 // print out the voltage

 Serial.print(" - ");

 Serial.print(voltage); Serial.println(" volts");

 // now print out the temperature

 float temperatureC = (voltage - 0.5) * 100 ; //converting from 10 mv per degree wit 500 mV offset

 //to degrees ((volatge - 500mV) times 100)

 Serial.print(temperatureC); Serial.println(" degrees C");

 // now convert to Fahrenheight

 float temperatureF = (temperatureC * 9 / 5) + 32;

 Serial.print(temperatureF); Serial.println(" degrees F");

 delay(1000);

}

Some recent versions of the IDE and SD library require that you explicitly include the SPI
library. If you get a compile error saying "'SPI' was not declared in this scope", simply
add "#include <SPI.h>" to the beginning of your sketch.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 46 of 68

In my workroom, I got about 24 degrees C and a 'light measurement' of about 400 -
remember that while the temperature sensor gives an 'absolute' reading in C or F, the light
sensor is not precise and can only really give rough readings.

Once you've verified that the sensors are wired up correctly & running its time to get to the
logging!

Logging sketch
Download the light and temperature logging sketch from GitHub (http://adafru.it/c7e). Insert
the SD card. Upload the sketch to your Arduino. We'll now test it out while still 'tethered' to
the computer

While the Arduno is still connected, blinking and powered, place your hand over the
photocell for a few seconds, then shine a flashlight on it. You should also squeeze the temp
sensor with your fingers to heat it up

Plotting with a spreadsheet

When you're ready to check out the data, unplug the Arduino and put the SD card into your
computer's card reader. You'll see a at least one and perhaps a couple files, one for each
time the logger ended up running

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 47 of 68

https://github.com/adafruit/Light-and-Temp-logger

We'll open the most recent one. If you want to use the same logfile used in the graphing
demos, click here to download it (http://adafru.it/cny).

The quickest way to look at the data is using something like OpenOffice or Excel, where you
can open the .csv file and have it imported directly into the spreadsheet

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 48 of 68

http://learn.adafruit.com/system/assets/assets/000/010/287/original/LOGTEST.CSV

You can then perform some graphing by selecting the columns of data

Clicking the Chart button and using Lines (we think they are the best for such graphs)

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 49 of 68

Setting the First Column as label

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 50 of 68

Which will generate this graph

You can see pretty clearly how I shaded the sensor and then shone a flashlight on it.

You can make the graph display both with different axes (since the change in temperature is
a different set of units. Select the temp line (red), right-click and choose Format Data
Series. In the Options tab, Align data series to Secondary Y-axis.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 51 of 68

Or you can make another graph with only the temp data

Now you can see clearly how I warmed up the sensor by holding it between my fingers

Using Gnuplot
Gnuplot is an free (but not open source?), ultra-powerful plotting program. Its also a real pain

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 52 of 68

to use! But if you can't afford a professional math/plotting package such as Mathematica or
Matlab, Gnuplot can do a lot!

We're not good enough to provide a full tutorial on gnuplot, here are a few links we found
handy. Google will definately help you find even more tutorials and links. Mucking about is
the best teacher, too!

http://www.cs.hmc.edu/~vrable/gnuplot/using-gnuplot.html (http://adafru.it/c7i)
http://www.duke.edu/~hpgavin/gnuplot.html (http://adafru.it/c7k)
http://www.ibm.com/developerworks/library/l-gnuplot/ (http://adafru.it/c7m)

We found the following commands executed in order will generate a nice graph of this data,
be sure to put LOGTEST.CSV in the same directory as wgnuplot.exe (or if you know how
to reference directories, you can put it elsewhere)

set xlabel "Time" # set the lower X-axis label to 'time'

set xtics rotate by -270 # have the time-marks on their side

set ylabel "Light level (qualitative)" # set the left Y-axis label

set ytics nomirror # tics only on left side

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 53 of 68

http://www.cs.hmc.edu/~vrable/gnuplot/using-gnuplot.html
http://www.duke.edu/~hpgavin/gnuplot.html
http://www.ibm.com/developerworks/library/l-gnuplot/

