

1

1. Scope:

This specification for approval relates to Thick Film Chip Resistors (Terminal Lead Free).

2. Type designation:

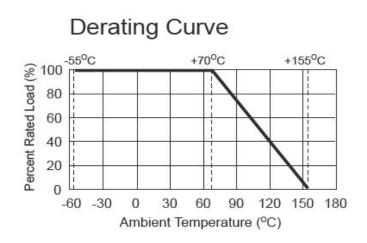
The type designation shall be in the following form:

All part numbers in the coding below start with "TC-" and end with "203"

Ex.

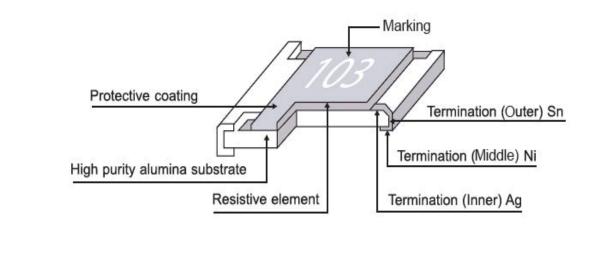
Туре	Power Rating	Resistance tolerance	Nominal Resistance	
RMC 0402	1/16W			
RMC 0603	1/10W-S	F. J	75Ω	
RMC 0805	1/8W-S	Г, Ј	/322	
RMC 1206	1/4W-S			

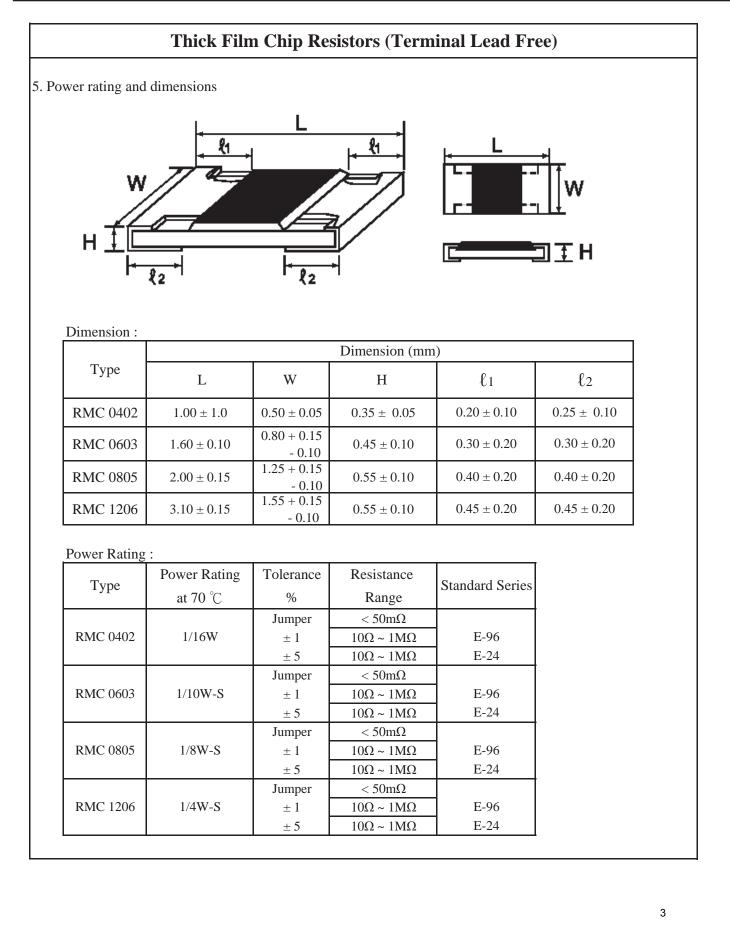
3. Ratings:


Туре	RMC 0402	RMC 0603	RMC 0805	RMC 1206					
Power Rating	1/16W (0.0625W)	1/10W-S (0.10W)	1/8W-S (0.125W)	1/4W-S (0.25W)					
Rated Current(Jumper)	1A	1A	2A	2A					
Max. Overload Current(Jumper)	2A	2A	4A	4A					
Max. Working Voltage	50 V	50 V	150 V	200 V 400 V					
Max. Overload Voltage	100 V	100 V	300 V						
Temperature Range		$-55^{\circ}\text{C} \sim +155^{\circ}\text{C}$							
Ambient Temperature		70 °C							

3.1 Power rating:

Resistors shall have a power rating based on continuous load operation at an ambient temperature of 70 $^\circ\!C$. For temperature in excess of 70 $^\circ\!C$, The load shall be derate as shown in figure 1.




