

Datasheet

V1_0717_01_en

1

1. Scope:

This specification for approval relates to Thick Film Chip Resistors (Terminal Lead Free)

2. Type designation:

The type designation shall be in the following form:

All part numbers in the coding below start with "TC-" and end with "203"

Ex.

part numbers in the towing			
Туре	Power Rating	Resistance tolerance	Nominal Resistance
RMC 0402	1/16W		
RMC 0603	1/10W-S	Eal	75Ω
RMC 0805	1/8W-S	F,a J	/ 352
RMC 1206	1/4W-S		

3. Ratings:

Туре	RMC 0402	RMC 0603	RMC 0805	RMC 1206
Power Rating	1/16W (0.0625W)	1/10W-S (0.10W)	1/8W-S (0.125W)	1/4W-S (0.25W)
Rated Current(Jumper)	1A	1A	2A	2A
Max. Overload Current(Jumper)	2A	2A	4A	4A
Max. Working Voltage	50 V	50 V	150 V	200 V
Max. Overload Voltage	100 V	100 V	300 V	400 V
Temperature Range		-55°C ~	~ +155°C	
Ambient Temperature		7	0 °C	

Datasheet

Mutipl	ier Co	ode :									
Code	Α	В	С	D	Е	F	G	Н	X	Y	Z
Multiplie	r 10	1 10	2 10	3 10	4 10	5 10	6 10	7 10	-1 10	-2 10	-3 10
Coding XX	1	1	Form	nula X		Exam	iple :	10.2KΩ	$= 102 \\ \downarrow \\ 02$	X	$ \begin{array}{c} 10 \Omega \\ \downarrow \\ C \end{array} = 0 $
	Resistar	nce Code			Multipli	er Code		33.2 Ω	$= 332$ \downarrow 51		$ \begin{array}{c} -1 \\ 10 \\ \downarrow \\ X \end{array} = $
	Value	Code	Value	Code	Value	Code	Value	Code	Value	Code	
	100	01	162	21	261	41	422	61	681	81	
	102	02	165	22	267	42	432	62	698	82	
	105	03	169	23	274	43	442	63	715	83	
	107	04	174	24	280	44	453	64	732	84	
	110	05	178	25	287	45	464	65	750	85	
	113	06	182	26	294	46	475	66	768	86	
	115	07	187	27	301	47	487	67	787	87	
	118	08	191	28	309	48	499	68	806	88	
	121	09	196	29	316	49	511	69	825	89	
	124	10	200	30	324	50	523	70	845	90	
	127	11	205	31	332	51	536	71	866	91	
	130	12	210	32	340	52	549	72	887	92	
	133	13	215	33	348	53	562	73	909	93	
	137	14	221	34	357	54	576	74	931	94	
	140	15	226	35	365	55	590	75	953	95	
	143	16	232	36	374	56	604	76	976	96	
	147	17	237	37	383	57	619	77	U		
	150	18	243	38	392	58	634	78			
	154	19	249	39	402	59	649	79			
	158	20	255	40	412	60	665	80			

*Marking for 0603 E-96 series, the resistance value that no have multiplier code indicate marking follow this: The first two digits are significant figures of resistance and the third one denoted number of zeros and under line the marking letters.

Ex.