Which makes this:

set y2label "Temperature in Fahrenheit" # set the right Y-axis label

set y2tics border # put tics no right side

set key box top left # legend box

set key box linestyle 0

set xdata time # the x-axis is time

set format x "%H:%M:%S" # display as time

set timefmt "%s" # but read in as 'unix timestamp'

plot "LOGTEST.CSV" using 2:4 with lines title "Light levels"

replot "LOGTEST.CSV" using 2:5 axes x1y2 with lines title "Temperature (F)"

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 54 of 68

Note the cool double-sided y-axis scales! You can zoom in on stuff pretty easily too.

Other plotters

Our friend John also suggests Live-Graph as a free plotting
program (http://adafru.it/c7o) (http://adafru.it/c7o) - we haven't tried it but its worth looking
at if you need to do a lot of plotting!

Portable logging
Of course, having a datalogger thats chained to a desktop computer isn't that handy. We
can make a portable logger with the addition of a battery pack. The cheapest way to get a
good amount of power is to use 6 AA batteries. I made one here with rechargables and a
6xAA battery holder (http://adafru.it/248). It ran the Arduino logging once a second for 18.5
hours. If you use alkalines you could easily get 24 hours or more.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 55 of 68

http://www.live-graph.org/
http://www.live-graph.org/
http://www.adafruit.com/products/248

Fridge logging

With my portable logger ready, its time to do some Fridge Loggin'! Both were placed in the
fridge, in the center of the middle shelf.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 56 of 68

I placed it in around 10PM and then removed it around noon the next day. If you don't have a
fridge handy, you can grab the data from this zip file and use that (http://adafru.it/cnz).

Here is the logged data:

You can see in the middle and end the temp and light levels are very high because the
logger was outside the fridge. The green line is the temperature so you can see the
temperature slowly rising and then the compressor kicking in every half hour or so. The red
lines indicate when the door was opened. This night was a more insominac one than normal!

Zooming into the plot at about 12:40AM, we can see how the temperature climbs whenever

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 57 of 68

http://learn.adafruit.com/system/assets/assets/000/010/288/original/fridgelogdata.zip

the door is open, even in a few seconds it can climb 4 degrees very quickly!

Conclusion!

OK that was a detailed project but its a good one to test your datalogging abilities,
especially since its harder to fix bugs in the field. In general, we suggest trying other sensors
and testing them at home if possible. Its also a good idea to log more data than you need,
and use a software program to filter anything you dont need. For example, we dont use the
VCC log but if you're having strange sensor behavior, it may give you clues if your battery
life is affecting it.

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 58 of 68

Code Walkthrough

Introduction

This is a walkthrough of the Light and Temperature Logging sketch. Its long and detailed so
we put it here for your perusal. We strongly suggest reading through it, the code is very
versatile and our text descriptions should make it clear why everything is there!

Download the complete file here (http://adafru.it/c7e):

Includes and Defines

OK this is the top of the file, where we include the three libraries we'll use: the SD library to
talk to the card, the Wire library that helps the Arduino with i2c and the RTClib for chatting
with the real time clock

Next are all the "defines" - the constants and tweakables.

LOG_INTERVAL is how many milliseconds between sensor readings. 1000 is 1 second
which is not a bad starting point
ECHO_TO_SERIAL determines whether to send the stuff thats being written to the card
also out to the Serial monitor. This makes the logger a little more sluggish and you
may want the serial monitor for other stuff. On the other hand, its hella useful. We'll set
this to 1 to keep it on. Setting it to 0 will turn it off
WAIT_TO_START means that you have to send a character to the Arduino's Serial port

#include "SD.h"

#include <Wire.h>

#include "RTClib.h"

// A simple data logger for the Arduino analog pins

#define LOG_INTERVAL 1000 // mills between entries

#define ECHO_TO_SERIAL 1 // echo data to serial port

#define WAIT_TO_START 0 // Wait for serial input in setup()

