

LMT78 1.0R Series

Wide input, non-isolated & regulated, single output, SMD package

Switching Regulator

- Ffficiency up to 95%
 No need for heat sink No need for heat sinks
- 1.0AMP SMD package
- Wide input voltage range (4.75V - 36V)
- Adjustable output voltage
- Remote ON/OFF control
- Short circuit protection (SCP), thermal shutdown
- Very low shutdown current
- Super low ripple and noise
- Meets IEC62368, UL62368, EN62368 standards (pending)

The LMT78 1.0R Series with high efficiency switching regulators is an ideally supply for space constrained mobile applications. There is no need for any heat sink, even if operated at + 85°C. The additional features include remote ON/OFF control and adjustable output

Super low ripple and noise of typically only 10mV and a shutdown input current of typically only 15uA.

Common specifications	
Cooling:	Free air convection
Short circuit protection mode:	Hiccup mode
Short circuit protection:	tinuous, automatic recovery
Operating temperature range:	-40°C ~ +85°C
Storage temperature range:	-55°C ~ +125°C
Lead temperature:	300°C MAX, 1.5mm from case for 10 sec
Operating case temperature:	100°C MAX
D 0 6 11 : T	
Reflow Soldering Temperature:	Peak temp. ≤ 245°C,maximum duration time ≤ 60s at 217°C. For actual application, please refer to IPC/JEDEC J-STD-020D.1
Storage humidity range:	time ≤ 60s at 217°C. For actual application, please refer to
	time ≤ 60s at 217°C. For actual application, please refer to IPC/JEDEC J-STD-020D.1
Storage humidity range:	time ≤ 60s at 217°C. For actual application, please refer to IPC/JEDEC J-STD-020D.1
Storage humidity range: Case material:	time ≤ 60s at 217°C. For actual application, please refer to IPC/JEDEC J-STD-020D.1 < 95% Plastic [UL94-V0]

Input specifications					
Item	Test conditions	Min	Тур	Max	Units
No load input current			0.2	1.5	mA
Reverse polarity input	Forbidden				
Input filter	Capacitor				
Remote ON/OFF*	 Module switch on Module switch off	high pin co	level (3.2	l to GŃD d	
	 Input current when switched off 		30	100	μΑ

^{*} The voltage of Remote ON/OFF pin is relative to pin GND.

Output specifications					
Item	Test conditions	Min	Тур	Max	Units
Output voltage accuracy	Input voltage range at full load • 1.5/1.8/2.5/3.3VDC • Others		±2 ±2	±4 ±3	% %
Line regulation	Input voltage range at full load		±0.2	±0.4	%
Load regulation	Nominal input, 10% to 100% load • 1.5/1.8/2.5VDC • Others			±1 ±0.6	% %
Ripple + Noise*	20MHz bandwidth 1.5/1.8/2.5/3.3VDC • 20% - 100% load • < 20% load Others • 10% - 100% load • < 10% load		20 20 20 20	50 100 50 150	mVp-p mVp-p mVp-p mVp-p
Temperature coefficient	- 40°C to + 85°C ambient			±0.03	%/°C
Transient response deviation	Nominal input voltage, 25% load step change		50	200	mV
Transient recovery time	Nominal input voltage, 25% load step change		0.2	1	ms
Vadj	input voltage range		±10		%Vo
Switching frequency	Full load, nominal input voltage • LMT78_1.5-1.0R • Others		370 700		KHz KHz

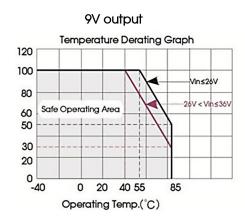
^{*} Ripple and noise tested with "parallel cable" method, please refer to DC-DC converter Application Notes for specific operation methods.

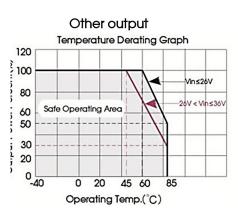
Example: LMT78 05-1.0R

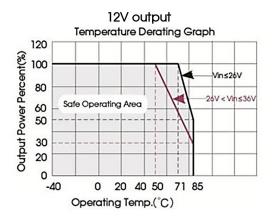
LM = Series; T = SMT case; yy = 5Vout; pp = 1.0A; R = Revised

- 1. All specifications measured at Ta = 25°C, humidity <75%, nominal input voltage and rated output load unless otherwise specified.
- 2. In this datasheet, all the test methods of indications are based on corporate standards.

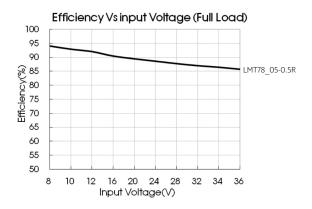
LMT78_1.0R Series

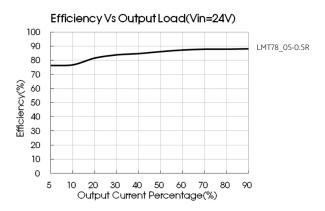

Wide input, non-isolated & regulated, single output, SMD package

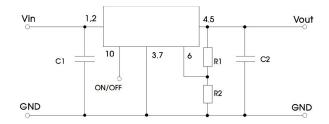

EMC sp	pecifications			
EMI	CE	CISPR32/EN55032	CLASS B	(see EMC recommended circuit,2))
EMI	RE	CISPR32/EN55032	CLASS B	(see EMC recommended circuit,2))
EMS	ESD	IEC/EN61000-4-2	Contact ±4KV	perf. Criteria B
EMS	RS	IEC/EN61000-4-3	10V/m	perf. Criteria A
EMS	EFT	IEC/EN61000-4-4	±1KV	perf. Criteria B (see EMC recommended circuit, 1)
EMS	Surge	IEC/EN61000-4-5	line to line ±1KV	perf. Criteria B (see EMC recommended circuit, 1)
EMS	CS	IEC/EN61000-4-6	3 Vr.m.s	perf. Criteria A