<u>122</u> 1.2KΩ

Thic	k Film Chip Resistors (Terminal Lead Free)
6. Marking : 6.1 Resistors A. ± 5% Tolerance 06 resistance and the third onede	03, 0805, 1206: the first two digits are significant figures of noted number of zeros.
Ex.	333 33KΩ
B. For ohmic values l	below 10 Ω
Ex.	2R2 2.2Ω
C. For E-96 series [±1	% (F) tolerance] in 0603 size 3 digit system (due to space restrictions)
please refer to page 4 for o	coding formula
Ex.	02C 10.2K Ω
	05, 1206 : 4 Digits, the first three digits are singnificant figures of digit denoted number of zeros.Letter"R" is for decimal point.
Ex.	2701 2.7K Ω
E. Chip Resistors typ	e 0402 No marking
	d with the following item : tance and Resistance Tolerance and Size
C. Quantity	
D. Part No.	CHIP RESISTOR
E. P.O.No.	RESISTANCE: 75 Ω ± 1%
F. Lot No.	WATTAGE: 1/10W-S SIZE: 0603
<u>Ex.</u>	QUANTITY: 5,000 PCS Pb-Free PART NO.: P.O.NO.:
	LOT NO. : 825723 0603SAF750JT5E
Remark : For 0	603 ± 1 % : Label is 75E, value is 75 Ω , marking is 85X

	Thick Film Chip R	esistors (Terminal Lead Free)
7. Performan	ce specification :	
Characteristics	Limits	Test Methods (JIS C 5201-1)
*Insulation	1,000 M Ω or more	Apply 500V DC between protective coating
resistance		and termination for 1 min, then measure
		(Sub-clause 4.6)
*Dielectric	No evidence of flashover	Apply 100V(0402) 300V(0603) & 500V (0805,1206,1210,2010,
withstanding	mechanical damage, arcing or	2512) AC between protective coating
voltage	insulation break down	and termination for 1 minute (Sub-clause 4.7)
		Natural resistance change per temp.
		degree centigrade.
	1Ω -10 Ω : $\pm 400 \text{ PPM/}^{\circ}\text{C}$	R2-R1
Temperature	11Ω -100 Ω : $\pm 200 \text{ PPM/}^{\circ}\text{C}$	
coefficient	$>100\Omega: \pm 100 \text{ PPM/}^{\circ}\text{C}$	$R_1(t_2-t_1)$
		R1: Resistance value at room temperature (t1)
		R2: Resistance value at room temp. plus 100 $^{\circ}$ C (t2)
		(Sub-clause 4.8)
Short time	Resistance change rate is	Permanent resistance change after the
overload	$\pm 5\%$ (2.0% + 0.1 Ω) Max.	application of a potential of 2.5 times RCWV
	$\pm 1\% (1.0\% + 0.1 \Omega)$ Max.	for 5 seconds
		(Sub-clause 4.13)