// the digital pins that connect to the LEDs

#define redLEDpin 3

#define greenLEDpin 4

// The analog pins that connect to the sensors

#define photocellPin 0 // analog 0

#define tempPin 1 // analog 1

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 59 of 68

https://github.com/adafruit/Light-and-Temp-logger

to kick start the logging. If you have this on you basically can't have it run away from
the computer so we'll keep it off (set to 0) for now. If you want to turn it on, set this to
1

The other defines are easier to understand, as they are just pin defines

redLEDpin is whatever you connected to the Red LED on the logger shield
greenLEDpin is whatever you connected to the Green LED on the logger shield
photocellPin is the analog input that the CdS cell is wired to
tempPin is the analog input that the TMP36 is wired to

Objects and error()

Next up we've got all the objects for the RTC, and the SD card chip select pin. For all our
shields we use pin 10 for SD card chip select lines but Ethernet shields use pin 4

Next is the error function, which is just a shortcut for us, we use it when something Really
Bad happened, like we couldn't write to the SD card or open it. It prints out the error to the
Serial Monitor, turns on the red error LED, and then sits in a while(1); loop forever, also
known as a halt

Setup

RTC_DS1307 RTC; // define the Real Time Clock object

// for the data logging shield, we use digital pin 10 for the SD cs line

const int chipSelect = 10;

// the logging file

File logfile;

void error(char *str)

{

 Serial.print("error: ");

 Serial.println(str);

 // red LED indicates error

 digitalWrite(redLEDpin, HIGH);

 while(1);

}

void setup(void)

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 60 of 68

K now we are onto the code. We begin by initializing the Serial port at 9600 baud. If we set
WAIT_TO_START to anything but 0 , the Arduino will wait until the user types something in.
Otherwise it goes ahead to the next part

{

 Serial.begin(9600);

 Serial.println();

#if WAIT_TO_START

 Serial.println("Type any character to start");

 while (!Serial.available());

#endif //WAIT_TO_START

 // initialize the SD card

 Serial.print("Initializing SD card...");

 // make sure that the default chip select pin is set to

 // output, even if you don't use it:

 pinMode(10, OUTPUT);

 // see if the card is present and can be initialized:

 if (!SD.begin(chipSelect)) {

 Serial.println("Card failed, or not present");

 // don't do anything more:

 return;

 }

 Serial.println("card initialized.");

 // create a new file

 char filename[] = "LOGGER00.CSV";

 for (uint8_t i = 0; i < 100; i++) {

 filename[6] = i/10 + '0';

 filename[7] = i%10 + '0';

 if (! SD.exists(filename)) {

 // only open a new file if it doesn't exist

 logfile = SD.open(filename, FILE_WRITE);

 break; // leave the loop!

 }

 }

 if (! logfile) {

 error("couldnt create file");

 }

 Serial.print("Logging to: ");

 Serial.println(filename);

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 61 of 68

Now the code starts to talk to the SD card, it tries to initialize the card and find a
FAT16/FAT32 partition.

Next it will try to make a logfile. We do a little tricky thing here, we basically want the files to
be called something like LOGGERnn.csv where nn is a number. By starting out trying to
create LOGGER00.CSV and incrementing every time when the file already exists, until we
get to LOGGER99.csv, we basically make a new file every time the Arduino starts up

To create a file, we use some Unix style command flags which you can see in the
logfile.open() procedure. FILE_WRITE means to create the file and write data to it.

Assuming we managed to create a file successfully, we print out the name to the Serial port.

OK we're wrapping up here. Now we kick off the RTC by initializing the Wire library and
poking the RTC to see if its alive.

