

User Manual TAP CURIOUS

Table of Contents

1	Working safely 3				
2	2 Scope of delivery	4			
3	3 Introduction	5			
4	1 Overview	6			
	4.1 Power supply	8			
	4.2 Digital input and output	10			
	4.3 Uplink interface	11			
	4.4 Test inputs	13			
	4.5 Filter and overflow LEDs	15			
5	5 Application examples	16			
6	S Starting TAP for the first time	17			
7	7 Filters	19			
	7.1 Why do we use filters?	19			
	7.2 Setting filters				
	7.2.1 Settings in Basic mode				
	7.3 Tabulated list of filter registers				
8	Monitoring the interface	49			
9	Refreshing the web server	52			
10	10 Errors and problems	56			
11	I1 Technical Data	57			
	11.1 Application examples	57			

1 Working safely

Intended use

The use of TAP CURIOUS described in these instructions serves to analyze Ethernet-based data flows. Using TAP CURIOUS for any alternative purpose is not envisaged and can lead to loss or damage. TAP CURIOUS must not be used for illegitimate or unlawful data espionage.

User

You are allowed to use TAP CURIOUS if you have knowledge of and authorizations for the following areas:

- assessing the safety of electrical systems and equipment,
- installing and configuring IT systems,
- measuring and analyzing electrical functions and systems,
- occupational health and safety,
- assembling and connecting-up electrical equipment,
- accident prevention and occupational safety regulations applicable at the place of use.

Avoiding hazards

NOTICE

Defect caused by excessive signal voltage

Excessive signal voltage can damage TAP CURIOUS.

Apply only signal voltage that conforms to the standard.

DO0281R00 3 / 58

2 Scope of delivery

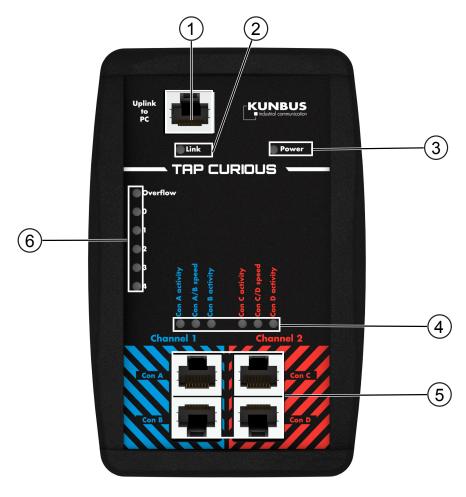
- Box
- TAP CURIOUS
- Power pack with Euro adapters
- Plug for the power supply
- Plug for the digital input and output
- Operating instructions, Wireshark plugins and web server files on USB stick (the latest version can be found at www.kunbus.de/support.html)

DO0281R00 4 / 58

3 Introduction

The KUNBUS TAP CURIOUS is your network monitor for analyzing all standard industrial Ethernet solutions. Four probe ports allow you to capture up to two independent realtime Ethernet connections.

You can use filters to reduce data volumes or select specific analysis data. You can configure these filters via an integrated web server. The web server can operate in 2 different modes. "Basic" mode helps you set your filters and configure your device. "Expert" mode was developed for people with expert knowledge of frame filters. In this mode, you can filter a frame by all the aspects it contains.


The digital input and output allows you to create useful trigger conditions. These can systematically help limit sporadic effects, and identify and remedy the causes.

An internal throughput delay of 0 μs (zero delay) makes TAP CURIOUS almost transparent for the data channels to be checked.

TAP CURIOUS is connected to a PC via a standard Ethernet interface. You can operate TAP CURIOUS in 1 Gbit/s or 100 Mbit/s mode. Captured packet data is read and analyzed using network monitors such as "Wireshark", the freely available network analysis software.

DO0281R00 5 / 58

4 Overview

Illustration 1: Front

1 Uplink port	2 Link LED
3 Power LED	4 Status LEDs for the 2 communication channels (5)
5 Monitoring ports (2 communication channels)	6 LEDs for filter and overflow

DO0281R00 6 / 58

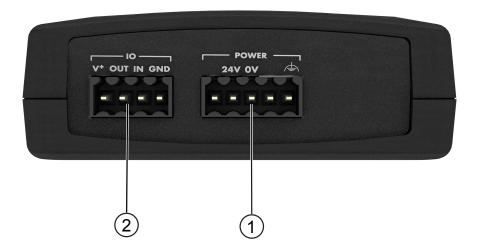


Illustration 2: Top

1 Port for the power supply

2 Digital input and output

Each overview point is explained in the sections below.

DO0281R00 7 / 58

4.1 Power supply

TAP CURIOUS is connected to the power supply pack via a 5-pole plug. The plug is supplied as standard.

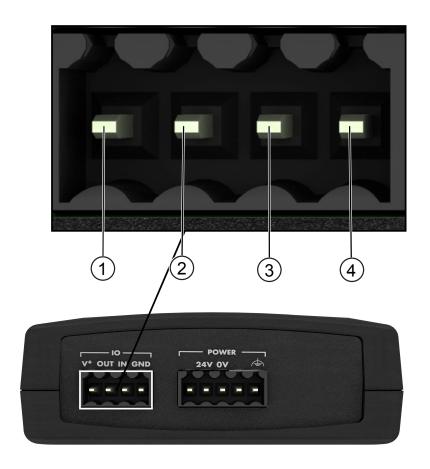
Illustration 3: Power supply

The port is assigned as follows:

Pin	Assignment
1	DNC
2	20-28 V
3	GND
4	DNC
5	PE

The Power LED indicates whether or not TAP CURIOUS is connected to the power supply:

DO0281R00 8 / 58



LED	Display	Meaning
Power	off	TAP CURIOUS is not connected to the power supply.
	green	TAP CURIOUS is connected to the power supply.

DO0281R00 9 / 58

4.2 Digital input and output

TAP CURIOUS has a digital input and output. This is protected against reverse polarity. The terminal (Weidmüller BLZF 3.50/04/180 SN BK BX) designed for the digital input and output is supplied as standard.

The port is assigned as follows:

Pin	Assignment
1	20-28 V
2	Digital output
3	Digital input
4	GND

DO0281R00 10 / 58

4.3 Uplink interface

You can connect TAP CURIOUS to your PC via the uplink interface. To do this, you need an Ethernet cable with standard RJ45 plugs. If your PC does not have a free RJ45 port, you can use a USB adapter.

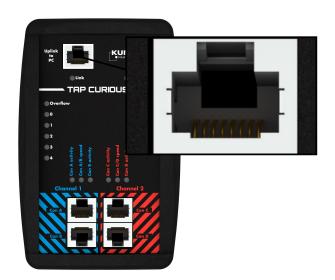


Illustration 4: Gigabit interface

The "Link" LED indicates the interface status:

DO0281R00 11 / 58

LED	Display	Meaning
CC-Link	off	No connection to the remote station
	green	Successfully connected to the remote station
	yellow flashing	Communication running

DO0281R00 12 / 58

4.4 Test inputs

TAP CURIOUS has 2 communication channels for monitoring the lines. Each of the ports Con 1 and Con 2, as well as Con 3 and Con 4, are connected directly to a communication channel.

You can connect the ports to a device via an Ethernet cable with standard RJ45 plugs.

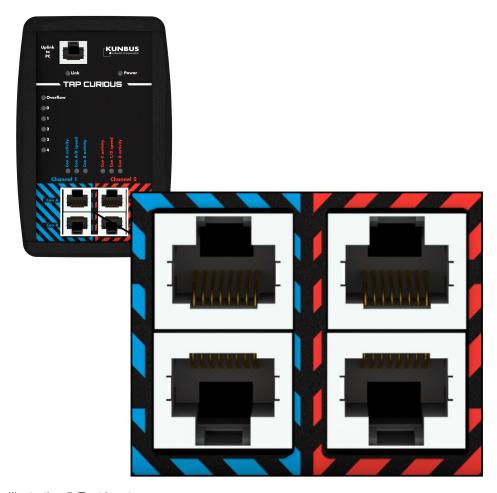
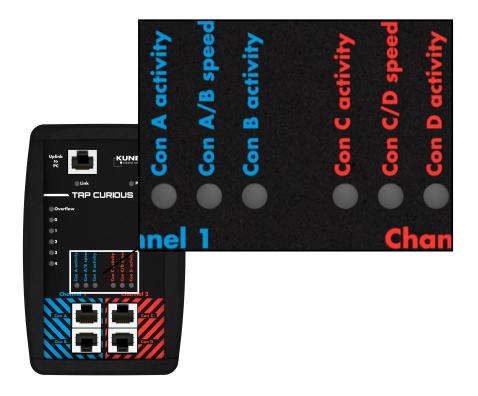
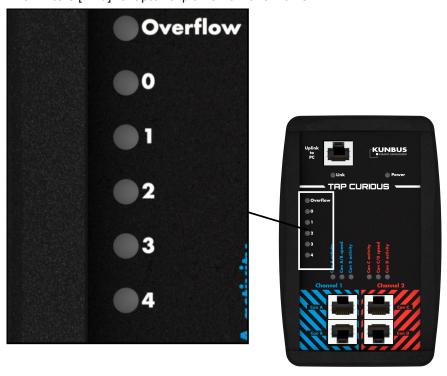



Illustration 5: Test inputs

Status LEDs signal the status of the individual ports:

DO0281R00 13 / 58



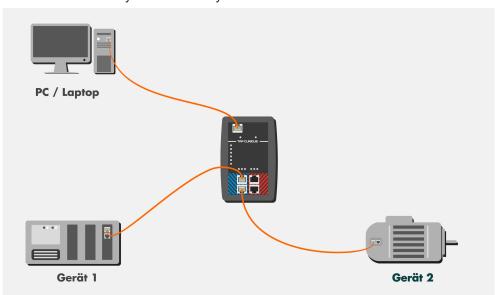
LED	Display	Meaning
Con (A, B, C, D) activity	off	No communication
	green flashing	Communication running
	red	Frame has been blocked by a filter (burn time 500 ms), it is not output via the uplink
Con (A, B,C, D) speed	green	100 Mbit/s mode
	yellow	10 Mbit/s mode

DO0281R00 14 / 58

4.5 Filter and overflow LEDs

You can apply filters to the frames. The LEDs are able to show these filter results. The "Filters [\triangleright 19]" chapter explains how this works.