	Thick Film Chip Res	sistors (Terminal Lead Free)
7. Performan	ce specification :	
Characteristics	Limits	Test Methods (JIS C 5201-1)
*Solderability	95 % coverage Min.	Test temperature of solder : $245 \pm 3^{\circ}$ C Dipping them solder : 2-3 seconds (Sub-clause 4.17) Wave soldering condition: (2 cycles Max.)
Soldering temp. reference	Electrical characteristics shall be satisfied. Without distinct deformation in appearance. (95 % coverage Min.)	Wave soldering condition: (2 cycles Max.) Pre-heat : $100 \sim 120 ^{\circ}\text{C}$, $30 \pm 5 \text{ sec.}$ Suggestion solder temp.: $235 \sim 255 ^{\circ}\text{C}$, 10 sec. (Max.) Peak temp.: $260 ^{\circ}\text{C}$ Reflow soldering condition: (2 cycles Max.) Pre-heat : $150 \sim 180 ^{\circ}\text{C}$, $90 \sim 120 \text{ sec.}$ Suggestion solder temp.: $235 \sim 255 ^{\circ}\text{C}$, $20 \sim 40 \text{ sec.}$ Peak temp.: $260 ^{\circ}\text{C}$ $(^{\circ}_{200} \longrightarrow ^{\circ}_{235 ^{\circ}\text{C}} - 255 ^{\circ}\text{C}$, $20 \sim 40 \text{ sec.}$ Peak temp.: $260 ^{\circ}\text{C}$ $(^{\circ}_{200} \longrightarrow ^{\circ}_{235 ^{\circ}\text{C}} - 255 ^{\circ}\text{C}$, $20 \sim 40 \text{ sec.}$ Pre-heat : $150 \sim 100 ^{\circ}\text{C}$ $(^{\circ}_{200} \longrightarrow ^{\circ}_{235 ^{\circ}\text{C}} - 255 ^{\circ}\text{C}$, $20 \sim 40 \text{ sec.}$ Peak temp.: $260 ^{\circ}\text{C}$ $(^{\circ}_{200} \longrightarrow ^{\circ}_{235 ^{\circ}\text{C}} - 255 ^{\circ}\text{C}$, $20 \sim 40 \text{ sec.}$ $(^{\circ}_{200} \longrightarrow ^{\circ}_{235 ^{\circ}\text{C}} - 255 ^{\circ}\text{C}$, $20 \sim 40 \text{ sec.}$ Pre-heat temp.: $260 ^{\circ}\text{C}$ $(^{\circ}_{200} \longrightarrow ^{\circ}_{235 ^{\circ}\text{C}} - 255 ^{\circ}\text{C}$, $20 \sim 40 \text{ sec.}$ Peak temp.: $260 ^{\circ}\text{C}$ $(^{\circ}_{200} \longrightarrow ^{\circ}_{235 ^{\circ}\text{C}} - 255 ^{\circ}\text{C}$, $20 \sim 40 \text{ sec.}$ Pre-heat temp.: $200 ^{\circ}\text{C}$ $(^{\circ}_{200} \longrightarrow ^{\circ}_{235 ^{\circ}\text{C}} - 255 ^{\circ}\text{C}$, $20 \sim 40 \text{ sec.}$ $(^{\circ}_{200} \longrightarrow ^{\circ}_{235 ^{\circ}\text{C}} - 255 ^{\circ}\text{C}$, $20 \sim 40 \text{ sec.}$ Pre-heat temp.: $200 ^{\circ}\text{C}$ $(^{\circ}_{200} \longrightarrow ^{\circ}_{235 ^{\circ}\text{C}} - 255 ^{\circ}\text{C}$, $20 \sim 40 \text{ sec.}$ $(^{\circ}_{200} \longrightarrow ^{\circ}_{235 ^{\circ}\text{C}} - 255 ^{\circ}\text{C}$ $(^{\circ}_{200} \longrightarrow ^{\circ}_{235 ^{\circ}\text{C}} - 255 ^{\circ}\text{C}$ $(^{\circ}_{200} \longrightarrow ^{\circ}\text{C} - 255 ^{\circ}\text{C}$ $(^$

7. Performance	ce specification :			
Characteristics	Limits		Test Methods	
Characteristics	Limits		(JIS C 5201-1)
Soldering	Resistance change rate is:	Dip the resis	stor into a solder bath h	aving
Heat	$\pm (1\% + 0.05\Omega)$ Max.	a temperatur	re of 260°C±3°C and h	old it for 10±1
		seconds.		
		(Sub-clause	4.18)	
		Resistance c	change after continuous	5
		5 cycles for	duty cycle specified be	elow :
	Resistance change rate is	Step	Temperature	Time
Temperature	$\pm 5\% (1.0\% + 0.05 \Omega)$ Max.	1	-55°C ± 3°C	30 mins
cycling	$\pm 1\% (0.5\% + 0.05 \Omega)$ Max.	2	Room temp.	$10\sim 15 \text{ min}$
		3	$+155^{\circ}\text{C} \pm 2^{\circ}\text{C}$	30 mins
		4	Room temp.	$10 \sim 15 \text{ mins}$
		(Sub-clause	4.19)	
		Resistance c	change after 1,000 hour	S
Load life in	Resistance change rate is		on", 0.5 hour "off") at	
humidity	$\pm 5\% (3.0\% + 0.1 \Omega)$ Max.		y chamber controlled a	
	$\pm 1\% (1.0\% + 0.1 \Omega)$ Max.		and 90 to 95 % relative	e humidity
		(Sub-clause	,	
	Resistance change rate is		resistance change after	-
Load Life	$\pm 5\% (3.0\% + 0.1 \Omega)$ Max.		RCWV, with duty cyc	
	$\pm 1\% (1.0\% + 0.1 \Omega)$ Max.	·	on", 0.5 hour"off") at 70	$0^{\circ}C \pm 2^{\circ}C$ ambient
		(Sub-clause	,	
Terminal	Resistance change rate is	Twist of Tes		
bending	$\pm (1.0\% + 0.05 \Omega)$ Max.		mm for 10 seconds	
		(Sub-clause	4.33)	