3.2 Nominal Resistance

Effective figures of nominal resistance shall be in accordance with E-24 and E-96 series for 1 % and E-24 series for 2 % and 5 %

4. Construction :

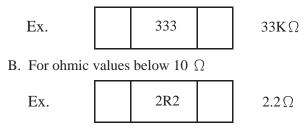
Mutip	lier Co	ode:									
Code	Α	В	С	D	E	F	G	Н	X	Y	Z
Multiplie	r 10^{0}	1 10	2 10	3 10	4 10	5 10	6 10	7 10	-1 10	-2 10	-3 10
Coding XX			For	mula X		Exan	nple :	10.2K	2 = 10		$\begin{array}{c} 10 \Omega \\ \downarrow \\ C \end{array} = 0$
	Resista	nce Cod	e		Multipl	ier Code		33.2 Ω	= 33 ↓ 51	2 X	$\begin{array}{c} -1 \\ 10 \\ \downarrow \\ X \end{array} = $
	Value	Code	Value	Code	Value	Code	Value	Code	Value	Code	
	100	01	162	21	261	41	422	61	681	81	
	102	02	165	22	267	42	432	62	698	82	
	105	03	169	23	274	43	442	63	715	83	
	107	04	174	24	280	44	453	64	732	84	
	110	05	178	25	287	45	464	65	750	85	
	113	06	182	26	294	46	475	66	768	86	
	115	07	187	27	301	47	487	67	787	87	
	118	08	191	28	309	48	499	68	806	88	
	121	09	196	29	316	49	511	69	825	89	
	124	10	200	30	324	50	523	70	845	90	
	127	11	205	31	332	51	536	71	866	91	
	130	12	210	32	340	52	549	72	887	92	
	133	13	215	33	348	53	562	73	909	93	
	137	14	221	34	357	54	576	74	931	94	
	140	15	226	35	365	55	590	75	953	95	
	143	16	232	36	374	56	604	76	976	96	
	147	17	237	37	383	57	619	77			
	150	18	243	38	392	58	634	78			
	154	19	249	39	402	59	649	79			
	158	20	255	40	412	60	665	80			

and under line the marking letters.

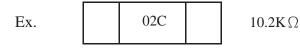
Ex.

122

 $1.2 \mathrm{K} \Omega$



Thick Film Chip Resistors (Terminal Lead Free)


6. Marking :

6.1 Resistors

A. \pm 5% Tolerance 0603, 0805, 1206: the first two digits are significant figures of resistance and the third onedenoted number of zeros.

C. For E-96 series [±1% (F) tolerance] in 0603 size 3 digit system (due to space restrictions) please refer to page 4 for coding formula

D. ±1% Tolerance 0805, 1206 : 4 Digits, the first three digits are singnificant figures of resistance and the fourth digit denoted number of zeros.Letter"R" is for decimal point.

Ex.

 $2.7 \mathrm{K} \Omega$

E. Chip Resistors type 0402 No marking

6.2 Labels

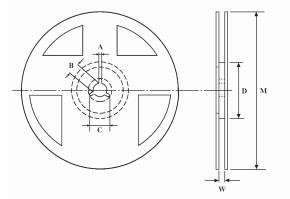
Label shall be marked with the following item :

2701

- A. Nominal Resistance and Resistance Tolerance
- B. Power Rating and Size
- C. Quantity **CHIP RESISTOR** D. Part No. E. P.O.No. RESISTANCE: 75 ± 1% Ω 1/10W-S WATTAGE: SIZE: 0603 F. Lot No. QUANTITY: 5,000 PCS **Pb-Free** PART NO.: Ex. P.O.NO.: LOT NO. : 825723 0603SAF750JT5E Remark : For 0603 ± 1 % : Label is 75E, value is 75 Ω , marking is 85X

	Thick Film Chip R	esistors (Terminal Lead Free)			
7. Performan	ce specification :				
Characteristics	Limits	Test Methods (JIS C 5201-1)			
*Insulation resistance	1,000 M Ω or more	Apply 500V DC between protective coating and termination for 1 min, then measure (Sub-clause 4.6)			
*Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down	Apply 100V(0402) 300V(0603) & 500V (0805,1206,1210,2010, 2512) AC between protective coating and termination for 1 minute (Sub-clause 4.7)			
Temperature coefficient	1Ω-10Ω : ±400 PPM/°C 11Ω-100Ω : ±200 PPM/°C >100Ω : ±100 PPM/°C	Natural resistance change per temp. degree centigrade. $\frac{R_2-R_1}{(12-t_1)} \times 10^6 \text{ (PPM/°C)}$ R1: Resistance value at room temperature (t1) R2: Resistance value at room temp. plus 100 °C (t2) (Sub-clause 4.8)			
Short time overload	Resistance change rate is $\pm 5\% (2.0\% + 0.1 \Omega)$ Max. $\pm 1\% (1.0\% + 0.1 \Omega)$ Max.	Permanent resistance change after the application of a potential of 2.5 times RCWV for 5 seconds (Sub-clause 4.13)			