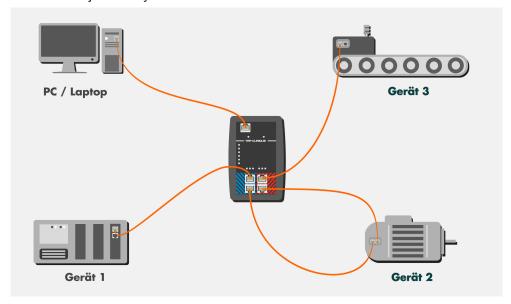
LED	Display	Meaning
Overflow	off	No overflow on uplink port
	red	Only in 100 Mbit/s mode: Overflow on uplink port (burn time 2 s)
Filter LED0	off	No filter match
	green	Filter match
Filter LED1	off	No filter match
	green	Filter match
Filter LED2	off	No filter match
	green	Filter match
Filter LED3	off	No filter match
	green	Filter match
Filter LED4	off	No filter match
	green	Filter match


DO0281R00 15 / 58

5 Application examples

TAP CURIOUS is able to monitor devices in various ways. 2 examples are shown here.

Example 1:


Connect your devices as shown to capture the communication between two devices. This allows you to find faulty frames on the network.

Example 2:

Connect your devices as shown to monitor the frames before and after a device throughput. In this example, device 2 is monitored. Here, you could analyze the following:

- Measure the device throughput time,
- Check whether frames have been distorted or truncated,
- Measure jitter on cyclical frames.

DO0281R00 16 / 58

6 Starting TAP for the first time

- Unpack the device and make sure you have all the components listed in the scope of delivery.
- Connect the device to the power pack supplied.
 - ⇒ The POWER LED lights up.
- Load the "Wireshark" network analysis software onto the PC and install it. You can download Wireshark from www.wireshark.org.
- Download the Wireshark plugin.DLL from the KUNBUS website and copy the DLL file into the Wireshark plugin folder (e.g.: C:\Programs\Wireshark\plugins \1.10.2). Download the correct DLL file for either the 32 or the 64-bit Wireshark version, depending on which one you use:
 - 32-bit version: tap32_1xxx.dll (Wireshark-Plugin WIN32)
 - 32-bit version: tap32_2xxx.dll (Wireshark plugin WIN32)
 - 64-bit version: tap64_1xxx.dll (Wireshark plugin WIN64)
 - 64-bit version: tap64_2xxx.dll (Wireshark plugin WIN64) xxxx denotes the version used (e.g. 1.10.2)
- Connect TAP CURIOUS to an Ethernet interface on the PC using a RJ45 cable. Die "Link" LED lights up as as soon as the PC and TAP CURIOUS are connected.
- Connect the line to be tested to one of the probe ports. Each of the ports "Con A" and "Con B" and ports "Con C" and "Con D" are connected directly. So communication is possible even when TAP is deactivated. The "Speed" LEDs show the connection speed set for the probe ports. When frames are being transmitted on the line, the "Activity" LED flashes green.
- Start Wireshark on the PC and activate the "TAP" plugin in the menu at "Edit > Preferences > Protocols > TAP".

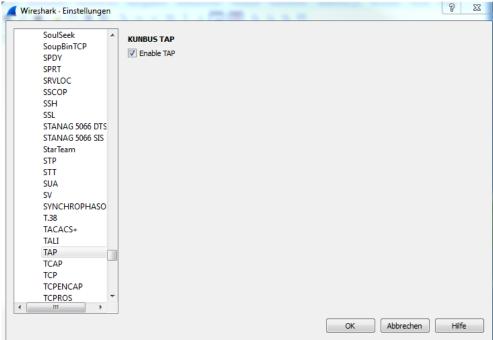


Illustration 6: Wireshark plugin

- All available Ethernet interfaces are listed in the main window. Click on the Ethernet interface you require to select it.
- Set any filters you want via the web server. This allows you to search for specific frames and prevents your PC's main memory from becoming overloaded.
- ⇒ You can now use Wireshark to analyze the data.

DO0281R00 17 / 58

TAP CURIOUS expands the Ethernet packets by 20 bytes of additional information. You can use TAP CURIOUS without the plugin or with a different Ethernet analysis program. But you will not be able to analyze this additional information. You might also find that the analysis program reports a data packet as faulty due to this additional information.

Information on the additional data can be found in the chapter called "Monitoring the interface $[\ \ 51]$ ".

DO0281R00 18 / 58

7 Filters

7.1 Why do we use filters?

TAP CURIOUS records all Ethernet frames transmitted on the connected network line. TAP sends the Ethernet frames to the connected PC via the "Uplink to PC" port. Wireshark writes these frames to the main memory (RAM) on your PC.

This not only makes it more difficult for your to monitor data, it can also overload the main memory and cause your PC to crash.

To prevent this from happening, you can set various filters for each probe port. These filters check whether the incoming frame has the properties you defined in the filter settings. If the data have these properties, they will be written to the main memory on your PC. If the data do not have these properties, they will be ignored.

The following filter elements are available:

Status filter

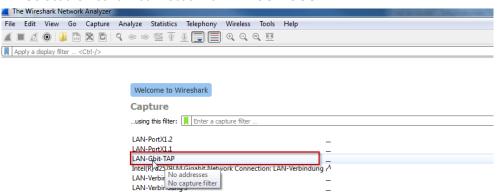
The status filter enables you to filter properties such as the receiving time or the status of a frame. This filter is applied to the 20 bytes, which are additionally transmitted to the standard frame.

Segment filter

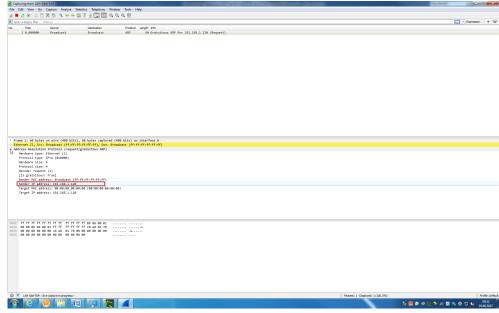
You can use the segment filter to filter data for parity or disparity within the frame. There are 16 words (4 bytes) available, and these can be checked in succession.

DO0281R00 19 / 58

Preamble	
SFT	
Destination Address	
Source Address	
VLAN Tag	Segment filter
Type Field	
Data	
PAD	
CRC Checksum	
Additional Data for TAP	Status filter


You can set a total of 5 filters per probe port.

DO0281R00 20 / 58


7.2 Setting filters

Requirements:

- ✓ Wireshark is installed on your PC.
- ✓ TAP CURIOUS is properly connected.
- · Open the Network and sharing center on your PC.
- · Click on "Change adapter settings".
- Double-click to open the network connection for your TAP CURIOUS.
- · Click on "Properties"
- Activate the "IPv4" protocol. You need this protocol to configure filter settings via the web server.
- · Open Wireshark
- Select the network connection for TAP CURIOUS.

- ⇒ TAP CURIOUS will transmit a broadcast frame. You can determine the current IP address of TAP CURIOUS from this frame. When you start TAP CURIOUS for the first time, the default IP address is 192.168.0.10.
- · Click on "Address Resolution Protocol".
- Make a note of the TAP CURIOUS IP address.

- Enter the IP address into the address line in your browser.
- ⇒ The web server will open.

You can now set the filters you want and configure TAP CURIOUS.

DO0281R00 21 / 58

The web server has 2 modes:

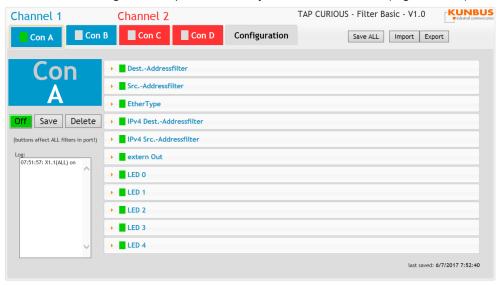
"Edit Registers (Expert)" mode is the right mode for you if you are already closely familiar with the structure of an Ethernet frame.

"Filter Basic" mode is the right mode for you if you do not deal with this topic so often and feel you need a little more support.

A detailed list of the parameters for filter settings and the TAP CURIOUS configuration can be found in the chapter called "Tabulated list of filters and configuration registers [> 36]".

In the chapters that follow, we describe how to configure settings on the web server.

DO0281R00 22 / 58


7.2.1 Settings in Basic mode

Basic mode is the right mode for you if you want to set filters in the easiest way possible or feel you need a little support. Filter settings you would make in multiple registers in Expert mode can be made here from just one menu option.