Then we print the header. The header is the first line of the file and helps your spreadsheet
or math program identify whats coming up next. The data is in CSV (comma separated
value) format so the header is too: "millis,time,light,temp" the first item millis is
milliseconds since the Arduino started, time is the time and date from the RTC, light is the

 Wire.begin();

 if (!RTC.begin()) {

 logfile.println("RTC failed");

#if ECHO_TO_SERIAL

 Serial.println("RTC failed");

#endif //ECHO_TO_SERIAL

 }

 logfile.println("millis,time,light,temp");

#if ECHO_TO_SERIAL

 Serial.println("millis,time,light,temp");

#if ECHO_TO_SERIAL// attempt to write out the header to the file

 if (logfile.writeError || !logfile.sync()) {

 error("write header");

 }

 pinMode(redLEDpin, OUTPUT);

 pinMode(greenLEDpin, OUTPUT);

 // If you want to set the aref to something other than 5v

 //analogReference(EXTERNAL);

}

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 62 of 68

data from the CdS cell and temp is the temperature read.

You'll notice that right after each call to logfile.print() we have #if ECHO_TO_SERIAL and a
matching Serial.print() call followed by a #if ECHO_TO_SERIAL this is that debugging
output we mentioned earlier. The logfile.print() call is what writes data to our file on the
SD card, it works pretty much the same as the Serial version. If you set
ECHO_TO_SERIAL to be 0 up top, you won't see the written data printed to the Serial
terminal.

Finally, we set the two LED pins to be outputs so we can use them to communicate with the
user. There is a commented-out line where we set the analog reference voltage. This code
assumes that you will be using the 'default' reference which is the VCC voltage for the chip -
on a classic Arduino this is 5.0V. You can get better precision sometimes by lowering the
reference. However we're going to keep this simple for now! Later on, you may want to
experiment with it.

Main loop
Now we're onto the loop, the loop basically does the following over and over:

1. Wait until its time for the next reading (say once a second - depends on what we
defined)

2. Ask for the current time and date froom the RTC
3. Log the time and date to the SD card
4. Read the photocell and temperature sensor
5. Log those readings to the SD card
6. Sync data to the card if its time

Timestamping

Lets look at the first section:

void loop(void)

{

 DateTime now;

 // delay for the amount of time we want between readings

 delay((LOG_INTERVAL -1) - (millis() % LOG_INTERVAL));

 digitalWrite(greenLEDpin, HIGH);

 // log milliseconds since starting

 uint32_t m = millis();

 logfile.print(m); // milliseconds since start

 logfile.print(", ");

#if ECHO_TO_SERIAL

 Serial.print(m); // milliseconds since start

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 63 of 68

The first important thing is the delay() call, this is what makes the Arduino wait around until
its time to take another reading. If you recall we #defined the delay between readings to
be 1000 millseconds (1 second). By having more delay between readings we can use less
power and not fill the card as fast. Its basically a tradeoff how often you want to read data
but for basic long term logging, taking data every second or so will result in plenty of data!

Then we turn the green LED on, this is useful to tell us that yes we're reading/writing data
now.

Next we call millis() to get the 'time since arduino turned on' and log that to the card. It can
be handy to have - especially if you end up not using the RTC.

 Serial.print(", ");

#endif

 // fetch the time

 now = RTC.now();

 // log time

 logfile.print(now.get()); // seconds since 2000

 logfile.print(", ");

 logfile.print(now.year(), DEC);

 logfile.print("/");

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.day(), DEC);

 logfile.print(" ");

 logfile.print(now.hour(), DEC);

 logfile.print(":");

 logfile.print(now.minute(), DEC);

 logfile.print(":");

 logfile.print(now.second(), DEC);

#if ECHO_TO_SERIAL

 Serial.print(now.get()); // seconds since 2000

 Serial.print(", ");

 Serial.print(now.year(), DEC);

 Serial.print("/");

 Serial.print(now.month(), DEC);

 Serial.print("/");

 Serial.print(now.day(), DEC);

 Serial.print(" ");

 Serial.print(now.hour(), DEC);

 Serial.print(":");

 Serial.print(now.minute(), DEC);

 Serial.print(":");