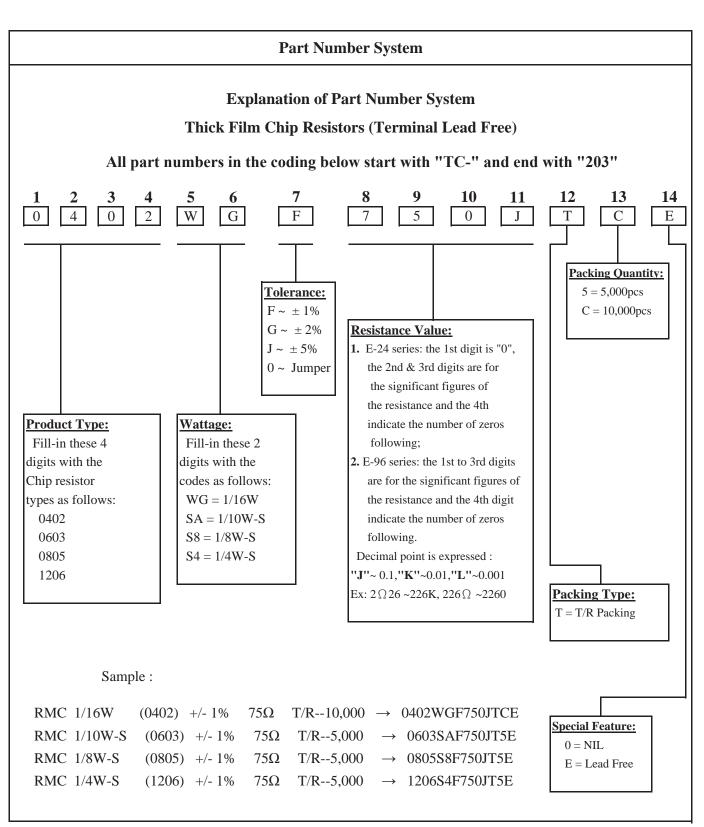
Thick Film Chip Resistors (Terminal Lead Free)									
7. Performan	ce specification :								
Characteristics	Limits	Test Methods (JIS C 5201-1)							
*Solderability	95 % coverage Min.	Test temperature of solder : $245 \pm 3^{\circ}$ C Dipping them solder : 2-3 seconds (Sub-clause 4.17)							
Soldering temp. reference	Electrical characteristics shall be satisfied. Without distinct deformation in appearance. (95 % coverage Min.)	Wave soldering condition: (2 cycles Max.) Pre-heat : 100 ~ 120 °C, 30 ± 5 sec. Suggestion solder temp.: 235 ~ 255 °C, 10 sec. (Max.) Peak temp.: 260 °C Reflow soldering condition: (2 cycles Max.) Pre-heat : 150 ~ 180 °C, 90 ~ 120 sec. Suggestion solder temp.: 235 ~ 255 °C, 20 ~ 40 sec. Peak temp.: 260 °C $\binom{\text{°C}}{250} \xrightarrow{\text{°C}}{290} \xrightarrow{\text{°C}}$							



7. Performance	ce specification :							
Characteristics	Limits	Test Methods						
Characteristics	Limits		(JIS C 5201-1)				
Soldering	Resistance change rate is:	Dip the resis	stor into a solder bath h	naving				
Heat	$\pm (1\% + 0.05\Omega)$ Max.	a temperature of $260^{\circ}C \pm 3^{\circ}C$ and hold it for $10\pm$ seconds.						
		(Sub-clause	4.18)					
		Resistance c	hange after continuous	5				
		5 cycles for	duty cycle specified be	elow :				
	Resistance change rate is	Step	Temperature	Time				
Temperature	$\pm5\%$ (1.0% $+0.05\Omega$) Max.	1	-55°C ± 3°C	30 mins				
cycling	\pm 1% (0.5% $+$ 0.05 Ω) Max.	2	Room temp.	10~15 min				
		3	$+155^{\circ}C \pm 2^{\circ}C$	30 mins				
		4	Room temp.	10~15 min				
		(Sub-clause	4.19)					
		Resistance c	hange after 1,000 hour	rs				
Load life in	Resistance change rate is	(1.5 hours "o	on", 0.5 hour "off") at	at RCWV				
humidity	$\pm5\%$ (3.0% $+0.1\Omega$) Max.	in a humidity chamber controlled at						
	\pm 1% (1.0% + 0.1 Ω) Max.	$40^{\circ}C \pm 2^{\circ}C$ and 90 to 95 % relative humidity						
		(Sub-clause	4.24.2.1)					
	Resistance change rate is	Permanent re	esistance change after	1,000 hours				
Load Life	$\pm 5\%$ (3.0% + 0.1 Ω) Max.	operating at	RCWV, with duty cyc	le of				
	$\pm 1\%$ (1.0% + 0.1 Ω) Max.	(1.5 hours"o	n", 0.5 hour"off") at 70	$0^{\circ}C \pm 2^{\circ}C$ ambien				
		(Sub-clause	4.25.1)					
Terminal	Resistance change rate is	Twist of Tes	at Board :					
bending	$\pm \left(1.0\% + 0.05\Omega\right)$ Max.	Y/X = 5/90 1	mm for 10 seconds					
		(Sub-clause	4.33)					