- ✓ Your TAP CURIOUS is properly installed.
- ✓ Your network connection for TAP CURIOUS is active.
- ✓ You have opened the web server.
- · Click on "Filter basic"
- ⇒ Basic mode will open.

Setting filters


· Click on the register of a port on which you want to set filters (e.g. "Con A").

You can set filters for the selected port here.

- Click on the orange triangle in front of the filter option.
- \Rightarrow You will now see a menu in which you can set the filters.

DO0281R00 23 / 58

To use any filter setting, you need to have activated the filter and saved the settings. Do this by clicking on "On" and then "Save".

You can set the following filters:

This is where you can set frames that are transmitted to a particular MAC address. Enter the MAC address you require.

Check the "Set filter > Negate" box to filter all frames that are not transmitted to this MAC address.

You can combine the filter with the external input. Do this by checking the "External input > Yes/No" box.

Check the "External input > Negate" box if the external input has to be "low".

This is where you can set frames that are transmitted from a particular MAC address. Enter the MAC address you require.

Check the "Set filter > Negate" box to filter all frames that are not transmitted from this MAC address.

You can combine the filter with the external input. Do this by checking the "External input > Yes/No" box.

Check the "External input > Negate" box if the external input has to be "low".

This is where you can filter by the protocol type via which a frame's useful data are transmitted. The values comply with the Ethernet specification.

We have gathered the values of a few important protocols for you here:

Туре	Protocol
0x0800	IP Internet Protocol, Version 4 (IPv4)
0x0804	Address Resolution Protocol (ARP)
0x8100	VLAN Tag
0x8892	PROFINET
0x884A	EtherCAT
0x88AB	POWERLINK
0x88CD	SERCOS III

Dest. address filter

Src. address filter

Ethernet type

DO0281R00

Check the "Set filter > Negate" box to filter all frames that do not match the selected Ethernet type.

You can combine the filter with the external input. Do this by checking the "External input > Yes/No" box.

Check the "External input > Negate" box if the external input has to be "low".

IPv4 Dest. address filter

This is where you can set frames that are transmitted to a particular IP address. Enter the IP address you require.

Check the "Set filter > Negate" box to filter all frames that are not transmitted to this IP address.

You can combine the filter with the external input. Do this by checking the "External input > Yes/No" box.

Check the "External input > Negate" box if the external input has to be "low".

IPv4 Src. address filter

This is where you can set frames that are transmitted from a particular IP address. Enter the IP address you require.

Check the "Set filter > Negate" box to filter all frames that are not transmitted from this IP address.

You can combine the filter with the external input. Do this by checking the "External input > Yes/No" box.

Check the "External input > Negate" box if the external input has to be "low".

Extern Out, LED 0-4

You can set what you want to do with the result of a filter here. You can show that a filter applies via the filter LEDs or the external output.

To be able to use the configuration settings, they have to be saved.

Example:

You want to filter all frames that are transmitted from the MAC address "C8 3E A7 01 23 45". LED 2 will light up when a frame has been transmitted from MAC address "C8 3E A7 01 23 45".

- ∘ In the "Dest. address filter" menu, set value "C8 3E A7 01 23 45".
- In the "Dest. address filter" checkbox in the "LED 2" menu, click "set".

For TAP CURIOUS to use your filter settings, they have to be saved.

Saving the configuration

As soon as you have set filter and configuration, you can save the settings so that they can be used at a later time.

- · Click on Export.
- Enter a file name
- · Click on OK

Loading an existing configuration file

If you have already saved a configuration in the web server, you can import this file to TAP CURIOUS again at any time.

- · Click on "Import".
- Select the file you want.
- · Click on "OK".

DO0281R00 25 / 58

Configuring TAP CURIOUS

· Click on the "Configuration" register.

The basic settings for TAP CURIOUS will be displayed. You can also change certain values:

Device information

The following device information appears in "Device info":

- Serial number of TAP CURIOUS
- Software version
- MAC address

These data are specified by KUNBUS for this device and cannot be changed. Please have these data to hand if you report a problem to our support.

Setting the connection speed

You can select the connection speed for all ports in the "Config channel 1&2" menu. The default speed is 100 Mbit.

To change the default, check the "10 Mbit mode" box.

Configuration

You can change the following communication parameters in the "Config TAP" menu:

- IP address

The IP address ensures that TAP CURIOUS can be clearly identified within a network. When assigning a new IP address, you should therefore make sure that it is not being used by another device in the network. If you use DHCP, you do not need to set the IP address. In this case, TAP

CURIOUS will receive the IP address from the DHCP server.

DO0281R00

Subnet

This is where you can adapt the net mask. The net mask is a bit mask that indicates the bit position within the IP address that is being used to address the network section. Make sure the settings you change here match your network settings.

Gateway address

You can set the gateway address here.

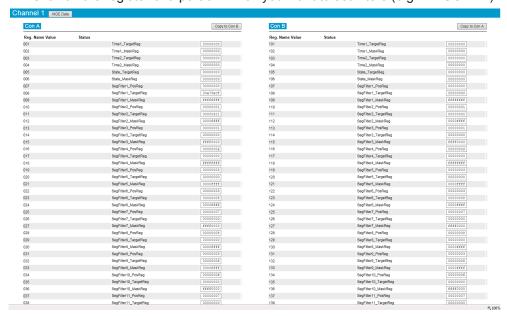
If you use a DHCP server, it can assign a free IP address to TAP CURIOUS.

The "Reset with timer" menu allows you to reset one of the filter LEDs or the external output after a selected time.

- In the "Switch off delay in ms" field, enter a time after which you want the output to be reset.
- Check the "Activate" box

To be able to use the configuration settings, they have to be saved and TAP CURIOUS needs to be restarted.

Using DHCP
Setting outputs filters


DO0281R00 27 / 58

7.2.2 Settings in Expert mode

If you are closely familiar with the structure of Ethernet frames, you can use Expert mode to configure TAP CURIOUS and set the filters.

Setting filters

- ✓ Your TAP CURIOUS is properly installed.
- ✓ Your network connection for TAP CURIOUS is active.
- ✓ You have opened the web server.
- · Click on the register of a port on which you want to set filters (e.g. B. "CON A").

Set your filters here. You will find the values you require in the chapter called "Tabulated list of filter registers [> 36]".

Filter examples

In the filter examples below, the x in the register number stands for the associated port.

Con A Register (0)01, Register (0)02, Register (0)03, ...

Con B Register (1)01, Register (1)02, Register (1)03, ...

Con C Register (2)01, Register (2)02, Register (2)03, ...

Con D Register (3)01, Register (3)02, Register (3)03, ...

Filtering by the destination MAC address

Input field for MAC address: 6 bytes

Example: You want to filter all frames that have been transmitted to the MAC address C8 3E A7 01 23 45.

Set the following filter registers:

Register	Parameter	Function
SegFilter1:		
x07	00 00 00 00	Word offset of the MAC address
x08	01 A7 3E C8	First 4 bytes of the MAC address
x09	FF FF FF FF	Mask on all bits
SegFilter2:		

DO0281R00 28 / 58

Register	Parameter	Function
SegFilter1:		
x10	00 00 00 01	Word offset of the rest of the MAC address
x11	00 00 45 23	Last 2 bytes of the MAC address
x12	00 00 FF FF	Mask on the first 2 bytes
Filter 1:		
x55	00 00 00 00	No negation of SegFilter1 and 2
x56	00 00 00 03	Filter1 consists of SegFilter1 and 2
Uplink:		
x65	00 00 00 00	Do not invert output
x66	00 00 00 01	Frame is output at the uplink port if filter 1 applies.
Config reg:		
401	xx xx xx xE	Activate filter for Con A (1110)
401	xx xx xx xD	Activate filter for Con B (1101)
401	xx xx xx xB	Activate filter for Con C (1011)
401	xx xx xx x7	Activate filter for Con D (0111)

Filtering by protocol types IP4 and IP6

Example: You want to filter all registers of protocol types IPv4 and IP6. The values you require are:

- IP4= 0x0800
- IP6= 0x86DD

Set the following filter registers:

Register	Parameter	Function
SegFilter1		
x07	00 00 00 03	Word offset of protocol type
x08	00 00 00 08	IPv4 protocol type
x09	00 00 FF FF	Mask on the first 2 bytes
SegFilter2:		
x10	00 00 00 03	Word offset of protocol type
x11	00 00 DD 86	86 IPv6 Type
x12	00 00 FF FF	Mask on the first 2 bytes
Filter 1		
x55	00 00 00 00	No negation of SegFilter1
x56	00 00 00 01	Filter1 consists of SegFilter1
Filter 2		
x57	00 00 00 00	No negation of SegFilter2
x58	00 00 00 02	Filter2 consists of SegFilter2
Uplink		
x65	00 00 00 00	Do not invert output
x66	00 00 00 03	Frame is output at the uplink port if filter 1 or 2 applies.
ConfigReg		
401	xx xx xx xE	Activate filter for CON A port (1110)

DO0281R00 29 / 58

Filtering by the source MAC address

Input field for Src address: 6 bytes

Example: You want to filter all frames that have been transmitted from the MAC address C8 3E A7 02 32 AB.