Part Number	Input Volt Nominal	age [VDC] Range	Output Voltage [VDC]	Output Current [mA, Max]	Capacitive load [μF, max]	Efficiency [Vin. max]
LMT78_1.5-1.0R	12	4.75-32	1.5	1000	680	66
LMT78_1.8-1.0R	12	4.75-32	1.8	1000	680	69
LMT78_02-1.0R	12	4.75-32	2.5	1000	680	74
LMT78_03-1.0R	24	6.5-36	3.3	1000	680	80
LMT78_05-1.0R	24	8-36	5	1000	680	85
LMT78_6.5-1.0R	24	10-36	6.5	1000	680	86
LMT78_09-1.0R	24	13-36	9	1000	680	89
LMT78_12-1.0R	24	16-36	12	800	680	92

Note: For input voltage higher than 30VDC, a 22uF/50V input capacitor is required.

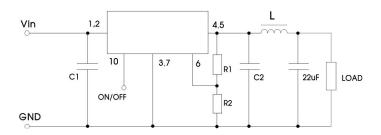

Typical characteristics





Efficiency

Typical application circuit


Note:

- 1. C1 and C2 are required and should be connected close to the pin terminal of the module.
- The capacitance of C1 and C2 refer to table 1, it can be increased properly if required, and tantalum or low ESR electrolytic capacitors may also suffice.
- Cannot be used in parallel for output and hot swap.
 To reduce the output ripple furtherly, it is suggested to connect a "LC" filter at the output terminal, and recommended value of L is 10μH-47μH.

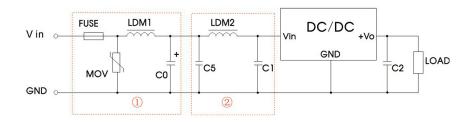
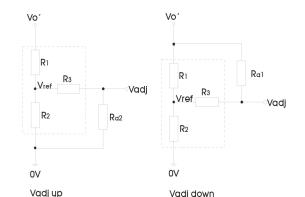

Part number	C1 (ceramic capacitor)	C2 (ceramic capacitor)	Ra1/Ra2 (Vadj resistance)
LMT78_1.5-1.0R	10μF/50V	22μF/10V	
LMT78_1.8-1.0R	10μF/50V	22μF/10V	
LMT78_02-1.0R	10μF/50V	22μF/10V	
LMT78_03-1.0R	10μF/50V	22μF/10V	Refer to Vadj
LMT78_05-1.0R	10μF/50V	22μF/16V	resistance calculation
LMT78_6.5-1.0R	10μF/50V	22μF/16V	
LMT78_09-1.0R	10μF/50V	22μF/16V	
LMT78_12-1.0R	10μF/50V	22μF/25V	

Table 1

LC filter application circuit


EMC solution-recommended circuit

FUSE	Selected based on the actual input current from the customer	
MOV	S20K30	
LDM1	82μΗ	
CO	680μF/50V	
C2	refer to Table 1	
C1/C5	4.7μF/50V	
LDM2	68μH	

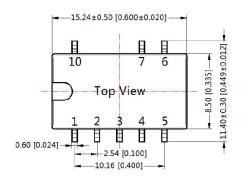
Note: Part @ in the Fig. 4 is for EMS test, part @ is for EMI filtering; parts @ and @ can be added based on actual requirement.

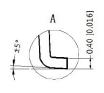
Application of Vadj and calculation of Vadj resistance

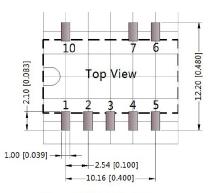
Applied circuits of Vadj (Part in broken line is the interior of models)

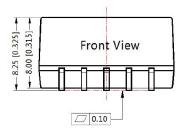
Calculation formula of Vadj resistance:

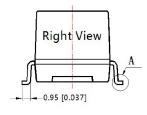
up:
$$R_{02} = \frac{aR_2}{R_2 - a}$$
 -R₃ $a = \frac{Vref}{Vo' - Vref}$ R₁


down: $R_{01} = \frac{aR_1}{R_1 - a}$ -R₃ $a = \frac{Vo' - Vref}{Vref}$ R₂


 $R_{\alpha 1}, R_{\alpha 2}$ is Vadj resistance ,a is a self-defined parameter, with no real meaning. Vo' for the actual needs of the up or down regulated voltage


Vout (V)	R1 (KΩ)	R2 (KΩ)	R3 (KΩ)	Vref (V)
1.5	7.5	7.5	15	0.75
1.8	4.7	3.3	6.8	0.75
2.5	9.1	3.9	8.2	0.75
3.3	75	22	75	0.75
5	43	7.5	33	0.75
6.5	43	5.6	22	0.75
9	43	3.9	22	0.75
12	36	2.4	10	0.75


Note: The 1.5VDC output model only support Vadj up, do not support Vadj down.


Mechanical dimensions

Note: Grid 2.54*2.54mm

Pin-Out			
Pin	Function		
1	+Vin		
2	+Vin		
3	GND		
4	+Vout		
5	+Vout		
6	V adj		
7	GND		
10	Remote On/Off		

Note: Unit: mm[inch]

Pin selection tolerances: ±0.10mm [±0.004inch] General tolerances: ±0.25mm [±0.010inch]

NC: Pin to be isolated from circuitry