 Serial.print(now.second(), DEC);

#endif //ECHO_TO_SERIAL

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 64 of 68

Then the familiar RTC.now() call to get a snapshot of the time. Once we have that, we write
a timestamp (seconods since 2000) as well as the date in YY/MM/DD HH:MM:SS time
format which can easily be recognized by a spreadsheet. We have both because the nice
thing about a timestamp is that its going to montonically increase and the nice thing about
printed out date is its human readable

Log sensor data

Next is the sensor logging code

This code is pretty straight forward, the processing code is snagged from our earlier tutorial.
Then we just print() it to the card with a comma seperating the two

We finish up by turning the green LED off

 int photocellReading = analogRead(photocellPin);

 delay(10);

 int tempReading = analogRead(tempPin);

 // converting that reading to voltage, for 3.3v arduino use 3.3

 float voltage = tempReading * 5.0 / 1024;

 float temperatureC = (voltage - 0.5) * 100 ;

 float temperatureF = (temperatureC * 9 / 5) + 32;

 logfile.print(", ");

 logfile.print(photocellReading);

 logfile.print(", ");

 logfile.println(temperatureF);

#if ECHO_TO_SERIAL

 Serial.print(", ");

 Serial.print(photocellReading);

 Serial.print(", ");

 Serial.println(temperatureF);

#endif //ECHO_TO_SERIAL

 digitalWrite(greenLEDpin, LOW);

}

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 65 of 68

Downloads

Download Adafruit SD Library

http://adafru.it/cxl

If you want to fork or browse the code for the Adafruit SD Library (http://adafru.it/aP6) check
the github repository - you should only have to download and replace your SD library if you
have a Mega or Leonardo to use with the Datalogging shield
 (http://adafru.it/c7r)

Download Adafruit RTC Library

http://adafru.it/cxm

If you want to fork or browse code for the Adafruit RTC Library check out the github
repository (http://adafru.it/c7r)

To install the Arduino libraries, check out our tutorial http://learn.adafruit.com/adafruit-all-
about-arduino-libraries-install-use (http://adafru.it/aYM)

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 66 of 68

https://github.com/adafruit/SD/archive/master.zip
https://github.com/adafruit/SD
https://github.com/adafruit/RTClib
https://github.com/adafruit/RTClib/archive/master.zip
https://github.com/adafruit/RTClib
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Schematic, click to enlarge!

© Adafruit Industries https://learn.adafruit.com/adafruit-data-logger-shield Page 67 of 68

© Adafruit Industries Last Updated: 2015-01-06 08:30:17 AM EST Page 68 of 68

	Guide Contents
	Overview
	The new and improved logging shield
	Features:

	Installing the Headers
	Assembly with male headers
	Cut the headers to length:
	Position the headers:
	Position the shield:
	And solder!

	Assembly with Stacking Headers:
	Position the headers:
	And solder!

	Shield Overview
	Using the Real Time Clock
	What is a Real Time Clock?
	Talking to the RTC
	First RTC test
	Setting the time
	Reading the time

	Using the SD Card
	Formatting under Windows/Mac

	For Mega and Leonardo Users!
	Mega and Leonardo Users!

	For the Mega and Leonardo
	Using the SD Library with the Mega and Leonardo
	cardinfo

	Light and Temperature Logger
	Introduction
	Build It!
	Items you'll need:
	The sensors

	Wiring it up
	Position the sensors
	Prepare some jumpers
	Install the Jumpers
	Make the connections
	Add more jumpers for the Sensors
	And also for the LEDs
	Solder and trim all connections
	Prepare the Battery Pack

	Use It!
	Sensor test
	Logging sketch
	Plotting with a spreadsheet
	Using Gnuplot
	Other plotters

	Portable logging
	Fridge logging
	Conclusion!

	Code Walkthrough
	Introduction
	Includes and Defines
	Objects and error()
	Setup
	Main loop
	Timestamping
	Log sensor data

	Downloads