Set the following filter registers:

Register	Parameter	Function
SegFilter1:		
x07	00 00 00 01	Word offset of the MAC address
x08	3E C8 xx xx	First 2 bytes of the MAC address
x09	FF FF 00 00	Mask on the last 2 bytes
SegFilter2:		
x10	00 00 00 02	Word offset of the rest of the MAC address
x11	AB 32 02 A7	Last 4 bytes of the MAC address
x12	FF FF FF FF	Mask on 4 bytes
Filter 1		
x55	00 00 00 00	No negation of SegFilter1 and 2
x56	00 00 00 03	Filter1 consists of SegFilter1 and 2
Uplink		
x65	00 00 00 00	Do not invert output
x66	00 00 00 01	Frame is output at the uplink port if filter 1 applies.
ConfigReg		
401	xx xx xx xE	Activate filter for CON A port (1110)

Filtering by the destination or source MAC address

Input field for the destination MAC address: 6 bytes Input field for the source MAC address: 6 bytes

Example: You want to filter all frames that are transmitted to the MAC address C8 3E A7 01 23 45 or from the MAC address C8 3E A7 02 32 AB.

Set the following filter registers:

Register	Parameter	Function	
SegFilter1:	SegFilter1:		
x07	00 00 00 00	Word offset of the destination MAC address	
x08	01 A7 3E C8	First 4 bytes of the destination MAC address	
x09	FF FF FF FF	Mask on all bits	
SegFilter2:			
x10	00 00 00 01	Word offset of the rest of the destination MAC address	
x11	xx xx 45 23	Last 2 bytes of the destination MAC address	
x12	00 00 FF FF	Mask on 2 bytes	
SegFilter3:			
x13	00 00 00 01	Word offset of the source MAC address	
x14	3E C8 xx xx	First 2 bytes of the source MAC address	
x15	FF FF 00 00	Mask on 2 bytes	
SegFilter4:			

DO0281R00 30 / 58

Register	Parameter	Function			
SegFilter1:	SegFilter1:				
x16	00 00 00 02	Word offset of the rest of the source MAC address			
x17	AB 32 02 A7	Last 2 bytes of the source MAC address			
x18	FF FF FF FF	Mask on all bits			
Filter 1					
x55	00 00 00 00	No negation of SegFilter1 and 2			
x56	00 00 00 03	Filter1 consists of SegFilter1 and 2			
Filter 2					
x57	00 00 00 00	No negation of SegFilter3 and 4			
x58	00 00 00 0C	Filter2 consists of SegFilter3 and 4			
Uplink					
x65	00 00 00 00	Do not invert output			
x66	00 00 00 03	Frame is output at the uplink port if filter 1 or 2 applies.			
ConfigReg					
401	xx xx xx xE	Activate filter for CON B port (1101)			

Filtering by the sender IP address

(IPv4 0x0800)

Input field for sender IP address: 4 bytes

Example: You want to filter all frames that have been transmitted from the IP address 01 02 03 04.

Set the following filter registers:

SegFilter1: x07 00 00 00 03 Word offset of protocol type x08 00 00 00 08 IPv4 protocol type x09 00 00 FF FF Mask on 2 bytes SegFilter2:
x08 00 00 00 08 IPv4 protocol type x09 00 00 FF FF Mask on 2 bytes
x09 00 00 FF FF Mask on 2 bytes
·
SegFilter2:
x10 00 00 00 06 Word offset of the sender IP address
x11 02 01 00 00 4 bytes of the sender IP address
x12 FF FF 00 00 Mask for all bits
SegFilter3:
x13 00 00 00 07 Word offset of the sender IP address
x14 00 00 04 03 4 bytes of the sender IP address
x15 00 00 FF FF Mask for all bits
Filter 1
x55 00 00 00 No negation of SegFilter1 and 2
x56 00 00 00 07 Filter1 consists of SegFilter1 and 2
Jplink
x65 00 00 00 00 Do not invert output
x66 00 00 00 01 Frame is output at the uplink port if filter 1 applies.
ConfigReg
xx xx xx xE Activate filter for CON B port (1101)

DO0281R00 31 / 58

(IPv4 0x0800)
Filtering by the target IP address Input field for ta

Input field for target IP address: 4 bytes

Example: You want to filter the target IP address "01 02 03 04".

Set the following filter registers:

Register	Parameter	Function	
SegFilter1:	SegFilter1:		
x07	00 00 00 03	Word offset of protocol type	
x08	00 00 00 08	IPv4 protocol type	
x09	00 00 FF FF	Mask on 2 bytes	
SegFilter2:			
x10	00 00 00 07	Word offset of the target IP address is 10	
x11	02 01 00 00	First 2 bytes of the target IP address	
x12	FF FF 00 00	Mask on 2 bytes	
SegFilter3:			
x13	00 00 00 08	Word offset of the rest of the target IP address is 11	
x14	00 00 04 03	Last 2 bytes of the target IP address	
x15	00 00 FF FF	Mask on 2 bytes	
Filter 1			
x55	00 00 00 00	No negation of SegFilter1,2 and 3	
x56	00 00 00 07	Filter1 consists of SegFilter1,2 and 3	
Uplink			
x65	00 00 00 00	Do not invert output	
x66	00 00 00 01	Frame is output at the uplink port if filter 1 applies.	
ConfigReg			
401	xx xx xx xE	Activate filter for CON B port (1101)	

Filtering by IP4 and external input

Example: You want to filter by protocol type IPv4 and the external input. Protocol type IPv4 corresponds to 0x0800. The external input is "high". Set the following filter registers:

Register	Parameter	Function	
SegFilter1	SegFilter1:		
x07	00 00 00 03	Word offset of protocol type	
x08	00 00 00 08	IPv4 protocol type	
x09	00 00 FF FF	Mask on 2 bytes	
Filter 1			
x55	00 00 00 00	No negation of SegFilter1	
x56	10 00 00 01	Filter1 consists of SegFilter1 and the external input	
Uplink			
x65	00 00 00 00	Do not invert output	
x66	00 00 00 01	Frame is output at the uplink port if filter 1 applies.	
ConfigReg			
401	xx xx xx xE	Activate filter for CON A port (1110)	

DO0281R00 32 / 58

Filtering by IP4 and setting the external output

Example: You want to filter by protocol type IPv4 and set the external output if a frame with protocol type IPv4 arrives.

Protocol type IPv4 corresponds to 0x0800.

Set the following filter registers:

Register	Parameter	Function		
SegFilter1	SegFilter1:			
x07	00 00 00 03	Word offset of protocol type		
x08	80 00 00 08	IPv4 protocol type		
x09	00 00 FF FF	Mask on 2 bytes		
Filter 1				
x55	00 00 00 00	No negation of SegFilter1		
x56	00 00 00 01	Filter1 consists of SegFilter1		
Uplink				
x65	00 00 00 00	Do not invert output		
x66	00 00 00 00	Frame is output at the uplink port if filter 1 applies.		
External ou	tput			
x67	00 00 00 00	No negation of ext. out		
x68	00 00 00 01	Set external output if filter 1 applies		
ConfigReg				
401	xx xx xx xE	Activate filter for CON A port (1110)		
extOut_ConfigReg				
402	00 00 01 01	Port Con A active, reset via a timer		
extOutTimerReg				
403	01 31 2D 00	Timer resets the value every 200 ms		

Example: You want to filter all frames that report a CRC error.

Set the following filter registers:

Filtering by CRC error

Register	Parameter	Function	
State:			
x05	08 00 00 00	CRC Error Statusbit	
x06	FF 00 00 00	Mask on 1 byte	
Filter 1			
x55	00 00 00 00	No negation of StateFilter	
x56	80 00 00 00	Filter1 consists of state filter	
Uplink			
x65	00 00 00 00	Do not invert output	
x66	00 00 00 01	Frame is output at the uplink port if filter 1 applies.	
ConfigReg			
401	xx xx xx xE	Activate filter for CON A port (1110)	

DO0281R00 33 / 58

Filtering by frame length

Example: You want to filter all frames that are 1012 bytes long.

Set the following filter registers:

Register	Parameter	Function	
State:			
x05	00 00 03 F4	Frame is 1012 bytes long (0x03F4)	
x06	00 00 FF FF	Mask on 2 bytes	
Filter 1			
x55	00 00 00 00	No negation of StateFilter	
x56	80 00 00 00	Filter1 consists of state filter	
Uplink			
x65	00 00 00 00	Do not invert output	
x66	00 00 00 01	Frame is output at the uplink port if filter 1 applies.	
ConfigReg			
401	xx xx xx xE	Activate filter for CON A port (1110)	

Configuring filters

You can set what you want to do with the result of a filter in the Registers menu "401-410". You can show that a filter applies via the filter LEDs or the external output.

Information and setting values can be found in the chapter called "TAP configuration register [▶ 44]".

To be able to use the configuration settings, they have to be saved.

DO0281R00 34 / 58

Configuring TAP CURIOUS

Click on "Config settings > Show settings".

Device information is displayed in the first line:

- Serial number of TAP CURIOUS
- Software version
- MAC address

These data are specified by KUNBUS for this device and cannot be changed. Please have these data to hand if you report a problem to our support.

You can select the connection speed for all ports in the "Channel mode" menu. The default speed is 100 Mbit.

• To change the default, check the "10 Mbit mode" box.

If you use a DHCP server, it can assign a free IP address to TAP CURIOUS.

• In the "Use DHCP" menu, click on "Yes" to use DHCP.

You can change the following communication parameters in the "Config TAP" menu:

- IP address

The IP address ensures that TAP CURIOUS can be clearly identified within a network. When assigning a new IP address, you should therefore make sure that it is not being used by another device in the network. If you use DHCP, you do not need to set the IP address. In this case, TAP CURIOUS will receive the IP address from the DHCP server.