$= \begin{bmatrix} B \\ + + + + + + + + + + + + + + + + + +$	Thick Film Chip Resistors (Terminal Lead Free)										
$d \mathbf{D} + 0.1$	* Taping I	Dimension (n	nm)	_ (∲∳ ₿ĮĘţĴ						++
Type $A \pm 0.2$ $B \pm 0.2$ $C \pm 0.05$ φ $D \pm 0.1$ $F \pm 0.05$ $G \pm 0.1$ $W \pm 0.2$ $T \pm 0.1$	Туре	$A \pm 0.2$	B ± 0.2	C ± 0.05		E ± 0.1	$F \pm 0.05$	G ± 0.1	$W \pm 0.2$	$T \pm 0.1$	
RMC 0402 0.65 1.15 2.0 1.5 1.75 3.5 4.0 8.0 0.45	RMC 0402	0.65	1.15	2.0	1.5	1.75	3.5	4.0	8.0	0.45	
RMC 0603 1.10 1.90 2.0 1.5 1.75 3.5 4.0 8.0 0.67	RMC 0603	1.10	1.90	2.0	1.5	1.75	3.5	4.0	8.0	0.67	
RMC 0805 1.65 2.40 2.0 1.5 1.75 3.5 4.0 8.0 0.81	RMC 0805	1.65	2.40	2.0	1.5	1.75	3.5	4.0	8.0	0.81	
RMC 1206 2.00 3.60 2.0 1.5 1.75 3.5 4.0 8.0 0.81	RMC 1206	2.00	3.60	2.0	1.5	1.75	3.5	4.0	8.0	0.81	

* Reel Dimension (mm)


Туре	Packaging	Quantity Per Reel	$A \pm 0.5$	$B\pm 0.5$	$C\pm 0.5$	$D \pm 1$	$M \pm 2$	$W \pm 1$
RMC 0402	Paper	10,000 pcs.	2	13	21	60	178	10
RMC 0603	Paper	5,000 pcs.	2	13	21	60	178	10
RMC 0805	Paper	5,000 pcs.	2	13	21	60	178	10
RMC 1206	Paper	5,000 pcs.	2	13	21	60	178	10

Remark : ϕ M (1) 10,000Pcs/Reel = 255 or 20,000Pcs/Reel = 330

(2) RMC 0402: 20,000Pcs/Reel = 255 or 40,000pcs/Reel = 330

(3) For paper taping, can pack T/R-1,000pcs

Thick Film Chip Resistors (Terminal Lead Free)

Environment Related Substance

This product complies to EU RoHS directive, EU PAHs directive, EU PFOS directive and Halogen free.

Ozone layer depleting substances.

Ozone depleting substances are not used in our manufacturing process of this product. This product is not manufactured using Chloro fluorocarbons (CFCs), Hydrochlorofluorocarbons (HCFCs), Hydrobromofluorocarbons (HBFCs) or other ozone depleting substances in any phase of the manufacturing process.

Storage Condition

The performance of these products, including the solderability, is guaranteed for a year from the date of arrival at your company, provided that they remain packed as they were when delivered and stored at a temperature of $25^{\circ}C \pm 5^{\circ}C$ and a relative humidity of 60% RH $\pm 10\%$ RH

Even within the above guarantee periods, do not store these products in the following conditions. Otherwise, their electrical performance and/or solderability may be deteriorated, and the packaging materials (e.g. taping materials) may be deformed or deteriorated, resulting in mounting failures.

1. In salty air or in air with a high concentration of corrosive gas, such as Cl_2 , H_2S , NH_3 , SO_2 , or NO_2

2. In direct sunlight

This is a publication by Conrad Electronic SE, Klaus-Conrad-Str. 1, D-92240 Hirschau (www.conrad.com).

All rights including translation reserved. Reproduction by any method, e.g. photocopy, microfilming, or the capture in electronic data processing systems require the prior written approval by the editor. Reprinting, also in part, is prohibited. This publication represents the technical status at the time of printing.

© Copyright 2017 by Conrad Electronic SE.