		Thick Filr	n Chip	Resisto	rs (Tei	minal	Lead F	ree)	
8. Packing specification :* Taping Dimension (mm)A. Paper taping									
Туре	$A \pm 0.2 \qquad B \pm 0.2$		C ± 0.05	φ D +0.1 - 0	E ± 0.1	$F \pm 0.05$	G ± 0.1	$W \pm 0.2$	T ± 0.1
RMC 0402	0.65	1.15	2.0	1.5	1.75	3.5	4.0	8.0	0.45
RMC 0603	1.10	1.90	2.0	1.5	1.75	3.5	4.0	8.0	0.67
RMC 0805	1.65	2.40	2.0	1.5	1.75	3.5	4.0	8.0	0.81
RMC 1206	2.00	3.60	2.0	1.5	1.75	3.5	4.0	8.0	0.81
* Reel Dime	nsion (mm)	/				1			
* Reel Dime	nsion (mm)								
* Reel Dime Type	nsion (mm) Packaging	Quantity I	Per Reel	A ± 0.5	$B \pm 0.5$	↓ ↓ -	D ± 1	M ± 2	W ± 1
	Packaging	Quantity H 10,000		A ± 0.5 2	1	- -	D ± 1 60	M ± 2 178	W ± 1 10
Туре	Packaging Paper		pcs.		B ± 0.5	- C ± 0.5			
Type RMC 0402	Packaging Paper Paper	10,000	pcs. pcs.	2	B ± 0.5 13	- C ± 0.5 21	60	178	10

Remark : ϕ M (1) 10,000Pcs/Reel = 255 or 20,000Pcs/Reel = 330

(2) RMC 0402: 20,000Pcs/Reel = 255 or 40,000pcs/Reel = 330

(3) For paper taping, can pack T/R-1,000pcs

Thick Film Chip Resistors (Terminal Lead Free)

Environment Related Substance

This product complies to EU RoHS directive, EU PAHs directive, EU PFOS directive and Halogen free.

Ozone layer depleting substances.

Ozone depleting substances are not used in our manufacturing process of this product. This product is not manufactured using Chloro fluorocarbons (CFCs), Hydrochlorofluorocarbons (HCFCs), Hydrobromofluorocarbons (HBFCs) or other ozone depleting substances in any phase of the manufacturing process.

Storage Condition

The performance of these products, including the solderability, is guaranteed for a year from the date of arrival at your company, provided that they remain packed as they were when delivered and stored at a temperature of $25^{\circ}C \pm 5^{\circ}C$ and a relative humidity of 60%RH $\pm 10\%$ RH

Even within the above guarantee periods, do not store these products in the following conditions. Otherwise, their electrical performance and/or solderability may be deteriorated, and the packaging materials (e.g. taping materials) may be deformed or deteriorated, resulting in mounting failures.

1. In salty air or in air with a high concentration of corrosive gas, such as Cl₂, H₂S, NH₃, SO₂, or NO₂

2. In direct sunlight

This is a publication by Conrad Electronic SE, Klaus-Conrad-Str. 1, D-92240 Hirschau (www.conrad.com).

All rights including translation reserved. Reproduction by any method, e.g. photocopy, microfilming, or the capture in electronic data processing systems require the prior written approval by the editor. Reprinting, also in part, is prohibited. This publication represents the technical status at the time of printing.

© Copyright 2017 by Conrad Electronic SE.