- Subnet

This is where you can adapt the net mask. The net mask is a bit mask that indicates the bit position within the IP address that is being used to address the network section. Make sure the settings you change here match your network settings.

Gateway address
 You can set the gateway address here.

Connection settings

Device information

DHCP settings

Configuration

7.3 Tabulated list of filter registers

A tabulated overview of all filter registers can be found in this chapter.

Number	Name of the register	Name of the filter	Access
X01	Time1 TargetReg	RW 32 bit	
X02	Time1 MaskReg	Timestamp_1	RW 32 bit
X03	Time2_TargetReg	Timestamp_2	RW 32 bit
X04	Time2 MaskReg		RW 32 bit
X05	State_TargetReg	Status	RW 32 bit
X06	State_MaskReg		RW 32 bit
X07	SegFilter1_PosReg	Segment filter_1	RW 16 bit
X08	SegFilter1_TargetReg		RW 32 bit
X09	SegFilter1_MaskReg		RW 32 bit
X010	SegFilter2_PosReg	Segment filter_2	RW 16 bit
X011	SegFilter2_TargetReg		RW 32 bit
X012	SegFilter2_MaskReg		RW 32 bit
X013	SegFilter3_PosReg	Segment filter_3	RW 16 bit
X014	SegFilter3_TargetReg		RW 32 bit
X015	SegFilter3_MaskReg		RW 32 bit
X016	SegFilter4_PosReg	Segment filter_4	RW 16 bit
X017	SegFilter4_TargetReg		RW 32 bit
X018	SegFilter4_MaskReg		RW 32 bit
X019	SegFilter5_PosReg	Segment filter_5	RW 16 bit
X020	SegFilter5_TargetReg		RW 32 bit
X021	SegFilter5_MaskReg		RW 32 bit
X022	SegFilter6_PosReg	Segment filter_6	RW 16 bit
X023	SegFilter6_TargetReg		RW 32 bit
X024	SegFilter6_MaskReg		RW 32 bit
X025	SegFilter7_PosReg	Segment filter_7	RW 16 bit
X026	SegFilter7_TargetReg		RW 32 bit
X027	SegFilter7_MaskReg		RW 32 bit
X028	SegFilter8_PosReg	Segment filter_8	RW 16 bit
X029	SegFilter8_TargetReg		RW 32 bit
X030	SegFilter8_MaskReg		RW 32 bit
X031	SegFilter9_PosReg	Segment filter_9	RW 16 bit
X032	SegFilter9_TargetReg		RW 32 bit
X033	SegFilter9_MaskReg		RW 32 bit
X034	SegFilter10_PosReg	Segment filter_10	RW 16 bit
X035	SegFilter10_TargetReg		RW 32 bit
X036	SegFilter10_MaskReg		RW 32 bit
X037	SegFilter11_PosReg	Segment filter_11	RW 16 bit
X038	SegFilter11_TargetReg		RW 32 bit
X039	SegFilter11_MaskReg		RW 32 bit
X040	SegFilter12_PosReg	Segment filter_12	RW 16 bit
X041	SegFilter12_TargetReg		RW 32 bit
X042	SegFilter12_MaskReg		RW 32 bit

DO0281R00 36 / 58

Number	Name of the register	Name of the filter	Access	
X043	SegFilter13_PosReg Segment filter_13 RW 16		RW 16 bit	
X044	SegFilter13_TargetReg	RW 32 bit		
X045	SegFilter13_MaskReg	RW 32 bit		
X046	SegFilter14_PosReg	Segment filter_14	RW 16 bit	
X047	SegFilter14_TargetReg		RW 32 bit	
X048	SegFilter14_MaskReg		RW 32 bit	
X049	SegFilter15_PosReg	Segment filter_15	RW 16 bit	
X050	SegFilter15_TargetReg		RW 32 bit	
X051	SegFilter15_MaskReg		RW 32 bit	
X052	SegFilter16_PosReg	Segment filter_16	RW 16 bit	
X053	SegFilter16_TargetReg		RW 32 bit	
X054	SegFilter16_MaskReg		RW 32 bit	
X055	Filter1_NegReg	Filter_1	RW 32 bit	
X056	Filter1_MaskReg		RW 32 bit	
X057	Filter2_NegReg	Filter_2	RW 32 bit	
X058	Filter2_MaskReg		RW 32 bit	
X059	Filter3_NegReg	Filter_3	RW 32 bit	
X060	Filter3_MaskReg		RW 32 bit	
X061	Filter4_NegReg	Filter_4	RW 32 bit	
X062	Filter4_MaskReg		RW 32 bit	
X063	Filter5_NegReg	Filter_5	RW 32 bit	
X064	Filter5_MaskReg		RW 32 bit	
X065	Gbit_Filter_NegReg	Gbit Upload Filter	RW 32 bit	
X066	Gbit_Filter_MaskReg		RW 32 bit	
X067	ExOut_Filter_NegReg	Ext Output Filter	RW 32 bit	
X068	ExOut_Filter_MaskReg		RW 32 bit	
X069	LED0_LED2_Filter_NegReg	LED0 - LED2 Filter	RW 32 bit	
X070	LED0_LED2_Filter_MaskReg		RW 32 bit	
X071	LED3_LED4_Filter_NegReg	LED3 - LED4 Filter	RW 32 bit	
X072	LED3_LED4_Filter_MaskReg			

x05-State_TargetReg

Byte	Bit	Description
1	0-15	Frame length (with KUNBUS additional data 20 bytes)
3	0	Port Con A
	1	Port Con B
	2	Port Con C
	3	Port Con D
	4-7	Reserved
4	0	Short Frame
	1	Long Frame
	2	Lost Frame
	3	CRC Error
	4	Alignment Error
	5	Wrong IFG
	6	Wrong Preamble

DO0281R00 37 / 58

x06-State_MaskReg

Byte	Bit	Description
1	0-31	Filter mask
2		Value = 0: → Bit ignored
3		Value = 1: → Bit considered
4		

x07, x10 ... x49, x52-SegFilterXX_PosReg

Byte	Bit	Description
1	0-15	Byte offset for 4 bytes in the frame
2		Offset = $0 \rightarrow [01\ 00\ 5e\ 6e]$ ed c2 00 24 01 3a b6 c1 08 00 45 00
		Offset = 1 \rightarrow 01 00 5e 6e [ed c2 00 24] 01 3a b6 c1 08 00 45 00
		Offset = $2 \rightarrow 01\ 00\ 5e\ 6e\ ed\ c2\ 00\ 24\ [01\ 3a\ b6\ c1]\ 08\ 00\ 45\ 00$
		Offset = 3 → 01 00 5e 6e ed c2 00 24 01 3a b6 c1 [08 00 45 00]

x08, x11 ... x50, x53-SegFilterXX_TargetReg

Byte	Bit	Description
1	0-31	4 byte filter data for which the test is required
2		Received frame data \rightarrow [c0 4a 00 01] 94 f7 c8 3e a7 00 00 95 08 06
3		Frame data entries in the register → 01 00 4a c0
4		- -

x09, x12 ... x51, x54-SegFilterXX_MaskReg

Bit	Byte	Description
1	0-31	Filter mask
2		Value = 0: → Bit ignored
3		Value = 1: → Bit considered
4		

x55, ..., x63-FilterX_NegReg

Byte	Bit	Description
1	0	Negate result of Segment filter_1
	1	Negate result of Segment filter_2
	2	Negate result of Segment filter_3
	3	Negate result of Segment filter_4
	4	Negate result of Segment filter_5
	5	Negate result of Segment filter_6
	6	Negate result of Segment filter_7
	7	Negate result of Segment filter_8
2	0	Negate result of Segment filter_9
	1	Negate result of Segment filter_10
	2	Negate result of Segment filter_11
	3	Negate result of Segment filter_12
	4	Negate result of Segment filter_13
	5	Negate result of Segment filter_14
	6	Negate result of Segment filter_15
	7	Negate result of Segment filter_16
3	0-7	Reserved

DO0281R00 38 / 58

Byte	Bit	Description
4	0	Reserved
	1	Reserved
	2	Reserved
	3	Reserved
	4	Ext. input has to be "low"
	5	Negate result of timestamp low
	6	Negate result of timestamp high
	7	Negate result of status

x56, ..., x64-FilterX_MaskReg

D. 4.	D'4	December 1 and
Byte	Bit	Description
1	0	Add Segment filter_1 to the filter
	1	Add Segment filter_2 to the filter
	2	Add Segment filter_3 to the filter
	3	Add Segment filter_4 to the filter
	4	Add Segment filter_5 to the filter
	5	Add Segment filter_6 to the filter
	6	Add Segment filter_7 to the filter
	7	Add Segment filter_8 to the filter
2	0	Add Segment filter_9 to the filter
	1	Add Segment filter_10 to the filter
	2	Add Segment filter_11 to the filter
	3	Add Segment filter_12 to the filter
	4	Add Segment filter_13 to the filter
	5	Add Segment filter_14 to the filter
	6	Add Segment filter_15 to the filter
	7	Add Segment filter_16 to the filter
3	0-7	Reserved
4	0	Reserved
	1	Reserved
	2	Reserved
	3	Reserved
	4	Add ext. input to the filter
	5	Add timestamp "low" to the filter
	6	Add timestamp "high" to the filter
	7	Add status filter to the filter

DO0281R00 39 / 58

x65-Gbit_Filter_NegReg

Byte	Bit	Description
1	0	Negate result of Filter 1
	1	Negate result of Filter 2
	2	Negate result of Filter 3
	3	Negate result of Filter 4
	4	Negate result of Filter 5
	5	Reserved
	6	Reserved
	7	Reserved
2	0-7	Reserved
3	0-7	Reserved
4	0-7	Reserved

x 66-Gbit_Filter_MaskReg

Byte	Bit	Description
1	0	Frame is sent if filter 1 applies
	1	Frame is sent if filter 2 applies
	2	Frame is sent if filter 3 applies
	3	Frame is sent if filter 4 applies
	4	Frame is sent if filter 5 applies
	5	Reserved
	6	Reserved
	7	Reserved
2	0-7	Reserved
3	0-7	Reserved
4	0-7	Reserved

x68-ExOut_Filter_MaskReg

Byte	Bit	Description
1	0	Set the external output if filter 1 applies
	1	Set the external output if filter 2 applies
	2	Set the external output if filter 3 applies
	3	Set the external output if filter 4 applies
	4	Set the external output if filter 5 applies
	5	Reset the external output if filter 1 applies
	6	Reset the external output if filter 2 applies
	7	Reset the external output if filter 3 applies
2	0	Reset the external output if filter 4 applies
	1	Reset the external output if filter 5 applies
	2-7	Reserved
3	0-7	Reserved
4	0-7	Reserved

x67-ExOut_Filter_NegReg

Byte	Bit	Description
1	0	Set the external output if filter 1 does not apply
	1	Set the external output if filter 2 does not apply
	2	Set the external output if filter 3 does not apply
	3	Set the external output if filter 4 does not apply
	4	Set the external output if filter 5 does not apply
	5	Reset the external output if filter 1 does not apply
	6	Reset the external output if filter 2 does not apply
	7	Reset the external output if filter 3 does not apply
2	0	Reset the external output if filter 4 does not apply
	1	Reset the external output if filter 5 does not apply
	2-7	Reserved
3	0-7	Reserved
4	0-7	Reserved

x70-LED0_LED2_Filter_MaskReg

Byte	Bit	Description		
1	0	Set LED0 if filter 1 applies		
	1	Set LED0 if filter 2 applies		
	2	Set LED0 if filter 3 applies		
	3	Set LED0 if filter 4 applies		
	4	Set LED0 if filter 5 applies		
	5	Set LED0 if filter 1 applies		
	6	Reset LED0 if filter 2 applies		
	7	Reset LED0 if filter 3 applies		
2	0	Reset LED0 if filter 4 applies		
	1	Reset LED0 if filter 5 applies		
	2	Set LED1 if filter 1 applies		
	3	Set LED1 if filter 2 applies		
	4	Set LED1 if filter 3 applies		
	5	Set LED1 if filter 4 applies		
	6	Set LED1 if filter 5 applies		
	7	Reset LED1 if filter 1 applies		
3	0	Reset LED1 if filter 2 applies		
	1	Reset LED1 if filter 3 applies		
	2	Reset LED1 if filter 4 applies		
	3	Reset LED1 if filter 5 applies		
	4	Set LED2 if filter 1 applies		
	5	Set LED2 if filter 2 applies		
	6	Set LED2 if filter 3 applies		
	7	Set LED2 if filter 4 applies		

DO0281R00 41 / 58

Byte	Bit	Description		
4	0	Set LED2 if filter 5 applies		
	1	Reset LED2 if filter 1 applies		
	2	Reset LED2 if filter 2 applies		
	3	Reset LED2 if filter 3 applies		
	4	Reset LED2 if filter 4 applies		
	5	Reset LED2 if filter 5 applies		
	6	Reserved		
	7	Reserved		

x69-LED0_LED2_Filter_NegReg

Byte	Bit	Description		
1	0	Set LED0 if filter 1 does not apply		
'	1	· · ·		
	2	Set LED0 if filter 2 does not apply		
	3	Set LED0 if filter 3 does not apply		
		Set LED0 if filter 4 does not apply		
	4	Set LED0 if filter 5 does not apply		
	5	Reset LED0 if filter 1 does not apply		
	6	Reset LED0 if filter 2 does not apply		
_	7	Reset LED0 if filter 3 does not apply		
2	0	Reset LED0 if filter 4 does not apply		
	1	Reset LED0 if filter 5 does not apply		
	2	Set LED1 if filter 1 does not apply		
	3	Set LED1 if filter 2 does not apply		
	4	Set LED1 if filter 3 does not apply		
	5	Set LED1 if filter 4 does not apply		
	6	Set LED1 if filter 5 does not apply		
	7	Reset LED1 if filter 1 does not apply		
3	0	Reset LED1 if filter 2 does not apply		
	1	Reset LED1 if filter 3 does not apply		
	2	Reset LED1 if filter 4 does not apply		
	3	Reset LED1 if filter 5 does not apply		
	4	Set LED2 if filter 1 does not apply		
	5	Set LED2 if filter 2 does not apply		
	6	Set LED2 if filter 3 does not apply		
	7	Set LED1 if filter 4 does not apply		
4	0	Set LED1 if filter 5 does not apply		
	1	Reset LED2 if filter 1 does not apply		
	2	Reset LED2 if filter 2 does not apply		
	3	Reset LED2 if filter 3 does not apply		
	4	Reset LED2 if filter 4 does not apply		
	5	Reset LED2 if filter 5 does not apply		
	6	Reserved		
	7	Reserved		

DO0281R00 42 / 58

x72-LED3_LED4_Filter_MaskReg

Byte	Bit	Description	
1	0	Set LED3 if filter 1 applies	
	1	Set LED3 if filter 2 applies	
	2	Set LED3 if filter 3 applies	
	3	Set LED3 if filter 4 applies	
	4	Set LED3 if filter 5 applies	
	5	Reset LED3 if filter 1 applies	
	6	Reset LED3 if filter 2 applies	
	7	Reset LED3 if filter 3 applies	
2	0	Reset LED3 if filter 4 applies	
	1	Reset LED3 if filter 5 applies	
	2	Set LED4 if filter 1 applies	
	3	Set LED4 if filter 2 applies	
	4	Set LED4 if filter 3 applies	
	5	Set LED4 if filter 4 applies	
	6	Set LED4 if filter 5 applies	
	7	Reset LED4 if filter 1 applies	
3	0	Reset LED4 if filter 2 applies	
	1	Reset LED4 if filter 3 applies	
	2	Reset LED4 if filter 4 applies	
	3	Reset LED4 if filter 5 applies	
	4	Reserved	
	5	Reserved	
	6	Reserved	
	7	Reserved	
4	0	Reserved	
	1	Reserved	
	2	Reserved	
	3	Reserved	
	4	Reserved	
	5	Reserved	
	6	Reserved	
	7	Reserved	

x71-LED3_LED4_Filter_NegReg

Byte	Bit	Description
1	0	Set LED3 if filter 1 does not apply
	1	Set LED3 if filter 2 does not apply
	2	Set LED3 if filter 3 does not apply
	3	Set LED3 if filter 4 does not apply
	4	Set LED3 if filter 5 does not apply
	5	Reset LED3 if filter 1 does not apply
	6	Reset LED3 if filter 2 does not apply
	7	Reset LED3 if filter 3 does not apply

Byte	Bit	Description		
2	0	Reset LED3 if filter 4 does not apply		
	1	Reset LED3 if filter 5 does not apply		
	2	Set LED4 if filter 1 does not apply		
	3	Set LED4 if filter 2 does not apply		
	4	Set LED4 if filter 3 does not apply		
	5	Set LED4 if filter 4 does not apply		
	6	Set LED4 if filter 5 does not apply		
	7	Reset LED4 if filter 1 does not apply		
3	0	Reset LED4 if filter 2 does not apply		
	1	Reset LED4 if filter 3 does not apply		
	2	Reset LED4 if filter 4 does not apply		
	3	Reset LED4 if filter 5 does not apply		
	4	Reserved		
	5	Reserved		
	6	Reserved		
	7	Reserved		
4	0	Reserved		
	1	Reserved		
	2	Reserved		
	3	Reserved		
	4	Reserved		
	5	Reserved		
	6	Reserved		
	7	Reserved		

TAP configuration register

401-ConfigReg

Byte	Bit	Description
1	0	Con A \rightarrow all frames are transmitted, irrespective of the filtering high-active, prioritized lower than Bit 4
	1	Con B \rightarrow all frames are transmitted, irrespective of the filtering high-active, prioritized lower than Bit 5
	2	Con C \rightarrow all frames are transmitted, irrespective of the filtering high-active, prioritized lower than Bit 6
	3	Con D \rightarrow all frames are transmitted, irrespective of the filtering high-active, prioritized lower than Bit 7
	4	Con A \rightarrow no frames are transmitted, irrespective of the filtering high-active, prioritized higher than Bit 0
	5	Con B \rightarrow no frames are transmitted, irrespective of the filtering high-active, prioritized higher than Bit 1
	6	Con C \rightarrow no frames are transmitted, irrespective of the filtering high-active, prioritized higher than Bit 2
	7	Con D \rightarrow no frames are transmitted, irrespective of the filtering high-active, prioritized higher than Bit 3
2	Reserved	
3	Reserved	
4	Reserved	

DO0281R00 44 / 58

402-extOut_ConfigReg

Byte	Bit	Description
1	0-3	0001 →0x1 -> X1.1 active port for setting the ext. out
		$0010 \rightarrow 0x2$ -> X1.2 active port for setting the ext. out
		$0100 \rightarrow 0x3$ -> X2.1 active port for setting the ext. out
		$1000 \rightarrow 0x4$ -> X2.2 active port for setting the ext. out
	4-7	$0001 \rightarrow 0x1$ -> X1.1 active port for resetting the ext. out
		$0010 \rightarrow 0x2$ -> X1.2 active port for resetting the ext. out
		$0100 \rightarrow 0x3$ -> X2.1 active port for resetting the ext. out
		$1000 \rightarrow 0x4$ -> X2.2 active port for resetting the ext. out
		Output reset via timer must not be activated.
2	0	Activate reset external output via timer (switch-off delay). The timer value is entered in 403-extOutTimerReg.
		high-active
	1	Reset external output
		high-active
		Output reset via timer must not be activated.
	2-7	Reserved
3	Reserved	
4	Reserved	

403-extOutTimerReg

Byte	Bit	Description
1-4	0-31	Delay for resetting the external output
		Input is in 10ns increments.
		For example, 0x1312D00 corresponds to 200 ms.

DO0281R00 45 / 58

404-LED_ConfigReg

Byte	•		
1-4	0-5	Reset the LEDs via timer (switch-off delay), high-active	
		(000001->LED0, 000010->LED1, 000100->LED2, 001000->LED3,	
		010000->LED4)	
	6-11	Reset the LEDs, high-active	
		Possible only when reset via timer is not active	
		(000001->LED0, 000010->LED1, 000100->LED2, 001000->LED3,	
		010000->LED4)	
		LED reset via timer must not be activated.	
	12-15	Specify the active port for which LED0 is set.	
		0001 → Con A	
		0010 → Con B	
		$0100 \rightarrow Con C$	
		1000 → Con D	
	16-19	Specify the active port for which LED1 is set.	
		0001 → Con A	
		0010 → Con B	
		0100 → Con C	
		1000 → Con D	
	20-23	Specify the active port for which LED2 is set.	
		0001 → Con A	
		0010 → Con B	
		0100 → Con C	
		1000 → Con D	
	24-27	Specify the active port for which LED3 is set.	
		0001 → Con A	
		0010 → Con B	
		0100 → Con C	
		1000 → Con D	
	28-31	Specify the active port for which LED4 is set.	
		0001 → Con A	
		0010 → Con B	
		0100 → Con C	
		1000 → Con D	

DO0281R00 46 / 58

TOO LED COINIGENCY	405-L	.ED	Config2Reg
--------------------	-------	-----	------------

Byte	Bit	Description
1-4	0-3	Specify the active port for which LED0 is reset.
		0001 → Con A
		0010 → Con B
		0100 → Con C
		1000 → Con D
	4-7	Specify the active port for which LED1 is reset.
		0001 → Con A
		0010 → Con B
		0100 → Con C
		1000 → Con D
	8-11	Specify the active port for which LED2 is reset.
		0001 → Con A
		0010 → Con B
		0100 → Con C
		1000 → Con D
	12-15	Specify the active port for which LED3 is reset.
		0001 → Con A
		0010 → Con B
		0100 → Con C
		1000 → Con D
	16-19	Specify the active port for which LED4 is reset.
		0001 → Con A
		0010 → Con B
		0100 → Con C
		1000 → Con D
	20-31	Reserved

406-LED0_TimerReg

Byte	Bit	Description
1-4	031	Delay until LED0 is reset.
		Input is in 10ns increments.
		For example, 0x1312D00 corresponds to 200 ms.

407-LED1_TimerReg

Byte	Bit	Description
1-4	0-31	Delay until LED1 is reset.
		Input is in 10ns increments.
		For example, 0x1312D00 corresponds to 200 ms.

408-LED2_TimerReg

Byte	Bit	Description
1-4	0-31	Delay until LED2 is reset.
		Input is in 10ns increments.
		For example, 0x1312D00 corresponds to 200 ms.

DO0281R00 47 / 58

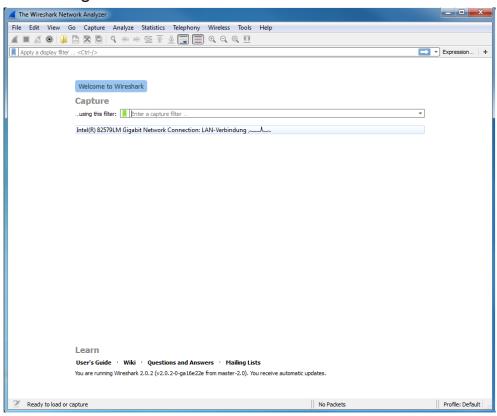
409-LED3-TimerReg	Byte		Bit	Description
	1-4	0-31	Delay until LED3 is reset.	
			Input is in 10ns increments.	
			For example, 0x1312D00 corresponds	s to 200 ms.
410-LED4-TimerReg	Byte	Bit	Description	
	1-4	0-31	Delay until LED4 is reset	

Input is in 10ns increments.

For example, 0x1312D00 corresponds to 200 ms.

DO0281R00 48 / 58

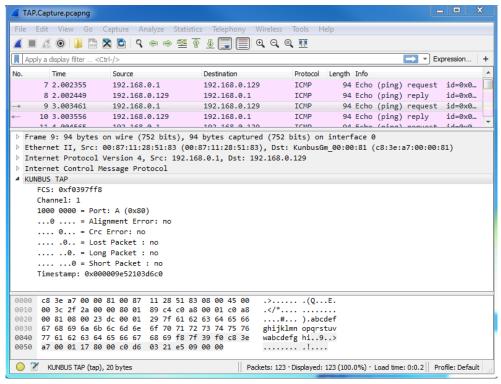
8 Monitoring the interface


Wireshark is a free analysis program for network communication connections. It allows you to:

- Show data traffic across an Ethernet interface after or during capture in the form of data packets,
- observe individually captured data packets,
- sort data packets according to specific contents,
- extract binary contents (e.g. images),
- create and work-up data flow statistics.

The free program library "WinPcap" permits the transparent capture of data traffic under Microsoft Windows®.

You can use Wireshark on most standard systems. To analyze additional information, however, we currently offer a plugin only for Windows.


Monitoring an interface with Wireshark

- ✓ You have installed Wireshark. In the main window under "Capture", you will
 see all identified Ethernet interfaces.
- Double-click to select the interface you want to monitor.
- ⇒ A status window opens. You will now see a recording of the data frame.

DO0281R00 49 / 58

Status window

The status window consists of 3 areas:

- Packet list.
- Packet details,
- Packet raw data.

Wireshark displays all data packets in chronological order here. As soon as the KUNBUS TAP spy plugin is activated, Wireshark will apply in the "Time" column the highly-precise time stamp from TAP CURIOUS instead of the timestamp from the operating system.

Specific values from TAP CURIOUS can be displayed in additional columns. Open the "Edit > Preferences > Columns" menu in the "Properties" section and click on the "Add" button to create a new column. Now select "Custom" from the drop-down list.

as the "Field type". You can enter "TAP.port", for example, as the "Field name". As soon as "TAP." is entered, the plugin will suggest values for selection.

To precisely analyze traces, Wireshark offers a filter function. As a result, the display and the analysis can be limited to the most informative frames for the analysis. The filter allows you to observe the inbound and outbound data traffic for your own IP address or solely ping commands. When using TAP CURIOUS, it makes sense to filter by TAP additional information. Wireshark uses the filter expression "TAP.port == a" to show, for example, only those packets that TAP CURIOUS has received at Port A.

Packet list

DO0281R00 50 / 58

Packet details

Once the TAP plugin is activated and Wireshark has captured the Ethernet packets via TAP CURIOUS, you can see additional information in the lowermost line in the "KUNBUS-TAP" section:

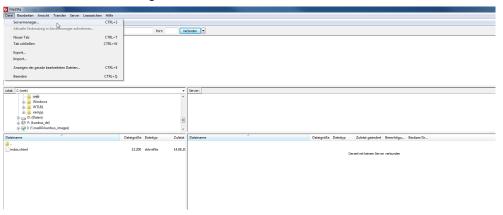
N. 1 61 6	0 1 1				
Number of bytes					
4 bytes	FCS (original checksum).				
	Identifier C8 3E A7 00 01 61.				
	Port on which the frame was received.				
	Port	Value in hex.			
	Con A	0x80			
	Con B	0x40			
	Con C	0x20			
	Con D	0x10			
1 Byte	Error mess	ages			
	Bit	Error message			
	Bit 7	Receive error			
		Signal not decoded.			
	Bit 6	Wrong preamble			
		Preamble does not conform to standard IEEE 802.3.			
	Bit 5	Wrong IFG			
		Minimum waiting time of 96 bit times not reached.			
	Bit 4	Alignment error			
		The total number of bits in a frame is not divisible by 8.			
	Bit 3	CRC error			
		The received frame is faulty.			
	Bit 2	Lost frame			
		Frame has gone astray.			
	Bit 1	Long frame			
		The maximum length of 1518 bytes/frames has been exceeded.			
	Bit 0	Short frame			
		Minimum length of 64 bytes/frame not reached.			
8 bytes	Timestamp	•			
•					

Packet raw data

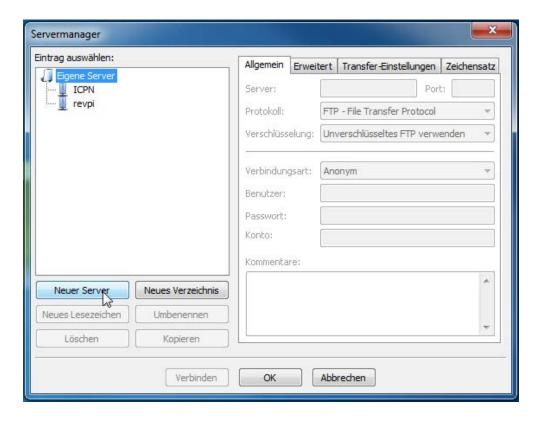
This section shows the packet data in hexadecimal form and as ASCII text. The last 20 bytes in the packets contain the additional information that TAP CURIOUS has added to the data packets.

DO0281R00 51 / 58

9 Refreshing the web server


You can refresh the web server whenever an update is available.

Requirements:


- ✓ TAP CURIOUS is connected to your PC.
- ✓ You have installed an FTP server on your PC.
- ✓ You have Internet access.
- Download the update from our website. The latest version can always be found at: http://tap.kunbus.de.
- Save the update files on your PC.
- Open your FTP server.

Note! In this example, we use FileZilla. If you use a different FTP server, the steps you see may differ due to the software.

- · Click on "File".
- · Select "Server manager".

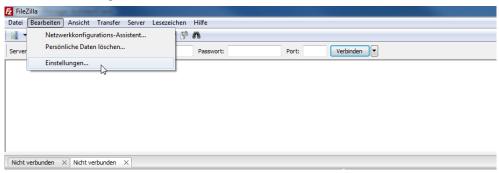
· Click on "New server".

DO0281R00 52 / 58

Servermanager Eintrag auswählen: Allgemein Erweitert Transfer-Einstellungen Zeichensatz Eigene Server 192.168.0.10 Server: Port: I ICPN revpi FTP - File Transfer Protocol Protokoll: TAP CURIOUS Verschlüsselung: Unverschlüsseltes FTP verwenden • Verbindungsart: Normal S Benutzer: Admin Passwort: ************ Konto: Kommentare: Neuer Server Neues Verzeichnis Neues Lesezeichen Umbenennen Löschen Kopieren

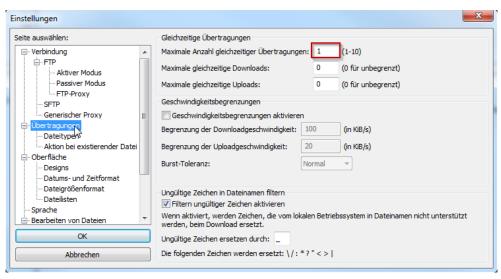
• Enter a name for the server (e.g. TAP CURIOUS).

• Enter the following values in the "General" register:

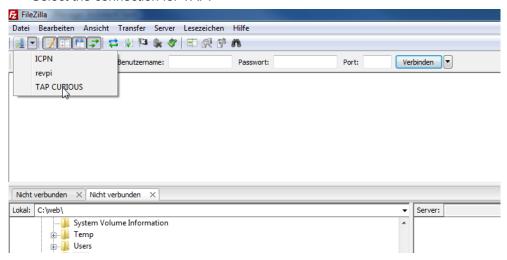

Verbinden

Server	IP address of your TAP CURIOUS
Protocol	"FTP- File Transfer Protocol"
Encryption	"Use unencrypted FTP"
Connection type	"Normal"
User	Admin
Password	1701

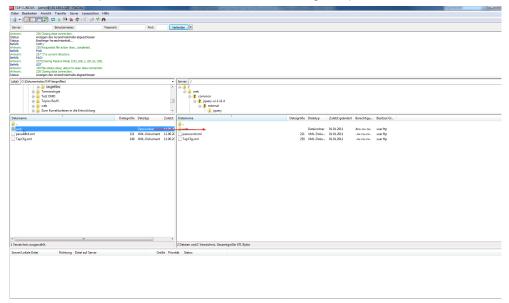
Abbrechen


It might not be possible to establish a connection due to the proxy settings. If this is the case, click on the "Advanced" register and check the "Bypass proxy" box.

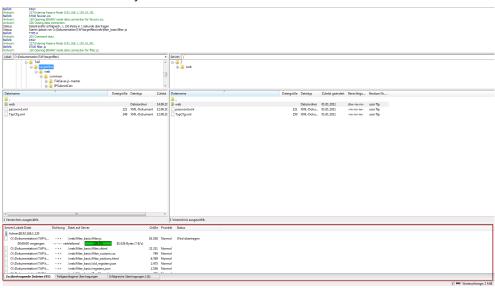
- · Click on "Edit".
- · Select "Settings".



· Click on "Transmit".


DO0281R00 53 / 58

- Enter a "1" into the "Maximum number of simultaneous transmissions" box.
- · Click on "OK"
- · Click on the selection arrow next to the network settings.
- · Select the connection for TAP.


- · Click on "Connect".
- Move the update files to TAP CURIOUS via drag&drop

DO0281R00 54 / 58

⇒ The update files will now be copied to your TAP CURIOUS.

FileZilla allows you to track progress in the queue. You can also see which files have been successfully transmitted and which encountered an error.

DO0281R00 55 / 58

10 Errors and problems

Problem	Solution		
No link between the devices.	The TX and RX lines are interchanged between the ports (crossover). If the used devices do not have Auto-MDI-X, a crossover cable has to be used on one side.		
Wireshark does not show all packets.	In the "Capture > Options" configuration dialog, activate "Capture packets in promiscuous mode". Some network cards filter out certain packet types that Wireshark is unable to display. This can be solved only by using a card from a different manufacturer.		
Wireshark does not show large packets.	TAP attaches 20 bytes of additional information to the packets. If large packets containing more than 1480 bytes of useful data are transmitted, the maximum packet length of 1500 bytes (1518 bytes, incl. Ethernet header and CRC) is exceeded and the packet will normally be rejected by the Ethernet card in the computer on which Wireshark is running. This can be avoided by activating "Jumbo packets" in the driver.		
Wireshark shows packets as faulty.	If the TAP plugin is not activated, Wireshark (or a different analysis program without TAP plugin) might show a checksum error. This is due to the additional data that TAP CURIOUS has attached to the data packet.		
Wireshark shows additional packets.	You can ignore this error message. It could be that the PC on which Wireshark is running is sending additional broadcasts over the used interface. You can avoid this by deactivating all elements (Client for Microsoft networks, Internet protocol (TCP/IP), etc.) in the LAN adapter properties under Windows.		
Negative time stamp:	If the network becomes overloaded, the network card may not output the frames in the correct sequence. This can be because the number of RSS queues in the network card is greater than one. To remedy the problem, the number of queues must be set to one.		
Changed port number (auto crossover)	Due to the auto crossover function, the cable assignment through the listening devices is random. As a result, frames from device A (connected to Con A port) can be detected when frames have been received on Con B port.		

DO0281R00 56 / 58

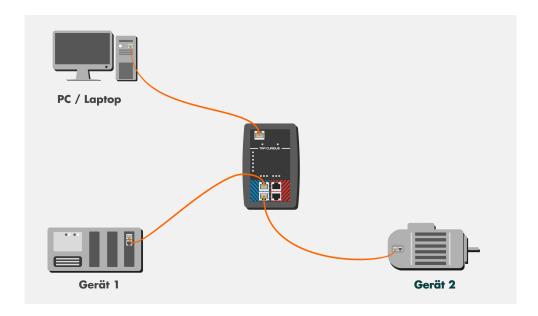
11 Technical Data

Size/weight	
Width	91.4 mm
Height	139.7 mm
Depth	27.9 mm
Weight	approx. 150 g

Environmental conditions	
Operating temperature	0°C+55°C
Storage temperature	-25°C+85°C
Humidity	95%, non-condensing
Protection class	IP20

Output	
Power supply	24 V DC ± 20% or 230 V AC with mains connector
Digital input/output	External power supply 24 V DC ± 20% Maximum output current of 50 mA Pulse length of 1 ms
	Electrically isolated
Number of Ethernet ports	4 for recording 2 lines
Uplink port	up to 1 GBit/s (1000BASE-T Ethernet, RJ45 port)
Probe ports	up to 100 MBit/s (100BASE-TX Ethernet, RJ45 port), full and half duplex
Protection class	IP20
Throughput delay	~ 0 µs (zero delay)
Time stamp resolution	1 ns
Diagnosis	3 LEDs per channel
	6 LEDs for filter and overflow

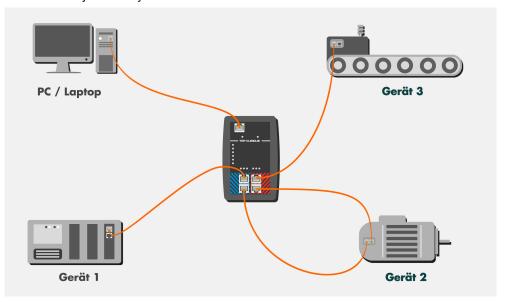
Tests/certificates	
CE-approved	


11.1 Application examples

TAP CURIOUS is able to monitor devices in various ways. 2 examples are shown here.

Example 1:

Connect your devices as shown to capture the communication between two devices. This allows you to find faulty frames on the network.


DO0281R00 57 / 58

Example 2:

Connect your devices as shown to monitor the frames before and after a device throughput. In this example, device 2 is monitored. Here, you could analyze the following:

- Measure the device throughput time,
- Check whether frames have been distorted or truncated,
- Measure jitter on cyclical frames.

DO0281R00 58 / 58